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Abstract

We propose a method to infer lead-lag networks of traders from the
observation of their trade record as well as to reconstruct their state of
supply and demand when they do not trade. The method relies on the Ki-
netic Ising model to describe how information propagates among traders,
assigning a positive or negative “opinion” to all agents about whether the
traded asset price will go up or down. This opinion is reflected by their
trading behavior, but whenever the trader is not active in a given time
window, a missing value will arise. Using a recently developed inference
algorithm, we are able to reconstruct a lead-lag network and to estimate
the unobserved opinions, giving a clearer picture about the state of sup-
ply and demand in the market at all times. We apply our method to a
dataset of clients of a major dealer in the Foreign Exchange market at the
5 minutes time scale. We identify leading players in the market and define
a herding measure based on the observed and inferred opinions. We show
the causal link between herding and liquidity in the inter-dealer market
used by dealers to rebalance their inventories.

1 Introduction

A significant part of risk management for financial intermediaries is related to
the mitigation of the adverse selection risk [1, 2], namely the risk of trading with
a counterpart that has access to better information on the traded asset. This
risk is exacerbated in contexts where multiple counterparties might - consciously
or not - coordinate their trades, introducing not only an adverse selection risk
against a specific counterpart but against a group of traders, a situation typically
referred to as inventory risk [3]. Understanding how information propagates in
the market is crucial to identify key players that can forerun the order flow, a
knowledge that an intermediary can exploit to better hedge against inventory
risk.

Methods to detect lead-lag relationships between financial variables have
been extensively studied in the literature, starting with correlations between
financial assets [4] and evolving towards more complex measurement methods
such as cascade models [5] or Vector AutoRegressive models [6]. In recent years



there has been a rising interest in methods to cluster together traders based
on their strategic and behavioral features as well as studying how they influ-
ence each other. A prominent example is the Statistically Validated Networks
(SVN) methodology, first described in Tumminello et al. [7] and then applied
to financial data [8, 9, 10], which has then been extended to the Statistically
Validated Lead-Lag Networks methodology [11, 12] to analyse how investors can
be classified based on their strategic behaviour and which clusters correlate at
different time-scales. Challet et al. [13] proposed a Machine Learning method
to construct lead-lag networks between clusters of investors and predict the or-
der flow, while Gutiérrez-Roig et al. [14] rely on information-based methods to
achieve similar results.

We propose our approach as an alternative to the aforementioned methods,
introducing the Kinetic Ising Model as an opinion spreading mechanism whose
parameters can be inferred from the data, as shown in a recent methodological
article we published [15].

Originally meant to represent magnetic dipoles, the Ising model [16] fea-
tures a set of variables called spins that can take a value of +1 or —1 and can
represent a variety of situations. Their interaction is modelled by a coupling
factor, which, in the simplest version, is assumed to be equal for all spins and in
more complicated versions can be a matrix of pair-specific factors. The Kinetic
Ising Model is the out-of-equilibrium implementation of such a model, defined
by approximating in discrete time the appropriate set of stochastic differential
equations that describe the dynamics of the Ising model in continuous time.
The resulting model is a simple yet effective description of the time evolution
of a set of binary random variables where, like in Vector AutoRegressive (VAR)
models, there is a lagged interaction, meaning that their probability distribution
function at time ¢ depends on their and others values at time ¢ — 1 through a
logistic link function.

Our goal is to find significant lead-lag relationships between single market
participants on the intra-day time-scale, as well as exploiting these lead-lag
relations to estimate the current implicit state of supply and demand. There
are two main innovations in our approach with respect to the above mentioned
ones: on the one hand, treating the data as a whole in a multivariate model,
instead of running multiple pairwise tests - as previously cited methods do -
allows us to correctly identify correlations and causalities, whereas a pairwise
approach is potentially prone to cases where spurious effects appear; on the
other hand, we also have the ability to handle missing observations, which in
the case of financial markets is an effect of the intrinsic asynchronicity of trade
records [17, 18].

The main purpose of financial markets is to aggregate the public opinion
about a particular asset, determining the correct price as the optimal match
between supply and demand. The opinion of a particular trader about the asset
price is thus expressed when they perform a transaction: when they buy an asset
at price p, they believe the correct price (the “value” of the asset) is p’ > p,
and vice-versa. Due to transaction costs, limited liquidity and other frictional
effects, the traders incur in a cost whenever they want to express their opinion,
inducing them to trade less than they would in an ideal situation. As a result,
when looking at trade records on the intra-day time-scale, it is very hard to
aggregate time at a level such that every participant trades in every time slice.
However it is reasonable to assume that, even if a trader has not traded in the



last time interval, they still hold an opinion about the asset, which could be
reflected in other trades they perform on other markets or could influence other
traders in their future actions.

We choose to model this system through the Kinetic Ising Model, assuming
traders’ opinions can either be positive (belief that p’ > p) or negative (p’ < p)
and thus be represented by binary spins that evolve in discrete time. Their
coupling factors will then carry the information about lead-lag relationships in
the spreading of opinions at the considered time-scale. As mentioned, the only
observations available about such opinions are the trades that investors make,
meaning that the data will likely present a significant amount of missing values if
one takes a reasonably short time step. A good reason to choose the Kinetic Ising
Model then is the possibility to infer the model parameters efficiently even from
incomplete data, thanks to the Expectation-Maximization-like algorithm that
we recently developed [15], while also getting a Maximum Likelihood estimate of
the unobserved opinions. The intuition behind the algorithm is that, given the
model parameters, one can analytically take expectations on the missing values,
and then use such expectations to improve the inference of the model parameters
themselves. Thus, by recurring this two-step procedure until a maximum of the
log-likelihood is reached, one jointly estimates the model parameters and the
expected values of unknown opinions. Such expectations can then be used to
make an informed guess about the hidden opinion, by simply taking their sign.

The case is particularly relevant for the foreign exchange (FX) market. The
market has a multi-dealer organization, where a centralized double-auction ex-
change is accessible to few market members (the dealers) which in turn offer,
through their proprietary platform, a trading service to their clients. The dealer
then acts as a liquidity provider, while also absorbing temporary shocks in sup-
ply and demand through its inventory which is then rebalanced by trading with
other dealers on the centralized platform. Optimal dealership (mostly known as
optimal market making) is a vastly studied problem in finance (see Guéant [19]
for a comprehensive review), trying to devise how to optimally rebalance the
inventory one accumulates when satisfying clients’ requests and what is the fee
the dealer has to charge clients in exchange for the immediacy of their transac-
tion. One of the costs faced by dealers is the cost of liquidity on the inter-dealer
market, which can be particularly high when all market participants experience
the same kind of pressure from their clients. To predict what this cost will be
it can be useful to understand what the aggregate opinion of traders is, even
the ones the dealer doesn’t observe due to lack of trading activity, either be-
cause they might influence other clients actions or because they are active with
other competing dealers and will eventually impact the cost of liquidity shortly
afterwards.

Our modelling approach also allows to analyse the inferred lead-lag networks
to identify key nodes in the opinion spreading process, whether the network
changes over time as traders enter and exit the market, and to study how influ-
ential nodes are relevant for the prediction of the order flow and future liquidity.

The paper is organized as follows: in Section 2 we briefly describe the Kinetic
Ising Model and the inference algorithm, in Section 3 we describe the dataset
we use, in Section 4 we show the results coming from multiple network analysis
metrics (Sections 4.1 and 4.2), we analyze the performance of the model when
trying to forecast the order flow (Section 4.3) and we define a herding measure
from the inferred opinions, for which we test Granger Causality [20] effects



with several liquidity imbalance measures (Section 4.4). Section 5 concludes
the paper.

2 Method

The method we adopt relies on the Kinetic Ising Model (KIM) [21, 22], a Marko-
vian model describing the dynamics of interacting binary random variables
through the Boltzmann distribution, which belongs to the exponential family.
The model has been developed in the physics literature as the out-of-equilibrium
version of the popular Ising Model [16, 23], originally intended to describe the
physics of ferromagnets. However, thanks to its simplicity and rich behaviour, it
lends itself to be used in other contexts such as neuroscience [24], computational
biology [25, 26, 27], economics and finance [28, 29] and even machine learning
with neural networks [30, 31].

The model itself belongs to the family of logistic regression models, in this
particular case in a multivariate and autoregressive form, which we briefly de-
scribe in the following and refer to the literature for more accurate treatments.

Consider a N-dimensional vector of binary random variables y € {—1,+1, }V
evolving in time ¢t = 1,...,T, representing, in our case, the (positive or negative)
opinion traders hold about the traded asset at each time step. We want to model
the spreading of these opinions, and we thus define the transition probability

plyt+ Dly(] = 27 (¢ exp | D it + 1) iy (t) + Zyi(t + 1) (hi + bir(t))

(i,5) i
(1)
where (i, j) is the count of neighbouring pairs of traders on an underlying net-
work, J;; are the coupling parameters between trader ¢’s opinion at time t + 1
and trader j’s at time ¢, h is the vector of agent-specific bias parameters, b is
the vector coupling agent opinions to the log-returns on the asset price 7(t)?
and Z(t) is a normalizing constant, also known as the partition function.

In the specific setting we consider here, we treat observed trade signs s;(t) as
observations of trader i’s opinion y;(t), implying that traders not active at time
t, say agent a, still hold an opinion, which is hidden to the market and is thus
handled as a missing observation we call o,(t). The implicit mapping between
the opinion dynamics and the observations is given by a set of right-invertible
matrices G(t) € {0, 1}M®*N " where M(t) is the number of observed trades at
time ¢, such that s(t) = G(t)y(t). The specific choice of G(t) in this form is
based on the hypothesis that the observation is not noisy or distorted (binary
elements), as well as that a trade performed by a trader only reflects her opinion
rather than a combination of opinions (right-invertibility). The complementary
mapping for unobserved variables is given by a likewise defined matrix F'(t) such
that o(t) = F(t)y(t).

Given the observations s(t), our goal is to reconstruct the coupling matrix J,
to infer the value of the parameters b and h, as well as to estimate the missing
values o(t). This can be done using a method relying on a Mean Field approxi-
mation and an Expectation-Maximization procedure, described in Campajola et
al. [15]. We give here a brief explanation of the method and refer to the original

1Or any other external regressor



article for further details. The log-likelihood for the model is thus rewritten in
terms of observed and unobserved variables

({3 b = log Try [ [ p [{s(t + 1), 0 (t + 1)} {s(£), 0 (1)}] (2)

The trace operator is computationally intractable for large systems with
many missing values, so an approximation is needed in order to be able to
compute the log-likelihood. The solution is given by the Martin-Siggia-Rose
path-integral formalism [32] which, introducing a set of auxiliary variables, al-
lows to shift the computational complexity from a cumbersome sum to a high-
dimensional integral, for which approximate solution methods are known.

The result is an approximated version of the log-likelihood, function of the
model parameters {J, h, b} and of the posterior averages on unobserved opinions
o;(t), given as solutions of a set of self-consistency equations

ma(t) = Eloa(t)] = fa[m(t)] 3)

where the expectation is performed under the measure p[{c}|{s,J, h,b}] and
the f,[m(t)] are the non-linear self-consistency functions for the averages.
Calling

gi(t) = ZJOO Z t) + hi + br(t)
ZJHO ZJHH t) + ha + bar(t)

where JOO(t) = G(t+1)JG(t), JOH (t) = G(t +1)JF(t) and so on, the approx-
imated log-likelihood reads
L= Z [ i(t+1)gi(t) — log 2 cosh(g;(t))]+
¢

Z a(t +1)gq(t) — log 2 cosh(g, (t))]+

72 1+mlo( 14+m +1777110 1-m _Jr
— |2 B 2 B\ 72 )]
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while the self-consistency functions read
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Given the non-linearity of the f, functions the solution to these equations is
found by iteration of the map until convergence.

Using the equations above, the model inference is performed by iterating
a Gradient Ascent step [33] in the {J, h.b} space and the solution of the self-
consistency equations, a process that eventually converges to a Maximum Likeli-
hood Estimate of the parameters {.J, h, b} as well as an estimator for the hidden
opinions in the form of &,(t) = sign[m,(t)]. Once this is obtained, a parameter
selection scheme called Decimation [34] prunes all the irrelevant elements of J,
resulting in a sparse directed and weighted network of interactions.

The Decimation procedure takes advantage of a transformation of the log-
likelihood function in order to highlight when the removal of a parameter sig-
nificantly impacts the quality of the whole model, by comparing the variation
in log-likelihood and a linear interpolation between the complete model and a
model with no parameters. Calling £,,,, the value of the log-likelihood coming
from the optimization, and call x the fraction of elements of J that are pruned
from the model (i.e. set to 0). Call L(x) the log-likelihood of the model with
the fraction x of pruned parameters and £ the one with x = 1, then one can
define a Tilted log-likelihood as

[,“lwd(x) =L(z) — (1 —2)Lmaz +2L1)

Maximization of this transformed log-likelihood leads to the decimated model,
which can then be interpreted as a sparse, directed and weighted network of
lead-lag relationships.

We choose Decimation rather than the more popular LASSO parameter
selection method because extensive numerical simulations show that the former
performs better than the latter (see [15] for more details).

Numerically the method requires O(N? x T') operations at each iteration of
the EM algorithm, meaning that its computational complexity grows quadrati-
cally with the number of variables one needs to model. This can become a prob-
lem when N is in the order of thousands, but in our experience this approach



can be adopted without resorting to high performance computing facilities if N
is in the range of several hundreds.

3 Dataset

Our dataset consists of all the trades performed in the period going from January
2012 to December 2013 on the eFX platform of a major dealer in the EUR/USD
spot exchange rate market, including an anonymized identifier of the market
agent requesting the trade, the volume and sign of the transaction, the time of
request, and the price in EUR/USD quote offered by the dealer.

We select trades occurring on working days between 8AM and 4PM GMT
and we split the dataset by month, resulting in 24 time series of trades with
information about time, volume, sign, and identity of the counterpart. We then
aggregate trades performed by the same agent ¢ within 5 minutes time windows
and take the sign of the aggregate volume V;(t) of EUR acquired in exchange
for USD as the information on whether the agent has sold (V;(t) < 0), bought
(Vi(t) > 0) or has stayed idle (V;(t) = 0) at time ¢. Finally, we call p; the
fraction of time intervals in which trader ¢ was active - that is, the fraction of
non-missing data - and for each month we remove traders that were active in a
fraction p; < 0.3 of the total number of samples.

The final dataset involves a total of 68 traders, with an average of 16 traders
active each month, a minimum of 9 and a maximum of 29 and we report some
statistics in Table 1. To better understand the heterogeneity in the activity
of market agents involved, we compute the Gini coefficient on the monthly p;s
and find the distribution of observations to be mostly homogeneous, typically
having only one agent that is much more active than all the others.

T N 5 I

Minimum 679 9 0.02 0.45
Maximum 2231 29 0.13 0.55
Mean 2039.33 16.46 0.08 0.49
Stdev 308.57 4.59 0.03 0.02
Trader p; p; Gini Trader ACF1 Flow ACF1

Minimum 0.30 0.16 -0.15 0.04
Maximum 0.99 0.23 0.57 0.19
Mean 0.49 0.19 0.07 0.12
Stdev 0.18 0.02 0.07 0.05

Table 1: Basic statistics of the dataset: (top) number of time steps T' and of
agents N of the monthly time series, monthly average sign of observed trades
5, monthly fraction of observations p;; (bottom) single trader monthly fraction
of non-missing values p;, monthly Gini coefficient of p;, ACF at lag 1 of single
traders and of the aggregate order flow.

The sign of the aggregate trade volume s;(t) = sign[V;(¢)] is intended as a
proxy of the opinion the trader has at that time on whether the price should
go up or down in the near future, while the zeros are intended as missing ob-
servations on their opinion. As shown in Table 1 the AutoCorrelation Function
(ACF) at lag 1 on the aggregate order flow is typically higher than the average



ACEF of single traders, suggesting that traders act in coordination on a short lag,
having their opinions diffuse gradually over a network of information spreading.

We infer the parameters of the Kinetic Ising Model of Eq. 1 on monthly
subsets of data to account for non-stationarity and for traders that enter and
exit the platform throughout the considered two year period. The outcome is a
series of weighted and directed networks whose weighted adjacency matrix for
month k is A(k) = JT (k) (transposing conforms the matrix to the standard
definition of adjacency matrix, which has non-zero element a;; if there is a link
from node 4 to node j), where the nodes are traders and the links represent an
influence relation between the sign of the opinion of the origin node at time ¢
and the sign of the opinion of the end node at time ¢ 4+ 1. The links can have
either positive or negative weight: when it is positive it means that the follower
tends to agree with the leader opinion, while when it is negative they tend to
disagree.

Since we hypothesize that returns r(¢) can affect the trading behaviour of
traders, we introduce the 5-minutes log-returns as a control variable in the
model, with a trader-specific parameter b; capturing their reaction to a price
change in the previous time window. We use the mid-price in the order book
of the EBS electronic inter-dealer exchange to which the dealer has access as a
market member: although traders do not specifically trade at that price, it is the
only price indicator that we can reliably use while not introducing trade-specific
effects.

4 Results

The resulting networks (as for example the one shown in Figure 1) are then
analysed to find out whether there are traders that are more influential than
others, how the network changes over time, and how accurate is the prediction
of trade signs. In Section 4.1 we define a characterization of the nodes as in-
fluencers and followers based on an adapted weighted version of the PageRank
[35] measure as proposed by Kiss and Bichler [36]. Then in Section 4.2 we com-
pute the persistence of the neighbourhood of nodes as described by Nicosia et
al. [37] to quantify the local stability of the networks in time and try to dis-
entangle degree-related effects from preferential attachment by comparing the
results with the ones obtained by randomly rewiring the networks and reshuf-
fling the time series. In Section 4.3 we compute the out-of-sample accuracy of
prediction of trade signs to evaluate model performance compared to a Logistic
AutoRegressive (LAR) model of order 1, taking as input the previous trade sign
of trader ¢ (where available) and the last log-return. We also evaluate the fore-
casting and nowcasting performance of the model, utilizing parameters fitted
on one month to predict trade signs in the next one, always comparing with the
LAR benchmark. Finally in Section 4.4 we show a further interesting feature of
our approach which allows us to define a micro-level herding measure. We take
this measure and run a Granger Causality analysis between it and a set of lig-
uidity imbalance measures computed on the order book of the EBS inter-dealer
exchange to highlight the functioning of the multi-dealer market and emphasize
the role of the dealer as a liquidity provider.



bu_1057 bu_1009

bu_8

~@bu_1011

7 “bu_534

bu_25 “a .

bu_284

bu_199

Figure 1: The inferred lead-lag network at month 13. Node coloring follows
the PageRank influence categorization described in section 4.1, the size of both
nodes and links is proportional to their strength and weight, respectively. The
link color indicates whether it is positively (green) or negatively (red) weighted.

4.1 Influence network: key players and properties

It is our interest to identify key actors in the market that carry information
about behavioral trends and that might “lead the pack”, forerunning the order
flow. To categorize traders in our network we adopt the measure developed by
Kiss and Bichler [36] as a modification of the PageRank algorithm by Brin and
Page [35]. The PageRank measure identifies important nodes based on how
likely it is that a so-called random surfer, that is a random walker with some
probability of restarting from a random node, ends up on some specific node
of the network. In particular we want to label our nodes in 3 categories: influ-
encers, followers, and neutrals. Kiss and Bichler define the Weighted PageRank
(WPR) and the Weighted SenderRank (WSR) measures, where a node has
higher WPR (WSR) the larger the relative strength? of incoming (outgoing)
links it has from (towards) highly ranked nodes. Both these measures have a
minimum value related to a parameter f called damping factor, representing
the probability that the random surfer keeps walking instead of jumping to a
random node, which we choose to be the literature standard 0.85 for both. The
resulting measure for node ¢ is then defined as

2The strenght of a node is the sum of the weights of all links pointing at (in-strength) or
departing from (out-strength) that node.



—~
QD
N

Nina/Nror

2 4 6 8 10
Threshold p

06 08 1.0
! !

0.4

~
Normalized Hamming distance 2
0.2

0.0

2 4 6 8 10
Threshold p

Figure 2: Stability of the PageRank ratio categorization. (a) Ratio between the
number of identified influencers and the number of identified followers varying
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where L; is the set of nodes that have an incoming link from node ¢, w;; is
the weight of the link between ¢ and j and S; = ZL wj; is the out-strength of
node i.

Notice that since the links can have negative weights we take the absolute
value of the weight to account for negative influence as well. We then define the
category C! of trader 7 in month ¢ based on the ratio between their WSR, and

10



WPR:
Influencer, Z if WSR/WPR! > p

C! = { Follower, F  if WSR/WPR! < 1/p (6)

Neutral, NV otherwise

where p is a threshold ratio that can be arbitrarily decided. To make this
decision less arbitrary, we try to find an optimal value of the ratio in order to
maximize categorization diversity cross-sectionally while keeping it consistent
through time. The idea is thus to minimize a measure of diversity for the single
agent across months, while maximizing the same measure between different
agents in the same month, and taking p as the optimal in terms of Euclidean
distance from the ideal case of perfect trader consistency in time and perfect
uniformity of categorization cross-sectionally.

Call pf(C) =1/T >, 6(Ct, C) the empirical probability at which trader ¢ is
assigned to category C using threshold p: the measure of diversity we choose is
the normalized Total Variation Distance d(p?) from the uniform distribution,
namely

pi(C) -3

3
d(p}) =5  sup 3

2 ce(z,. 7. N}

g

where pf is compared to the uniform distribution which takes value 1/3 for all
categories, and the factor 3/2 is making sure that d(pf) is normalized to 1 in the
case of maximum homogeneity, while it is 0 at maximum diversity. Call C’;’ =
argmax p? (C') the most frequent categorization of trader i at threshold p, and
define the frequency of category C' among the C;s as f*(C) = 1/N Y, 6(C;,0).
Finally, call (? = d(f*) the cross-sectional diversity between the most frequent
categories the traders are assigned to. Then we optimize p as

p* = arg mpin [(CP)2 + (Bq[d(pf)] — 1)2] (7)

that is we minimize the Euclidean distance from the ideal case of having each
trader in the same category every month (E;[d(pf)] = 1) and evenly spread
categories across agents ((* = 0), obtaining a threshold value of 1.44.

We show how the selection of the threshold affects the categorization in Fig.
2, plotting the influencers/followers ratio and the Hamming distance between
the chosen and all other categorizations. In the region surrounding the chosen
threshold the ratio of influencers to followers is rather stable at around 3, and
the normalized Hamming distance (that is the fraction of categories changing
between two choices of p) between the chosen category and its neighbourhood is
rather low and smoothly varying when moving away from the chosen threshold,
a sign that the categorization is stable enough to justify using this selection
method.

The resulting categories for traders that exist in the data for more than 5
months are shown in Fig. 3. It is rather interesting to see how some traders
show a consistent behaviour across the whole dataset being identified mostly as
influencers (see for example trader #1012, #113 and #1481), while others have
a more swinging nature.

11
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Figure 3: PageRank categorization of agents across months.

4.2 Network persistence

To understand how variable the network is from month to month we compute
the neighbourhood persistence measure proposed by Nicosia et al. [37], defined
as

> aij(t)ag(t+1)
V2 (0) S (i +1)

where a;; are the elements of the network adjacency matrix. Since the network is
directed we compute the measure on the three possible neighbourhoods - the in,
out, and total neighbourhood - changing the summation indices appropriately:
in particular, Eq. 8 refers to the out-neighborhood, while summing over rows
instead of columns produces the measure for the in-neighborhood and the total
is obtained by using the symmetrized adjacency matrix A7 + A. We compare it
to the same measure averaged over 10,000 order randomizations of the network
time series to isolate the actual persistence in time from the average connectivity
the trader has. In Figure 4a we plot the two quantities for the 10 nodes in the
network that show the largest persistence and for all neighbourhood types. We
see that these nodes tend to have abnormally persistent neighbourhoods, some-
times more in the in-neighbourhood and sometimes in the out-neighbourhood, a
sign that some preferential relationships exist and replicate themselves in time.
We also test the persistence by doing a random degree-preserving rewiring of the
networks (while keeping the temporal structure) in order to remove the effect of
the node degree, as a more connected node is more likely to have a more persis-
tent neighbourhood than a less connected one. Figure 4b shows the difference in
the directed neighbourhood persistence between the original networks and the
rewired ones. When this residual persistence is positive it means that the node
has a persistence higher than in the null configuration model and viceversa.

Di(t,t+1) =

(®)

12
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Figure 4: (a) Neighbourhood persistence measured before and after a random
reshuffle of the network time series for a subset of nodes; (b) Residual in- and
out-neighbourhood persistence after a degree-preserving rewiring of the network
for the same subset of nodes.

The results show that there are indeed nodes that show a higher (or lower)
persistence in their neighbourhoods even when ruling out the effect of the in-
and out-degree, while this is typically not true for the undirected version (which
roughly corresponds to the sum of the two). A node with a higher persistence
of the out-neighbourhood is a node that attaches preferentially to some other
nodes, meaning, in our convention, that it has influence over a persistent set of
nodes, while the opposite is true for a node with higher persistence of the in-
neighbourhood. For example, node #1011 has overly persistent incoming links
and non-persistent outgoing links, meaning it is typically influenced by the same
set of nodes, while its influenced neighbours are more randomly selected. The
opposite happens for node #1012, which is indeed consistently recognized as an
influencer by Weighted PageRank. Overall this analysis shows that, even if the
network density is rather high and it is difficult to extract significant community
structures, there is evidence of some preferential attachment mechanism at work
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Figure 5: Out-of-sample K-leaveout accuracy of the KIM model compared to
a Logistic AutoRegressive (LAR) model and to a Logistic Regression on log-
returns (LR) for every month in the dataset.

in the directed network.

4.3 Out of sample validation and forecasting

In this subsection we perform out of sample validation and forecasting of the
presented model. Specifically, we neglect some observed trades and we test
whether our model is able to correctly guess them. In the forecasting exercise
we instead train the model in a subperiod and test whether we are able to
predict the trading activity in the following subperiod. In all cases we consider
models with and without 5-minutes log-returns as a control variable.

In Figure 5 we plot the performance one has predicting out-of-sample trade
signs using the Kinetic Ising Model compared to the average of N logistic uni-
variate logistic regressions, with the log-returns as an independent variable and,
in the AutoRegressive version (LAR), the trade sign of the trader at the pre-
vious time interval (if available). The performance is measured by K-leaveout
cross-validation, consisting of hiding 5% observations from the sample and then
comparing the predicted trade sign with the actual one. The measure is then
the fraction of correctly identified trade signs.

Overall the performance of our model is better than the benchmarks in a
range from 5% to over 10% (excluding a couple of months where it does slightly
worse), and in the best case the model predicts trade signs with 70% accuracy,
while on average it scores around 60%. While being nothing too extraordinary,
this result shows that the model can provide a valid platform for descriptive
and forecasting purposes.

The difference in performance between the KIM and the univariate logistic
regression models is larger when the cross-correlation at lag 1 between the order
flow and the log-returns is non-significant (not shown here). This tells us that,
while the simpler models capture what is probably the most important inter-
action observed in the market (the reaction of traders to price changes), when
this interaction is weaker they fail to capture any significant effect. However
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a significant amount of coordination persists regardless of whether it is caused
by price movements or by other mechanisms, and it can be explained by our
modelling approach.

We thus try to use the Kinetic Ising Model to forecast order signs: as a proof
of concept, we take the result from one month and use the inferred parameters
to produce the one-step-ahead forecasts in the next month.

Calling {JM hM bM} the set of inferred model parameters at month M and
sM(t) the observed order sign of trader i at time ¢ in month M, we forecast one
step ahead using $M (¢t + 1) = sign(rn;(t + 1)), where

mlM(t—&—l) = tanh th_l + blM_lrt + Z J%_ISM(IS) + Z leg_lmy(t)

J
jEobs(t) bdobs(t)

and obs(t) is the set of observed indices at time ¢. This quantity is then com-
pared to the time ¢ + 1 observations and the average number of correct guesses
is reported as the forecasting performance. Notice that every time an observa-
tion is added the ™ (t) vector is updated through Eq. 3 to include the new
information and keep the forecasting just to one step ahead of the observations.

We analyze the performance of the KIM when using all traders or only
the influencers subset to predict future order signs compared to the same task
performed with a LAR model. The results (not reported for the sake of space)
show that there is no significant increase in performance by introducing the
multivariate modeling, and restricting the prediction to using only traders that
were identified as influencers in the previous month doesn’t seem to change
radically the forecasting accuracy.

We observe that the performance is marginally better (~ 55%) than a ran-
dom guess and that is rather stable across time horizons (we also tested the
one-step ahead forecasts using models several months after their inference with-
out noticing significant changes). Our hypothesis is that both the LAR and the
KIM methods, when used for forecasting, mostly rely on the log-returns to guess
the next trade, which we believe is the reason why the accuracy of predictions is
just a few percents higher than a coin flip and it does not vanish at longer time
horizons. While this may seem at odds with the results shown in the previous
sections, it has to be pointed out that the main objective of our model is to
infer the state of investors when they do not trade, not forecasting, and that
to do so we take advantage of future information in Eq. 3, something that is
clearly not possible for one step ahead forecasts.

4.4 Predicting liquidity from inferred opinions

One possible use for our modelling approach is to produce a “herding” mea-
sure, given by the average opinion of traders at any point in time. Indeed a
by-product of the model estimation is a maximum likelihood estimate of the
unobserved opinions in the market, which we can use to generalize the buy-sell
imbalance that trade signs show to an implied opinion imbalance. Typically
herding is defined as an irrational behaviour that crowds show where a large
fraction of agents co-ordinate based on social interaction rather than as a re-
action to information, often resulting in unjustified macroscopic phenomena as,
in the case of financial markets, price volatility jumps and dramatic liquidity
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Figure 6: Causality relations from herding to liquidity. The model is based on
5 minutes lags with order up to 12, that is one hour, and the reported sign is
the one of the coefficient is the one for the minimum order showing Granger
Causality effects. The herding measure either accounts for all traders (“All”),
only the ones belonging to the influencers group under the PR influence measure
(“PR”) or only the observed ones (“Obs”).

imbalances. Herding has been documented in fund industry [38] as well as in
institutional and individual investors [39, 40], and in market members [41].

The herding measure we define, as a simplification of the one already present
in [42], is

1 N
H(t) = 5 30t

where §;(t) is either the observed sign of the transaction s;(¢) executed by trader
¢ at time ¢ or the one inferred as sign[m;(¢)]. The main difference with the
existing definitions is of course that we include also inferred states.

We want to show how this measure can be used to study a typical problem
dealers are confronted with, that is facing poor liquidity conditions in the inter-
dealer market when their inventory becomes unbalanced due to unexpected
trading pressure from clients. To this end, we take into account a set of liquidity
imbalance measures in the interdealer market:

e VBA: Dollar Volume at best Bid-Ask. It is the difference between the
volume of limit orders at the best bid level and the volume of limit orders
at the best ask, normalized by the total volume at those levels;

e OBD: Order Book Depth. It is the difference between the number of
levels that have to be explored to execute a buy market order of 107 units
of currency (which is the typical imbalance that the dealer accumulates in
a 5-minutes time window) and an equal sell market order size;

e MCI imbalance: It is the imbalance between the Marginal Cost of Im-
mediacy between the ask and bid side. MCI, introduced by Cenesizoglu
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Figure 7: Causality relations from liquidity to herding. The model is based on
5 minutes lags with order up to 12, that is one hour, and the reported sign is
the one of the coefficient is the one for the minimum order showing Granger
Causality effects. The herding measure either accounts for all traders (“All”),
only the ones belonging to the influencers group under the PR influence measure
(and “PR”) or only the observed ones (“Obs”).

et al. [43], is defined as

VWAPM 4
VlmA
Vim 4

VWAPM; = log — =t=194
O.5(PA,1 + PB,I)

MCI4 =

L

Vimy = Z Pa1Qay
=1

where P4 is the price at level [ on the Ask side and Q4 is the quantity
available at level [ on the Ask side. The same can be defined for the Bid
side and the measure we use is MCI4— MCIg. The quantity is computed
for L = 10 (MCI) and for L = OBD (MCIL), in order to capture book-
wide imbalances as opposed to typical transaction size imbalances.

e VImlI: Dollar Volume Imbalance. It is the normalized amount of dollars
in orders on the bid side of the book minus the same quantity on the ask
side;

All these measures are defined such that a positive imbalance means that
liquidity is higher for the bid side of the order book, that is it is easier for a
market participant to execute a sell market order (the asset is always considered
to be EUR and the quotes are given in USD, as in the dealer platform data).

To explore the relationship between these measures and H (t) we run Granger
Causality tests on pairwise Vector AutoRegressive (VAR) models for which we
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Figure 8: Residuals variance ratio between models using our herding measure H;
or the observed trade sign imbalance. The ratio is mostly less than 1, showing
models have a better goodness of fit when using H;.

report results in Figures 6 and 7. We choose this method over alternatives such
as Transfer Entropy [44, 45] for its simplicity and ease of interpretation, but it
is possible that comparing with more elaborate techniques can produce more
interesting results. The figures show the causality relations we find in both
directions and specify whether the coefficient of the VAR model for which the
causality is found is positive or negative. If a positive (negative) causality is
found, it means that an increase in the first variable is causing an increase (de-
crease) in the other. To reduce the number of false positives we implement the
false discovery rate (FDR) method [46] for multiple hypothesis testing, setting
the significance threshold at 0.05.

The results highlight the importance of the dealer in distributing liquidity
and absorbing temporary imbalance in the supply and demand: indeed most
of the relations running in the direction H — L, that is Herding to Liquidity,
are positively signed, while the opposite is true when looking at the L — H
direction. This means that when the herding measure is positive, and so the
majority of traders on the eFX platform is buying EUR, the liquidity on the
EBS market will make it harder for the dealer to quickly rebalance her inventory
as the imbalances are typically positive, meaning it is easier to sell than to buy
EUR. On the other hand, when the EBS market conditions are favorable for
the dealer to sell (positive L), this is typically followed by a majority of traders
selling EUR to the dealer (negative H), as it is likely that the dealer is offering
better quotes given the ease she has in unloading excess inventory.

We also show how the herding relation to liquidity is typically unchanged
whether one includes in its computation all traders or only the subset of influ-
encers as identified by the Weighted PageRank measure, meaning that they are
indeed among the most informative traders in this sense, while only using the
observed trades and ignoring the opinions reconstructed through the Kinetic
Ising Model one finds less and more incoherent causality relations. As a further
argument in support, the quality of the Vector AutoRegressive model fit is gen-
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Figure 9: Tail Granger Causality relations identified by the test of Hong et al.
[47]. We see how the results agree with the Granger Causality in mean, showing
the strong connection between the markets also on extreme events.

erally better when considering our measure over the observed trades imbalance,
as shown by Figure 8. There we compare the variance of the residuals on the
liquidity side of the VAR model when using our herding measure H(t) or the
observed trades as the other model variable. We see that the ratio is typically
less than 1, meaning the variance is smaller (and thus the fit better) with our
measure.

To further investigate this relation, we apply the test of Granger Causality
in tail originally proposed by Hong et al. [47] between H(¢) and the liquidity
measures. It is indeed interesting to see whether the Granger Causality only
appears on average or it shows also between extreme events. The test is built to
identify causality relations between binary time series, representing occurrences
of extreme (tail) events with respect to recent history. Such events are identified
as values of the liquidity or herding measure that exceed the 90% empirical
conditional quantile (or are below the 10% quantile), measured as proposed
by Davis [48] on the past 2 hours of data at all points. The measurements
above the 90% threshold are denominated as “right tail” (RT) events, while the
events below the 10% one are “left tail” (LT) events. We show the results of
the analysis in Figure 9, where we see that the picture given by the Granger
Causality in mean is confirmed and the effects are particularly recurrent for the
total volume imbalance (VImI) and the MCI measure.

This last result highlights why it could be important to estimate the unseen
opinions of traders: given the multi-dealer structure of the spot rate FX market,
a dealer only has a partial picture of what the supply and demand for the asset
looks like at any given time, offered by the trades she sees from her clients.
However these clients might have access to other dealer platforms and trade at
their convenience with one or the other, thus hiding their opinion to the single
dealer while still using market liquidity. This is then reflected in the order
book of the inter-dealer market, where liquidity deteriorates whenever a shift
in supply and demand occurs and makes it costly for the dealers to efficiently
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rebalance their inventories.

5 Conclusions

In this article we have introduced the Kinetic Ising Model as a method to infer
causal relationships between trader activities in a financial market at high fre-
quency and to achieve a better estimate of the aggregate supply and demand
at any point in time. We apply the model to a proprietary dataset offered to us
by a major dealer, selecting the most active traders on their electronic foreign
exchange trading platform to study the lead-lag relationships that occur among
them and how their behaviour affects the state of liquidity on another market,
the EBS inter-dealer electronic exchange. We show that several market play-
ers can be identified as influencers, that is they are typically leading the order
flow on the 5 minutes time-scale, and that their trading activity and opinion
explains liquidity imbalances on the EBS market. Studying the persistence in
time of the network structure on the local scale, we notice that some nodes have
directed neighbourhoods that replicate through months, an effect that further
validates the inferred lead-lag relations and that matches quite well with the
results from the influence analysis. We also test the forecasting performance
that can be achieved with this model, finding that both the model and the LAR
benchmark are not particularly well-suited for the purpose and the inclusion
of the lead-lag relationships does not change the forecast significantly. We do
not investigate the nature of these lead-lag relationships, but we propose they
should be interpreted as the effect of different traders following similar strate-
gies with different reaction times, leading to one or more traders consistently
forerunning the others, rather than a more “direct” type of influence caused by
actual social interactions. Finally we defined a herding measure based on the
inferred opinions, which we show has much stronger Granger Causality relations
with the state of liquidity on the inter-dealer market than just observed trade
signs, exposing a mechanism that highlights the role of the dealer in providing
immediacy to her clients and absorbing the cost of liquidity.
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Appendix A Simulation study

In this appendix we present a brief simulation study aiming to provide further
insight to the reader regarding the results that should be expected from this ap-
proach. We produce a synthetic dataset of opinions based on the basic statistics
of our data, summarized in Table 1, by simulating the Kinetic Ising Model fixing
N, T and the distribution of traders probability of observation p; to closely re-
semble the ones that we observe in the data. We thus choose N = 20, T' = 2000
and the distribution of p; is assumed to be a Beta distribution, p; ~ B(«, ),
with parameters o = 8 =~ 4.01. The value of the parameters is obtained follow-
ing Pham and Turkkan [49] in order to be consistent with the observed average
Gini coefficient of p; and the mean cross-sectional p; of 0.5. The remaining free
parameters are the ones directly related to what we aim to infer, that is the
structure of the interaction matrix J and the magnitude of its elements.

We thus explore several degrees of sparsity of the underlying J matrix by
sampling it as an Erdés-Rényi random graph with parameter d; € [0,1] de-
scribing the probability of a link, i.e. the density of the graph, and vary the
parameter J; which regulates the magnitude of the coupling coefficients assum-
ing that for the existing links J;; ~ N(0,.J;/v/N). The scaling with v/N is
necessary to be able to compare parameters coming from models with different
N, as it correctly normalizes the sum in Eq. 1.

We show these results in Figure A.1, by plotting the Reconstruction Effi-
ciency (RE) of hidden opinions, that is the fraction of hidden opinions that is
correctly guessed, varying d; and J; and showing the region we find empirically
from our trading dataset. While no particular dependence of the RE is to be
expected from the network density, as shown in Figure A.la, in Figure A.1b we
also see how it is instead strongly dependent on the magnitude of the couplings.
This is also predictable from the theory, as we show with an hyperbolic tangent
fit. Indeed the probability distribution of a hidden value o; given m; is

ploi(t) = £1pmy) = (A1)

Here m; depends from J; through Eq. 5 where J; is, given its definition and
the Central Limit Theorem, the typical size of any sum of the kind 3 j Jijs; or
Zb Jipmp, assuming all mys are estimated with no error and N — oo. Indeed
the coefficients of the fit RE = a+btanh(.J;) are found to be a = 0.49+0.03 and
b=0.43£0.03 to 95% confidence for N = 20, T' = 2000 and similar results are
obtained for a larger system with NV = 100, 7" = 10000. The small discrepancy
between the theoretical value of b = 0.5 and the one we measure in simulations
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Figure A.1: Results from the simulation study. (a) Reconstruction Efficiency
(RE) varying the network density d;. We see that, besides a slightly decreas-
ing efficiency at very low densities, the expected performance is more or less
constant. (b) RE varying the magnitude of couplings J;. Here we see a clear
relation between the two, highlighted by the hyperbolic tangent fit; (c) Rescaled
Root Mean Squared Error (RMSE) on J elements. In all panels the blue lines
show the region where the models inferred from trading data are situated.
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is most likely due to the presence of more than one hidden value, introducing
uncertainty in the estimation of m itself.

We also plot the Root Mean Squared Error on J elements in relative terms
to the magnitude of the parameters .J;, showing that in the region in which
we find our inferred parameters there is a RMSE of roughly 5% in simulations,
giving an idea of the error one could expect on the estimates.

Of course this is an ideal case, where the data generating process and the
model coincide, meaning that these results have to be interpreted as upper
bounds in performance. We indeed see that our out-of-sample performance
results of Figure 5 are below the RE we get from simulations, but we argue
that they are not that far from those given the size of the inferred parame-
ters, meaning that even if the model is more than likely misspecified and an
oversimplification of reality it still captures significant features from the data.
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