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The possibility of discriminating the statistics of a thermal bath using indirect measurements performed on
quantum probes is presented. The scheme relies on the fact that, when weakly coupled with the environment
of interest, the transient evolution of the probe toward its final thermal configuration is strongly affected by the
fermionic or bosonic nature of the bath excitations. Using figures of merit taken from quantum metrology such
as the Holevo-Helstrom probability of error and the quantum Chernoff bound, we discuss how to achieve the
greatest precision in this statistics tagging procedure, analyzing different models of probes and different initial
preparations and by optimizing over the time of exposure of the probe.
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I. INTRODUCTION

In equilibrium statistical mechanics, the intrinsic indistin-
guishability between identical particles gives rise to the Bose-
Einstein and Fermi-Dirac equilibrium distributions. These
statistics found their earliest evidences in matter physics,
describing black body radiation [1] and the behavior of elec-
trons in solids [2] while their link with the intrinsic angular
momentum of elementary particles stems as a crucial result
of quantum field theory [3,4]. A standard tool to discern the
statistics of a quantum system is represented by two-body
correlations, experimentally accessible through equilibrium
response properties to weak external fields [5]. For example,
typical and exclusive signatures are the Pauli hole in case
of fermions [6] and bunching and antibunching phenomena
in case of bosons [7]. More in general, statistics tagging
turns out to be important in all modern physics. For instance,
in astrophysics, methods to recognize the statistical distri-
butions of particles which are thermally radiated by black
holes have been developed [8] or, going beyond conven-
tional fermions and bosons, in the context of the fractional
quantum Hall effect [9] interferometric measurements [10]
confirmed the existence of quasiparticles obeying fractional
exclusion statistics [11–13]. Finally, from a technological
point of view, a detailed characterization of the environment
surrounding a quantum system is nowadays crucial to im-
plement quantum information protocols and, more generally,
for quantum nanotechnology [14,15]. Indeed, the interaction
with the environment leads to decoherence and dissipation on
the system, strongly degrading purely quantum resources [15]
or even, in other cases, promoting collective quantum
phenomena [16].

The characterization of measurement processes and statis-
tical inference methods applied to quantum systems is the
core of quantum metrology [17–19]. The estimation and the
discrimination of environmental properties can be achieved
both via direct measurements or indirectly, by extracting

information from auxiliary systems. For instance, via putting
a probe in contact with a thermal environment and perform-
ing a measure on such a probe, it is possible to extract
information about the temperature [20–23] and the spectral
properties [24,25] of the environment itself. Following this
line of reasoning, we present a protocol aimed to discriminate
between fermionic and bosonic thermal baths via indirect
quantum state discrimination on an auxiliary quantum probe
A. More precisely, in our construction the tagging of the bath
statistics is performed by monitoring the state of A at a conve-
nient finite time evolution t̄ during the thermalization process
it experiences once put in weak-coupling thermal contact [26]
with the environment. The scheme ultimately relies on the
fact that, while the final configuration of A is not necessarily
influenced by the statistical nature of the bath, the latter leaves
residual imprintings on the transient of the thermalization
process which can be picked up by proper measurements on
the probe. A full characterization of the ultimate discrimi-
nation efficiency we can achieve using this technique will
be presented by studying a couple of paradigmatic examples
where A is assumed to be either a two-level system (TLS) or
a quantum harmonic oscillator (QHO). It is worth stressing
that the resulting four scenarios describe situations which are
routinely encountered in experiments [27] paving the way
for a proof of principle implementations of our findings (at
least): indeed a two-level system coupled to a bosonic bath
(TLS bosons) is paradigmatic in quantum optics [28] and
quantum computation [14]; a harmonic oscillator interacting
with a bath of other harmonic oscillators (QHO bosons) can
describe an open optomechanical resonator [29]; finally, spin
baths are more rare but also feasible [30] if we deal with
a vibrational degree of freedom interacting with two-level
defects (QHO fermions) in quantum-electromechanical sys-
tems [31,32] or with the hyperfine interaction of an electron
spin in a quantum dot with the surrounding nuclear spins (TLS
fermions) [33–36].
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TABLE I. Transition rates governing the dynamics of the system-
bath models for the four scenarios considered in the paper: in this
expression γ is a constant that only depends upon the interaction
strength of the model, while nth depends on β as in Eq. (1). Notice
that for homogeneous settings (TLS fermions or QHO bosons)
the values of the rates are independent from the bath temperature.
Furthermore, since nth � 1 we observe that for the TLS probe the
transition rate associated with the bosonic bath is always larger than
the corresponding fermionic value, while exactly the opposite occurs
for the QHO probe scenario. We also recognize that in both the
TLS and QHO configurations, the difference between the transition
rates induced by the bosonic and fermionic statistics increases with
the temperature. Such gap nullifies instead in the zero-temperature
limit (β → ∞) where nth = 1: accordingly under this condition the
dynamics of the model is expected not to detect any difference in the
bath statistics.

�����������Probe A
Bath B

Fermionic Bosonic

TLS γ nthγ

QHO γ /nth γ

II. THE MODEL

Let B be a thermal bath characterized by a temperature 1/β

that for simplicity we assume to be known. Our goal is to
determine the statistical nature of the excitations of B which
is taken to be either bosonic or fermionic. For this task we are
allowed to initialize the quantum probe A in some fiduciary
state ρ(0), put it into thermal coupling with B, and then
monitoring its final state after some elapsed interaction time
t . In our analysis we shall describe the associated dynamical
evolution of A by assigning a Gorini-Kossakowski-Sudarshan-
Lindblad [37,38] master equation (ME) defined by the prop-
erties of B. Independently from our choice of using a TLS
probe or a QHO probe A, the main feature that enables us to
distinguish between the actions of a fermionic and a bosonic
bath is the timescale of the associated thermalization event. In-
deed, as follows from the standard Born-Markov-Secular mi-
croscopic derivation of the ME (see Appendix A for details),
the transition rate associated with a given energy level spacing
ω0 of A can be expressed as shown in Table I, with nth being
the ratio between the associated Bose-Einstein [Nb(β ) :=
1/(eβω0 − 1)] and the Fermi-Dirac [Nf (β ) := 1/(eβω0 + 1)]
occupation numbers, i.e., the quantity

nth := Nb(β )/Nf (β ) = coth[βω0/2] (1)

(in this work we set h̄ = 1). Based on this observation we
can hence translate the two possible choices for B into two
possible hypotheses ρb(t ) and ρ f (t ) for the density matrix ρ(t )
at a certain time t , corresponding, respectively, to the evolved
state of A via the bosonic and the fermionic thermal channels.

In general, the discrimination between two quantum states
involves a measurement process. If we choose wisely the
measurement and the successive inference procedure, we will
be able to discriminate between the two hypotheses with the
highest precision. A natural quantifier of the effectiveness
of such a method is given by 1 − Pe, where Pe is the error
probability, that is the probability to guess incorrectly the

state after reading the measurement outcomes. In the two
state discrimination problem Pe has been minimized over
the set of possible measurement protocols by Helstrom and
Holevo [39,40]. This optimal value quantifies how much
two quantum states, for instance our ρ f (t ) and ρb(t ), are
distinguishable:

Pe,min(t ) := 1
2

(
1 − 1

2‖ρb(t ) − ρ f (t )‖1
)
, (2)

where ‖ · ‖1 denotes the trace norm. More generally, if we
have N � 1 identical probes at disposal, the discrimination
process involves ρb(t )⊗N and ρ f (t )⊗N while the minimum
probability of error satisfies

P(N )
e,min(t ) := 1

2

(
1 − 1

2‖ρb(t )⊗N − ρ f (t )⊗N‖1
)
� Q(t )N/2,

(3)

where Q(t ) is minimum of the Chernoff function Qr (t ), i.e.,

Q(t ) = min
r∈[0,1]

Qr (t ), Qr (t ) := tr
[
ρr

b(t )ρ1−r
f (t )

]
. (4)

The result (3) is known as the quantum Chernoff bound [41]
and is asymptotically tight for N → ∞ [42]. Both quantities
defined in Eqs. (4) and (2) provide operationally well defined
figures of merit for the precision in the discrimination between
ρb(t ) and ρ f (t ). In what follows, we shall analyze their
dependence from the initial state of the probe and perform
a further minimization with respect to t to determine the best
time instant t̄ for the quantum state discrimination.

III. STATISTICAL TAGGING VIA TLS PROBE

Here we present a complete analysis of the problem for
the case where A is a TLS with local Hamiltonian H =
ω0σ+σ−, σ± being the associated ladder operators. The corre-
sponding ME induced by a bosonic/fermionic environment is
(Appendix A)

ρ̇q(t )

= −i[H, ρq(t )]+ γ Nq(β )
[
σ+ρq(t )σ− − 1

2 {σ−σ+, ρq(t )}]
+ γ [1 + sqNq(β )]

[
σ−ρq(t )σ+ − 1

2 {σ+σ−, ρq(t )}],
(5)

where q ∈ {b, f } and sb = 1 and s f = −1. In the Bloch co-
ordinates representation ρq(t ) = 1

2 [1 + �〈σ (t )〉q · �σ ] an inte-

gration of Eq. (5) results in 〈σz(t )〉q = 〈σz(0)〉e−γ n(q)
th t + [1 −

2Nf (β )](e−γ n(q)
th t − 1) and 〈σx(t )〉q = 〈σx(0)〉e−γ n(q)

th t/2, where

n(q)
th := nth + (1 − sq)(1 − nth )/2 (6)

is the TLS rate renormalization factor given in Table I, and
where 〈σx,z〉(0) are the initial conditions [〈σy(0)〉 being set
equal to 0 exploiting the x-y symmetry of the problem]. At t =
+∞, the probe thermalizes at the equilibrium values 〈σz〉eq =
2Nf (β ) − 1, 〈σx〉eq = 0 irrespectively from the bath statis-
tics [i.e. ρb(∞) = ρ f (∞)], implying that the discrimination
between the bosonic and fermionic environments becomes
impossible. For this reason, the measurement time t̄ will be
finite and can be found by maximizing the trace distance
between ρb(t ) and ρ f (t ) according to Eq. (2). The best dis-
criminating strength is obtained by initializing A in the excited
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FIG. 1. Plots of the (a) Helstrom error probability (2) and (b) the
(rescaled) Chernoff quantity (4) for the TLS probe case, initialized
in the excited state, as a function of the measurement time t . The
three curves represent three different bath temperatures: 1/(βω0) =
1.5 (black dotted line), 1/(βω0) = 5.5 (red dot-dashed line), and
1/(βω0) = 20.5 (blue dashed line). The inset in (a) shows γ t̄ as
function of 1/(βω0) for the Helstrom error probability.

state of its local Hamiltonian [i.e., 〈σz(0)〉 = 1, 〈σx(0)〉 = 0]
(see Appendix B for details). Intuitively, such input config-
uration is the farthest from the equilibrium configuration,
and this choice allows the “faster” bosonic thermalizing
probe to outdistance on a longer track its fermionic counter-
part, increasing their distinguishability. In particular, plugging
〈σz(0)〉 = 1 and 〈σx(0)〉 = 0 we get ||ρb(t ) − ρ f (t )||1 = (1 −
〈σz〉eq)(e−γ n( f )

th t − e−γ n(b)
th t ) whose associated value of Pe,min(t )

is reported in Fig. 1(a) for different choices of the bath
temperatures. As anticipated in the limit of large time t the
error asymptotically approaches 1/2 indicating the failure
of the tagging procedure. Minimum values for Pe,min(t ) are
instead obtained for an optimal choice of t given by

t̄ = ln(nth )/[2γ Nb(β )] = ln(nth )/[γ (nth − 1)], (7)

whose functional dependence upon β is reported in the inset
of the figure. As anticipated in the caption of Table I the
model exhibits no discrimination strength at zero temperature
where Pe,min(t ) = 1/2, while better discriminating strength is

achieved at high temperatures since in this case nth diverges,
and so does the gap between the bosonic and fermionic
thermalization rates. Analogous conclusions can be obtained
also in the case where we have N copies of the evolved state
of the probe. Here exploiting the results of Ref. [43] the
functional Qr (t ) can be computed as

Qr (t ) = [
λr

bλ
1−r
f + (1 − λb)r (1 − λ f )1−r

]
cos

(
θ

2

)2

+ [
λr

b(1 − λ f )1−r + (1 − λb)rλ1−r
f

]
sin

(
θ

2

)2

, (8)

where λq is the greatest eigenvalue of ρq(t ) and θ is the angle
between the Bloch vectors associated with ρ f (t ) and ρb(t ). By
numerical optimization with respect to r the resulting value
of Q(t ) are reported in Fig. 1(b), and qualitatively provides
the same insight we obtained from the Helstrom probability
analysis. Notice that in both cases, we have crossing between
curves associated, meaning that if we wait too much (and lose
the opportunity of measuring in t̄) the discrimination becomes
easier at low temperatures (this property will not occur when
probing with a QHO, as we will see in the next section).

IV. STATISTICAL TAGGING VIA QHO PROBE

Assume next the probe A to be a QHO of Hamiltonian H =
ω0a†a, evolving via the ME

ρ̇q(t ) = −i[H, ρq(t )]

+ γ [1 + sqNq(β )]
[
aρq(t )a† − 1

2 {a†a, ρq(t )}]
+ γ Nq(β )

[
a†ρq(t )a − 1

2 {aa†, ρq(t )}], (9)

where sq and Nq(β ) are defined as in Eq. (5). An explicit
integration of Eq. (9) can be easily obtained in the case of
Gaussian input states [44–46] having vehemently pursued
experimental realizations (see, e.g., [47,48]), which can be
expressed as displaced, squeezed thermal states of the form

ρ(0) = D†(ξξξ 0)S†(χ0)
e−β0H

Z (β0)
S(χ0)D(ξξξ 0), (10)

Z (β0) := Tr[e−β0H ] being a normalization factor. The
dynamics of these inputs is completely determined by the first
and second momenta of the system annihilation and creation
operators which, by direct integration, yield the following
expressions: 〈a(t )〉q = 〈a(0)〉e− γ

2 /n(q)
th t e−iω0t , 〈a2(t )〉q =

〈a2(0)〉e−γ /n(q)
th t e−2iω0t , and 〈a†a(t )〉q = 〈a†a(0)〉e−γ /n(q)

th t +
Nb(β )(1 − e−γ /n(q)

th t ), which exhibits a transition rate
renormalization factor 1/n(q)

th that is the inverse of the
one observed for the TLS model as anticipated in Table I,
holding 1 for q = b and 1/nth for q = f . We immediately
notice that once more at zero temperature (nth = 1) the
probe dynamics is insensitive to the bath statistics [as it
was also clear from Eq. (9)]. The same occurs for generic
β in the asymptotic limit t → ∞ where, independently of
the initial state and of the statistics of the bath, the system
obtains an average number of photons 〈a†a(∞)〉q = Nb(β )
and the coherences disappear: 〈a(∞)〉q = 〈a2(∞)〉q = 0. As
a measure of distinguishability of the associated ρb(t ) and
ρ f (t ) counterparts of the input (10) we utilize the quantum
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FIG. 2. (a) Plot of the (rescaled) Chernoff quantity (4) of the
QHO model associated with the ground state input for 1/(βω0) =
1.5 (black dotted line), 1/(βω0) = 5.5 (red dot-dashed line), and
1/(βω0) = 10.5 (blue dashed line). The inset shows the associated
γ t̄ as function of 1/(βω0). (b) Plot of Q(t )/2 for different choices
of the initial Gaussian state for fixed initial mean excitation number
〈a†a(0)〉 = 1 [for 1/(βω0) = 10.5]: coherent state (green full line),
thermal state (black dot-dashed line), and squeezed ground state (red
dashed line).

Chernoff quantity (4) for which a convenient formula for
Gaussian states is known [43,44,49]. A detailed account of
this calculation is presented in Appendix C: the obtained
results are summarized in Fig. 2 for different choices of
the input parameters. In particular, in Fig. 2(a) we plot
the value of Q(t ) for the case in which ρ(0) is the ground
state of the QHO (i.e., ξξξ 0 = 0, χ0 = 0, and β0 → ∞): as
in the TLS case we notice that the discrimination efficiency
gets depressed in the asymptotic limit of sufficiently large
evolution times t , reaching a maximum value for intermediate
values of the parameter. The performances also get affected
by the value of the bath temperature, with higher sensitivity
being attained for large values of 1/β [i.e., large values of
Nb(β )]. In Fig. 2(b) instead we give a comparison of the
performances obtained for different choices of possible input
states (coherent state, thermal state, squeezed ground state)
characterized by an identical value of the initial average
number of photons 〈a†a(0)〉 = 1. As the plot shows, all cases

exhibit the same functional dependence observed for the
ground state input. Nonetheless, introducing the initial energy
via displacement leads to the lowest error probability, while
squeezing is effective for it to be attained in short time. We
also remark that in the absence of the input energy limitation,
Q(t ) can be brought to reach arbitrarily small values because
of the possibility of injecting arbitrarily large initial energy
into the system (clearly an analogous effect cannot be found
when probing the bath with a TLS due to the limited Hilbert
space of the latter). As a final observation we notice that
closed analytical expressions that capture the above behaviors
can be obtained in the special case where the initial state
ρ(0) is not squeezed and has a temperature that is identical
to the bath temperature (β0 = β). It turns out that with
this choice the resulting expression for Qr (t ) is particularly
compact: Qr (t ) = exp {− |δδδ(t )|2

2 [1 + 2Nb(β ) − Nb(β ) fr]},
with fr := (1 + 1

Nb(β ) )
r + (1 + 1

Nb(β ) )
1−r

and δδδ(t ) :=
ξξξ 0(e− γ

2 t − e− γ

2 t/nth ). In this case the minimum of Qr (t )
can be easily shown to be attained for r = 1/2. As a result we
get

Q(t ) = exp
{− 1

2

[√
Nb(β ) + 1 −

√
Nb(β )

]2|δδδ(t )|2}, (11)

which can now be optimized with respect to t leading to the
analytical expression that mimics the one observed in the TLS
analysis,

t̄ = ln(nth )/[γ Nf (β )] = 2nth ln(nth )/[γ (nth − 1)]. (12)

Feeding this into Eq. (11) the resulting expression can now
be optimized with respect to the bath temperature β, giv-
ing Nb(βbest ) ≈ 1.96 corresponding to values t̄βbest ≈ 4/γ and
Q(t̄βbest ) = exp(−κ |ξξξ 0|2) with κ ≈ 0.0145.

V. CONCLUSIONS

We studied how to tag the quantum statistics of a thermal
bath in an indirect way, using an auxiliary probe, a quan-
tum measurement scheme, and referring to experimentally
realizable models [14,28–36]. Upon optimizing over the ini-
tial state of the probe, such discrimination turns out to be
feasible during the time transient, i.e., before thermalization.
The efficiency of the discrimination relies on the fact that in
heterogeneous settings—TLS/bosonic bath, QHO/fermionic
bath—the temperature renormalizes the thermalization rates.
This approach can lead to significant advances in the prob-
lem of the statistics tagging, which is central in several
fields [8,10–13]. Generalization of the present analysis in-
clude the possibility of using more sophisticated techniques
(such as Choi-Jamiolkowski or diamond norm discrimination
procedures [50,51]) aimed to directly tag the generators asso-
ciated with a different bath statistics without focusing on spe-
cial input states of the probe. As a further development we also
notice that, with some minor variations, the method proposed
can be easily adapted to the discrimination of nonconventional
statistics interpolating between fermions and bosons.

We finally conclude by stressing that the proposed scheme
can clearly be considered as a subroutine to be used in con-
junction with other already existing probe-mediated quantum
metrology schemes to provide a complete reconstruction of
the bath properties that, beside statistical characterization of

042327-4



QUANTUM BATH STATISTICS TAGGING PHYSICAL REVIEW A 100, 042327 (2019)

its excitations, will include also other relevant quantities like
the temperature or bare thermalization rate.

APPENDIX A: BALANCE LAW AND TEMPERATURE
DEPENDENT RATES

In what follows we shall adopt a compact notation that
allows us to treat uniformly the four possible scenarios, TLS
bosons, TLS fermions, QHO bosons, and QHO fermions.

For this purpose we introduce a system annihilation op-
erator ζp where the subscript p ∈ {TLS, QHO} refers to the
two possible species of probes, assuming that ζp=QHO = a
and ζp=TLS = σ− . With this choice we can now describe the
coupling between A and its environment B by assigning the
microscopic Hamiltonian HAB = H + HB + HI characterized
by the following components:

H = ω0ζ
†
p ζp, (A1)

HB =
∑

k

ωkc†
q(k)cq(k), (A2)

HI =
∑

k

γk[c†
q(k) + cq(k)](ζp + ζ †

p ), (A3)

where the environmental modes c†
q(k) and cq(k) can be either

of bosonic (q = b) or of fermionic nature (q = f ). Following
the Born-Markov-Secular microscopic derivation for a ther-
mal environment [26], the Lindblad equation for the four cases
of interest can be written in a unified form as [27]

ρ̇q(t ) = −i[H, ρq] + γ Nq(β )
[
ζ †

p ρq(t )ζp − 1
2 {ζpζ

†
p , ρq(t )}]

+ γ [1 + sqNq(β )]
[
ζpρq(t )ζ †

p − 1
2 {ζ †

p ζp, ρq(t )}],
(A4)

with γ being the bare dissipation rate and with Nq(β )
being the bath mean excitation number corresponding to
the frequency ω0—the input state of B being assumed to
be thermal with inverse temperature β. Equation (A4) implies
the following balance equation for the mean excitation num-
ber 〈ζ †

p ζp(t )〉:

d

dt
〈ζ †

p ζp(t )〉 = −γ [Nq(β )/Np(β )]〈ζ †
p ζp(t )〉 + γ Nq(β ),

(A5)
where we can recognize the characteristic rate γp−q =
γ Nq(β )/Np(β ) from which the result of Table I follows au-
tomatically.

To comment Eq. (A5), let us consider a thermal charging,
i.e., a system initially in its ground state gets excited by a
finite temperature thermal bath, finally reaching the bath tem-
perature 1/β. A TLS interacting with a bosonic environment
realizes a situation in which the great amount of excitation
contained in each QHO cannot be hosted by the TLS. This
unbalance results in an increase of the charging rate. The
opposite is expected to occur when a QHO interacts with a
fermionic bath: increasing temperature is expected to decrease
the charging rate. Finally, such an effect must disappear at low
temperature where the difference between the energy spectra
is irrelevant, because Nb(β ) ∼ Nf (β ) ∼ e−βω0 for β → ∞.

Other considerations about speed effects arising from cou-
pling a system with a bounded spectrum and a system with an
unbounded spectrum can be found in [32,52,53].

APPENDIX B: DETAILS ON TLS STATES

The equation of motion for the TLS is obtained by consid-
ering ζp=TLS = σ− in Eq. (A5), obtaining

d

dt
〈σ+σ−(t )〉q = −γ

Nq(β )

Nf (β )
〈σ+σ−(t )〉q + γ Nf (β ), (B1)

from which we immediately get

d

dt
〈σz(t )〉q = −γ n(q)

th [〈σz(t )〉q − 2Nf (β ) + 1], (B2)

with n(q)
th as defined in the main text. Accordingly the popu-

lation of the TLS is always expected to equilibrate to Nf (β ),
while the thermalization rates depend on the nature of the ex-
ternal bath. On the contrary for the coherence terms from (A4)
we get

d

dt
〈σx(t )〉q = −γ n(q)

th

2
〈σx(t )〉q, (B3)

which can be easily integrated. The Helstrom error probability
[see Eq. (2)] depends on the trace distance between ρb(t ) and
ρ f (t ) that for a two-level system reads

||ρb(t ) − ρ f (t )||1
=

√
[〈σx(t )〉b − 〈σx(t )〉 f ]2 + [〈σz(t )〉b − 〈σz(t )〉 f ]2,

(B4)

where we supposed, without loss of generality, the y com-
ponent of the Bloch vector to be 0 during the process. In
comparison, the less straightforward equation (8) holds for the
Chernoff quantity in the TLS case.

Minimization of the trace norm in a TLS

From the analysis of the previous section the square of the
trace norm for the bath tagging problem can be written as

‖ρb(t ) − ρ f (t )‖2
1

= [1 − 〈σz(0)〉2] f (t ) + [〈σz(0)〉 − 〈σz〉eq]2g(t ), (B5)

where we defined f (t ) := (e
−γ n

( f )
th t

2 − e− γ n(b)
th t

2 )2, g(t ) :=
(e−γ n( f )

th t − e−γ n(b)
th t )2, 〈σz〉eq := 2Nf (β ) − 1 and used that

for an initial pure preparation, 〈σx(0)〉2 = 1 − 〈σz(0)〉2. The
expression (B5) is parabolic in 〈σz(0)〉 and can be written in
standard form as

Y [〈σz(0)〉, t] = 〈σz(0)〉2[g(t ) − f (t )] − 2〈σz(0)〉〈σz〉eqg(t )

+ f (t ) + 〈σz〉2
eqg(t ). (B6)

Since we are interested in the maxima of Y [〈σz(0)〉, t] in the
interval −1 � 〈σz(0)〉 � 1 there are three possible candidates,
i.e., the vertex of the parabola and the two values at the
extrema Y (−1, t ) and Y (1, t ).

The following two conditions are necessary for the vertex
to be an acceptable maximum:
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(1) The concavity of the parabola has to be negative, that
happens, from the (B6), when g(t ) − f (t ) � 0.

(2) The abscissa of the vertex corresponds to a physical
state, i.e., lies in the [−1, 1] interval. More explicitly we have
−1 � g(t )〈σz〉eq

g(t )− f (t ) � 1.
Notice that since g(t )〈σz〉eq � 0 and the first condition pro-
vides g(t ) − f (t ) � 0 the constraint on the abscissa of the
vertex can be simplified to g(t )〈σz〉eq � g(t ) − f (t ) which
provides a stricter condition with respect to g(t ) − f (t ) � 0.
Explicitly solving the inequality g(t )〈σz〉eq � g(t ) − f (t ) we
find that it holds for t � t∗, with t∗ such that

e
−γ n( f )

th t∗
2 + e− γ n(b)

th t∗
2 = 1/

√
2 − 2Nf (β ). (B7)

It remains to compare Y (−1, t ) and Y (1, t ) when t < t∗
(i.e., the region in which the maximum is located at the
boundaries), with the ordinate of the vertex V (t ) = f (t ) −
〈σz〉2

eq
f (t )g(t )

g(t )− f (t ) computed in the part of the domain for which
t � t∗. For this sake we notice that for t = t∗ the ordinate of
the vertex is exactly equal (by definition) to Y (1, t∗) and that
V (t ) is a decreasing function of t in the region of interest, i.e.,
V (t ) � V (t∗) ∀t � t∗. With this last argument we conclude
that for all values of t the function V (t ) is upper bounded
by Y (1, t∗), proving in that way that the vertex is not the
absolute maximum, that therefore lies either in 〈σz(0)〉 = 1 or
〈σz(0)〉 = −1. Is easy to show, again studying the properties
of the parabolic function (B5), that the value in 〈σz(0)〉 =
1 is always greater than its opposite 〈σz(0)〉 = −1, indeed
Y (1, t ) − Y (−1, t ) = −4g(t )〈σz〉eq � 0. Thus we can plug
〈σz(0)〉 = 1 into Eq. (B5) obtaining

Y (1, t ) = (1 − 〈σz〉eq)2g(t ), (B8)

which is exactly the square of the right-hand side of the
expression reported in the main text and can be now studied as
a function of the single parameter t . Deriving this last equation
and finding the root we obtain Eq. (7) which represents a
local maximum in t , since Y (1, t ) is positive and nullifies at
the extrema of the time domain (before starting the process
and after a complete thermalization the two hypotheses are
indistinguishable).

APPENDIX C: DETAILS ON GAUSSIAN STATES

The most general single-mode Gaussian state can be ex-
pressed as a squeezed, displaced thermal state of the form

ρG(β,ξξξ, χ ) := D†(ξξξ )S†(χ )
e−βH

tr[e−βH ]
S(χ )D(ξξξ ). (C1)

In the above expression β � 0 is defined as the inverse
temperature of the state, while the complex parameter χ and
the 2D real vector ξξξ = (ξ1, ξ2)T define the squeezing and the
displacement operators, respectively, i.e.,

S(χ ) = exp
[

1
2 (χ∗a2 − χa†2

)
]
, (C2)

D(ξξξ ) = exp[−i(ξ2x − ξ1y)], (C3)

with the operators x = (a + a†)/
√

2 and y = (a − a†)/(
√

2i)
being the canonical quadratures of the model.

1. Displacement and squeezing

The displacement operator D(ξξξ ) of Eq. (C3) sets the first
moments of the state (C1). Its action on the canonical vari-
ables is the following:

D(ξξξ ) rrr D†(ξξξ ) = rrr + ξξξ, (C4)

with rrr := (xy).

The squeezing operator defined in Eq. (C2) transforms the
ladder operators a and a† as follows [46,54]:

S(χ )aaa S†(χ ) = SA(χ )aaa, (C5)

SA(χ ) :=
(

cosh(|χ |) ei2φ sinh(|χ |)
e−i2φ sinh(|χ |) cosh(|χ |)

)
, (C6)

where aaa := ( a
a† ) and with 2φ being the phase of χ , i.e., χ =

|χ |ei2φ . Alternatively this can also be expressed as

S(χ ) rrr S†(χ ) = S(χ ) rrr, (C7)

where now

S(χ ) =
(

cosh(|χ |) + sinh(|χ |) cos(2φ) sinh(|χ |) sin(2φ)

sinh(|χ |) sin(2φ) cosh(|χ |) − sinh(|χ |) cos(2φ)

)
, (C8)

the matrices S(χ ) and SA(χ ) being related via the
transformation

S(χ ) = USA(χ )U †, (C9)

with U being the unitary matrix

U = 1/
√

2

(
1 1
−i i

)
. (C10)

2. First and second moments of the Gaussian state

Define the vector

AAA = 〈aaa〉 =
( 〈a〉

〈a†〉
)

, (C11)

and the matrix

σA =
(

2〈a2〉 − 2〈a〉2 2〈a†a〉 + 1 − 2|〈a〉|2
2〈a†a〉 + 1 − 2|〈a〉|2 [

2〈a2〉 − 2〈a〉2
]∗

)
,

where 〈· · · 〉 represents the expectation value computed on the
Gaussian state of Eq. (C1). From these expressions one can
then easily retrieve the canonical first moments

RRR = 〈rrr〉 =
(〈x〉

〈y〉
)

, (C12)

and the (real-symmetric) covariance matrix

σi j = 〈{ri − 〈ri〉, r j − 〈r j〉}〉. (C13)
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Indeed one has

RRR(t ) = UAAA(t ), σ (t ) = UσA(t )U T , (C14)

with U as in Eq. (C10). From the above analysis it follows that
the moments of a Gaussian state (C1) hold

RRR = ξξξ, σ = νβS(χ )ST (χ ), (C15)

with

νβ = 2Nb(β ) + 1 = coth(βω0/2). (C16)

Equation (C15) is better understood once it is written as

σ = S(χ )σβS
T (χ ), σβ = νβ12, (C17)

where σβ is the covariance matrix of the thermal state
e−βH/tr[e−βH ]. Furthermore, exploiting the fact that

det[Sr,φ] = det[ST
r,φ] = 1, (C18)

one can extract the inverse temperature β of the state ρG using
the following relation:

νβ =
√

det[σ ]. (C19)

Another quantity of interest—see Fig. 2(b)—is the mean
excitation number of a Gaussian state, whose expression in
terms of the parameters (β, ξξξ, χ ) reads as [55]

〈a†a〉 = 1
2 {cosh(2|χ |)[2Nb(β ) + 1] + |ξξξ |2 − 1}. (C20)

3. Dynamical evolution

The ME we are considering in Eq. (9) induces a Gaussian
mapping, meaning that it transforms Gaussian states into other
Gaussian states: namely the time evolution from time 0 to time
t simply maps

ρG(β0, ξξξ 0, χ0) → ρG[βq(t ), ξξξ q(t ), χq(t )],

where q ∈ {b, f } is again the bath label. To retrieve the explicit
temporal dependence of the quantities βq(t ), ξξξ q(t ), χq(t ) from
the dynamical expression for the first and second moments of
the ladder operators one can follow the same path we have
detailed in the previous section to link β, ξξξ , χ to RRR and σ .
Finally, the same machinery can be used to relate the initial
conditions to the parameters of the input state, giving

〈a(0)〉 = A1(0), (C21)

〈a2(0)〉 = 1
2σA11(0) + A1(0)2, (C22)

〈a†a(0)〉 = 1
2 [σA12(0) − 1] + |A1(0)|2, (C23)

with

AAA(0) = U †ξξξ 0, (C24)

σA(0) = νβ0U
†Sχ0S

T
χ0

U ∗, (C25)

and eventually one can monitor the initial mean excitation
number by applying Eq. (C20) to the initial state.

As an application of this approach in Fig. 3 we report
the values of βb(t ) and β f (t ) obtained by solving Eq. (9): in
both cases we notice that the dynamics send asymptotically
the system temperature 1/βq(t )—initially being 1/β0—to the

0 5 10 15
γt

0.6

0.8

1

( ω
−1 0

)

βb(t)

βf (t)

β

FIG. 3. Inverse temperatures (in units 1/ω0) of the two Gaussian
states as function of time: βb(t ) (blue full line) and β f (t ) (red dashed
line), choosing the ground state (i.e., β0 → ∞) as initial state and
Nb(β ) = 1 .

bath temperature 1/β, but with different rates, the slowest
being the fermionic one.

4. The quantum Chernoff quantity

Let now ρq(t ) the Gaussian state (C1) of parameters βq(t ),
ξξξ q(t ), χq(t ) describing the evolution of the density matrix (10)
under the action of the ME (9) associated with the q ∈ {b, f }
environment scenario. Following Ref. [43] we can compute
the value of the Chernoff quantity Qr (t ) (4) via the expression

Qr (t ) = 2Nβb,r Nβ f ,1−r e−δδδT [σ̃b(r)+σ̃ f (1−r)]−1δδδ√
det[σ̃b(r) + σ̃ f (1 − r)]

, (C26)

where δδδ = ξξξ b − ξξξ f is the difference between the first mo-
ments of the two states: νβq = coth(βqω0/2) = √

det[σq],

Nβq,r = (1−e−βqω0 )r

1−e−βqω0r , σ̃q(r) = νrβq

νβq
σq, and σq is the covariance

matrix [45].
When the initial state has zero squeezing (χ0 = 0)

Eq. (C26) assumes the simplified form

Q(r, t ) = 2Nβb,r Nβ f ,1−r

νβbr + νβ f (1−r)
e
− |δδδ|2

νβbr +νβ f (1−r) , (C27)

with

|δδδ|2 = |ξξξ 0|2(e− γ

2 t − e− γ

2 t/nth )2, (C28)

νβqr = 2
1

[1/Nb(βq) + 1]r − 1
+ 1, (C29)

Nβq,r = 1

[1 + Nb(βq)]r − [Nb(βq)]r
, (C30)

Nb(βq) = Nb(β0)e−γ /n(q)
th t + Nb(β )(1 − e−γ /n(q)

th t ). (C31)

Notice that if we take the initial state of the probe to be the
ground state, i.e., ξξξ 0 = 0 and β0 → ∞, the first moments
vanish, i.e., δδδ(t ) = 0, and Nb(βq) = Nb(β )(1 − e−γ /n(q)

th t ) . For
β = β0 instead the above expression reduces to the one re-
ported in the main text.
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