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Abstract

Well-established cognitive models coming from anthropology have shown that, due to the

cognitive constraints that limit our “bandwidth” for social interactions, humans organize their

social relations according to a regular structure. In this work, we postulate that similar regu-

larities can be found in other cognitive processes, such as those involving language produc-

tion. In order to investigate this claim, we analyse a dataset containing tweets of a

heterogeneous group of Twitter users (regular users and professional writers). Leveraging a

methodology similar to the one used to uncover the well-established social cognitive con-

straints, we find regularities at both the structural and semantic levels. In the former, we find

that a concentric layered structure (which we call ego network of words, in analogy to the

ego network of social relationships) very well captures how individuals organise the words

they use. The size of the layers in this structure regularly grows (approximately 2-3 times

with respect to the previous one) when moving outwards, and the two penultimate external

layers consistently account for approximately 60% and 30% of the used words, irrespective

of the number of layers of the user. For the semantic analysis, each ring of each ego network

is described by a semantic profile, which captures the topics associated with the words in

the ring. We find that ring #1 has a special role in the model. It is semantically the most dis-

similar and the most diverse among the rings. We also show that the topics that are impor-

tant in the innermost ring also have the characteristic of being predominant in each of the

other rings, as well as in the entire ego network. In this respect, ring #1 can be seen as the

semantic fingerprint of the ego network of words.

1 Introduction

In humans, language production is a deliberate and conscious action. However, it relies on

many invisible mental processes that allow the construction of sentences in a very short time.

For example, these cognitive processes are at play during the word retrieval stage, when the

brain has to efficiently process, in a few milliseconds, its lexicon in order to find the right

word, among thousands of others, that best fits the concept that needs to be expressed [1]. In

order to achieve this impressive performance, cognitive strategies that exploit language proper-

ties, such as word frequency (e.g. when the most frequently used words are retrieved more
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quickly [2, 3]), are activated. In this paper, we set out to find traces of these cognitive patterns

in written production with a data-driven approach. To this end, we rely on the ego network

model, which has already uncovered the cognitive limits of another human activity:

socialisation.

1.1 The social ego network model

Anthropologists have shown that the number of meaningful social relationships that humans

can maintain is not only limited to 150 [4] (the famous Dunbar’s number) but it is also stable

over time. The discovery of this regularity in human activity stems from the observation that,

in different species of primates, there exists a correlation between the size of the neocortex (the

part of the brain dedicated to high-level cognitive functions such as socialisation, language,

etc.), and the average size of groups in natural environments. Extrapolating the expected size

of a human group from the dimension of the human brain, as well as studying historical data

such as the maximum size before fission of autonomous communities [5], the Dunbar number

consistently emerges. It was then shown that these 150 active social relationships can be further

subdivided into 4 concentric circles [6, 7], the innermost one containing the most intimate

social relationships [8], the outermost one enclosing all 150 social relationships. The typical

size of these concentric circles is 5, 15, 50, and 150, respectively, with a constant scaling ratio of

about 3 between consecutive circles. Note that the portion of a circle not included in its inner-

most ones is referred to as ring. This hierarchical structure of social relationships is called “ego

network”. Recent studies based on data collected from online social networks have shown that

online relationships are subject to the same laws as offline ones: the size of the ego network

(i.e., the total number of social relationships) remains in the same order of magnitude as the

Dunbar’s number, which indicates that the cognitive constraint yielding this number is not

overridden by a communication medium that facilitates social interactions [8–11]. In OSNs

(Online Social Networks), the typical number of circles is slightly higher than 4, due to the

presence of an additional circle in the center of the ego network (containing about 1.5 people),

but the scaling ratio is preserved at around 3 (Fig 1).

Fig 1. The ego network of social relationships. The green dot symbolizes the ego and the black dots the alters with whom the ego maintains an active

social relationship. A layer also contains the alters of the inner layers, unlike the rings.

https://doi.org/10.1371/journal.pone.0277182.g001
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1.2 From social ego networks to ego networks of words

The ego network model highlights the regularity of the structure of social relations, in real life

and in OSN. In this paper, we adopt an analogous approach to investigate the regularities and

invariants manifesting cognitive constraints in language production. Specifically, we conjec-

ture that a similar structure, which we call “ego network of words”, may also be used to describe

the way humans use words, and that this structure may provide very significant information to

characterise the peculiarities of individuals, similarly to the social dimension. In fact, it is

known [12] that many traits of social behavior (resource sharing, collaboration, diffusion of

information) are chiefly determined by the structural properties of social ego networks.

The motivation for this analogy is twofold. First, the use of words is, much like socialisation,

a process that involves the use of cognitive resources, thus we conjecture that the ego network

model may have larger applicability in describing how humans allocate cognitive resources,

for example to language. Second, language is a social activity, whose emergence is potentially

linked to the surge in active human relationships from the 50 of the closest primate to 150 for

humans. This theory, known as social gossip theory of language evolution [13], postulates that

language facilitates grooming social relations by reaching several peers at the same time. In

addition, there is already well-established knowledge of a number of empirical cognitive limits

affecting language, such as the bounded size of our vocabulary (which is consistently limited to

approximately 42, 000 words for a native 20-year-old English speaker [14]), as well as the

Zipf’s law of words [15], which states that the frequency of a word is inversely proportional to

its position in the frequency table for most human writings. We, therefore, choose to study the

individual distribution of vocabulary, by forming concentric circles of words according to

their frequency of use by the ego in question. Then, going beyond words as units of language,

we focus on the topics to which the words refer. We thus complement the structural analysis

with a semantic study, which completes our cognitive analysis framework. In the same way

that the social ego network model has been used to provide a different perspective to social

network analysis (such as for information diffusion [16]), we want to leverage the ego net-

works of words as microscopes to discover novel properties of language production.

1.3 Contribution and key findings

The main contribution of this work is the structural and semantic analysis of the ego networks

of words for Twitter users. By using the ego network model, in this paper, we uncover complex

structures showing that the cognitive effort to organise one’s vocabulary is limited in many

ways. We choose a corpus of text made up of tweets because it allows us to work with a varied

sample of “authors” (e.g. more varied than a corpus of newspaper articles). Moreover, as Twit-

ter is dedicated to the exchange of very short messages (240 characters), it is a medium that is

very favourable to spontaneous reactions, with a more natural style and a reduced writing

time. This time constraint is more likely to reveal human behaviour, in analogy with the social

domain, where time limitations have been shown to significantly affect social cognitive con-

straints [13]. For our data-driven analysis, we collected tweets from generic as well as special-

ised Twitter users (Section 3). Using the ego-network-of-words model, we are able to find

evidence of a structural regularity in the frequency of word usage by each individual (Section

4). The semantic analysis (Section 5) also establishes the existence of additional invariants, but

most importantly it uncovers the nature of the innermost layer as the semantic fingerprint of

the whole ego network, i.e., this layer groups together the most important topics on which the

user is active. This strengthens the analogy with the social version of the ego network model,

where the innermost layers include the most important social relationships of a person.

The key findings of the paper are the following.
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• Similarly to the social case, we found that a regular concentric, layered structure (which we

call ego network of words in analogy to the ego networks of the social domain) very well cap-

tures how an individual organizes their cognitive effort in language production. Specifically,

words can be typically grouped in between 5 and 7 layers of decreasing usage frequency

moving outwards, regardless of the specific class of users (regular vs professional).

• One structural invariant is observed for the size of the layers, which approximately doubles

when moving from layer i to layer i+ 1. The only exception is the innermost layer, which

tends to be approximately 5 five times smaller than the next one. This suggests that the

innermost layer, the one containing the most used words, may be drastically different from

the others.

• A second structural invariant emerges for the external layers. Users with more layers orga-

nise differently their innermost layers, without modifying significantly the size of the most

external ones. In fact, while the size of all layers beyond the first one linearly increases with

the most external layer size, the second-last and third-last layers consistently account for

approximately 60% and 30% of the used words, irrespective of the number of layers of the

user.

• The semantic analysis of the words contained in the ego networks confirms that layer #1 is

exceptional in the ego networks of words: it generates proportionally more topics than the

other rings, these topics are more diverse, and its overall semantic profile is the most differ-

ent with respect to those of other rings.

• In addition, topics that are important in ring #1 tend to be important in other rings as well

(we call this the pulling power of ring #1). Thus, layer #1, despite being the smallest, can be

seen as the semantic fingerprint of the ego network of words.

• The topics that are primary in some rings tend to be stronger than average among the pri-

mary and non-primary topics in the semantic profile of the other rings. This shows that,

while layer #1 provides a particularly strong signal about prevalence in the ego networks,

weaker signals show a more complex structure of influence among topics “resident” in dif-

ferent layers of the ego network of words.

This paper extends our prior publication in [17], where the structural analysis was carried

out. Specifically, in this paper, we also present an extensive semantic analysis of the ego net-

work of words. This allows us to provide a much more comprehensive understanding of the

model, and highlight ways to characterise specificities of individuals as they emerge from their

use of words, in addition to structural invariants observed through the structural properties of

the ego networks.

2 Related work

To the best of our knowledge, no work has been published yet on models of individual word

organisation similar in spirit to ours (i.e., by exploring the analogy with the social ego network

model). However, some work has already been done on individual word frequency distribu-

tion by extending the notion of Zipf’s law [18]. Based on Zipf’s law, some have tried to find a

generative model that could explain such a regularity-based human cognition [19], or just how

the limited capacities of our memory naturally constrain our long-term use of words [20].

More generally, vocabulary size is often studied in the context of language learning for both

children and adults, as well as to detect possible cognitive impairments [21]. For the semantic

part, we have not identified any previous work on modelling user interests with a stratified
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approach, such as ours, that relies on the ego network of words. Most publications are about

topic recommendations (relying upon a wide range of techniques, such as hashtag analysis

[22], LDA [23] or ontology databases [24]), and about the emergence and monitoring of trend-

ing topics on Twitter [25, 26].

3 The dataset

The analysis is built upon four datasets extracted from Twitter, using the official Search and

Streaming APIs (note that the number of downloadable tweets—at the time of download—was

limited to the most recent 3200 tweets per user). Each of them is based on the tweets issued by

users in four distinct groups:

Journalists Extracted from a Twitter list containing New York Times journalists (https://

twitter.com/i/lists/54340435), created by the New York Times itself. It includes 678

accounts, whose timelines have been downloaded on February 16th, 2018.

Science writers Extracted from a Twitter list created by Jennifer Frazer (https://twitter.com/i/

lists/52528869), a science writer at Scientific American. The group is composed of 497

accounts and has been downloaded on June 20th, 2018.

Random users #1 This group has been collected by sampling among the accounts that posted

a tweet or a retweet in English with the hashtag #MondayMotivation (at the download time,

on January 16th, 2020). This hashtag is chosen in order to obtain a diversified sample of

users: it is broadly used and does not refer to a specific event or a political issue. This group

contains 5183 accounts after bot filtering.

Random users #2 This group has been collected by sampling among the accounts that posted

a tweet or a retweet in English, from the United Kingdom (we set up a filter based on the

language and country), at download time on February 11th, 2020. This group contains 2733

accounts after bot removal.

These four groups are chosen to cover different types of users: the first two contain accounts

that use language professionally (journalists and science writers) and the other two contain

regular users, which are expected to be more colloquial and less controlled in the language

they use. Since the random user accounts are not handpicked as in the two first groups, we

need to make sure that they represent real humans. The probability that an account is a bot is

calculated with the Botometer service [27], which implements a state-of-the-art bot detection

algorithm. This probability that the account is not human, which is called “complete automa-

tion probability” (CAP), is not only based on linguistic features such as grammatical tags, or

the number of words in a tweet, but also on language-agnostic features like the number of fol-

lowers or the tweeting frequency [28]. There is no standard CAP threshold to easily separate

bots from humans: it depends on the expected balance of precision and recall. That is why we

discard accounts with a CAP higher than 0.5, which considerably limits the number of false

negatives (undetected bots). The Botometer service achieves a performance of 0.95 AUC on

standard bot detection datasets [27]. With this configuration, the algorithm detects 29% of bot

accounts in the dataset of random users#1 and 23% in the dataset of random users#2.

In our analysis, we only consider the timelines of active Twitter accounts, i.e., users that

tweet regularly. Since this preprocessing step largely follows the standard approach in the

related literature [8, 29], further details are left to the S1 Appendix. Please note that we discard

retweets with no associated comments, as they do not include any text written by the target

user, and tweets written in a language other than English (since most of the NLP tools needed

for our analysis are optimised for the English language).
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3.1 Extracting user timelines with the same observation period

As discussed above, for each user in our datasets we retrieved the most recent 3200 tweets (due

to the Twitter API limitation), which constitute the observed timeline of the user. The time

period covered by these tweets varies according to the frequency with which the account is

tweeting: for very active users, the last 3200 tweets will only cover a short time span. Since ran-

dom users are generally more active, their observation period is shorter, and this may create a

significant sampling bias. In fact, the length of the observation period affects the measured

word usage frequencies (specifically, we cannot observe frequencies lower than the inverse of

the observation period). In order to guarantee a fair comparison across user categories and to

be able to compare users with different tweeting activities without introducing biases, we

choose to work on timelines with the same duration, by restricting to an observation window

T. To obtain timelines that have the same observation window T (in years), we delete all those

with a duration shorter than T and remove tweets written more than T years ago from the

remaining ones.

Increasing T reduces the number of users we can keep for our analysis (see Fig 2): for a T
larger than 2 years, that number is halved, and for a T larger than 3 years, it falls below 500 for

all datasets. On the contrary, the average number of tweets per timeline increases linearly with

T (Fig 3). The choice of an observation window will then result from a trade-off between a

high number of timelines per dataset and a large average number of tweets per timeline. To

simplify the choice of T, we only select round numbers of years. We can read in Table 1 that,

beyond 3 years, the number of users falls below 100 for some datasets. On the other hand, the

number of tweets for T = 1 year remains acceptable (> 500). Since we value the diversity of

users (in order to limit any bias in the selection of Twitter accounts) over the number of tweets

available, we make the choice of T = 1 year for the entire paper. Results with other T lengths

can be found in [17]. We note that random users have a higher frequency of tweeting than

Fig 2. Available timelines. Number of selected timelines depending on the observation window.

https://doi.org/10.1371/journal.pone.0277182.g002
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others. This difference tends to smooth out when the observation period is longer (Table 1).

This can be explained by the fact that the timelines with the highest tweeting frequency are

excluded in that case because their observation period is too small (which further supports the

fact that a smaller T reduces the selection bias of users).

4 Structural analysis of the ego network of words

In this section, we focus on the analysis of structural properties of the ego network of words,

highlighting structural invariants in language production. Note that, in the social domain,

pure structural properties of ego networks were instrumental [12] in characterising many traits

of social behavior (resource sharing, collaboration, diffusion of information). For this reason,

we believe it is important to assess them in the language domain as well, before moving on

(Section 5) to more complex and domain-specific analyses.

We first describe the methodology we use for our analysis in Section 4.1, then we discuss

the results in Section 4.2. For ease of reading, the notation used in this section is summarised

in Table 2. The section reports only the most significant results obtained by analysing the

Fig 3. Tweets per user. Average number of tweets depending on the observation window. The Pearson linear correlation

coefficient is equal to or greater than .98 for the four datasets.

https://doi.org/10.1371/journal.pone.0277182.g003

Table 1. Datasets summary. Number of users and tweeting frequency at different observation windows.

Datasets Number of users Avg # of tweets / user

1 year 2 years 3 years 1 year 2 years 3 years

NYT Journalists 268 187 125 579.71 865.02 1104.58

Science Writers 208 159 117 609.08 897.29 1112.63

Random Users #1 1227 765 311 897.29 1179.98 1403.50

Random Users #2 734 431 153 1057.41 1315.71 1404.60

https://doi.org/10.1371/journal.pone.0277182.t001
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structural properties of the ego network. Interested readers are referred to [17] for additional

results.

4.1 Methods

For each user, acting as ego, we want to build their ego network of words. To this aim, we first

extract individual words from the user’s tweets (Section 4.1.1), then we build the actual ego

network from these words (Section 4.1.2).

4.1.1 Word extraction. Since the analysis focus on words and their frequency of use, we

take advantage of NLP techniques for extracting them. As a first step, all the syntactic marks

that are specific to communication in online social networks (mentions with @, hashtags with

#, links, emojis) are discarded (see S1 Appendix for a summary). Once the remaining words

are tokenized (i.e., identified as words), those that are used to articulate the sentence (e.g.,

“with”, “a”, “but”) are dropped. In linguistics, this type of word is called a functional word as

opposed to lexical words, which have a meaning independent of the context. These two catego-

ries involve different cognitive processes (syntactic for functional words and semantic for lexi-

cal words), different parts of the brain [30], and probably different neurological organizations

[31]. We are more interested in lexical words because their frequency in written production

depends on the author’s intentions, as opposed to functional word frequencies that depend on

language characteristics. Functional words may also depend on the style of an author (and due

to this they are often used in stylometry). Still, whether their usage requires a significant cogni-

tive effort is arguable, hence in this work, we opted for their removal. Moreover, lexical words

represent the biggest part of the vocabulary. Functional words are generally called stop-words

in the NLP domain and we simply used an already existing list from the library spaCy [32] to

remove them.

As this work will leverage word frequencies as a proxy for discovering cognitive properties,

we need to group words derived from the same root (e.g. “work” and “worked”) in order to

calculate their number of occurrences. This operation can be achieved with two methods:

stemming and lemmatization. Stemming algorithms generally remove the last letters thanks to

complex heuristics, whereas lemmatization uses the dictionary and a real morphological analy-

sis of the word to find its normalized form. Stemming is faster, but it may cause some mistakes

in overstemming and understemming. For this reason, we choose to perform lemmatization

with the help of the package WordNetLemmatizer from the library NLTK [33] (which lever-

ages the lexical database WordNet). Once we have obtained the number of occurrences for

each word base, we remove all those that appear only once to leave out the majority of mis-

spelled words. The S1 Appendix contains examples of the entire preprocessing part.

In the remaining of the paper, when we talk about the “words” of a user, we refer to the set

of words left after removing functional words and after lemmatization.

4.1.2 Building the ego network of words. Let us focus on a user j. When studying the

social cognitive constraints [28], the contact frequency between two people was taken as a

Table 2. Summary of notation used in the structural analysis.

Name Notation Definition/formula

Optimal number of circles τ(e) the results of the clustering on the word frequencies for the user (ego) e
Circle (or layer) LðeÞi i-th social circles of the tagged ego e, with i 2 {1, . . ., τ(e)}

Scaling ratio of layer i r
ðeÞ
i

jLðeÞi j

jLðeÞi� 1
j
, with i 2 {2, . . ., τ(e)}

Ring rðeÞi LðeÞi � LðeÞi� 1

https://doi.org/10.1371/journal.pone.0277182.t002
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proxy for their intimacy and, as a result, for their cognitive effort in nurturing the relationship.

Similarly, the frequency fi at which user j uses word i is considered here as a proxy of their

“relationship”. Frequency fi is given by
nij
T , where nij denotes the number of occurrences of

word i in user j’s timeline, and T denotes the observation window of j’s timeline in years

(T = 1y in our case, as discussed in Section 3.1). Using this frequency definition, we now inves-

tigate whether the words of a user can be grouped into homogeneous classes and whether dif-

ferent users feature a similar number and sizes of classes. To this aim, for each user, we

leverage a clustering algorithm to group words with a similar frequency. The selected algo-

rithm is Mean Shift [34], because as opposed to Jenks [35] or k-means [36], it is able to auto-

matically detect the optimal number of clusters. In order to account for the long-tailed nature

of frequencies, a standard log-transformation is applied to the frequency values prior to the

Mean Shift run.

Thus, for each user, we feed the user’s words to Mean Shift. The output of the clustering

process is one value τ(e) for each ego network e, which describes the optimal number of classes

(clusters) in which the word frequencies can be split. We rank each cluster by its position in

the frequency distribution: cluster #1 is the one that contains the most frequent words, and the

last cluster is the one that contains the least used words. Following the convention of the social

ego network model discussed in Section 1, these clusters can be mapped into concentric layers

(or circles), which provide a cumulative view of word usage. Specifically, layer Li includes all

clusters from the first to the i-th. Layers provide a convenient grouping of words used at least
at a certain frequency. We refer to this layered structure as the ego network of words. Note that,

since layers in ego networks are cumulative (i.e., they include all words used at least a certain

frequency), we will use the term “ring” to refer to their non-overlapping portion: for example,

ring #2 contains all words that are in L2 but not in L1 (see Table 4 for the general formula).

For the sake of example, let us focus on the second cluster identified by Mean Shift: cluster #2

corresponds to ring #2 in the ego network, and the union of ring #1 and ring #2 corresponds

to the 2nd layer of the ego network. Another typical metric that is analysed in the context of

social cognitive constraints is the scaling ratio ρi between layers i and i − 1, which, as discussed

earlier, corresponds to the ratio between the size of consecutive layers (see Table 4 for its for-

mula). The scaling ratio is an important measure of regularity, as it captures a relative pattern

across layers, beyond the absolute values of their size. Taken together, the optimal number of

layers τ(e), the circle LðeÞi , and the scaling ratio r
ðeÞ
i fully characterise the ego network e.

4.2 Results

Here we study the ego networks of words in our four datasets, following the methodology

described above.

The histograms of the obtained optimal number of layers τ are shown in Fig 4. It is interest-

ing to note that, despite the heterogeneity of users (in terms of tweeting frequency), the distri-

butions are always quite narrow, with peaks appearing consistently between 5 and 7 clusters.

Similarly to the social constraints case, also for language production, we observe a fairly regular

and consistent structure. This is the first important result of the paper, hinting at the existence

of structural invariants in cognitive processes.

We now study the size of the layers identified in Fig 4. For the sake of statistical reliability,

we only consider those users whose optimal number of layers (as identified by Mean Shift) cor-

responds to the most popular number of layers (red bars) in Fig 4. This allows us to have a suf-

ficient number of samples in each class. Fig 5 shows the average layer sizes for every dataset.

For a given number of clusters, we observe again a striking regularity across the datasets,

meaning that each layer has approximately the same size regardless of the category of users.
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Fig 6 shows the scaling ratio of the layers in language production. We can observe the fol-

lowing general behavior: the scaling ratio starts with a high value between layers #1 and #2, but

always gets closer to 2–3 as we move outwards. This empirical rule is valid whatever the dataset

(and whatever the observation period [17]). This is another significant structural regularity,

quite similar to the one found for social ego networks, as a further hint of cognitive constraints

behind the way humans organise the words they use.

In order to further investigate the structure of the word clusters, we compute the linear

regression coefficients between the total number of unique words used by each user

Fig 4. Optimal number of clusters. The clusters are obtained by applying Mean Shift to log-transformed frequencies. The most frequent number of

clusters is highlighted in red.

https://doi.org/10.1371/journal.pone.0277182.g004

Fig 5. Average layer size. Each panel captures egos with a different optimal number of clusters. Error bars correspond to the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0277182.g005

Fig 6. Scaling ratio. Each panel captures egos with a different optimal number of clusters. Error bars correspond to the 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0277182.g006
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(corresponding to the size of the outermost layer) and the individual layer sizes. Due to space

limits, in Table 3 we only report the exact coefficients for the journalists’ dataset (but analo-

gous results are obtained for the other categories) and in Fig 7 we plot the linear regression for

all the user categories. Note that the size of the most external cluster is basically the total num-

ber of words used by an individual in the observation window. It is thus interesting to see what

happens when this number increases, i.e., if users who use more words distribute them uni-

formly across the clusters, or not. Table 3 shows two interesting features. First, it shows

another regularity, as the size of all layers linearly increases with the most external cluster size,

with the exception of the first one (Fig 7). Moreover, it is quite interesting to observe that the

second-last and third-last layers consistently account for approximately 60% and 30% of the

used words, irrespective of the number of clusters. This indicates that users with more clusters

split, at a finer granularity, words used at the highest frequencies, i.e., they organise differently

their innermost clusters, without modifying significantly the size of the most external ones.

As a final comment on Fig 6, please note that the innermost layer tends to be approximately

five times smaller than the next one. This suggests that this layer, containing the most used

words, may be drastically different from the others (as also evident from Table 3). The charac-

terization of this special layer will be the main focus of the next section.

4.3 Discussion

We summarise below the main results of the section.

• Individual distributions of word frequencies are divided into a consistent number of groups.

Since word frequencies impact the cognitive processes underlying word learning and

retrieval in the mental lexicon [37], these groups can be an indirect trace of these processes’

properties. The number of groups is only marginally affected by the class (specialized or

generic) the users belong.

Table 3. Size of external layer vs individual layer size: Regression coefficients. We report the linear regression coefficients obtained for the journalists dataset with T = 1

year.

Opt. # of clusters Cluster Rank

1 2 3 4 5 6 7

5 clusters 0.02 0.13 0.33 0.62 1.00

6 clusters 0.01 0.04 0.14 0.32 0.59 1.00

7 clusters 0.00 0.02 0.06 0.16 0.32 0.56 1.00

https://doi.org/10.1371/journal.pone.0277182.t003

Fig 7. Size of external layer vs individual layer size: Linear regression plots. The x-axis corresponds to the total number of unique words used by each

user (corresponding to the size of the outermost layer), the y-axis to the individual layer sizes.

https://doi.org/10.1371/journal.pone.0277182.g007
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• Structural invariants in terms of layer sizes and scaling ratio are observed, similarly to the

well-known results from the social domain [8]. Specifically, we found that the size of the lay-

ers approximately doubles when moving from layer i to layer i + 1, with the only exception

of the first layer.

• Users with more layers organise differently their innermost layer, without modifying signifi-

cantly the size of the most external ones, which consistently account for approximately 60%

and 30% of the used words, irrespective of the number of clusters of the user.

5 Semantic analysis of the ego network of words

We have treated words as simple tokens so far. However, words have meanings and they can

be linked to specific topics. In this section, we want to go beyond words and investigate which

topics they refer to and how they are distributed in the different rings of the ego network. The

analysis of this section revolves around the concept of semantic profile of a ring (in the ego net-

work of words), which captures the topics associated with the words in the ring. Once seman-

tic profiles are obtained, we are able to address the following high-level question: are all rings

similar in the topics they contain, or does the ego network organize the topics in its rings in a

specific way?

For the convenience of the reader, we summarise in Table 4 the notation used throughout

the section.

5.1 How to build semantic profiles

In this section, we describe how we carry out the semantic analysis of the ego network of

words. First, in Section 5.1.1, we motivate our selection of the BERTopic framework for topic

extraction. Then, in Section 5.1.2, we illustrate the steps for topic extraction. At the end of this

process, each word occurrence in the ego network is associated with a specific topic. Account-

ing for the popularity of each topic in the rings of the ego network, in Section 5.1.3 we build

the semantic profile of the ego network ring, as the topic distribution of the words in that ring.

5.1.1 Preliminaries. To calculate a semantic profile, we choose to consider the meaning

of each word in its context rather than using a semantic dictionary [38] (a dataset where each

word is mapped to a semantic category), which would not be able to detect more complex top-

ics and would miss some meanings for a polysemous word. We acknowledge that a lot of effort

has been put in the direction of ontologies in order to understand more precisely the interests

of users, specifically on Twitter. Ontologies map knowledge of specific domains, such as

Athena [24], which is a semantic web database extracted from a news portal that can be used

for news recommendation purposes [39], or the BBC ontologies extracted from the BBC cor-

pus of news, which allows politically-oriented topic mining [40]. However, even if their draw-

backs (such as the rigidity of the knowledge model) can be partly fixed by coupling them with

models based on embedding [41], we prefer having the maximum freedom in the topic identi-

fication process by using a transformers-based model such as BERT [42] which is the current

state of the art in text embedding and then using an unsupervised method to detect topics.

5.1.2 Extraction of the topics. In order to avoid some issues with polysemous words, we

must consider the ring of an ego network not only as a set of single words associated with a fre-

quency of use but as a set of words with a given number of occurrences (from which the fre-

quency is derived), each occurrence belonging to a user’s tweet. We aim to associate each word

occurrence with a topic. We first classify (in an unsupervised way) the tweets by topic using

the BERTopic framework [43], then all word occurrences that constitute a tweet are assigned

the same topic as the tweet itself (Fig 8).
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For the current analysis, we chose to focus only on ego networks with six rings, the case

covering the most users. As described in the following, the BERTopic framework uses sequen-

tially BERT [42] for tweet embedding, UMAP [44] for dimension reduction, and HDBSCAN

[45] for clustering those tweet embeddings in a low-dimensional subspace.

5.1.2.1 Tweet embedding with BERT. BERT [42], which achieves state-of-the-art perfor-

mance for natural language understanding, is used to assign to each tweet a point in the

embedding space which is supposed to be a vector representation of its semantic meaning.

BERT is a bidirectional transformer developed by Google, trained on the BookCorpus [46]

and Wikipedia in English. It, therefore, relies on all the linguistic knowledge learned from a

very large corpus to perform this task. BERT yields topics along 768 dimensions.

5.1.2.2 Dimensionality reduction with UMAP. In order to mitigate the curse of dimensional-

ity (to which clustering algorithm based on k-nearest neighbors are particularly sensible [47]),

we use the UMAP clustering algorithm (with settings n neighbors = 15, n compo-
nents = 5, metric=’cosine’ and the python package umap v0.1.1) to reduce the

Table 4. Summary of the notation used in the semantic analysis.

Symbol Description

E Set of all ego networks E

e 2 E Ego networks e belonging to the set of all ego networks E

c 2 C Topic c belonging to the set of all topics C

m 2 T Tweet m belonging to the set of all tweets T

Pm Semantic profile of tweet m, according to HDBSCAN

Pm(c) Likelihood that tweet m belongs to topic c, according to the semantic profile of the tweet

Wðe; rÞ Set of non-distinct words in ring r of ego network e
Wuðe; rÞ Set of distinct words in ring r of ego network e
Wðe;wuÞ Set of occurrences of the unique word wu in the ego network e
O(e, r) Number of word occurrences in ring r of ego network e
o(wu, e) Number of occurrences associated with the unique word wu of ego network e

PðeÞr Semantic profile of ring r of ego network e

PðeÞr ðcÞ Probability of observing topic c in PðeÞr of ring r in ego network e

PðeÞwu Topic distribution of unique word wu in ego network e

PðeÞwu ðcÞ Probability of observing topic c in PðeÞwu for wu in ego network e

N ðe; rÞ The number of topics discussed in ring r of ego network e

N normðe; rÞ N ðe; rÞ normalised by the total number of word occurrences in r
H(e, r) Entropy of the semantic profile PðeÞr
dJSðPðeÞri jjP

ðeÞ
rj
Þ Distance between the semantic profiles of rings i and j

UðeÞr Set of primary topics for ring r of ego network e

LðeÞr Set of non-primary topics for ring r of ego network e

Kry
TOPðrxÞ

Coverage of rx’s primary topics in ry’s semantic profile

SryTOPðrxÞ Strength of rx’s primary topics in ry’s semantic profile

SryBOTTOM Strength of rx’s non-primary topics in ry’s semantic profile

SryTOPðrx ;ryÞ Strength of topics that are primary for both rx and ry in ry’s semantic profile

SryTOPðrxÞ;BOTTOMðryÞ Strength of topics that are primary for rx but not for ry in ry’s semantic profile

s
ry
TOPðrx ;ry Þ

Strength of topics that are primary for both rx and ry with respect to the average strength of

primary topics in ry’s semantic profile

s
ry
TOPðrxÞ;BOTTOMðryÞ

Strength of topics that are primary for rx but not for ry with respect to the average strength of non-

primary topics in ry’s semantic profile

https://doi.org/10.1371/journal.pone.0277182.t004
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embedding space down to five dimensions as recommended in the BERTopic framework [43].

UMAP, like the T-SNE [48] algorithm, is able to capture latent non-linear dimensions but in a

more scalable way.

5.1.2.3 HDBSCAN for clustering topics. HDBSCAN [45] is also able to find non-linear clus-

ter structures from the density, as well as outliers, like DBSCAN (Fig 9). However, instead of

deciding the contours of a cluster based on a fixed density threshold, HDBSCAN uses hierar-

chical clustering (single linkage) to find the most stable partition. Here we use HDBSCAN

with following settings: min cluster size = 15, metric=’euclidean’, clus-
ter selection method=’eom’, prediction data = True with the python

package hdbscan v0.8.26. Thanks to BERT embedding, the clusters of tweets we obtain

are semantically homogeneous, and therefore represent the dominant topics of the dataset.

Under these conditions, we can consider that a cluster corresponds to a topic.

Table 5 shows the percentage of outliers detected by HDBSCAN, which corresponds to the

percentage of tweets that cannot be associated with a specific topic. Since this percentage is

quite high, even with the most conservative configurations (with the least outliers), we also

assess the cluster configuration (i.e., the topic assignment) induced by a soft clustering

approach. Indeed HDBSCAN allows two types of clustering: hard clustering, which classifies

each tweet in one and only one cluster (or as an outlier), and soft clustering, which is able to

measure the proximity of a tweet to several different clusters. The advantage is that it is possi-

ble to obtain this proximity even for outliers, which allows us to integrate them into the

Fig 8. Obtaining the semantic profile of the rings of an ego network. (1) The ego network’s rings organize a user’s vocabulary based on the

frequencies of the words. (2) For a given word, its occurrences in the user timeline are coming most likely from different tweets. (3) The tweets are

classified by topic thanks to the BERTopic framework. (4) Each word occurrence is assigned the very same topic as the tweets it belongs to. (5) If we

consider a ring as a multiset of words (with repetitions) the semantic profile is the distribution of the topics among those words.

https://doi.org/10.1371/journal.pone.0277182.g008
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analysis. When using it for soft clustering, HDBSCAN provides, for each point (tweet) m, a

probability distribution Pm such that Pm(c) is the likelihood that this point belongs to the clus-

ter (topic) c, with
P

c2CPmðcÞ � 1 (C being the set of topics). Thus, with soft clustering, the

tweet is not assigned a single topic but a probability distribution over all the topics. For clarity

reasons, in the case of hard clustering—where the tweet m is directly assigned one topic cm—

let us use the same notation Pm, where Pm(cm) is equal to 1 and zero otherwise. We will use

these two configurations (hard clustering and soft clustering) to build two separate semantic

profiles for each ego network ring. In S1 Appendix we discuss in detail why hard clustering is

better suited for our analysis.

5.1.2.4 Reduction of the number of topics. As shown in Table 5, the different datasets feature

a different number of topics. In order to be able to compare the datasets, we reduced the num-

ber of topics down to the same number of topics (this set of topics—which is different for each

dataset—will be noted as C from now on). Let us denote with C0 the full set of topics. Our goal

is to merge them together until we obtain the target number of topics. To do so, the following

operation is repeated: merge the smallest cluster c0
1

(in the hard clustered configuration) with

the cluster c0
2

to which c0
1

is semantically the closest. This semantic similarity is calculated as fol-

lows: all the tweets are grouped in a single document by cluster, then a TF-IDF vector is calcu-

lated for each of them. The similarity between the two topics is the cosine of their TF-IDF

representation. The probability of the new topic c0
1
[ c0

2
is accordingly updated, for each tweet

m, as Pmðc01 [ c
0
2
Þ ¼ Pmðc01Þ þ Pmðc

0
2
Þ. When merging step by step the clusters, the average simi-

larity between them increases as can be seen in Fig 10. In the case of journalists and science

writers, we see that exceeding 100 topics no longer allows the emergence of topics that are radi-

cally different from the others, while still enabling an acceptable number of topics to be

Table 5. Topics per dataset. Each topic corresponds to a cluster identified by HDBSCAN.

Datasets Number of topics % of outliers

NYT Journalists 265 69.3%

Science Writers 223 71.8%

Random Users #1 2940 68.6%

Random Users #2 2577 70.0%

https://doi.org/10.1371/journal.pone.0277182.t005

Fig 9. 2D visualization of the HDBSCAN results on the journalists dataset with both hard and soft clustering. 265 clusters are

found (they are the same in both cases). In the first case, each point is classified as either belonging to a single cluster (colored

points) or as an outlier (grey point), whereas in the second case each point is assigned a likelihood to belong to each cluster (the

points take the color of the cluster they belong to most likely).

https://doi.org/10.1371/journal.pone.0277182.g009
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isolated. Thus, in order to be able to compare the results related to the different datasets, we

have chosen to limit the number of topics to 100 for each of them. For the sake of comparison,

the 100 topics obtained for the hard clustering configuration are also used for topic reduction

in the soft clustering case. This operation allows us to narrow down to one hundred topics the

different semantic fields addressed in the same dataset while trying to provoke the least

changes in the topic reassignment.

5.1.3 Extraction of the semantic profile. We define the semantic profile of an ego net-

work ring as the distribution of topics to which the word occurrences that the ring contains

(multiple occurrences of the same word may come from different contexts and thus refer to

different topics) belong. Note that this analysis is carried out at the ring level, and not the circle

level because circles are concentric and cumulative, thus the semantic profiles of circles would

include by default overlapping topics, hence creating a bias in the analysis (similarly to count-

ing topics twice). After the preprocessing described in the previous section, each word occur-

rence is associated with a topic (or several, in the soft clustered case), thus we can compute for

each ego network’s ring a topic distribution based on the word occurrences it contains.

Let Wðe; rÞ be the set of word occurrences contained in ring r of the ego network e, and m
(w) the tweet the word occurrence w belongs to. The probability PðeÞr ðcÞ of observing topic c in

ring r of ego network e is defined as follows:

PðeÞr ðcÞ ¼
P

w2Wðe;rÞPmðwÞðcÞ
P

c2C

P
w2Wðe;rÞPmðwÞðcÞ

; ð1Þ

Fig 10. Number of topics vs. average topic similarity. The threshold of one hundred topics is marked with the dashed red line. This threshold is

situated at the end of the bend for specialized datasets, and in the middle of the bend for both random datasets.

https://doi.org/10.1371/journal.pone.0277182.g010

PLOS ONE Structural invariants and semantic fingerprints in the “ego network” of words

PLOS ONE | https://doi.org/10.1371/journal.pone.0277182 November 22, 2022 16 / 32

https://doi.org/10.1371/journal.pone.0277182.g010
https://doi.org/10.1371/journal.pone.0277182


where
P

c2CP
ðeÞ
r ðcÞ ¼ 1. More in general, we denote with PðeÞr the semantic profile of ring r in

ego network e (depicted in Fig 11). For this reason, we will also refer to PðeÞr ðcÞ as the share of c
in the semantic profile PðeÞr of r This unique semantic profile will be the starting point for all

subsequent analyses in this section. In S1 Appendix, we provide four tables (one for each

dataset) that detail for every topic the most characteristic words and the average share in the

rings.

5.2 Metrics for the analysis of semantic profiles

After following the steps described in Section 5.1, we end up with a semantic profile for

each ring of an ego network. In the following we discuss (i) how to characterise individual

semantic profiles (Section 5.2.1), (ii) how to compare semantic profiles (Section 5.2.2), and

(iii) how to leverage semantic profiles to investigate the role of the most important topics (Sec-

tion 5.2.3).

5.2.1 Characterization of the semantic profile. Let us consider a ring r of ego network e
for which we have extracted the semantic profile as discussed above. The semantic profile tells

us how many distinct topics the words in ring r touch upon. Formally, the number of topics

associated with a given ring can be calculated as follows:

N ðe; rÞ ¼
X

c2C

1PðeÞr ðcÞ>0
; ð2Þ

where we denoted with PðeÞr ðcÞ the probability of a observing topic c in the semantic profile PðeÞr
of ring r, and 1 is the indicator function. Note, though, that N ðe; rÞmay offer only a partial

perspective. In fact, rings have very different sizes (as discussed in Section 4) and it is expected

to be much easier for larger rings (i.e., rings containing many words) to span a larger range of

Fig 11. Semantic profile illustration. Each ring is associated with a topic distribution. Note: Two different semantic profiles can be built, depending on

whether topics are assigned using hard vs soft clustering. In S1 Appendix we show that the use of soft clustering (and thus the inclusion of outliers) does

not improve the reliability of the analysis. It gives too much importance to noisy data which favors the emergence of very generalized “super topics” that

dominate all semantic profiles. We, therefore, present in Section 5.3 only the results obtained with hard clustering. In S1 Appendix we discuss soft

versus hard clustering in detail and motivate why hard clustering is better suited for our analysis.

https://doi.org/10.1371/journal.pone.0277182.g011
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topics. For this reason, we will compare N ðe; rÞ with its normalised version:

N normðe; rÞ ¼
N ðe; rÞ
jWðe; rÞj

; ð3Þ

where we weigh the number of topics “generated” by the ring by the number of word occur-

rences contained in the ring (denoted with jWðe; rÞj).
N ðe; rÞ and N normðe; rÞ account for the mere presence of topics, regardless of their fre-

quency of use. To capture the latter dimension, we next measure the entropy of PðeÞr . Recalling

that PðeÞr is in fact a probability distribution, its Shannon entropy reflects its diversity: the

entropy (and diversity) is maximum if a ring contains all topics equally (i.e., with the same val-

ues of PðeÞr ðcÞ), while the entropy is minimum if a ring contains only one topic. So, the greater

the entropy, the greater the diversity. Denoting with H(e, r) the entropy of the ring r in ego e,
its definition is as follows:

Hðe; rÞ ¼ �
X

c2C

PðeÞr ðcÞ � log ðPðeÞr ðcÞÞ: ð4Þ

For the 100 topics we consider, the minimum entropy is 0 and the maximum entropy is about

4.60.

In Section 5.3, the average of N ðe; rÞ, N normðe; rÞ, and H(e, r) across all ego networks will be

presented, i.e., N ðrÞ ¼ 1

jEj

P
e2EN ðe; rÞ (analogously for the others).

5.2.2 Comparing the semantic profiles of different rings. Once we know which topics

are covered by each ring of an ego network, the first step is to find out whether their semantic

profile differs from one ring to another one or, instead, if the distribution is homogeneous

over the whole ego network. Since all semantic profiles are based on the same 100 topics, it is

easy to obtain a distance measure to compare the rings with one another. Recalling that the

semantic profile is a probability distribution, for this purpose we can use the Jensen-Shannon

(JS) divergence [49], which allows us to calculate the proximity between the 100-topic distribu-

tions that we obtained previously. Then, the corresponding JS distance is conventionally

obtained as the square root of the JS divergence [50]. The JS divergence is basically a symmet-

ric version of the well-known Kullblack-Leibler (KL) divergence, which is a standard metric

for capturing the distance between probability distributions. For a tagged ego e, the KL diver-

gence DKL between two semantic profiles PðeÞri and PðeÞrj of rings i and j for ego network e can be

computed as follows:

DKL PðeÞri jjP
ðeÞ
rj

� �
¼
X

c2C

PðeÞri ðcÞ � log
PðeÞri ðcÞ

PðeÞrj ðcÞ

 !

: ð5Þ

From DKLðPðeÞri jjP
ðeÞ
rj
Þ, the JS divergence can be obtained as:

DJS PðeÞri jjP
ðeÞ
rj

� �
¼
DKLðPðeÞri jjMÞ þ DKLðPðeÞrj jjMÞ

2
; ð6Þ

with M ¼
PðeÞri þP

ðeÞ
rj

2
. Then we go from divergence D to distance δ by taking the square root:

dJSðPðeÞri ; P
ðeÞ
rj
Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DJSðP
ðeÞ
ri jjP

ðeÞ
rj Þ

q

. Note that the JS distance is bounded as

0 � dJSðPðeÞri jjP
ðeÞ
rj
Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
logð2Þ

p
� 0:83.
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Once we have obtained a dJSðPri ; PrjÞ, we compute its average across all ego networks in a

standard way, i.e., d
ðeÞ
JS Pri ; Prj
� �

¼ 1

jEj

P
e2Ed

ðeÞ
JS Pri ; Prj
� �

5.2.3 Capturing important topics and their cross-rings effects. Given a semantic profile

PðeÞr , we can check whether some topics are more important than others, and, if this is the case,

whether they play a special role in the ego network’s rings. We consider whether topics can be

divided in two classes, i.e., “important” and “not-important” topics for each ring. To do so, we

cluster the topics according to their presence in the specific ring under study, i.e, according to

the values of PðeÞr ðcÞ where c 2 C. To this aim, we use the Jenks algorithm [51] which allows

finding natural breaks in the frequency distribution (similarly to k-means, we have to specify

k, the number of groups we want to obtain). We rely on the Silhouette score [52] to validate

the clustering results. Since we just want to find one natural break that separates important

topics from the others, we set k = 2. Words are split into two groups, one with high-frequency

use, and the other with low-frequency use. The former is the set of important (or primary) top-

ics referred to as UðeÞr (where e is the ego network and r is the ring number), and the latter is

the set of non-important topics as LðeÞr .

Once we have obtained UðeÞr and LðeÞr , for all ego networks and for all rings, we can investi-

gate whether primary topics in one ring play a special role in other rings as well. Let us focus

on two rings x and y. We define Kry
TOPðrxÞ

as the coverage of rx’s primary topics in ring ry. This

metric captures the cumulative presence of rx’s primary topics in ry.

Kry
TOPðrxÞ

¼
1

jEj

X

e2E

X

c2UðeÞrx

PðeÞry ðcÞ: ð7Þ

Then, to capture the average individual strength of rx’s primary topics in ry, we define a com-

plementary metric SryTOPðrxÞ (with an averaging factor 1

jUðeÞrx j
) as follows:

SryTOPðrxÞ ¼
1

jEj

X

e2E

1

jUðeÞrx j

X

c2UðeÞrx

PðeÞry ðcÞ: ð8Þ

Basically, SryTOPðrxÞ measures the average share of each rx’s primary topics in another ring of the

same ego network. Similarly, we can compute SryBOTTOMðrxÞ by replacing UðeÞrx with LðeÞrx in the

above equation. This approach can be generalized to more complex cases. For example, we can

study the strength of topics that are important in both rx and ry in the semantic profile of ring

ry. This would be equivalent to the following:

SryTOPðrx ;ryÞ ¼
1

jEj

X

e2E

1

jUðeÞrx \ U
ðeÞ
ry j

X

c2UðeÞrx \U
ðeÞ
ry

PðeÞry ðcÞ: ð9Þ

Analogously, we can study the opposite effect, i.e., what is the strength of topics that are impor-

tant in rx but not in ry in the semantic profile of ry. In this case, the formula will be the follow-

ing:

SryTOPðrxÞ;BOTTOMðryÞ ¼
1

jEj

X

e2E

1

jUðeÞrx \ L
ðeÞ
ry j

X

c2UðeÞrx \L
ðeÞ
ry

PðeÞry ðcÞ: ð10Þ

All the above metrics capture the pulling power of ring rx on ring ry.
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Another interesting perspective is whether topics that are primary elsewhere tend to be

more or less dominant than the average topic in UðeÞry or LðeÞrx . This effect can be measured as fol-

lows:

s
ry
TOPðrx ;ryÞ

¼ SryTOPðrx ;ryÞ � S
ry
TOPðryÞ

; ð11Þ

where we basically compute the difference between the strength of topics that are primary in

both rx and ry and the average strength of all primary topics in ry. The complementary perspec-

tive is whether topics that are primary elsewhere tend to be more or less dominant than the

average non-primary topic in ry. To this aim, we leverage the following:

s
ry
TOPðrxÞ;BOTTOMðryÞ

¼ SryTOPðrxÞ;BOTTOMðryÞ � S
ry
BOTTOMðryÞ

: ð12Þ

which follows the same line of reasoning as s
ry
TOPðrx ;ryÞ

.

5.3 Results

In this section, we study the semantic profiles in the ego networks of the Twitter users in our

four datasets (Section 3).

5.3.1 Ring #1 is special in the ego networks of words. We start our analysis by studying

how topics are associated with the different rings. For each ego network e, we will compute the

number of topics per ring (N ðe; rÞ and N normðe; rÞ, its normalized version) and their entropy

H(e, r). These metrics are then averaged across all egos, as described in Section 5.3, and 95%

confidence intervals are shown.

In Fig 12(a), we can observe that the number of topics grows towards the external rings

(from about 11 in ring #1 to over 16 in ring #6). However, not all rings contain the same num-

ber of word occurrences (Fig 12(b)): as seen previously in Section 5.1.2, each word occurrence

contributes equally and independently to the calculation of the topics distribution. Therefore,

a ring containing more word occurrences is more likely to contain more different topics.

When we normalise by word occurrences (N normðrÞ), the maximum of the normalised topic

count (Fig 12(c)) is observed in the first ring. Thus, ring #1 stands out as the ring that generates
proportionally more topics than the other rings.

In order to validate this hypothesis, we need to rule out that this result is not a mere side

effect induced by the structure of the ego networks but it is a tell-tale sign of how humans pick

the words in their innermost ring. In other words, we want to test whether keeping the ego

network structure unchanged but swapping the words in the rings would still yield the same

result regarding ring #1. To this aim, we designed a null model where the ego network struc-

ture remains the same but the words are shuffled (more details in the grey box below). In Fig

12(d), we show N normðrÞ for the null model of ego networks. Since the maximum of N normðrÞ
is obtained at a different ring r than in the previous case, we can deduce that ring #1 is special

not just as a side effect of the ego network structure but due to the nature of the words it con-

tains. To further confirm this finding, note also that the number of topics per word occurrence

is significantly lower for innermost rings in the null model with respect to the outermost rings

whereas the opposite is true for real ego networks. This is a second element that hints at the

peculiar role of innermost rings in real-life ego networks of words.

To extend our study beyond the mere number of topics per ring, we now investigate the

diversity in the way topics are distributed, leveraging the entropy of the semantic profiles

defined in Section 5.2.1. This is a way of calculating the semantic diversity of the words that

compose a ring, as would be a metric like the average pairwise semantic distance, but based on

the semantic profile that we have previously calculated. Fig 13 (left) shows different levels of
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entropy depending on the rings: H(r) grows towards the outer rings and is significantly lower

in the innermost ring (for all datasets). This means that the outermost rings are, on average,

semantically richer than the innermost ones. Then, we compare these results with those

obtained from the null model (Fig 13 on the right), to find out whether the differences in

entropy are related to the intrinsic structure of the ego network. We find that the entropy of

the null model is the same as the original model for all rings, but for ring #1, where the null

model entropy is lower. This means that, even if words are organized in the ego network such
that the diversity of topics grows toward the outermost rings, the diversity in ring #1 is higher
than what we could expect if words were randomly assigned to rings, which is consistent with

the previous findings of this section.

Building a null model of an ego network.

In order to show that the result is not only determined by the structure of the ego network

(independently of the word organization inside), we chose to build “null”, artificial ego net-

works based on those already existing. Let o(wu, e) be the number of occurrences of the word

Fig 12. Average number of topics (a), number of word occurrences (b), and normalised number of topics (c) in each ring of the ego network. For

“null” ego networks, we report only the normalised number of topics (d).

https://doi.org/10.1371/journal.pone.0277182.g012
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wu in ego e, such that the number of word occurrences in a ring r of a given ego e is defined as:

Oðe; rÞ ¼
X

wu2Wuðe;rÞ

oðwu; eÞ; ð13Þ

Wuðe; rÞ being the set of unique words in ring r. For each ego network, all the words are shuf-

fled (i.e., a new W 0

u is defined) and the word occurrences are artificially changed (new o0 and

O0 are defined) such that the ring sizes and the number of occurrences are kept unchanged:

jW 0

uðe; rÞj ¼ jWuðe; rÞj

O0ðe; rÞ ¼ Oðe; rÞ:

(

ð14Þ

The shuffling process can be considered as a succession of random swaps of words in the ego

network. Let us consider a word wx with X occurrences in ring rx, and another word wx with Y
occurrences in ring ry. During the shuffling process, assume the two words are swapped. In

that new ego network, the number of occurrences of wx is forcibly set to the original number

of occurrences of wy and vice versa:

o0ðwx; eÞ ¼ oðwy; eÞ ¼ Y

o0ðwy; eÞ ¼ oðwx; eÞ ¼ X:

8
<

:
ð15Þ

That way, we can preserve Eq (14). Words are shuffled along with their topic distribution PðeÞwu
in the original dataset. This topic distribution associated to a unique word wu is calculated

based on its occurrence w 2Wðe;wuÞ. Each of these word occurrences w is associated with a

topic cw 2 C such that Pm(wc)(c) = 1. Hence, PðeÞwuðcÞ simply corresponds to the ratio of the

Fig 13. Entropy of the semantic profiles per ring. Real-life ego networks (left) vs null model ego networks (right).

https://doi.org/10.1371/journal.pone.0277182.g013
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occurrences of wu that are associated to c.

PðeÞwuðcÞ ¼
1

jWðe;wuÞj

X

w2Wðe;wuÞ

PmðwÞðcÞ: ð16Þ

Then the new topic distribution of a given ring r is the weighted average of the topic distribu-

tion PðeÞwu of the unique words wu 2W 0

uðe; rÞ that compose that ring after shuffling

PðeÞr ðcÞ ¼
P

wu2W0uðe;rÞ
o0ðwuÞ � PðeÞwuðcÞP

wu2W0uðe;rÞ
o0ðwuÞ

: ð17Þ

The full process is summarized with a toy example in Fig 14.

We now carry out a pairwise comparison of the semantic profiles of rings, using the JS dis-

tance described in Section 5.2.2. we plot the, in Fig 15. As one can expect, the diagonal is filled

with zeros since the distance is calculated between two identical semantic profiles, and the

upper triangle mirrors the lower triangle since the distance is symmetric. All datasets exhibit

the same features:

• The first row and column always contain the higher values. This means that ring #1 (i.e. the

innermost ring) is always the most distant from the other rings. In other words, ring #1 is the
most characteristic ring.

• The lower values are always the distance between ring #5 and #6. Thus, the pairs of most simi-
lar rings are always among the outermost ones.

Fig 14. Null model example. The ring sizes and word occurrences are kept, the words are shuffled. In this toy example: O(e, r2) = 3 + 2, o(virus, e) = 5,

o0(virus, e) = 1.

https://doi.org/10.1371/journal.pone.0277182.g014
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• For one row or column, the lowest value is always neighbouring the diagonal: given one ring

x, the least distant ring is always the previous ring x−1 or the following one x+ 1. This means

that two rings close to each other are more likely to be similar.

The first observation is very important because it shows that the topic distribution associ-

ated with the most used words (those in the innermost ring) by a Twitter user is different from

that associated with the least used words. This makes ring #1 unique in two ways. It generates
proportionally more topics than the others rings (Fig 12(c)), but the distribution in ring #1 is the
furthest away from the others (Fig 15). This hints at a significantly higher “semantic generative

role” of inner rings as opposed to outer ones: each word occurring in an inner ring is able

“generate” more topics on which the user engages. And these topics, on which that user focuses

most (inner rings feature higher frequency of use of words) generate a distribution that is quite

distinct from the one at the outermost rings, on which the user engages far less.

Take home message for Section 5.3.1: Ring #1 is special in the ego network of words: it gener-

ates proportionally more topics than the other rings, its topic diversity is proportionally higher

than expected, and its semantic profile is the most different with respect to the other rings.

This suggests that ring #1 may be the semantic fingerprint of the ego network of words.

5.3.2 The role of primary topics from ring #1. In the previous section, we discovered

that ring #1 is special. It, therefore, makes sense to investigate which topics are most important

in this ring and if they tend to be equally important in the other rings. This will allow the

reader to familiarize themselves with the methodology as well, before generalizing the analysis

to other rings in Section 5.3.3.

We measure the overall importance of r1’s primary topics in another ring ry by computing

Kry
TOPðr1Þ

(see Section 5.2.3), varying ry from innermost to outermost layer. Fig 16 shows the cov-

erage of r1’s primary topics in the other rings, across all the ego networks. Kry
TOPðr1Þ

corresponds

to the blue bars in the figure. Kry
TOPðr1Þ

accounts for approximately 50% of each ring and of the

whole ego network (last bar). This small (5–6, on average) set of topics, which fills almost the

entire innermost ring, is playing a big role in the entire ego network as well.

To verify if the reverse statement is true (i.e., if topics that are important in the whole ego

network are also important in ring #1), we build a new set of topics Ue grouping the most

important topics in the whole ego network and calculate Kry
TOPðeÞ. Fig 17 highlights the coverage

of those topics across the rings. Although, in general, all primary topics at the level of the ego

network are well represented in all rings, we observe a slight predominance in ring #1, as the

innermost ring contains the biggest share of the most important topics of the ego network.

Fig 15. Jensen-Shannon distance. Average JS distance between the rings.

https://doi.org/10.1371/journal.pone.0277182.g015
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This means that topics that are important to the ego network are over-represented in the

innermost ring, i.e., an important topic discussed by a Twitter user is very likely to belong to

Ur1
e .

Take home message for Section 5.3.2: Both results from Figs 16 and 17 indicate a close rela-

tion between important topics in ring #1 and those important for the whole ego network. This

observation is all the more interesting as ring #1 is semantically the most different from all the

others (Section 5.3.1), confirming the special role of this ring in the ego network of words.

5.3.3 Pulling power of primary topics. Let us now focus on the primary topics in a

generic ring rx (i.e., those in UðeÞrx ). They can also appear in another ring ry, and can be found in

either UðeÞry or LðeÞry . In the first case, the topics are primary in both rings, in the latter they are pri-

mary only in rx.We now tackle the following problem: which is the ring whose primary topics

are most dominant among the primary topics of another ring? This involves measuring the

strength, in the semantic profile of ry, of the topics that are important for both ry and rx. Using

Fig 16. Average strength of ring #1’s important topics in the semantic profile of each ring and of the whole ego network. Each bar stands for the

semantic profile of each ring (and overall ego network, in the last bar), where the blue part represents the share covered by the most important topics of

ring #1 (their average number jUr1
j is written in white).

https://doi.org/10.1371/journal.pone.0277182.g016

Fig 17. Average strength of the ego network’s important topics in the semantic profile of each ring. The blue part of the stacked bar represents the

share covered by the important topics in Ue. The average number of topics |Ue| is specified in white.

https://doi.org/10.1371/journal.pone.0277182.g017
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the notation of Section 5.2.3, this is equivalent to studying SryTOPðrx ;ryÞ for all possible pairs of rx,

ry. We show SryTOPðrx ;ryÞ on the left side of Table 6. The diagonal is left blank for the sake of clarity

(we are interested in the results when rx 6¼ ry). For a given ry, the largest value is written in

bold. We can clearly observe that the primary topics that are also primary in r1 have almost

always the largest share in the semantic profiles of the rings. Beyond the fact that the sum of

important topics in ring #1 is also important in the other rings (Section 5.3.2), the table shows

that they are on average the most likely to be important in all the other rings.

Now we tackle the complementary question: what is the pulling power of primary topics in

a ring on the non-primary topics in another ring? We measure this via SryTOPðrxÞ;BOTTOMðryÞ, which

is shown in the right part of Table 6.

From the left side of Table 6, we know which is the ring whose primary topics have the

highest pulling power on the primary topics of others. But do they have a higher than average

strength with respect to the primary topics in the ring as a whole (i.e., regardless of whether

they are primary in other rings or not)? To investigate this problem, we show s
ry
TOPðrx ;ryÞ

in

Table 6. Pulling power of primary topics. On the left, SryTOPðrx ;ry Þ for all rx, ry pairs in our datasets. On the right, SryTOPðrxÞ;BOTTOMðryÞ. In bold, the highest value per column, cor-

responding to the rx for which the pulling power is higher in ry.

Journalists

rxry SryTOPðrx ;ryÞ SryTOPðrxÞ;BOTTOMðryÞ
#! r1 r2 r3 r4 r5 r6 r1 r2 r3 r4 r5 r6

r1 .255 .226 .204 .195 .180 .021 .022 .023 .022 .023

r2 .335 .216 .203 .192 .173 .025 .027 .023 .030 .022

r3 .336 .220 .171 .196 .162 .026 .023 .022 .032 .020

r4 .321 .230 .190 .167 .154 .023 .022 .027 .029 .022

r5 .307 .235 .209 .184 .151 .026 .023 .027 .023 .022

r6 .318 .234 .210 .188 .179 .025 .024 .027 .023 .029

Science Writers

r1 .194 .191 .179 .169 .158 .023 .023 .027 .027 .023

r2 .278 .166 .175 .149 .146 .030 .022 .025 .027 .024

r3 .285 .172 .154 .153 .146 .026 .026 .024 .028 .024

r4 .259 .200 .169 .147 .148 .027 .023 .021 .027 .024

r5 .303 .180 .183 .168 .141 .027 .026 .022 .028 .023

r6 .253 .193 .183 .171 .150 .025 .027 .022 .027 .029

Random Users #1

r1 .248 .216 .202 .203 .190 .026 .024 .026 .026 .026

r2 .284 .202 .192 .189 .178 .030 .025 .027 .026 .028

r3 .271 .226 .182 .180 .172 .028 .026 .028 .026 .027

r4 .259 .214 .188 .177 .168 .027 .025 .026 .027 .027

r5 .267 .211 .193 .181 .168 .028 .025 .026 .027 .026

r6 .260 .213 .189 .175 .171 .028 .023 .026 .027 .026

Random Users #2

r1 .222 .199 .199 .179 .181 .024 .021 .025 .020 .025

r2 .271 .203 .187 .177 .178 .026 .021 .025 .022 .025

r3 .250 .213 .184 .169 .178 .025 .025 .026 .021 .025

r4 .255 .202 .191 .168 .165 .027 .024 .023 .023 .026

r5 .240 .199 .187 .175 .163 .025 .023 .022 .025 .025

r6 .246 .207 .190 .178 .158 .023 .023 .021 .024 .022

https://doi.org/10.1371/journal.pone.0277182.t006

PLOS ONE Structural invariants and semantic fingerprints in the “ego network” of words

PLOS ONE | https://doi.org/10.1371/journal.pone.0277182 November 22, 2022 26 / 32

https://doi.org/10.1371/journal.pone.0277182.t006
https://doi.org/10.1371/journal.pone.0277182


Table 7. In the table, all the numbers are positive. This means that, on average, among the

most important topics for a ring ry, if a topic belongs to the important topics of another ring

rx, its strength will be more likely to be higher than the average strength of generic important

topics in ry. A t-test has been performed to assess whether these differences are statistically sig-

nificant: in all cases, we obtained p-value < .001. On the right side of the table we show

s
ry
TOPðrxÞ;BOTTOMðryÞ

, which captures whether topics that are primary elsewhere but not in ry tend

to have a higher share among the least important topics in ry. In this case, too, the numbers are

positive. It also means that, on average, among the least important topics of a given ring ry, a

topic is more likely to have a higher strength if it belongs to the important topics in another

ring rx. Again, the p-values are smaller than .001, confirming that such results are not due to

statistical fluctuations.

Take home message for Section 5.3.3: Studying the role of primary topics, we have learned

the following.

Table 7. Pulling power of primary topics that are also primary elsewhere vs “average” primary / nonprimary topic. On the left, s
ry
TOPðrx ;ryÞ

for all rx, ry pairs in our data-

sets. On the right, s
ry
TOPðrxÞ;BOTTOMðryÞ

. The highest value per column is in bold.

Journalists

rxry s
ry
TOPðrx ;ryÞ

s
ry
TOPðrxÞ;BOTTOMðry Þ

#! r1 r2 r3 r4 r5 r6 r1 r2 r3 r4 r5 r6

r1 .059 .057 .068 .051 .058 .006 .007 .006 .004 .005

r2 .082 .044 .060 .043 .051 .006 .010 .005 .006 .004

r3 .090 .035 .040 .036 .039 .003 .006 .004 .007 .003

r4 .061 .040 .018 .021 .031 .003 .006 .009 .006 .004

r5 .052 .033 .031 .036 .028 .005 .006 .010 .004 .003

r6 .061 .032 .027 .029 .018 .004 .005 .008 .005 .004

Science Writers

r1 .024 .048 .038 .043 .041 .002 .004 .006 .004 .004

r2 .035 .033 .027 .022 .025 .004 .003 .005 .003 .004

r3 .034 .025 .019 .027 .026 .000 .003 .003 .004 .003

r4 .019 .025 .034 .019 .027 .003 .002 .003 .003 .004

r5 .045 .022 .037 .020 .021 .000 .002 .003 .004 .003

r6 .025 .023 .036 .022 .022 .002 .004 .004 .005 .005

Random Users #1

r1 .063 .059 .049 .061 .053 .006 .004 .006 .004 .002

r2 .061 .045 .041 .047 .042 .004 .005 .006 .004 .004

r3 .045 .039 .032 .037 .036 .004 .006 .007 .005 .004

r4 .035 .033 .032 .034 .031 .003 .005 .006 .004 .004

r5 .040 .028 .032 .028 .031 .003 .005 .006 .005 .004

r6 .035 .032 .033 .023 .028 .004 .004 .006 .006 .004

Random Users #2

r1 .032 .043 .040 .048 .041 .005 .005 .004 .002 .003

r2 .057 .042 .033 .048 .038 .002 .005 .004 .003 .002

r3 .041 .024 .029 .037 .037 .002 .006 .004 .003 .002

r4 .042 .026 .034 .037 .031 .004 .005 .006 .003 .004

r5 .029 .019 .025 .020 .023 .002 .005 .005 .005 .002

r6 .031 .022 .029 .024 .026 .001 .005 .004 .003 .002

https://doi.org/10.1371/journal.pone.0277182.t007
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• Primary topics from ring #1 tend to dominate among the primary topics of other rings. This

shows the pulling power of the innermost ring, confirming its special role in the ego net-

work. Vice versa, primary topics from ring #1 do not seem to dominate among non-primary

topics of other rings.

• The topics that are primary in some rings tend to be stronger than average among the pri-

mary and non-primary topics in the semantic profile of another ring. This effect is especially

acute when considering primary topics from ring #1 with respect to generic primary topics

in other rings.

5.3.4 Discussion. The study of the semantic profile of the rings of the ego network con-

firms the relevance of the ego network of words model. This model allowed us to isolate the

specific features of the topics associated with the words in the innermost ring. Indeed, the

semantic profile in ring #1 is not only the most unique (the most semantically distant from the

others), but it is also characterized by both a larger than expected entropy distribution and

number of topics generated, when compared with a null model.The most important topics

that ring #1 is composed of are not only a set of important topics in the other rings: for every

ring, an important topic is more likely to be predominant if it is also important in the inner-

most ring. Hence, despite the small number of unique words and word occurrences it con-

tains, the innermost ring strongly “predicts” the most important topics in the entire ego

network. In light of these results, we can conclude that the semantic profile of the innermost ring
r1 is also the semantic fingerprint of the whole ego network of words.

As it has been done with social ego networks (using structural properties to study informa-

tion diffusion [16], or to perform link prediction [53]), we can use the structural and semantic

invariants of the ego network of words to investigate some classical data science problems,

with a focus on natural language processing. This semantic fingerprint could be used to iden-

tify specific Twitter users, or groups of users, with a non-trivial interest distribution for certain

topics (e.g. a mix of important topics in the innermost rings and marginal topics in the outer-

most rings). It could also be used for link prediction with the assumption that users with the

same topic of interest in the innermost ego network circles are more likely to follow one

another (this is the principle of homophily) or for the purpose of word recommendation in a

typing assistance tool. Since we identified some semantic invariants (eg. the role of important

topics in ring #1), we could leverage this property to identify outliers deviating from the stan-

dard and detect non-human behaviors. Finally, we could use the fact that ring #1 contains the

important topics of the entire ego network to spare some time considering only the words in

this innermost ring, within the context of topic mining.

6 Conclusion

Inspired by previous work modeling the cognitive constraints that regulate personal social

relations, in this paper, we investigate, through a data-driven approach, whether a regular

structure can also be found in the way people use words, as a symptom of cognitive constraints

in their mental process.Based on a corpus of tweets written by both regular and professional

users, we have shown that, similarly to the social case, a concentric layered structure (which we

name “ego network of words”) very well captures how an individual organizes their cognitive

effort in language production and reveals some structural invariants in the way people organise

their own vocabulary. Among these invariants, we can list (i) the number of layers (between 5

and 7), (ii) their regular growth from the center of the word ego network outward (the inner-

most layer is five times smaller than the following one, for all the other layers their size
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approximately double moving outward), (iii) the size of external layers (which is pretty stable,

with the two penultimate layers accounting respectively for 30% and 60% of the words in the

model, regardless of the total number of layers).

Then, going beyond words as units of language, we performed a semantic analysis of the

ego network of words. Each ring of each ego network is described by a semantic profile that

captures the topics associated with the words in the ring. We have found that ring #1 has a spe-

cial role in the model. It is semantically the most dissimilar out of the six, and also the one

which generates proportionally the largest number of topics. We also showed that the topics

that are important in the innermost ring, also have the characteristic of being predominant in

each of the other rings, as well as in the entire ego network. In this respect, ring #1 can be seen

as the semantic fingerprint of the ego network of words. Finally, we found that the topics that

are primary in some rings tend to be stronger than average among the primary and non-pri-

mary topics in the semantic profile of the other rings. This shows that, while layer #1 provides

a particularly strong signal about prevalence in the ego networks, weaker signals show a more

complex structure of influence among topics “resident” in different layers of the ego network

of words.

Supporting information

S1 Appendix. Supplementary information on the structural and semantic analysis of word

ego networks. In this appendix we provide additional information regarding the data prepro-

cessing, the soft clustering analysis, and we include additional tables to support the findings in

the paper.
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10. Miritello G, Moro E, Lara R, Martı́nez-López R, Belchamber J, Roberts SGB, et al. Time as a limited

resource: Communication strategy in mobile phone networks. Social Networks. 2013; 35(1):89–95.

https://doi.org/10.1016/j.socnet.2013.01.003
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