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The recent advances in machine learning hold great promise for the fields of quantum sensing
and metrology. With the help of reinforcement learning, we can tame the complexity of quantum
systems and solve the problem of optimal experimental design. Reinforcement learning is a powerful
model-free technique that allows an agent, typically a neural network, to learn the best strategy to
reach a certain goal in a completely a priori unknown environment. However, in general, we know
something about the quantum system with which the agent is interacting, at least that it follows
the rules of quantum mechanics. In quantum metrology, we typically have a model for the system,
and only some parameters of the evolution or the initial state are unknown. We present here a
general machine learning technique that can optimize the precision of quantum sensors, exploiting
the knowledge we have on the system through model-aware reinforcement learning. This framework
has been implemented in the Python package qsensoropt, which is able to optimize a broad class
of problems found in quantum metrology and quantum parameter estimation. The agent learns
an optimal adaptive strategy that, based on previous outcomes, decides the next measurements to
perform. This approach works for both Bayesian estimation and frequentist estimation. The user
is required to implement the physics of the system to be studied and state which parameters in
the experiment are controllable and which are unknown. The functions of the library then allow
the training of the agent to optimize the precision of the sensor in a Monte Carlo simulation of
the experiment. We have explored some applications of this technique to NV centers and photonic
circuits. So far, we have been able to certify better results than the current state-of-the-art controls
for many cases. The machine learning technique developed here can be applied in all scenarios where
the quantum system is well-characterized and relatively simple and small. In these cases, we can
extract every last bit of information from a quantum sensor by appropriately controlling it with a
trained neural network. The qsensoropt software is available on PyPI and can be installed with pip.

Introduction. In recent times, there has been a grow-
ing focus on the intersection of machine learning and
quantum information. The collaboration between these
two technological realms holds promise for mutual ben-
efits. Quantum technologies, particularly quantum com-
puters, possess the capability to tackle conventional chal-
lenges in machine learning, such as classification and pat-
tern recognition, whether handling classical or quantum
data [1, 2]. Conversely, conventional machine learning
can enhance tasks in quantum information, such as quan-
tum control with feedback [3] and error correction [4].
Our research falls into the latter category. Specifically, we
employ model-aware reinforcement learning to discover
optimized adaptive and non-adaptive control strategies
for tasks in quantum metrology and estimation. Through
this approach, we investigate how machine learning has
the potential to improve traditional methods in quantum
physics and contribute to the advancement of new quan-
tum information processing technologies. The present
article serves as a three-pages extended abstract to the
papers containing the theoretical development of this
framework [5], and the applications [6]. We refer also
to the online documentation of the qsensoropt library [7]
for details on the implementation and the usage of the
framework, and to the repository [8] for accessing the

code. In a quantum metrology experiment we are inter-
est in the estimation of some unknown parameters and
the goodness of the experiment and the data process-
ing can be gauged by an error figure of merit, e.g. the
mean square error relative to the true values of the un-
known parameters. After specifying a set of adjustable
variables within an experiment, an agent trained with
reinforcement learning can effectively manipulate them
and minimize the error metric. This agent can take the
form of a compact neural network, a decision tree, or
a straightforward list of trainable controls applied se-
quentially. The whole controlled estimation has been ab-
stracted from the specific sensor and physical platform
and encapsulated into the qsensoropt library, which is
accessible on PyPI. Consequently, this library serves as
a versatile tool for optimizing a diverse range of quan-
tum sensors. Our framework was tested across various
examples using the nitrogen-vacancy (NV) center plat-
form [9, 10], encompassing DC [11] and AC magnetome-
try, decoherence estimation [12], and hyperfine coupling
characterization [13]. We report as example in this work
the estimation of the parallel hyperfine coupling of the
electron spin in a NV center with a neighbouring 13C in
the carbon lattice, see Fig. 1, in which machine learning
produces a better control policy than the adaptive strat-
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egy currently used in experiments. Additionally, within

FIG. 1. Mean square error (MSE) for the estimation of the
parallel hyperfine dipolar coupling between the electron spin
and a 13C nucleus, obtained controlling the MW pulses with
the particle guess heuristic (PGH) used in [13], compared to
the performances of model-aware reinforcement learning. The
precision is reported as a function of the total measurement
time T .

the realm of photonic circuits, we explored multiphase es-
timation, a recent extension of the Dolinar receiver [14],
and its adaptation to the discrimination of three states,
along with coherent states classification. In the frequen-
tist estimation domain, our investigation focused on the
sensing of the detuning frequency in a driven optical cav-
ity [15]. Our results demonstrate that model-aware rein-
forcement learning surpasses traditional control strate-
gies across multiple scenarios. This research lays the
groundwork for accelerating the quest for optimal con-
trols in quantum sensors, potentially accelerating their
widespread industrial application.

The measurement loop. In quantum metrology and
estimation we analyse a physical system, called quan-
tum probe, governed by a well-known quantum dynamic,
which the experimenter can continuously modify by se-
lecting values for a fixed set of controls (e.g. a tunable
phase in an interferometer). The experimenter is inter-
ested in estimating certain unknown parameters, denoted
by θ, associated with the environment and encoded in the
probe through its interaction, or associated to the initial
state of the probe itself. These parameters are estimated
through measurements on the probe. The estimation
process employs a particle filter [16–18] (PF) to process
the outcomes of the measurements, which uses the Bayes’
rule to update the Bayesian posterior probability distri-
bution on the parameters θ after each measurement. The
PF contains a set of discrete samples from the theoreti-
cal posterior distribution, named particles, with a weight
associated to each of them, to represent the posterior
probability distribution. Controls are determined based
on information within the PF, such as the mean and vari-
ance of the distribution, which are the input to the agent
that produces the controls as output. The next measure-
ment is then performed and the process is repeated to
form the measurement loop, of which a single iteration is
represented in Fig. 2. The knowledge of the parameters θ

FIG. 2. This general scheme illustrates the information flow
within the measurement loop. The environment we aim to
study interacts with the quantum probe and encodes it with
the unknown variables θ. This probe is then measured us-
ing a tunable instrument. The outcome of this measurement
provides us with information about the probe’s state and in
turn about the environment’s variables. This information is
used in the particle filter to update the posterior Bayesian
distribution on θ. Some summary information derived from
the particle filter is then input into an agent that decides the
new control parameters for the measurement in the next it-
eration of the loop. This control is then realizes through the
electronics of the experiment. In this picture, the agent is a
neural network.

in the PF obtained through measurements is leveraged to
guide the evolution and measurements on the probe, op-
timizing the overall performance of the estimation task.

The sensors model. While the Bayesian filtering,
the probe’s control, and the agent’s training have been
implemented in the library, users must implement a dif-
ferentiable model of the sensor of their interests using
TensorFlow. This model should simulate the stochastic
extraction of measurement outcomes and evaluate the
probability of observing a specific outcome in a measure-
ment. The model-aware reinforcement learning approach
enables us to address a diverse range of tasks using a uni-
fied tool.

The precision resource-paradigm. Every iteration
of the measurement loop consumes some amount of a
specific “resource”, which is costly in the context of the
estimation and must be defined by the user. Once these
resources are depleted, the measurement loop concludes.
Examples of resources are the total estimation time, the
number of measurement performed or the intensity of a
signal, which is continuously probed.

Training loss. Once the estimation ends and the

measurement loop is terminated an estimator θ̂ for the
parameters θ is computed. From this, the user-defined
precision metric for the sensor is evaluated. This might
be, for instance, the mean square error in a parameter
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estimation task or the error probability if there is a finite
set of possible values for θ. This precision metric is the
loss to be minimized in the training.

Training of the agent. The training of the agent
for each experiment is facilitated by the functions of our
library. For the majority of the applications we opted
for neural networks due to their proven suitability to ap-
proximate generic smooth functions [19]. Through au-
tomatic differentiation over all iterations of the loop, a
gradient descent procedure is employed to train the agent
to minimize the loss. With repeated application of the
rule for differentiating composite functions the gradient
is computed through the stochastic measurement out-
come extraction, the update of the probe state, and the
Bayes’ rule applied to the PF. By default, the gradient
doesn’t propagate through the agent’s input. Allowing
the derivatives to traverse the physical model implemen-
tation of the sensor categorizes this training as a form
of model-aware policy gradient reinforcement learning.
Since the loss is a stochastic variable, as it depends on
the simulated measurement outcomes, special precau-
tions are necessary to compute an unbiased estimator
for its gradient, which have been firstly introduced in
the procedure of feedback GRAPE [3] in the context of
physics.

Conclusions. In summary, our research underscores

the advantages of integrating machine learning with con-
temporary quantum technologies. We have introduced
a framework, complemented by a versatile library, de-
signed to address a broad range of challenges in quan-
tum sensing. This library provides a flexible interface,
allowing researchers to easily configure and optimize di-
verse parameter estimation tasks based on quantum sys-
tems. With the potential to expedite the development
of practical applications in quantum parameter estima-
tion and metrology, our library opens avenues for precise
estimation of physical parameters that could transform
various sectors, including biology, fundamental physics,
and quantum communication. By offering a user-friendly
tool, we aim to facilitate progress in these domains, facil-
itating the transition of quantum-based metrology from
proof-of-principle experiments to industrial applications.
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