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Abstract
Turnover intention is an employee’s reported willingness to leave her organization within a given period of time and is often
used for studying actual employee turnover. Since employee turnover can have a detrimental impact on business and the labor
market at large, it is important to understand the determinants of such a choice. We describe and analyze a unique European-
wide survey on employee turnover intention. A few baselines and state-of-the-art classification models are compared as per
predictive performances. Logistic regression and LightGBM rank as the top two performing models. We investigate on the
importance of the predictive features for these two models, as a means to rank the determinants of turnover intention. Further,
we overcome the traditional correlation-based analysis of turnover intention by a novel causality-based approach to support
potential policy interventions.

Keywords Employee turnover · Predictive models · EXplainable AI (XAI) · Structural causal models

1 Introduction

Employee turnover refers to the situation where an employee
leaves an organization. It can be classified as voluntary, when
it is the employee who decides to terminate the working
relationship, or involuntary, when it is the employer who
decides [33]. Voluntary turnover is divided further into func-
tional anddysfunctional [26],which refer to, respectively, the
exit of low-performing and high-performing workers. This
paper focuses on voluntary dysfunctional employee turnover
(henceforth, employee turnover) as the departure of a high-
performing employee can have a detrimental impact on the
organization itself [62] and the labor market at large [33].

It is important for organizations to be able to retain their
talented workforce as this brings stability and growth [30]. It
is also important for governments tomonitor whether organi-
zations are able to do so as changes in employee turnover can
be symptomatic of an ailing economic sector.1 For instance,

1 Consider, for example, the recent wave of workers quitting their jobs
during the pandemic due to burn-out. See “Quitting Your Job Never
Looked So Fun” and “WhyThe 2021 ‘Turnover Tsunami’ Is Happening
And What Business Leaders Can Do To Prepare”.
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the European Commission includes it in its annual joint
employment report to the European Union (EU) [14]. Under-
standing why employees leave their jobs is crucial for both
employers and policy makers, especially when the goal is to
prevent this from happening.

Turnover intention, which is an employee’s reported will-
ingness to leave the organization within a defined period of
time, is considered the best predictor of actual employee
turnover [34]. Although the link between the two has been
questioned [13], it is still widely used for studying employee
retention as detailed quit data is often unavailable due to, e.g.,
privacy policies. Moreover, since one precedes the other, the
correct prediction of intended turnover enables employers
and policy makers alike to intervene and thus prevent actual
turnover.

In this paper, wemodel employee turnover intention using
a set of traditional and state-of-the-art machine learning
(ML) models and a unique cross-national survey collected
by Effectory2, which contains individual-level information.
The survey includes sets of questions (called items) organized
by themes that link an employee’s working environment to
her willingness to leave her work. Our objective is to train
accurate predictive models, and to extract from the best ones
the most important features with a focus on such items and
themes. This allows the potential employer/policy maker to
better understand intended turnover and to identify areas

2 https://www.effectory.com
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of improvement within the organization to curtail actual
employee turnover.

We train three interpretable (k-nearest neighbor, decision
trees, and logistic regression) and four black-box (random
forests, XGBoost, LightGBM, and TabNet) classifiers. We
analyze the main features behind our two best performing
models (logistic regression and LightGBM) across multiple
folds on the training data for model robustness. We do so
by ranking the features using a new procedure that aggre-
gates their model importance across folds. Finally, we go
beyond correlation-based techniques for feature importance
by using a novel causal approach based on structural causal
models and their link to partial dependence plots. This in turn
provides an intuitive visual tool for interpreting our results.

In summary, the novel contributions of this paper are
twofold. First, from a data science perspective:

– we analyze a real-life, European-wide, and detailed sur-
vey dataset to test state-of-the-art ML techniques;

– we find a new top-performing model (LightGBM) for
predicting turnover intention;

– we carefully study the importance of predictive features
which have causal policy-making implications.

Second, method-wise:

– we devise a robust ranking method for aggregating
feature importance across many folds during cross-
validation;

– we are the firstwork in the employee turnover literature to
use causality (in the form of structural causal models) for
interventional (causal) analysis ofMLmodel predictions.

The paper is organized as follows. First, we review related
work in Sect. 2. The Global Employee Engagement Index
(GEEI) survey is described in Sect. 3. The comparative anal-
ysis of predictivemodels is conducted in Sect. 4,while Sect. 5
studies feature importance. Section 6 investigates the causal
inference analysis. Finally, we summarize the contributions
and limitations of our study in Sect. 7.

2 Related work

We present the relevant literature around modeling and
predicting turnover intention. Given our interdisciplinary
approach, we group the related work by themes.

Turnover determinants. The study of both actual and
intended employee turnover has had a long tradition within
the fields of human resource management [45] and psychol-
ogy [34]. The work has focused mostly on what factors
influence and predict employee turnover [27]. Similarly, a

complementary line of work has focused on job embed-
dedness, or why employees stay within a firm [42,60]. A
number of determinants have been identified for losing, or
conversely, retaining employees [56], includingdemographic
ones (such as gender, age, marriage), economic ones (work-
ing time,wage, fringe benefits, firm size, carrier development
expectations) and psychological ones (carrier commitment,
job satisfaction, value attainment, positive mood, emotional
exhaustion), among others. The items and themes along with
employee contextual information reported in GEEI capture
these determinants.

Most of this literature has centered on the United States or
on just a few European countries. See, for instance, [56] and
[57], respectively. Our analysis is the first to cover almost all
of the European countries.

Modeling approaches. Traditional approaches for testing
the determinants of employee turnover have focused largely
on statistical significance tests via regression and ANOVA
analysis, which are tools commonly used in applied econo-
metrics. See, e.g., [27,56]. This line of work has embraced
causal inference techniques as it works often with panel
data, resorting to other econometric tools such as instrumen-
tal variables and random/fixed effects models. For a recent
example see [31]. For an overview on these approaches see
[5].

There has been a recent push for more advanced modeling
approaches with the raise of human resource (HR) predictive
analytics, where ML and data mining techniques are used
to support HR teams [46]. This paper falls within this line
of work. Most ML approaches use classification models to
study the predictors of turnover. See, e.g., [2,20,24,36]. The
common approach among papers in this line of work is to
test many ML models and to find the best one for predicting
employee turnover. However, despite the fact that some of
these papers use the same datasets, there is no consensus
around the best models. Using the same synthetic dataset,
e.g., [2] finds the support vector machine (SVM) to be the
best-performing model while [20] finds it to be the naive
Bayes classifier. We note, however, that similar to [24] we
find the logistic regression to be one of our top-performing
models. This paper adds to the literature by introducing a
new top-performing model to the list, the LightGBM.

Similarly, this line of work does not agree on the top data-
driving factors behind employee turnover either. For instance,
[2] identifies overtime as themain driver while [24] identifies
it to be the salary level. This paper adds to this aspect in two
ways. First, rather than reporting feature importance on a
final model, we do so across many folds for the same model,
which gives a more robust view on each feature’s importance
within a specific model. Second, we go beyond the limited
correlation-based analysis [3] by incorporating causality into
our feature importance analysis.
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Among the classification models used in the literature
and from the recent state-of-the-art in ML, we will exper-
iment with the following models: logistic regression [35],
k-nearest neighbor [53], decision trees [11], random forests
[10], XGBoost [12], and the more recent LightGBM [37],
which is a gradient boosting method [23]. Ensemble of
decision trees achieve very good performances in general,
with few configuration parameters [16], and especially when
the distribution of classes is imbalanced [9], which is typ-
ically the case for turnover data. Recent trends in (deep)
neural networks are showing increasing performances of sub-
symbolic models for tabular data (see the survey [7]). We
will experiment with TabNet [6], which is one of the top
recent approaches in this line. Implementations of all of the
approaches are available in Python with uniform APIs.

Modeling intent. A parallel and growing line of research
focuses on predicting individual desire or want (i.e., intent or
intention) over time using graphical and deep learning mod-
els. These approaches require sequential data detailed per
individual. The adopted models allow to account for tempo-
ral dependencieswithin and across individuals for identifying
patterns of intent. Intentionmodels have been used, for exam-
ple, to predict driving routes for drivers [55], online consumer
habits [58,59], and even for suggesting email [54] and chat
bot responses [52]. Our survey data has a static nature, and
therefore we cannot directly compare with those models,
which would be appropriate for longitudinal survey data.

Determining feature importance. Beyond predictive per-
formance, we are interested in determining the main features
behind turnover. To this end, we build on the explainable
AI (XAI) research [28], in particular XAI for tabular data
[49], for extracting from ML models a ranking of the fea-
tures used for making (accurate) predictions. MLmodels can
either explain and present in understandable terms the logic
of their predictions (white-boxes) or they can be obscure or
too complex for human understanding (black-boxes). The
k-nearest neighbor, logistic regression, and decision trees
models we use are white-box models. All the other mod-
els are black-box models. For the latter group, we use the
built-in model-specific methods for feature importance. We,
however, add to this line of work in two ways. First, we
device our own ranking procedure to aggregate each fea-
ture’s importance across many fold. Second, following [63]
we use structural causal models (SCM) [47] to equip the
partial dependence plot (PDP) [22] with causal inference
properties. PDP is a common XAI visual tool for feature
importance. Under our approach, we are able to test causal
claims around drivers of turnover intention.

Turnover data. Predictive models are built from survey
data (questionnaires) and/or fromdata aboutworkers’ history
and performances (roles covered, working times, productiv-
ity). Given its sensitive information, detailed data on actual
and intended turnover is difficult to obtain. For instance, all

Table 1 Contextual information in the GEEI Survey

attribute type attribute type

Age ordinal Industry nominal

Country nominal Job function nominal

Continent nominal Time in company ordinal

Education level ordinal Type of business binary

Gender binary Work status binary

of the advanced modeling approaches previously mentioned
either use the IBMWatson synthetic data set3 or the Kaggle
HR Analytics dataset4. This paper contributes to the existing
literature by applying and testing the latest in ML techniques
to a unique, relevant survey data for turnover intention. The
GEEI survey offers a level of granularity via the items and
themes that is not present in the commonlyuseddatasets. This
is useful information to both employers and policy makers,
which allows this paper to have a potential policy impact.

Causal analysis. We note that this is not the first paper
to approach employee turnover from a causality perspective,
but, to the best of our knowledge, it is the first to do so using
SCM. Other papers such as [25] and [48] use causal graphs
as conceptual tools to illustrate their views on the features
behind employee turnover. However, these papers do not
equip their causal models with any interventional properties.
Some works, e.g., [4,21,61], go further by testing the consis-
tencyof their conceptualmodelswith data using path analysis
techniques. Still, none of these three papers use SCM, mean-
ing that they cannot reason about causal interventions.

3 The GEEI survey and datasets

Effectory ran in 2018 the Global Employee Engagement
Index (GEEI) survey, a labor market questionnaire that cov-
ered a sample of 18,322 employees from 56 countries. The
survey is composed of 123 questions that inquire contex-
tual information (socio-demographic, working and industry
aspects), items related to a number ofHR themes (also called,
constructs), and a target question. The target question (or
target variable, the one to be predicted) is the intention
of the respondent to leave the organization within the next
three months. It takes values leave (positive) and stay (neg-
ative). The design and validation of the GEEI questionnaire
followed the approach of [18]. After reviewing the social sci-
ence literature, the designers defined the relevant themes, and
items for each theme. Then they ran a pilot study in order to
validate psychometric properties of questions to assess their

3 https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-
dataset
4 https://www.kaggle.com/c/sm/overview
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Table 2 Items of the Trust
theme in the GEEI Survey Trust I have confidence in my colleagues

I have confidence in my organisation’s management

I have confidence in the future of my organisation

I have confidence my manager

My colleagues stick to agreements

My organisation trusts that I do my job in the best way possible

Table 3 Themes in the GEEI Survey

Adaptability Motivation

Alignment Productivity

Attendance Stability Psychological Safety

Autonomy Retention factor

Commitment Role Clarity

Customer Orientation Satisfaction

Effectiveness Social Safety

Efficiency Sustainable Employability

Employership Trust

Engagement Vitality

Leadership Work climate

Loyalty

internal consistency, and to test convergent and discriminant
validity5 of questions.

Contextual information is reported in Table 1, together
with type of data encoded – binary for two-valued domains
(male/female gender, profit/non-profit type of business,
full/part timework status), nominal formulti-valued domains
(e.g., country name), and ordinal for ranges of numeric
values (e.g., age band) or for ordered values (e.g., pri-
mary/secondary/higher education level).

Items refer to questions related to a theme. The items for
the Trust theme are shown in Table 2. There are 112 items
in total6. Each item admits answers in Likert scale. A score
from 0 to 10 is assigned to an answer by a respondent as
follows:

– Strongly agree → 10
– Agree → 7.5
– Neither agree nor disagree → 5
– Disagree → 2.5
– Strongly disagree → 0

5 Two items belonging to a same theme are highly correlated (conver-
gence), whilst two items from different themes are almost uncorrelated
(discrimination). See https://en.wikipedia.org/wiki/Construct_validity
6 As a consequence of construct validity, each item belongs to one and
only one theme.

Fig. 1 Distribution of respondents by Age and Gender

The direction of the response scale is uniform throughout all
the items [50]. Table 3 shows the list of all 23 themes. For a
respondent, a score from 0 to 10 is also assigned to a theme
as the average score of the items of the theme.

From the raw data of the GEEI survey, we constructed
two7 tabular datasets, both including the contextual informa-
tion. The dataset with also the scores of the themes is called
the themes dataset. The dataset with also the scores of the
items is called the items dataset. The datasets are restricted to
respondents from 30 countries in Europe. The GEEI survey
includes 303 to 323 respondents per country, with the excep-
tion of Germany which has 1342 respondents. We sampled
323 German respondents stratifying by the target variable.
Thus, the datasets have an approximately uniform distribu-
tion per country. Also, gender is uniformly distributed with
50.9% of males and 49.1% of females. These forms of selec-
tion bias do not take into account the (working) population
size of countries. Caution will be mandatory when making
conclusions about inferences on those datasets. Finally, Fig. 1
shows the distribution of respondents by age and gender.

In summary, the two datasets have a total of 9,296 rows
each, one rowper respondent.Only 51values aremissing (out
of a total of 1.1M cell values), and they have been replaced
by the mode of the column they appear in. The positive rate
is 22.5% on average, but it differs considerably across coun-
tries, as shown in Fig. 2. In particular, it ranges from 12% of
Luxemburg up to 30.6% of Finland.

7 We also experimented with a dataset with both themes and items
scores, whose predictive performances were close to the items dataset.
This is not surprising, since a theme’s score is an aggregation over a
subset of items.
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Fig. 2 Target variable by Country

4 Predictive modeling

Our first objective is to compare the predictive performances
of a few state-of-the-art machine learning classifiers on both
the datasets,which, as observed, are quite imbalanced [9].We
experiment with interpretable classifiers, namely k-nearest
neighbors (KNN), decision trees (DT) and ridge logistic
regression (LR), and with black-box classifiers, namely ran-
dom forests (RF), XGBoost (XGB), LightGBM (LGBM),
and TabNet (TABNET). We use the scikit-learn8 implemen-
tation of LR, DT, and RF, and the xgboost9, lightgbm10,
and pytorch-tabnet11 Python packages of XGB, LGBM, and
TABNET. Parameters are left as default except for the ones
set by hyper-parameter search (see later on).

We adopt repeated stratified 10-fold cross validation as
testing procedure to estimate the performance of classi-
fiers. Cross-validation is a nearly unbiased estimator of
the generalization error [40], yet highly variable for small
datasets. Kohavi recommends to adopt a stratified version
of it. Variability of the estimator is accounted for by adopt-
ing repetitions [39]. Cross-validation is repeated 10 times.
At each repetition, the available dataset is split into 10 folds,
using stratified randomsampling.An evaluationmetric is cal-
culated on each fold for the classifier built on the remaining
9 folds used as training set. The performance of the classifier
is then estimated as the average evaluation metric over the
100 classification models (10 models times 10 repetitions).
An hyper-parameter search is performed on each training set

8 https://scikit-learn.org/
9 https://xgboost.readthedocs.io/
10 https://lightgbm.readthedocs.io/
11 https://github.com/dreamquark-ai/tabnet

Fig. 3 AUC-PR of logistic regression on a single theme. Bars show
mean ± stdev over 10 × 10 cross-validation folds

by means of the Optuna12 library [1] through a maximum of
50 trials of hyper-parameter settings. Each trial is a further
3-fold cross-validation of the training set to evaluate a given
setting of hyper-parameters. The following hyper-parameters
are searched for: (LR) the inverse of regularization strength;
(DT) the maximum tree depth; (RF) the number of trees and
their maximum depth; (XGBoost) the number of trees, num-
ber of leaves in trees, the stopping parameter of minimum
child instances, and the re-balancing of classweights; (Light-
GBM) minimum child instances, L1 and L2 regularization
coefficients, number of leaves in trees, feature fraction for
each tree, data (bagging) fraction, and frequency of bagging;
(TABNET) the number of shared Gated Linear Units.

As evaluation metric, we consider the Area Under the
Precision-Recall Curve (AUC-PR) [38], which is more infor-
mative than the Area Under the Curve of the Receiver
operating characteristic (AUC-ROC) on imbalanced datasets
[15,51]. A random classifier achieves an AUC-PR of 0.225
(positive rate), which is then the reference baseline. A point
estimate of the AUC-PR is the mean average precision over
the 100 folds [8]. Confidence intervals are calculated using a
normal approximation over the 100 folds [19].We refer to [8]
for details and for a comparison with alternative confidence
interval methods.

Let us first concentrate on the case of the themes dataset.
As a feature selection pre-processing step, we run a logistic
regression for each theme, with the theme as the only predic-
tive feature. Fig. 3 reports the achieved AUC-PRs (mean ±
stdev over the 10×10 cross-validation folds). It turns out that
the top three themes (Retention factor, Loyalty, and Commit-

12 https://optuna.org/
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Table 4 Predictive
performances over the theme
dataset: unweighted (top) and
weighted data (bottom)

Classifier AUC-PR 99.9% CI Magn. Elapsed (s)

Theme dataset

DT 0.511 ± 0.026 [0.505, 0.516] large 12.5 ± 2.9

KNN 0.498 ± 0.027 [0.492, 0.504] large 51.6 ± 0.6

LGBM 0.588 ± 0.029 [0.583, 0.594] negl. 26.4 ± 7.1

LR 0.583 ± 0.031 [0.578, 0.589] negl. 13.2 ± 1.8

RF 0.577 ± 0.027 [0.571, 0.583] small 61.4 ± 12.9

TABNET 0.529 ± 0.034 [0.520, 0.538] large 5603 ± 554

XGB 0.556 ± 0.032 [0.550, 0.562] large 32.6 ± 12.6

Weighted theme dataset

DT 0.483 ± 0.048 [0.472, 0.493] large 13.6 ± 0.2

KNN 0.410 ± 0.049 [0.400, 0.421] large 53.1 ± 0.5

LGBM 0.588 ± 0.054 [0.577, 0.599] negl. 26.3 ± 3.2

LR 0.577 ± 0.054 [0.566, 0.587] small 10.2 ± 0.4

RF 0.588 ± 0.053 [0.578, 0.599] negl. 55.8 ± 3.9

TABNET� 0.436 ± 0.059 [0.419, 0.452] large 2005 ± 23.8

XGB 0.539 ± 0.055 [0.528, 0.549] large 28.5 ± 8.4

Best and runner-up in bold
�No hyper-parameter search due to very large running times

Fig. 4 AUC-PR of logistic regression on a single item. Bars showmean
± stdev over 10 × 10 cross-validation folds

ment) include among their items a question close or exactly
the same as the target question. For this reason, we removed
these themes (and their items, for the item dataset) from the
set of predictive features. The nominal contextual features
from Table 1, namely Country, Industry, and Job function,
are one-hot encoded.

Fig. 5 (Unweighted) items dataset: Critical Difference (CD) diagram
for the post hoc Nemenyi test at 99.9% confidence level [17]

The performances of the experimented classifiers are
shown in Table 4 (top). It includes the AUC-PR (mean ±
stdev), the 95% confidence interval of the AUC-PR, and the
elapsed time13 (mean ± stdev), including hyper-parameter
search, over the 10 × 10 cross-validation folds. AUC-PRs
for all classifiers are considerably better than the baseline
(more than twice the baseline even for the lower limit of
the confidence interval). DT is the fastest classifier14, but,
together with KNN, also the one with lowest predictive
performance. LGBM has the best AUC-PR values and an
acceptable elapsed time. LR is runned up, but it is almost as
fast as DT. RF has a performance close to LGBM and LR but
it slower. XGB is in the middle as per AUC-PR and elapsed
time. Finally, TABNET has intermediate performances, but
it is two orders of magnitude slower than its competitors.

13 Tests performed on a PC with Intel 8 cores-16 threads i7-6900K at
3.7 GHz, 128 Gb RAM, and Windows Server 2016 OS. Python version
3.8.5.
14 Notice that the implementations of DT and LR are single-threaded,
while the ones of RF, XGB, LGBM, and TABNET are multi-threaded.
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Table 5 Predictive
performances over the items
dataset: unweighted (top) and
weighted data (bottom)

Classifier AUC-PR 95% CI Magn. Elapsed (s)

Item dataset

DT 0.538 ± 0.035 [0.531, 0.545] large 23.3 ± 0.7

KNN 0.513 ± 0.028 [0.508, 0.519] large 55.± 0.5

LGBM 0.641 ± 0.028 [0.636, 0.647] negl. 35.1 ± 3.0

LR 0.635 ± 0.029 [0.630, 0.641] small 13.6 ± 0.4

RF 0.613 ± 0.028 [0.607, 0.618] large 64.9 ± 3.0

TABNET 0.561 ±0.038 [0.553, 0.568] large 7489 ± 576

XGB 0.614 ± 0.032 [0.608, 0.621] large 49.6 ± 10.3

Weighted item dataset

DT 0.502 ± 0.055 [0.491, 0.513] large 28.8 ± 1.9

KNN 0.492 ± 0.056 [0.481, 0.502] large 58.8 ± 1.8

LGBM 0.624 ± 0.051 [0.613, 0.635] negl. 46.5 ± 15.7

LR 0.627± 0.052 [0.616, 0.637] negl. 12.7 ± 1.0

RF 0.610 ± 0.053 [0.599, 0.621] small 63.3 ± 5.0

TABNET� 0.471 ± 0.050 [0.455, 0.488] large 2854 ± 124

XGB 0.585 ± 0.052 [0.574, 0.595] large 81.9 ± 31.7

Best and runner-up in bold
�No hyper-parameter search due to very large running times

The statistical significance of the difference of mean
performances of classifiers is assessed with two-way ANO-
VA if values are normally distributed (Shapiro’s test) and
homoscedastic (Bartlett’s test). Otherwise, the nonparamet-
ric Friedman test is adopted [17,32]. For the theme dataset,
ANOVA was used. The test shows a statistically significant
difference among the mean values (family-wise significance
level α = 0.001). The post hoc Tukey HSD test shows a
no significant difference between LGBM and LR. All other
differences are significant, as shown in Table 4 (top).

As a natural question, one may wonder how the perfor-
mance would change if the datasets were weighted to reflect
the workforce of each country. We collected the employment
figures for all the countries in our training dataset for 2018,
which was when the survey was carried out. The country-
specific employment data was obtained from Eurostat15 (for
the EU member states as well as for the United Kingdom)
and from the World Bank16 (for Russia and Ukraine). The
numbers correspond to the country’s total employed popula-
tion between the ages of 15 and 74. For Russia and Ukraine,
however, the number corresponds to the total employed pop-
ulation at any age. We assigned a weight to each instance
in our datasets proportional to the workforce in the country
of the employee. Weights are considered both in training of
classifiers and in the evaluationmetric (weighted average pre-
cision). The weighted positive rate is 20%. Table 4 (bottom)
shows the performances of the classifiers over the weighted

15 https://ec.europa.eu/eurostat/web/lfs/data/database
16 https://databank.worldbank.org/reports.aspx?source=2&series=SL.
TLF.CACT.NE.ZS

Fig. 6 Weighted theme dataset: CD diagram for the post hoc Nemenyi
test at 99.9% confidence level for the top-10 LR feature importances

dataset. The mean AUC-PR is now smaller for most classi-
fier, the same for LGBM, and slightly better for RF. Standard
deviation has increased in all cases. The post hoc Tukey HSD
test now shows a small significant difference betweenLGBM
and LR.

Let us now consider the items dataset. Figure 4 shows
the predictive performances of single-feature logistic regres-
sions. Table 5 reports the performances of classifiers on all
features for both the unweighted and the weighted data.
Overall performances of each classifier improve over the
theme dataset. Elapsed times also increase due to the larger
dimensionality of the dataset. Differences are statistically
significant. LGBM and LR are the best classifiers for both
the unweighted and the weighted datasets. Figure 5 shows
the critical difference diagram for the post hoc Nemenyi test
for the unweighted dataset following a significant Friedman
test. An horizontal line that crosses two or more classifier
lines means that the mean performances of those features are
not statistically different. In summary, we conclude that the
LR and LGBM classifiers have highest predictive power of
the turnover intention.
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Fig. 7 Weighted item dataset: CD diagram for the post hoc Nemenyi
test at 99.9% confidence level for the top-10 LR feature importances

Fig. 8 Weighted theme dataset: CD diagram for the post hoc Nemenyi
test at 99.9% confidence level for the top-10 LGBMfeature importances

Fig. 9 Weighted item dataset: CD diagram for the post hoc Nemenyi
test at 99.9% confidence level for the top-10 LGBMfeature importances

5 Explanatory factors

We examine the driving features behind the two top-
performing models found in Sect. 4: the LGBM and the LR.
We use eachmodel’s specificmethod for determining feature
importance and aggregate the importance ranks over the 100
experimental folds. This novel approach yields more robust
estimates (a.k.a., lower variance) of importance ranks than
using a single hold-out set.We do so for the weighted version
of both the theme and item datasets.

For a fixed fold, feature importance of the LR model
is determined as the absolute value of the feature’s coef-
ficient in the model. The importance of a feature in the
LGBM model is measured as the number of times the fea-
ture is used in a split of a tree in the model. We aggregate
feature importance using their ranks, as in nonparametric
tests statistical [32]. For instance, LR absolute coefficients
(|β1|, |β2|, |β3|, |β4|) = (1, 2, 3, 0.5) lead to the ranking
(3, 2, 1, 4).

The top-10 features w.r.t. the mean rank over the 100 folds
are shown in Fig. 6 to Fig. 9 for the theme/item datasets
and LR/LGBM models. For the theme dataset (resp., the
item dataset), LR and LGBM share almost the same set
of top features with slight differences in the mean ranks.
For example, the Sustainable Employability, Employership,
and Attendance Stability themes are all within the top-five
features for both LR and LGBM. For the item dataset, we
observe Time in Company, Satisfied Development, and Like-

lihood to Recommend Employer to Friends and Family to
be among the top-five shared features. Interestingly,Gender,
a well-recognized determinant of turnover intention, is not
among the top features for both datasets. Also, no country-
specific effect emerges.

The Friedman test shows significant differences among
the importance measures in all four cases in Fig. 6 to Fig. 9.

Further, the figures show the critical difference diagrams
for the post hoc Nemenyi test, thus answering the question
whether there is any statistical difference among them. An
horizontal line that crosses two or more feature lines means
that the mean importances of those features are not statisti-
cally different. In Fig. 8, for example, theMotivation,Vitality,
and Attendance Stability themes are grouped together.

Statistical significance of different feature importance is
valuable information when drawing potential policy recom-
mendations as we are able to prioritize policy interventions.
For example, given these results, a company interested in
employee retention could focus on improving either motiva-
tion or vitality, as they strongly influence LGBM predictions
and, a fortiori, turnover intention. However, the magnitude
and direction of the influence is not accounted for in the fea-
ture importance plots of Fig. 6 to Fig. 9. This is not actually
a limitation of our (nonparametric) approach. Any associa-
tion measure between features and predictions (such as the
coefficients in regression models) does not allow for causal
conclusions. We intend to overcome correlation analysis, as
a means to support policy intervention, thought an explicit
causal approach.

6 Causal analysis

In Sect. 4, we found LGBM and LR to be the best performing
models for predicting turnover intention, and in Sect. 5 we
studied the driving features behind the two models. Now we
want to assess whether a specific theme T has a causal effect
on the target variable, written T → Y , given the trained
model b (as in black-box) and the contextual attributes in
Table 1. We use T ∗ to denote the set of remaining themes
and τ to denote the set of all themes, such that τ = {T }∪T ∗.
Establishing evidence for a direct causal link between T and
Y would allow our model b to answer intervention-policy
questions related to the theme scores. Given our focus on T ,
in this section we work only with the theme dataset.

We divide all contextual attributes into three distinct
groups based on their level of specificity: individual-specific
attributes, I , where we include attributes such as Age and
Gender; work-specific attributes, W , where we include
attributes such asWork Status and Industry; and geography-
specific attributes, G, where we include the attribute Coun-
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W τ Y

I

G

Fig. 10 Causal graph G showing the three groups of contextual
attributes (individual I , geographic G, and working W ), the collec-
tion of themes (τ ) and the target variable Y . We are interested in the
edge going from τ into Y

Fig. 11 A more detailed look into τ (dashed black-rectangle) where
we can see the distinct edges going from T and T ∗ into Y . The three
incoming edges represent the information flow from W , G, and I into
τ . Here, for illustrative purposes, we have ignored those same edges
going into Y

try.17 We summarize the causal relationships across the
contextual attributes, a given theme’s score T , the remaining
themes T ∗, and the target variable Y using the causal graph
G in Fig. 10. The nodes on the graph represent groupings of
random variables, while the edges represent causal claims
across the variable groupings. Within each of these contex-
tual nodes, we picture the corresponding variables as their
own individual nodes independent from each other but with
the same causal effects with respect to the other groupings.18

Notice that in Fig. 10 two edges go from τ to Y . This is
because we have defined τ = {T } ∪ T ∗ and are interested in
identifying the edge between T and Y (marked in red), while
controlling for the edges from T ∗ to Y (marked in black as
the rest). This becomes clearer in Fig. 11 where we detailed
the internal structure of τ . Here, we assume independence
between whatever theme is chosen as T and the remaining
themes in T ∗. 19 Further, as with the contextual nodes rep-
resenting the variable groupings, T ∗ represents the grouping

17 Given that we focus only on European countries, the attribute Con-
tinent is fixed and thus controlled for. We can exclude it from G.
18 For example, under the causal graph G, I → W implies the causal
relationships Age → I ndustr y, Gender → I ndustr y, Age →
Work Status, Gender → Work Status, but not Age → Gender
nor Gender → Age.
19 We recognize that this is a strong assumption, but the alternative
would be to drop all themes except T and fit b on that subset of the data,

of all themes in τ but T where each theme is its own node
and independent of each other while have the same inward
and outward causal effects.20

Under G, all three contextual attribute groups act as con-
founders between T and Y and thus need to be controlled
for along with T ∗ to be able to identify the causal effect
of T on Y . Otherwise, for example, observing a change in
Y cannot be attributed to changes in T as G (or, similarly,
I or W ) could have influenced both simultaneously, result-
ing in an observed association that is not rooted on a causal
relationship. Therefore, controlling for G, as for the rest of
the contextual attributes insures the identification of T → Y .
This is formalized by the back-door adjustment formula [47],
where XC = I ∪ W ∪ G ∪ T ∗ is the set for all contextual
attributes:

P(Y |do(T := t)) =
∑

xC

P(Y |T = t, XC = xC )P(XC = xC ) (1)

In (1), the term P(XC = xC ) is thus shorthand for P(I =
i,W = w,G = g, T ∗ = t∗). The set XC satisfies the back-
door criterion as none of its nodes are descendants of T and
it blocks all back-door paths between T and Y [47]. Given
XC , under the back-door criterion, the direct causal effect
T → Y is identifiable. Further, (1) represents the joint dis-
tribution of the nodes in Fig. 10 after a t intervention on T ,
which is illustrated by the do-operator. If T has a causal effect
on Y , then the original distribution P(Y ) and the new distri-
bution P(Y |do(T := t)) should differ over different values
of t . The goal of such interventions is to mimic what would
happen to the system if we were to intervene it in practice.
For example, consider a European-wide initiative to improve
confidence among colleagues, such as providing subsidies to
team-building courses at companies. Then the objective of
this action would be to improve the Trust theme’s score to a
level t with the hopes of affecting Y .

The structure of the causal graph G in Fig. 10 is motivated
both from the data and fromexpert knowledge.Herewe argue
that I , W , and G are potential confounders of T and Y . For
instance, consider theCountry attribute, which belongs toG.
It is sensible to picture that Country affects T as employees
from different cultures can have different views on the same
theme. Similarly, Country can affect Y as different countries
have different labor laws that couldmake some labormarkets
more dynamic (reflected in the form of higher turnover rates)

which would have considerable risks of overestimating the effect of T
on Y .
20 To use the proper causal terminology, all themes have the same par-
ents (the incoming edges from the variables in I , G, and W ) and the
same child (Y ). No given theme is the parent or child of any other theme
in τ .
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Fig. 12 PairwiseConover-Iman post hoc test p-value forTrust theme vs
Country in a clustered map. The map clusters together countries whose
score distributions are similar

than others. We also observe this in the data. In particular,
the Country attribute is correlated to each of the themes: the
nonparametric Kruskal–Wallis H test [32] shows a p-value
close to 0 for all themes, which means that we reject the null
hypothesis that the scores of a theme in all countries origi-
nate from the same distribution. Consider the Trust theme.
To understand which pair of countries have similar/different
Trust score distributions, we run the Conover-Iman post hoc
test pairwise. The p-values are shown in the clustered map of
Fig. 12. The groups of countries highlighted21 by dark col-
ors (e.g., Switzerland, Latvia, Finland, Slovenia) are similar
among them in the distribution of Trust scores, and dissimilar
from the countries not in the group. Such clustering shows
that the societal environment of a specific country has some
effect on the respondents’ scores of the Trust theme. Similar
conclusions hold for all other themes.

Further, both G and I have a direct effect also on
W . We argue that country-specific traits, from location to
internal politics, will affect the type of industries that devel-
oped nationally. For example, countries with limited natural
resources will prioritize non-commodity-intensive indus-
tries. Similarly, individual-specific attributes will determine
the type of work that an individual can perform. For example,
individuals with higher education, where education is among
the attributes in I , can apply to a wider range of industries
than an individual with lower levels of educational attain-
ment.

To summarize thus far, our goal in this section is to test
the claim that a given T causes Y given our model b and our

21 The clusteredmapadopts a hierarchical clustering.Therefore, groups
can be identified at different levels of granularity.

theme dataset. To do so we have defined the causal graph G
in Fig. 10 and defined the corresponding set XC that satisfies
the back-door criterion that would allow us to test T →
Y using (1). What we are missing then is a procedure for
estimating (1) over our sample to test our causal claim.

For estimating (1) we follow the procedure in [63] and
use the partial dependence plot (PDP) [22] to test visually
the causal claim. The PDP is a model-agnostic XAI method
that shows the marginal effect one feature has on the pre-
dicted outcomes generated by themodel [43]. If changing the
former leads to changes in the latter, then we have evidence
of a partial dependency between the feature of interest and
the outcome variable that is manifested through the model
output.22 We define formally the partial dependence of fea-
ture T on the outcome variable Y given the model b and the
complementary set XC as:

bT (t) = E[b(T = t, XC )]
=

∑

xC

b(T = t |XC = xC )P(XC = xC ) (2)

If there exist a partial dependence between T and Y , then
bT (t) should vary over different values of T , which could
be visually inspected by plotting the values via the PDP. If
XC satisfies the back-door criterion, [63] argues, then (2) is
equivalent to (1),23 and we can use the PDP to check visu-
ally our causal claim. Under this scenario, the PDP would
have a stronger claim than partial dependence between T
and Y , as it would also allow for causal claims of the sort
T → Y .24 Therefore, we could assess the claim T → Y by
estimating (2) over our sample of n respondents using:

b̂T (t) = 1

n

n∑

j=1

b(T = t, XC = x ( j)
C ) (3)

Using (3), we can now visually assess the causal effect of
T on Y by plotting b̂T against values of T . If b̂T varies across
values of t , i.e. b̂T is indeed a function of t , then we have
evidence for T → Y [63].

However, before turning to the estimation of (3), we
address the issue of representativeness (or lack thereof) in
our dataset. One implicit assumption used in (3) is that any

22 This under the assumption that the model that is generating the
predicted outcomes approximates the “true” relationship between the
feature of interest and the outcome variable. This is way [63] empha-
sizes the importance of having a good performing model for applying
this approach.
23 To be more precise, (2) is equivalent to the expectation over (1),
which would allow us to rewrite (1) in terms of expectations rather
than in terms of probabilities and thus formally derive the equivalence
between the two.
24 Here, again, under the assumption that b approximates the “true”
where b(T ) → Ŷ contains relevant information concerning T → Y .

123



International Journal of Data Science and Analytics (2022) 14:279–292 289

j element in X ( j)
C is equiprobable.25 This is often assumed

because we expect random sampling (or, in practice, proper
sampling techniques) when creating our dataset. For exam-
ple, the probability of sampling a German worker and a
Belgian worker would be same. This is a very strong assump-
tion (and one that is hard to prove or disprove), which can
become an issue if we were to deploy the trained model b as
it may suffer from selection bias and could hinder the policy
maker’s decisions.

To account for this potential issue, one approach is to esti-
mate P(XC = xc) from other data sources such as official
statistics. This is why, for example, we created the coun-
try weighted versions of the theme and item datasets back
in Sect. 4. Here it would be better to do the same not just
for country, but to weight across the entirety of the com-
plementary set.26 However, this was not possible. The main
complication we found for estimating the weight of the com-
plementary set was that there is no one-to-onematch between
the categories used in the survey and the EUofficial statistics.
Therefore, it is important to keep this inmindwhen interpret-
ing the results beyond the context of the paper. By using the
(country-)weighted theme dataset, we can rewrite (3) as a
country-specific weighted average:

b̂T (t) = 1

α

n∑

j=1

α( j)b(T = t, i ( j), w( j), g( j), t∗( j)) (4)

where α j is the weight assigned to j’s country, and α =∑n
j=1 α( j). Under this approach, we are still using the causal

graph G in Fig. 10.
We proceed by estimating the PDP using (4). We define

as T our top feature from the LGBM model in the weighted
theme dataset, which was the Motivation theme as seen in
Fig. 8. We then use the corresponding top LGBM hyper-
parameters and retrain the classifier on the entire dataset. 27

Finally, we compute the PDP forMotivation theme as shown
in Fig. 13. We do the same for the LRmodel for comparison.

From Fig. 13, under the causal graph G, we can con-
clude that there is evidence for the causal claim T → Y
for the Motivation theme. For the LGBM model, the theme
score (x-axis), which ranges from 0 to 10, as it increases the
corresponding predicted probabilities of employee turnover
decrease, meaning that a higher motivation score leads to a
lower employee turnover intention. We see a similar, though
smoother, behaviour with the LR model. This is expected as

25 Under this assumption, we can apply a simple average.
26 For example, by estimating the (joint) probability of being a German
worker who is also female and has a college degree.
27 It is common to use the PDP on the training dataset [43,63] and
since we are not interested here in testing performance, we use the
entire dataset for fitting the model.

Fig. 13 PDP for theMotivation theme for both LGBM and LR models
using the weighted theme dataset

Fig. 14 PDP for theAdaptability theme for both LGBMandLRmodels
using the weighted theme dataset

the LGBM can capture non-linear relationships between the
variables better than the LR.

We repeat the procedure on a non-top-ranked theme for
bothmodels, namely theAdaptability theme (the capability to
adapt to changes), to see how the PDPs compare. The results
are shown in Fig. 14. In the case of the LGBM, the PDP is
essentially flat and implies a potential non-causal relationship
between this theme and employee turnover intention. For the
LR, however, we see a non-flat yet narrower PDP, which also
seems to support a potential non-causal link. This might be
due again to the non-linearity in the data, where the more
flexible model (LGBM) can better capture the effects in the
changes of T than the less flexible one (LR) that can tend to
overestimate them.

To summarize this approach for all themes, we calculate
the change in PDP, which we define as:

�b̂T = b̂T (0) − b̂T (10) (5)

and do this for all themes across the LGBM and LR models.
The results are shown in Table 6. Themes are ordered based
on the LGBM’s deltas. We note that the deltas across models
tend to agree: the signs (and for some themes likeMotivation
even the magnitudes) coincide. This is inline with previous
results in other sections where the LR’s behaviour is compa-
rable to the LGBM’s. Further, comparing the ordering of the
themes in Table 6 with the feature rankings in Fig. 6 and 8 ,
we note that some of the theme’s with the largest deltas (such
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Table 6 �b̂T per theme for LR and LGBM

Theme �b̂T LR �b̂T LGBM

Sustainable Emp. 0.349 0.103

Employership 0.340 0.208

Satisfaction 0.260 0.116

Attendance Stability 0.205 0.119

Motivation 0.151 0.163

Trust 0.111 0.014

Leadership 0.063 0.024

Alignment 0.038 0.006

Work climate 0.025 0.005

Effectiveness 0.022 −0.014

Psychol. Safety 0.017 0.004

Productivity 0.006 −0.007

Engagement −0.009 −0.007

Performance −0.017 −0.001

Autonomy −0.046 −0.009

Adaptability −0.067 −0.005

Customer Focus −0.078 −0.016

Efficiency −0.095 −0.044

Vitality −0.111 −0.024

Role Clarity −0.127 −0.092

as Sustainable Emp. and Employership) are also among the
top-ranked features. Although there is no clear one-to-one
relationship between the two approaches, it is comforting
to see the top-ranked themes also having the higher causal
impact on employee turnover as it implies some potential
shared underlying mechanism.

Table 6 also provides a view on how each theme causally
affects employee turnover,where themeswith a positive delta
cause a decrease in employee turnover. As the theme’s score
increases, the probability of turnover decreases. The reverse
holds for negative deltas. We recognize that some of these
results are not fully aligned with findings by other papers,
mainly from the managerial and human resources fields. For
example, we find Role Clarity to cause employee turnover to
increase, which is the opposite effect found in other studies
[29]. These other claims, we note, are not causal. More-
over, such discrepancies are possible already by taking into
account that those findings are based on US data while ours
on European data. Aswe arguedwhenmotivating Fig. 10, we
believe the interaction between geographical and work vari-
ables (such as in the form of country-specific labor laws or
the health of its economy) affect employee turnover. Hence,
the transportability of these previous results into a European
context was not expected.

Overall, Table 6 along with both Fig. 13 and Fig. 14
can be very useful to inform a policy maker as they can
serve as evidence for justifying a specific policy interven-

tion. For example, here we would advised for prioritizing
policies that foster employee motivation over policies that
focus on employee and organization adaptability. Overall,
this is a relatively simple XAImethod that could be used also
by practitioners to go beyond claims on correlation between
variables of interest in their models.

7 Conclusions

We had the opportunity to analyze a unique cross-national
survey of employee turnover intention, covering 30European
countries. The analytical methodologies adopted followed
three perspectives. The first perspective is from the human
resource predictive analytics, and it consisted of the compar-
ison of state-of-the-art machine learning predictive models.
Logistic Regression (LR) and LightGBM (LGBM) resulted
the top performing models. The second perspective is from
the eXplainable AI (XAI), consisting in the ranking of
the determinants (themes and items) of turnover intention
by resorting to feature importance of the predictive mod-
els. Moreover, a novel composition of feature importance
rankings from repeated cross-validation was devised, con-
sisting of critical difference diagrams. The output of the
analysis showed that the themes Sustainable Employability,
Employership, and Attendance Stability are within the top-
five determinants for both LR and LGBM. From the XAI
strand of research, we also adopted partial dependency plots,
but with a stronger conclusion than correlation/importance.
The third perspective, in fact, is a novel causal approach
in support of policy interventions which is rooted in causal
structural models. The output confirms those from the sec-
ond perspective, where highly ranked themes showed PDPs
with higher variability than lower ranked themes. The value
added from the third perspective here is that we quantify the
magnitude and direction for the causal claim T → Y .

Three limitations of the conclusions of our analysis should
be highlighted. The first one is concerned with comparison
with related work. Due to the specific set of questions and the
target respondents of the GEEI survey, it is difficult to com-
pare our results with related works that use other survey data,
which cover a different set of questions and/or respondents.
The second limitation of our results consists of a weighting
of datasets, to overcome selection bias, which is limited to
country-specific workforce. Either the dataset under analysis
should be representative of the workforce, or a more granu-
lar weighting should be used to account for country, gender,
industry, and any other contextual feature. The final and third
limitation of our results concern the causal claims. Our anal-
ysis is based on a specific and by far non-unique causal view
of the problemof turnover intentionwhere, for example, vari-
ables such as Gender and Education level that belong to the
same group node I are considered independent. The inter-

123



International Journal of Data Science and Analytics (2022) 14:279–292 291

ventions carried out to test the causal claim are reliant on
the specified causal graph, which limits our results within
Fig. 10.

To conclude, we believe that further interdisciplinary
research like this paper can be beneficial for tackling
employee turnover. One possible extension would be to col-
lect country’s national statistics to avoid selection bias in
survey data or, alternatively, to align theweights of the data to
a finer granularity level. Another extension would be to carry
out the causal claim tests using a causal graph derived entirely
from the data using causal discovery algorithms. In fact, an
interesting combination of these two extensions would be to
use methods for causal discovery that can account for shifts
in the distribution of the data (see, e.g., [41] and [44]). All of
these we consider for future work.
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