

Classe di scienze

Corso di perfezionamento in

Data Science

35° ciclo

Understanding and Exploiting the Latent
Space to improve Machine Learning

models eXplainability.

Settore Scientifico Disciplinare: INF01-INFORMATICA

Candidato/a
dr.(ssa) Bodria Francesco

Relatore/i (o Relatrice/i o Relatrice e Relatore) Supervisore interno

Prof.(ssa) Fosca Giannotti Prof.(ssa) Fosca Giannotti

Prof.(ssa) Dino Pedreschi

Prof.(ssa) Riccardo Guidotti

Anno accademico 2022/2023

Understanding and Exploiting the Latent Space

of Machine Learning models.

Bodria Francesco

May 2023

Submitted to the Scuola Normale Superiore di Pisa
in xx, in partial fulfillment of the requirements for the

Doctoral Program in Data Science

Abstract

In recent years, Artificial Intelligence (AI) and Machine Learning (ML) systems
have dramatically increased their capabilities, achieving human-like or even human-
superior performance in specific tasks. This increased performance has gone hand
in hand with an increase in the complexity of AI and ML models, compromising
their transparency and trustworthiness and making them inscrutable black boxes for
decision making. Explainable AI (XAI) is a field that seeks to make the decisions
suggested by ML models more transparent to human users, by providing different
types of explanations. This thesis explores the possibility of using a reduced feature
space called “latent space”, produced by a particular kind of ML models, as a means
for the explanation process. First, we study the possibility of navigating the latent
space as a form of interactive explanation to better understand the rationale behind
the model’s predictions. Second, we propose an interpretable-by-design approach
to make the explanation process completely transparent to the user. Third, we
exploit mathematical properties of the latent space of certain ML models (similarity
and linearity) to produce explanations that are shown more plausible and accurate
than those of existing competitors in the state of the art. In order to validate our
approach, we perform extensive benchmarking on different datasets, with respect to
both existing metrics and new ones introduced in our work to highlight new XAI
problems, beyond current literature.

Keywords: eXplainable Artificial Intelligence, XAI, Machine Learning,

Latent Space

1

Pubblications

1. Bodria Francesco, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto,

Dino Pedreschi, and Salvatore Rinzivillo. “Benchmarking and survey of expla-

nation methods for black box models.” Data Mining and Knowledge Discovery

(DAMI), Springer, 2023.

2. Naretto Francesca, Bodria Francesco, Fosca Giannotti, and Dino Pedreschi.

“Benchmark analysis of black-box local explanation methods”, In proceedings

of XAI.it 2022 - Italian Workshop on Explainable Artificial Intelligence 2022.

3. Fosca Giannotti, Naretto Francesca, Bodria Francesco, “Explainable AI for

Trustworthy AI”, In proceedings of ACAI 2022 school.

4. Bodria Francesco, Salvatore Rinzivillo, Daniele Fadda, Riccardo Guidotti,

Fosca Giannotti, and Dino Pedreschi. “Explaining Black Box with visual ex-

ploration of Latent Space.”, In Proceedings of 24th Conference in Visualisation

(EuroVis), 2022, Rome.

5. Bodria Francesco, Riccardo Guidotti, Fosca Giannotti, and Dino Pedreschi.

“Interpretable Latent Space to Enable Counterfactual Explanations.” In Pro-

ceedings of the 25th international conference on Discovery Science (DS), 2022,

Montpellier.

6. Bodria Francesco, Riccardo Guidotti, Fosca Giannotti, and Dino Pedreschi.

“Transparent Latent Space Counterfactual Explanations for Tabular Data.”

In Proceedings of the 9th IEEE International Conference on Data Science and

Advanced Analytics (DSAA), Shenzen, 2022.

2

Acknowledgements

I would like to take this opportunity to express my heartfelt gratitude to everyone

who has supported me in the completion of my Ph.D. thesis. First and foremost,

I would like to thank my family for their unwavering support, encouragement, and

love throughout my academic journey. Their constant encouragement, guidance,

and sacrifices made it possible for me to pursue my dreams and achieve my goals.

I am also deeply grateful to my friends for their support, encouragement, and for

being a constant source of motivation. Their positive energy and unwavering support

have helped me to keep going in times of difficulty and have made this journey more

enjoyable. I would like to extend my heartfelt gratitude to my supervisors for their

guidance, support, and expertise throughout my research. Their invaluable insights,

constructive feedback, and suggestions were instrumental in shaping my research,

and I am deeply indebted to them. I would also like to thank the staff and faculty of

the several institutions involved, for their support and for providing me with access

to the resources and facilities necessary to conduct my research. Lastly, I would like

to express my gratitude to all the participants who generously gave their time and

efforts to participate in my research. Once again, I would like to extend my heartfelt

gratitude to everyone who has supported me in the completion of my Ph.D. thesis.

Thank you.

This work has been supported by the European Community Horizon 2020 pro-

gram under the funding scheme ERC-2018-ADG G.A. 834756 XAI: Science and

technology for the eXplanation of AI decision making (https://xai-project.eu/

index.html)

3

https://xai-project.eu/index.html
https://xai-project.eu/index.html

Contents

1 Introduction 11

2 Background 18

2.1 eXplainable Artificial Intelligence (XAI) 18

2.1.1 Existing XAI Taxonomy for Explanation Methods 20

2.1.2 Categorization of Explanations 21

2.1.3 Feature Importance . 22

2.1.4 Rule-Based . 29

2.1.5 Prototypes . 30

2.1.6 Counterfactuals . 33

2.1.7 Transparent by Design Methods 36

2.1.8 Desiderata of an explanation 41

2.2 Benchmarking of XAI methods . 46

2.3 The Latent Space . 52

2.3.1 Dimensionality Reduction Techniques 53

2.3.2 Generative models . 59

2.3.3 Understanding the Latent space 66

3 Interactive exploration of the latent space 75

3.1 Meaning of SHAP explanations . 78

3.2 Methodology . 80

4

3.2.1 Neighborhood Analysis . 80

3.2.2 Establishing the Interactive Connection via SHAP 82

3.3 The Interactive Framework . 85

3.4 Discussion and Future Directions . 90

4 Interpretable by Design Latent Space 92

4.1 Methodology . 94

4.1.1 Interpretable Latent Space Learning 95

4.1.2 Counterfactual Explanations 98

4.2 Experiments . 101

4.2.1 Latent Space Evaluations . 101

4.2.2 Counterfactuals Evaluations 104

4.3 Discussion and Future Directions . 109

5 Latent Space Post-Hoc Explanations 111

5.1 Methodology . 114

5.1.1 Constrained Interpretable Latent Space with Black Box Pre-

dictions . 115

5.1.2 Post-Hoc Explanations . 120

5.2 Experiments . 125

5.2.1 Prototype Explanation Evaluation 127

5.2.2 Counterfactual Explanation Evaluation 132

5.2.3 Comparison with Rule-based Explainers 141

5.3 Discussion and Future Directions . 144

6 Conclusions 147

5

List of Figures

1.1 The concept of XAI: XAI methods must be able to translate models

into understandable and useful explanation dialogues for the end user. 14

1.2 Overview of the thesis structure and relationships between different

chapters . 17

2.1 Existing taxonomy for the classification of explanation methods. . . . 21

2.2 Examples of explanations divided for different data types and expla-

nations. 23

2.3 Examples of shap explanations . 25

2.4 Contrastive and counterfactual explanations by cem and dice 34

2.5 Explanation from the interpretable by design method ebm 40

2.6 Example of Insertion and Deletion metric computation for an XAI

method . 43

2.7 Critical difference plot for Nemenyi test for tabular explainer com-

parison . 49

2.8 Critical difference plot for Nemenyi test for image explainer comparison 51

2.9 An example of manifold dimensionality reduction. 53

2.10 Graphical representation of Hughes principle 55

2.11 Standard architecture of an autoencoder generative model 60

2.12 Architecture of GAN model . 64

2.13 Examples of images generated by GANs 66

6

2.14 J-Diagram results of the interpolation of pictures in the latent space

of a GAN . 67

2.15 Interactive image generation framework example 70

3.1 Distribution analysis of the two clusters analyzed in the Titanic dataset. 81

3.2 Illustration of SHAP vectors . 82

3.3 Interactive framework for the titanic dataset. 84

3.4 Interactive Latent Space interface . 86

3.5 Effect of the feature modification in the latent space. 88

4.1 Description of the vector model used for the Interpretable Latent Space 95

4.2 Metrics used to evaluate ILS . 102

4.3 Accuracy of classifiers on adult varying the number of latent dimen-

sions k. 105

4.4 Histogram of the percentage of changes in the features among the

three methods . 106

4.5 Example of counterfactuals produced by ILS, GD, and GSG for the

mnist dataset . 106

5.1 Representation of a possible adversarial problem in counterfactual

explanations . 112

5.2 Representation of the original data (left) and the rearrangement of

CP-ILS (right). The two points H and G are clearly two adversarial

examples that can fool the counterfactual methods to believe that

these are the valid explanations for the other data. 118

5.3 Score computed for different latent space dimensions for the Adult

dataset with SVM as black-box . 119

5.4 Representation of the contributions of the input features in the latent

space. 121

7

5.5 Visualization of the latent space created using two dimensions. 124

5.6 Visualization of the cluster in the latent space or iris and a synthetic

dataset. 128

5.7 Evaluation of 1-KNN Accuracy and Sparsity of prototype explana-

tions while varying the number of prototypes on the explanation set. 131

5.8 LEFT: Correlation matrix between the input features of the adult

dataset and the label “income”. RIGHT: Critical difference plot for

Nemenyi test with α = 0.05. 135

5.9 Counterfactual metrics in comparison with latent space dimension

variation. On the top in blue we have the adult dataset with the

SVM black-box. On the bottom in orange we have the compas dataset

when using the XGB black-box. The dashed vertical lines represent

the dimension used for the experiments. 140

5.10 Two examples of explanations of LORE and CP-ILS from the adult

dataset. 144

8

List of Tables

2.1 black-box training results for benchmarking 48

2.2 Fidelity and faithfulness metric results for tabular explainers bench-

marking . 48

2.3 Stability metric results for tabular explainers benchmarking 49

2.4 Insertion and deletion metrics results for image explainers bench-

marking . 50

2.5 Sensitivity metric and runtime results for image explainers bench-

marking . 51

4.1 Datasets statistics. 101

4.2 Space quality metrics. The best scores are in bold. 103

4.3 Accuracy metrics. The best scores are in bold. Uncertainty is on the

third decimal. 104

4.4 Example of counterfactuals produced by ILS, Gradient, and GSG for

adult. Change to the original instance are highlighted in blue. 105

4.5 Counterfactual explanations evaluation in terms of distance and plau-

sibility. 107

5.1 Description of datasets and performance of the black-boxes 126

5.2 Space quality metrics. Best scores are in bold, second best result are

underlined. 127

9

5.3 Results of the metrics computed on adult and german datasets and

on the four black-boxes. The best results are highlighted in bold,

second bests are underlined. 130

5.4 Different counterfactuals found for a sample x of the adult dataset. . 134

5.5 Results of the counterfactual metrics computed on the four datasets

and on the four black-boxes plus the success rate (SR) of the algo-

rithm for adult and compas. Best results are highlighted in bold,

second best results are underlined, W column highlights the number

of wins. 137

5.6 Results of the counterfactual metrics computed on the four datasets

and on the four black-boxes plus the success rate (SR) of the algo-

rithm for diva and german. Best results are highlighted in bold,

second best results are underlined, W column highlight the number

of wins. 138

5.7 Results of the counterfactual metrics computed on the four datasets

and on the four black-boxes for both LORE and CP-ILS. The best

results are highlighted in bold. 143

10

Chapter 1

Introduction

Artificial intelligence is increasingly entering our lives. From the simplest tasks, such

as recommending favorite movies, to the most complicated, such as autonomous

driving, all areas of knowledge and many of the activities we do on a daily basis are

influenced by artificial intelligence decisions. Recent developments in AI systems

have demonstrated the capability of AI systems to complete tasks that traditionally

require high human intelligence, showing that AI algorithms are potentially useful

elements for decision support systems. Sometimes they even surpass the human

standard. The most advanced systems can use data to learn and use complex pat-

terns that no human is capable of discovering. The AI systems capable of learning

patterns and making decisions characterize a subfield of AI algorithms called ma-

chine learning (ML). Machine learning is a subfield of artificial intelligence, which

is broadly defined as the capability of a machine to learn from data and imitate

intelligent human behavior. Because of the increasing use of machine learning al-

gorithms in artificial intelligence systems, there is often ambiguity about the two

terms. When companies today deploy artificial intelligence programs, they are most

likely using machine learning, so the terms are often used interchangeably and some-

times ambiguously. The critical difference between traditional AI software and ML

approaches is that in ML models, a human developer has not written codes that in-

11

Chapter 1 - Introduction

struct the system on how to make decisions. Instead, a machine learning model has

built its knowledge by training on a large amount of data. They first learn knowl-

edge from a large data set (training phase), then they can generalize this knowledge

to new data and make predictions (inference phase).

However, many ML algorithms cannot be deeply analyzed to understand how

and why a decision was made. This is why ML systems have been called black boxes:

they are oracles that give us an outcome without telling us why. Unfortunately, this

is true for the majority of ML algorithms currently in use. Moreover, without a

proper explanation, most people will lose trust in the predictions made by these

algorithms. Establishing trust in ML learning algorithms is fundamental: we want

systems to work as expected and produce transparent explanations and reasons for

the decisions they make. In recent years, trust in ML applications has been put to

the test. Many attacks have been applied to show their fragility and weaknesses [1].

In particular, it is possible to change the input data in a humanly invisible way

but deeply alter the system reaction [2]. Relying on unexplained models may lead

to adopting decisions that we do not fully understand or, even worse, violate eth-

ical principles or legal norms. These risks are particularly relevant in high-stakes

decision-making scenarios, such as medicine, justice, finance, recruitment, access to

public benefits, and so on [3]; the lack of transparency and trust may explain the

relatively low adoption rate of current AI-based decision support systems in the

mentioned areas. Moreover, companies that embed black-box ML models in their

AI products and applications risk incurring a potential loss of safety [4]. For this

reason, in 2018, the European Parliament introduced in the GDPR1 a set of clauses

for automated decision-making in terms of a right of explanation for all individuals

to obtain “meaningful explanations of the logic involved” when automated decision

making takes place. Also, in 2019, the High-Level Expert Group on AI presented

1https://ec.europa.eu/justice/smedataprotect/

12

https://ec.europa.eu/justice/smedataprotect/

Chapter 1 - Introduction

the ethics guidelines for trustworthy AI2, where explainability is indicated as one

of the fundamental requirements for trustworthiness. Today, the same principle has

become a cornerstone of the AI Act, the proposed new EU regulation establishing

standardized rules on artificial intelligence3. Indeed, there is a widespread and in-

creasing consensus on the urgency of implementing appropriate explanation tools,

although it represents a scientific challenge that is still largely open. For this reason,

new European projects4 are arising aiming to produce meaningful explanations for

AI/ML systems5.

Explainable AI (XAI) is an emerging field in machine learning that tries to

produce explanations to address how black-box decisions of AI systems are made6.

We have witnessed in the last years the rise of a plethora of XAI methods [5, 6,

7, 8, 9, 10] both from academia and industries. In general, an eXplainable AI

method can be defined as an algorithm with the ability to explain, or present in

understandable terms, black-box decisions to a human being [11]. There are several

ways for extracting explanations from the black-box model [12, 13], each capturing

diverse aspects of a black-box model.

Generally a good XAI method [7] should addresses one or more of the following

points7:

- Verify the model’s behavior and identify whether it is acceptable.

- Help debug the model’s unexpected behavior and data collection process.

- Present the model’s predictions to the different stakeholders and allow them to

comprehend the inner working of the model without compromising the privacy

of the original training data.

2https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
3https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-

harmonised-rules-artificial-intelligence
4https://cordis.europa.eu/project/id/834756
5https://xai-project.eu/
6https://www.forbes.com/sites/cognitiveworld/2019/07/23/understanding-explainable-ai
7https://www.darpa.mil/program/explainable-artificial-intelligence

13

https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence
https://cordis.europa.eu/project/id/834756
https://xai-project.eu/
https://www.forbes.com/sites/cognitiveworld/2019/07/23/understanding-explainable-ai
https://www.darpa.mil/program/explainable-artificial-intelligence

Chapter 1 - Introduction

Figure 1.1: The concept of XAI: XAI methods must be able to translate models into
understandable and useful explanation dialogues for the end user.

XAI methods must be able to translate model decisions in a human-understandable

way (Figure 1.1). However current methods are far away for being perfect [14]

and there is much debate on how an explanation should be presented, and several

solutions have been proposed in recent years. Generally, good explanations must

highlight the right features important to the model’s predictions (Accurate), must

not change for small variations in the input (Stable), and must represent concepts

useful to the end user (Informative).

These criteria are difficult to achieve in high-dimensional datasets. In particular,

explanation methods struggle to identify the most essential features. This is due

to a large number of features and the fact that distance loses its interpretability in

high-dimensionality datasets, making it challenging to produce explanations based

on the similarity between data. In addition, methods usually return explanations

with a vast number of features considered (e.g., a rule with many conditions). This

only confuses the user, who is left with long explanations that become uninter-

14

Chapter 1 - Introduction

pretable. However, most real-world datasets we encounter in day-to-day life are

highly dimensional, often consisting of up to a thousand features. Dimensionality

reduction methods are a family of methods capable of reducing the features of a

dataset and compressing the dimensionality of the data. These methods map input

features into a set of reduced features which are a combination of the original ones.

This compression causes the true natural meaning of the features to come out. The

meaning of these new features, however, is lost in this compression making them

called hidden features or latent features.

One interesting thing about these latent features is that they can be considered

as dimensions of a space, called latent space. Researchers found that it is possible to

use this space to explore data and even generate new ones. This gave rise to a variety

of models capable of producing such latent space. The most famous architecture

that can create a latent space is called AutoEncoder. An AutoEncoder is a Machine

Learning model composed of two parts: an Encoder and a Decoder. The encoder is

responsible for encoding data in the latent space, while the decoder is responsible

for decoding back into the original data space. The latent space is learned from

the data by the AutoEncoder by minimizing different functions with the final goal

that similar points in the input space are also close in the latent space. However,

autoencoders are usually composed of very complex ML models making the latent

space created opaque.

In this thesis, we explored a new XAI line of research that develops methods

that exploit the properties of latent space for the explanation process. In particular,

we can use the similarity between the data and create a latent space in which to

move and which can be used to retrieve explanations. We explored the possibility

of using both an opaque and a transparent latent space to enhance interpretability.

To this end, we reviewed the current state of the art of XAI and latent space

approaches (chapter 2) and found out which approaches are the main ones in both

fields and which can be used for our goals. We studied different approaches to

15

Chapter 1 - Introduction

latent space creation and analyzed how they can be used to produce different types

of explanations.

The specific research questions of this thesis are the following:

Using explanations to explore and interact with the Latent

Space (chapter 3). Can we use the latent space to explore the deci-

sion boundary of the black-box? Can XAI methods help enhance such

exploration?

Designing a fully Interpretable Latent Space (chapter 4). Is it

possible to construct a latent space using interpretable models and still

retain its proprieties? Can this new interpretable latent space be used to

train ML models and produce explanations?

Using the latent space as a tool for producing post-hoc ex-

planations (chapter 5). Can the latent space proprieties help us in

producing better explanations than in the input space? What type of

post-hoc explanations can be obtained? How do they compare with other

approaches in the literature?

Analysis of the development and use of XAI and latent space-based methods

in the chapter 2 embraces and motivates the other objectives of this thesis. In

particular, we analyzed the most common approaches regarding XAI and the latent

space but we also tried to benchmark them with respect to several standard metrics.

Then, each following chapter explores the three research questions presented here

of XAI applied to latent space (Figure 1.2). In each chapter, we present a general

overview of the method as well as the result of the experimental part.

Chapter 3 is the first exploration of latent space using existing methods of ex-

planation. In particular, the explanation is provided in the form of an interactive

framework to allow the user to explore latent space freely. The following two chapters

16

Chapter 1 - Introduction

Figure 1.2: Overview of the thesis structure and relationships between different chapters

explore two fundamental aspects of XAI: interpretability and explainability. The

former seeks to develop completely transparent methods, while the latter builds

methods to explain a given model. In chapter 4, we tried to construct the latent

space in a fully transparent way in order to be fully aware of the inner workings of

our approach and the explanations produced. Finally, in chapter 5, we developed an

XAI method to produce explanations from a given fixed ML model. We obtained

different types of explanations and compared them with traditional approaches.

Conclusions of the thesis and final remarks are presented in Chapter 6

17

Chapter 2

Background

This chapter presents the most important works concerning the latent space and

XAI besides papers combining these aspects.

2.1 eXplainable Artificial Intelligence (XAI)

Today AI is one of the most important scientific and technological areas, with a

tremendous socio-economic impact and a pervasive adoption in many fields of mod-

ern society. The impressive performance of AI systems in prediction, recommenda-

tion, and decision-making support is generally reached by adopting complex Ma-

chine Learning (ML) models that “hide” the logic of their internal processes. As

a consequence, such models are often referred to as “black-box models” [5, 15, 16].

Examples of black-box models used within current AI systems include deep learn-

ing models like neural networks and ensemble models such as bagging and boosting

models. The high performance of such models in terms of accuracy has fostered

the adoption of these black-boxes even if their opaqueness may hide potential issues

inherited by training on biased or unfair data [17]. COMPAS gives an example

of such behavior: an AI system able to predict the risk of recidivism to support

18

Chapter 2 - Background

judges in such decisions. A few years ago, ProPublica1 published an article in which

they highlighted a racial bias in the COMPAS model employed by the judges in the

USA to predict recidivism. The problem with this algorithm was that it predicted

a higher recidivism risk for black people since the dataset used for training con-

tained a bias in favor of white people. There have been cases of people incorrectly

denied loans, ML-based pollution models stating that highly polluted air was safe

to breathe, and generally poor use of limited valuable resources in criminal justice,

medicine, energy reliability, finance, and other domains.

Thus there is a substantial risk that relying on opaque models may lead to

adopting decisions that we do not fully understand or, even worse, violate ethical

principles. Companies are increasingly embedding ML models in their AI products

and applications, incurring a potential loss of safety and trust [4]. These risks are

particularly relevant in high-stakes decision-making scenarios, such as medicine, fi-

nance, and automation. In 2018, the European Parliament introduced in the GDPR2

a set of clauses for automated decision-making in terms of a right of explanation for

all individuals to obtain “meaningful explanations of the logic involved” when auto-

mated decision making takes place. Also, in 2019, the High-Level Expert Group on

AI presented the ethics guidelines for trustworthy AI3. Despite divergent opinions

among legals regarding these clauses [18, 19, 20], everybody agrees that the need to

implement such a principle is urgent and that it is a huge open scientific challenge.

That is where eXplainable AI (XAI) comes in, aiming to make these black-box

systems more comprehensible to humans. XAI makes it possible to develop AI

systems that are fair and transparent according to certain principles.

- Build Trust : If the systems are transparent, it is easier for people to trust and

use them.

1https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-
analysis

2https://ec.europa.eu/justice/smedataprotect/
3https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

19

https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://ec.europa.eu/justice/smedataprotect/
https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai

Chapter 2 - Background

- Enable Auditing : Help systems to comply with government regulations.

- Improve the model : Looking at the explanations, Data Scientists will be able

to fine-tune the models and draw better results.

Leading tech companies like Amazon and IBM often provide XAI tools. They help

to describe the AI model pipeline, its expected outcome, and potential biases that

can interfere with the model’s performance. Today no company that uses artificial

intelligence can go without integrating XAI principles into their development process

if they want to manage compliance risks. If they fail to provide accounts for their

model’s decision, they can face million dollar lawsuits which have happened with

Facebook and Google many times.

2.1.1 Existing XAI Taxonomy for Explanation Methods

In this section, we synthetically recall the existing taxonomy and classification of

XAI methods present in the literature [5, 6, 21, 7, 22, 23]. We summarize the

fundamental distinctions adopted to annotate the methods in Figure 2.1.

The first distinction separates explainable by design methods from black-box

explanation models:

• Intrinsically explainable methods are explainable by design methods that

return a decision, and the reasons for the decision are directly accessible be-

cause the model is transparent.

• Post-Hoc explanation methods produce explanations for a fixed given black-

box.

The second differentiation distinguishes post-hoc explanation methods between

global and local methods:

20

Chapter 2 - Background

Figure 2.1: Existing taxonomy for the classification of explanation methods.

• Global explanation methods aim at explaining the overall logic of a black-box

model. Therefore the explanation returned is a global, complete explanation

valid for any instance;

• Local explainers aim at explaining the reasons for the decision of a black-box

model for a specific instance.

The third distinction categorizes the methods into model-agnostic and model-

specific:

• Model-Agnostic explanation methods can be used to interpret any type of

black-box model;

• Model-Specific explanation methods can be used to interpret only a specific

type of black-box model.

2.1.2 Categorization of Explanations

An XAI method can produce different types of explanations tied to the data type to

explain. Since the type of data we face is very different, the explanations returned

are also different. There are three principal data types recognized in the literature:

tabular data, images, and text. We can have different types of explanations for each

of them, as illustrated in Figure 2.2.

21

Chapter 2 - Background

- Feature Importance methods assign a score for every input feature based on

their importance to predict the output. The More the features are responsible

for predicting the output, the bigger their score will be.

- Rule-Based methods are methods that output a set of premises that the

record must satisfy in order to meet the rule’s consequence.

- Prototypes are a kind of explanation where the user is provided with a series

of examples that characterize a class of the black-box.

- Counterfactuals, also called contrastive explanations, are a type of expla-

nation in which the user is given either a set of rules to change his prediction

or a counter-example of the opposite class.

To be more explicit, in the following sections, we will denote XAI methods as

explainers while referring to the ML model as black-boxes.

2.1.3 Feature Importance

For feature importance-based explanations, the explainer assigns an importance

value to each feature, which represents how important that feature was for the

prediction under analysis. Formally, given a record x, an explainer f models a

feature importance explanation as a vector e = {e1, e2, . . . , em}, in which the value

ei ∈ e is the importance of the ith feature for the decision made by the black-box

model b(x). To understand each feature’s contribution, the sign and magnitude

of each value ei are considered. If ei < 0, it means that the feature contributes

negatively to the outcome y; otherwise, if ei > 0, the feature contributes positively.

The magnitude, instead, represents how great the contribution of the feature is to

the final prediction y. In particular, the greater the value of |ei|, the greater its

contribution. Hence, when ei = 0, it means that the ith feature is showing no

contribution to the output decision, and altering the value of that particular feature

22

Chapter 2 - Background
F
ig
u
re

2.
2:

E
x
am

p
le
s
of

ex
p
la
n
at
io
n
s
d
iv
id
ed

fo
r
d
iff
er
en
t
d
at
a
ty
p
es

an
d
ex
p
la
n
a
ti
on

s.

T
A
B
U
L
A
R

IM
A
G
E

T
E
X
T

T
IM

E
S
E
R
IE

S
G
R
A
P
H
S

F
e
a
tu

re
Im

p
o
rt
a
n
c
e

A
v
ec
to
r
co
n
ta
in
in
g
a

va
lu
e
fo
r
ea
ch

fe
at
u
re
.

E
ac
h
va
lu
e
in
d
ic
at
es

th
e

im
p
or
ta
n
ce

of
th
e

fe
at
u
re

fo
r
th
e

cl
as
si
fi
ca
ti
on

.

S
a
li
e
n
c
y
M

a
p
s

A
m
ap

th
at

h
ig
h
li
g
h
ts

th
e
co
n
tr
ib
u
ti
on

of
ea
ch

p
ix
el

at
th
e
p
re
d
ic
ti
o
n
.

S
e
n
te
n
c
e

H
ig
h
li
g
h
ti
n
g

A
m
a
p
th
a
t
h
ig
h
li
g
h
ts

th
e
co
n
tr
ib
u
ti
o
n
o
f
ea
ch

w
o
rd

to
th
e
p
re
d
ic
ti
o
n
.

S
e
ri
e
s
H
ig
h
li
g
h
ti
n
g

A
sc
o
re

fo
r
ev
er
y
p
o
in
t
in

th
e
se
ri
es

h
ig
h
li
g
h
ts

th
e

co
n
tr
ib
u
ti
o
n
to

th
e

p
re
d
ic
ti
o
n
.

N
o
d
e
H
ig
h
li
g
h
ti
n
g

A
sc
o
re

fo
r
ev
er
y
n
o
d
e
in

th
e
g
ra
p
h
h
ig
h
li
g
h
ts

th
e

co
n
tr
ib
u
ti
o
n
o
f
th
a
t

n
o
d
e
to

th
e
p
re
d
ic
ti
o
n
.

R
u
le
-B

a
se
d

A
se
t
of

p
re
m
is
es

th
at

th
e
re
co
rd

m
u
st

sa
ti
sf
y

in
or
d
er

to
m
ee
t
th
e

ru
le
’s

co
n
se
q
u
en
ce
.

r
=

E
d
u
ca
ti
o
n
≤

C
o
ll
eg
e
→
≤

50
k

C
o
n
c
e
p
t
A
tt
ri
b
u
ti
o
n

C
om

p
u
te

at
tr
ib
u
ti
o
n
to

a
ta
rg
et

“c
on

ce
p
t”

g
iv
en

b
y
th
e
u
se
r.

F
o
r

ex
am

p
le
,
h
ow

se
n
si
ti
ve

is
th
e
ou

tp
u
t
(a

p
re
d
ic
ti
o
n

of
ze
b
ra
)
to

a
co
n
ce
p
t

(t
h
e
p
re
se
n
ce

of
st
ri
p
es
)?

A
tt
e
n
ti
o
n

B
a
se
d

T
h
is

ty
p
e
o
f
ex
p
la
n
a
ti
o
n

g
iv
es

a
m
a
tr
ix

o
f
sc
o
re
s

th
a
t
re
ve
a
l
h
ow

w
o
rd
s
in

th
e
se
n
te
n
ce

a
re

re
la
te
d

to
ea
ch

o
th
er
.

A
tt
e
n
ti
o
n

B
a
se
d

T
h
is

ty
p
e
o
f
ex
p
la
n
a
ti
o
n

g
iv
es

a
m
a
tr
ix

o
f
sc
o
re
s

th
a
t
re
ve
a
l
h
ow

th
e
p
o
in
ts

in
th
e
se
ri
es

a
re

re
la
te
d
to

ea
ch

o
th
er
.

E
d
g
e
H
ig
h
li
g
h
ti
n
g

A
sc
o
re

fo
r
ev
er
y
ed
g
e
in

th
e
g
ra
p
h
h
ig
h
li
g
h
ts

th
e

co
n
tr
ib
u
ti
o
n
o
f
ed
g
es

to
th
e
p
re
d
ic
ti
o
n
.

P
ro

to
ty

p
e
s

T
h
e
u
se
r
is

p
ro
v
id
ed

w
it
h
a
se
ri
es

o
f
ex
a
m
p
le
s
th
a
t
ch
a
ra
ct
er
iz
e
a
cl
a
ss

o
f
th
e
b
la
ck

b
ox

p
=

A
ge
∈
[3
5,
60
],

E
d
u
ca
ti
o
n

∈
[C
o
ll
eg
e,
M
a
st
er
]
→

“
≥

50
k
”

p
=

→
“
ca
t”

p
=

“
..
.
n
o
t
b
a
d
..
.”
→

“
p
o
si
ti
ve
”

G
ra

p
h

P
ro

to
ty

p
e
s

Id
en
ti
fy
in
g
w
h
ic
h
p
a
rt

o
f
th
e
g
ra
p
h
h
a
s

in
fl
u
en
ce
d
th
e

p
re
d
ic
ti
o
n

C
o
u
n
te
rf
a
c
tu

a
ls

T
h
e
u
se
r
is

p
ro
v
id
ed

w
it
h
a
se
ri
es

of
ex
am

p
le
s
si
m
il
a
r
to

th
e
in
p
u
t
q
u
er
y
b
u
t
w
it
h
d
iff
er
en
t
cl
a
ss

p
re
d
ic
ti
o
n

q
=

E
d
u
ca
ti
o
n
≤

C
o
ll
eg
e
→

“
≤

50
k
”

c
=

E
d
u
ca
ti
o
n
≥

M
a
st
er
→

“
≥

50
k
”

q
=

→
“
3
”

c
=

→
“
8
”

q
=

T
h
e
m
ov
ie

is
n
o
t
b
a
d

→
“
p
o
si
ti
ve
”

c
=

T
h
e
m
ov
ie

is
th
a
t
b
a
d

→
“
n
eg
a
ti
ve
”

23

Chapter 2 - Background

should not change the final prediction. An example of a feature based explanation is

e = {age = 0.8, income = 0.0, education = −0.2}, y = deny . In this case, age is the

most important feature for the decision deny , income is not affecting the outcome,

and education has a slightly negative contribution.

Several types of explainers can obtain feature importance scores. The milestone

in feature importance explainers is lime (Local Interpretable Model-agnostic Ex-

planations) [24]. The main idea of lime is that the explanation may be derived

from records generated randomly in the neighborhood of the instance x that has to

be explained. By uniformly sampling records in the vicinity of x, lime is capable of

approximating locally the decision boundary of the black-box b and understanding

which of the features of x has contributed the most to cross that boundary. However,

not all the data are near decision boundaries, and it is possible that in a close neigh-

borhood of x, all the generated data have the same prediction. To overcome this,

lime samples instances both in the vicinity of x and far away from x. The closer

the points are to the instance, the greater the possibility of being sampled. After

sampling the data, lime has obtained a perturbed sample of instances {z ∈ Rd} to

feed to the model b and obtain yz = b(z). These predictions yz are then used to

train a spare linear model g. The feature importance scores consist of the weights

of the linear model.

The scores returned by lime give an indication of which features are more im-

portant but do not indicate how exactly they have contributed to the prediction.

SHapley Additive exPlanations(shap) [25] overcome this by using Shapley values,

a concept from cooperative game theory. Each feature is considered as a player,

and the payout is the final prediction. Accordingly to the input instance, Shap-

ley values estimate the payout among the input features. The payouts are the

feature import scores returned by shap. The sum of each score gives the final

prediction of the black-box. For this reason, the explanations provided by shap

are called additive feature attribution methods and respect the following definition:

24

Chapter 2 - Background

Figure 2.3: Explanations of shap for two records. The y-axis is the feature importance,
and the x-axis is the positive/negative contribution. The feature importance values sum
from the top to the bottom to obtain the final prediction. In the top example, the black-
box output of 0.791 is decomposed into contributions of singular features. Age was the
one contributing the most. In the bottom one, most features contributed negatively, with
hour-per-week being the most influencing.

b(x) ≈ g(x) = ϕ0 +
∑M

i=1 ϕixi, where x is the instance to explain, ϕi ∈ R are feature

importance scores, M is the number of input features, and ϕ0 is called expected

value and represent the prediction if all the features had zero contribution. shap

has three properties: (i) local accuracy, meaning that g(x) matches b(x); (ii) miss-

ingness, which allows for features xi = 0 to have no attributed impact on the shap

values; (iii) stability, meaning that if a model changes so that the marginal contri-

bution of a feature value increases (or stays the same), the shap value also increases

(or stays the same). The construction of the shap values allows us to employ them

25

Chapter 2 - Background

both locally (each observation gets its own set of shap values) and globally (by ex-

ploiting collective shap values). There are different strategies to compute shap’s

values: KernelExplainer, LinearExplainer, TreeExplainer, GradientExplainer, and

DeepExplainer. In particular, the KernelExplainer is an agnostic explainer, while

the others are specifically designed for different kinds of ML models.

The last popular approach to obtain feature importance scores is by extracting

them from the black-box’s gradients. This process can only be applied to differen-

tiable models but has been proven very effective when compared with other feature

importance explainers. Indeed, directly extracting the weights from the black-box

ensures their validity in representing model decisions. They are the actual values,

not an approximation. Integrated Gradient (intgrad) [26] is the most famous

explainer that applies this methodology. Formally, given the black-box b and the

instance to explain x, let x′ be the baseline input. The baseline x′ represents the null

data: for example, for the image domain, the baseline is generally a black or a white

image, while for other data can be a vector of zeros or ones. intgrad constructs a

path from x′ to x and computes the gradients of points along the path. For example,

with images, the points are taken by overlapping x on x′ and gradually modifying

the opacity of x. Integrated gradients are obtained by cumulating the gradients of

these points. Formally, the integrated gradient along the ith dimension for an input

x and baseline x′ is defined as follows. Here, ∂b(x)/∂xi is the gradient of b(x) along

the ith dimension. The equation for computing the scores is:

ei(x) = (xi − x′i)

∫ 1

α=0

∂b(x′+α(x−x′))
∂xi

dα

Choosing the proper baseline is more complex than it might seem. For example, a

black baseline image could cause the method to lower the importance of black pixels

in the source image. This problem is due to the difference between the input and

the baseline (xi−x′i) present in the integral equation. One possible fix is to average

26

Chapter 2 - Background

with different baselines [27] or use particular records [28].

These were the most common approaches of feature importance methods. One

thing to mention is that feature importance for image data is called saliency maps.

A Saliency Map (SM) is an image in which a pixel’s brightness represents how im-

portant the pixel is for the prediction. Formally, a SM is modeled as a matrix S,

which dimensions are the sizes of the image we want to explain, and the value sij is

the saliency values of the pixel with indices i and j. The greater the value of sij, the

bigger the saliency of the pixel. To visualize SM, we can use a divergent color map,

for example, ranging from red to blue. A positive value (red) means that the pixel

ij has contributed positively to the classification, while a negative one (blue) means

that it has contributed negatively. There are two approaches to creating SMs. The

first one assigns a saliency value to every pixel of the image. The second one seg-

ments the image into different pixel groups using a segmentation method, assigning

a saliency value for each segmented group. Pixel-based explainers are the most com-

mon methods since there are easier to produce. intgrad [26] can be easily applied

to images. Given the black-box b, the instance to explain x, and let x′ be the baseline

input (the baseline x′ is generally chosen as a black image). intgrad constructs a

path, varying opacity of the image, from x′ to x and computes the gradients of points

along the path. Integrated gradients are obtained by cumulating the gradients of

these points. ϵ-lrp, Layer-wise Relevance Propagation [29] explains the classifier’s

decisions by decomposition. ϵ-lrp redistributes the black-box prediction backward

to the input using local redistribution rules until it assigns a relevance score to each

input pixel. The simple ϵ-lrp rule redistributes relevance from layer l + 1 to layer

l: Ri =
∑

j
aiwij∑
i aiwij+ϵ

Rj where ai and is the activation of the neuron i, wij is the

weight connecting the neurons of i and j of the two layers and a small stabilization

term ϵ is added to prevent division by zero. deeplift [30], computes saliency maps

in a backward fashion similarly to ϵ-lrp, but it uses a baseline reference like in int-

grad. deeplift uses the slope instead of the gradients, which describes how the

27

Chapter 2 - Background

output y = b(x) changes as the input x differs from the baseline x′. Like ϵ-lrp, an

attribution value r is assigned to each layer i of the black-box going backward from

the output y. shap has two variants that can be employed for image classification:

deep-shap and grad-shap. deep-shap is a high-speed approximation algorithm

for shap values for deep learning models for images that build on a connection

with deeplift. The implementation differs from the original deeplift by using a

distribution of background samples as a baseline instead of a single value. It uses

Shapley equations to linearise non-linear components of the black-box, such as max,

softmax, products, divisions, etc. grad-shap, instead, is based on intgrad. As an

adaptation to make intgrad value approximate shap values, grad-shap reformu-

lates the integral as an expectation and combines that expectation with sampling

reference values from the background dataset. grad-cam [31] uses the gradient

information that flows into the last convolutional layer of a convolutional neural

network to assign saliency values to each neuron for a particular decision. grad-

cam++ [32] extends grad-cam solving some related issues about robustness. If

multiple objects have slightly different orientations or views, different feature maps

may be activated with differing spatial footprints. grad-cam++ fix this problem

by taking a weighted average of the pixel gradients. rise [33] produces saliency

map for an image x using a masking mechanism. rise generates N random mask

Mi ∈ [0, 1] from Gaussian noise. The input image x is element-wise multiplied with

these masks Mi, and the result is fed to the black-box. The saliency map is ob-

tained as a linear combination of the masks with the predictions corresponding to

the respective masked inputs. Regarding the segmentation-based explainers, most

methods are just variations of the already presented, inserting a segmentation al-

gorithm. lime can also be used for retrieving feature importance. lime divides

the input image into segments called superpixels. Then it creates the neighborhood

by randomly substituting the super-pixels with a uniform, possibly neutral, color.

xrai [34] is intgrad augmented with segmentation. xrai iteratively segments the

28

Chapter 2 - Background

image and tests each region’s importance using intgrad, fusing smaller regions into

larger segments based on attribution scores. The segmentation is repeated several

times to reduce the dependency on the image segmentation algorithm. One problem

with SMs is the confirmation bias, i.e., a user can hardly realize if a SM is a good

explanation or only shows what the user wants to see [14]. smoothgrad [35], and

most guided methods that use the target label to alter the SM suffer from this bias.

Usually, a saliency map is created directly on the gradient of the model’s output

signal w.r.t. the input ∂y/∂x. smoothgrad augments this process by smoothing

the gradients using the prediction labels of the black-box.

2.1.4 Rule-Based

After Feature importance, the most widely used explanations are rules. Rules are

the most simple and basic form of explanation and are among the most accepted

since they are clear to humans. Decision rules give the end-user an explanation of

the precise reasons that lead to the final prediction. A decision rule r, also called

factual or logic rule [36], has the form p → y, in which p is a premise, composed

of a Boolean condition on feature values, while y is the consequence of the rule.

In particular, p is a conjunction of split conditions of the form xi∈[v
(l)
i , v

(u)
i], where

xi is a feature and v
(l)
i , v

(u)
i are lower and upper bound values in the domain of

xi extended with ±∞. An instance x satisfies r, or r covers x, if every Boolean

conditions of p evaluate to true for x. If the instance x to explain satisfies p, the

rule p → y represents a candidate explanation of the decision g(x) = y. Moreover,

if the interpretable predictor mimics the black-box behavior in the neighborhood

of x, we further conclude that the rule is a candidate local explanation of b(x) =

g(x) = y. We highlight that, in the context of rules, we can also find the so-

called counterfactual rules [36]. Counterfactual rules have the same structure as

decision rules, with the only difference being that the consequence of the rule y

is different w.r.t. b(x) = y. They are important to explain to the end-user what

29

Chapter 2 - Background

should be changed to obtain a different output. An example of a rule explanation

is r = {age < 40, income < 30k, education ≤ Bachelor}, y = deny . In this case, the

record {age = 18, income = 15k, education = Highschool} satisfies the rule above.

A possible counterfactual rule, instead can be: r = {income > 40k, education ≥

Bachelor}, y = allow .

Rules can be obtained in several ways. One approach from the same authors of

lime is anchor [37]. This approach’s name comes from the output rules, called

anchors. The idea is that, for decisions on which the anchor holds, changes in

the rest of the instance’s feature values do not change the outcome. To obtain

the anchors, anchor perturbs the instance x obtaining a set of synthetic records

employed to extract anchors with precision above a user-defined threshold. Other

approaches like lore exploit a genetic algorithm for creating the neighborhood of

the record to explain, similar to the lime approach. The rules are then learned

by a decision tree trained on the generated neighborhood. Different approaches

involve the perturbation of the input [38] or extracting rules directly from a decision

tree [39].

2.1.5 Prototypes

Another way to explain a prediction is in terms of similarity to other data. For

example, “Your loan was denied because you are very similar to another person who

defaulted his loan.” According to cognitive science, humans understand categories.

In particular, human categorization can be modeled as the use of prototypes: rep-

resentative examples of the category as a whole [40]. The membership of an item

in the category is determined by its similarity to the prototypes of the category.

A prototype also called an archetype or artifact, is an object representing a set of

similar records. Prototypes serve as examples: the user understands the model’s

reasoning by looking at records similar to his/hers. It can be (i) a record from

the training dataset close to the input data x; (ii) a centroid of a cluster to which

30

Chapter 2 - Background

the input x belongs to or (iii) even a synthetic record, generating following some

ad-hoc process. Depending on the explainer considered, different definitions and

requirements to find a prototype are considered.

The first methodology developed for searching for prototypes in the data is a

“before the model” methodology, in the sense that it only analyses the distribution

of the dataset under analysis. MMD-CRITIC [41] produces prototypes as explana-

tions for a dataset using Maximum Mean Discrepancy (MMD). mmd-critic selects

prototypes by measuring the difference between the distribution of the instances and

the instances in the whole dataset. The set of instances nearer to the data distribu-

tion are called prototypes. mmd-critic shows only minority data points that differ

substantially from the prototype but belong in the same category. Furthermore,

mmd-critic also shows exceptions or criticisms: data that differ substantially from

the prototype but still belong to the category. Criticisms represent points that are

not well explained by the prototypes. They are selected as the farthest points from

the center of data distribution. mmd-critic selects criticisms from parts of the

dataset underrepresented by the prototypes, with an additional constraint to en-

sure the criticisms are diverse. protodash [42] is a variant of mmd-critic. It

is an explainer that employs prototypical examples and criticisms to explain the

input dataset. Differently, w.r.t. mmd-critic, protodash associates non-negative

weights, which indicate the importance of each prototype. In this way, it can reflect

even some complicated structures.

Other approaches concern privacy-related prototype explanations. Privacy-Preserving

Explanations [43] is the first approach that considers the concept of privacy in ex-

plainability by producing privacy protected explanations. To achieve a good trade-off

between privacy and comprehensibility of the explanation, the authors construct the

explainer by employing micro aggregation to preserve privacy. In this way, the au-

thors obtained a set of clusters with a representative record ci, where i is the i-th

cluster. From each cluster, a decision trees is extracted to provide an exhaustive ex-

31

Chapter 2 - Background

planation while having good comprehensibility due to the limited depth of the trees.

When a new record x arrives, a representative record and its associated shallow tree

are selected. In particular, from g, the representative ci closer to x is selected,

depending on the decision of the black-box.

Instead of explaining the data, some methods have applied supervised approaches.

Supervised approaches use label or prediction information to find a prototype set

that explains the black-box behavior. Hase et Al. created a taxonomy using hierar-

chically organized prototypes that can be used for classification purposes [44]. Bien

and Tibshirani [45] have proposed ProtoSelect, a prototype selection method with

the goal of building not only a condensed view of the data but also an interpretable

model. ProtoSelect is designed so that each prototype satisfies a set of desired prop-

erties of Sparsity and Accuracy. Future predictions can be made simply by looking

at the classification of the most similar prototype.

A prototype is not only a set of data. protopnet [46] figures out that prototypes

can be parts of images and then can be used to make the classification process

interpretable. A special architecture is needed to produce this particular type of

prototypes. The model learns a limited number of prototypical parts from the

dataset useful in classifying a new image. The model identifies several parts on the

query image that look like some training image prototypical parts. Then, it predicts

based on a weighted combination of the similarity scores between parts of the image

and the learned prototypes. The performance is comparable to the actual state of

the art but with more interpretability. Another variant for building prototypes is

to evaluate influence. influence functions [47], instead of building prototypes

for a class, it tries to find the most responsible data for a given prediction using

influence functions. Influence functions is a classic technique from robust statistics

to trace a model’s prediction through the learning algorithm and back to its training

data, thereby identifying training points most responsible for a given prediction.

Visualizing the training points most responsible for a prediction could be useful for

32

Chapter 2 - Background

more in-depth insights into model behavior.

2.1.6 Counterfactuals

Counterfactual thinking [48] is a concept in psychology that involves the human

tendency to create possible alternatives to events that have already occurred, some-

thing that is contrary to what actually happened. In XAI, these changes can be

given in terms of records with similar characteristics as the instance of interest but

with an altered outcome. For instance, a record with different features or a text with

missing/added words [12, 49]. In this sense, we speak about instance-based coun-

terfactual explanations [50] or counter-exemplars [51]. Another approach is to find

counterfactual rules: a set of rules that guide the user to change the outcome of the

black-box. There are several methods in the context of counterfactual explanations,

even if the majority are only defined from a theoretical point of view.

Wachter et al. [52] formulated that an explanation tells us that b(x) = y was

returned because variables of x have values x1, x2, ..., xn. Instead, a counterfactual

explanation focuses on the opposite prediction. If x1 and x2 had values x′1, x
′
2 and

all the other variables remained constant, b(x′) = ¬y would have been returned,

where x′ is the record x with the suggested changes. The counterfactual explanation

must also be close to the original instance. Following this reasoning, it is possible to

search for counterfactual explanations by minimizing a loss function. This searching

strategy is called optimization searching since the counterfactual search is done by

minimizing a loss [9]. In [52], such loss is composed of a quadratic distance between

the desired outcome and the black-box prediction and the distance between the

original sample and the counterfactual. The loss function minimized by wach is

defined as

λ(b(x′)− y′)2 + d(x, x′)

where the first term is the quadratic distance between the desired outcome y and

33

Chapter 2 - Background

Figure 2.4: Two different counterfactual explanations. (a):Explanation of cem on mnist:
the instance to explain on the center, Pertinent Negative left, and Pertinent Positive
right. (b): Explanation of dice on mnist: left to right, the instance to explain, the
closest counterfactuals labeled as 6 and 8.

the classifier prediction on x, and the second term is the distance d between x and

x′. The parameter λ balances the contribution of the first term against the second

term. A low value of λ means that we prefer x′ similar to x, while a high value of

λ means we aim for predictions close to the desired outcome y. wach suggested

to maximize λ while minimizing the loss. Thus, λ becomes a parameter of the

search problem, and a tolerance ϵ is used to constraint the classification of x not

too far away from y, i.e., |b(x) − y| < ϵ. Hence, the loss measures how far the

outcome of the counterfactual b(x) is from the desired outcome y and how far the

counterfactual x′ is from the instance of interest x. The distance function d adopted

is a crucial characteristic in any counterfactual explainer. Wachter et al. adopt the

Manhattan distance weighted with the inverse median absolute deviation (MAD) of

each feature, i.e.,

d(x, x′) =
m∑
i

|xi − x′i|
MADi

where MADi is the median absolute deviation of the i-th feature. Any other distance,

such as the Euclidean distance, can be used. The loss function can be minimized

through any suitable optimization algorithm. A drawback of wach is that setting

the initial value of λ a priori is unclear, as well as the value of ϵ.

A more greedy method is called Growing Spheres Generation [53] (gsg). gsg

relies on a greedy approach: it grows a sphere of synthetic instances around x to

find the closest counterfactual x′. Given x, gsg ignores the direction of the closest

classification boundary. Indeed, gsg generates synthetic counterfactuals randomly

34

Chapter 2 - Background

in all directions of the feature space until the decision boundary of the classifier

is crossed. It starts by generating z instances using a uniform distribution within

a given radius r. The radius is halved until, for all the instances z, we have that

b(z) = b(x). Then the previous radius is considered, and the most similar instance

to z to x is returned as a valid counterfactual x′. We can say that gsg generates

candidate counterfactuals in the feature space in a l2-spherical layer around x until

a valid counterfactual is found. This gives the name to the algorithm. However,

greedy approaches can return only one counterfactual per instance to explain and

sometimes can be unplausible.

Diverse Counterfactual Explanations (dice) [54] solves an optimization problem

with several constraints to ensure diversity, feasibility, and proximity when return-

ing counterfactuals. Feasibility is critical in the context of counterfactuals since it

allows for avoiding unfeasible examples. For example, consider the case of a clas-

sifier that determines whether to grant loans. If the classifier denies the loan to

an applicant with a low salary, the cause may be low income. However, a counter-

factual such as “You have to double your salary” may be unfeasible, and hence it

is not a satisfactory explanation. Feasibility is achieved by adding a penalty term

in the counterfactual loss that favors counterfactuals with fewer modified features.

Besides feasibility, another factor used by dice is diversity, which provides different

ways of changing features to alter the outcome class. Indeed, dice returns a set

of k different counterfactuals for the input x. Diversity is captured by building on

determinantal point processes, which have been adopted for solving subset selection

problems with diversity constraints [55]. dice use the following metric based on

the determinant of the kernel matrix given the counterfactuals diversity = det(K),

where Ki,j = 1
1+dist(ci,cj)

and dist(ci, cj) denotes a distance metric between the two

counterfactual examples. Proximity is achieved as the (negative) vector distance

between the original input and counterfactual example features. Counterfactuals

are returned by minimizing a loss composed of these three measures weighted with

35

Chapter 2 - Background

different fixed weights.

Counterfactual reasoning is claimed to deal with cases where the antecedent, i.e.,

the instance under analysis, is varied to change the prediction outcome: “Would the

customer has had the loan accepted if she had an income of 15,000$?” However,

in [56] and [57] are illustrated contrastive explanations: counterfactual explanations

related to situations where different outcomes are analyzed: “what made the differ-

ence between the customer who got the loan accepted and the customer who got the

loan refused?” The contrastive explanation shifts the focus to the answer instead of

the question. The contrastive explanation method (cem) described in Dhurandhar

et al. [58] formulated that the features which are minimally sufficient to obtain a

certain outcome are called pertinent positives, while the features whose absence is

necessary for the outcome are named pertinent negatives. Contrastive Explanation

Method (cem) has two components: Pertinent Positives and Pertinent Negatives.

The first can be seen as prototypes and are the minimal and sufficient factors that

have to be present to obtain the output y, while the latter are contrastive factors

that should be minimally and necessarily absent. cem is formulated as an optimiza-

tion problem over the perturbation variable δ. In particular, given x to explain,

cem considers x′ = x + δ, where δ is a perturbation applied to x. During the pro-

cess, there are two values of δ to minimize: δp for the pertinent positives and δn for

the pertinent negatives. cem solves the optimization problem with a variant that

employs an autoencoder to evaluate the closeness of x′ to the data manifold.

Other approaches involves the use of a genetic algorithm [59, 60], Shapley val-

ues [61], or regression based searches [62].

2.1.7 Transparent by Design Methods

Transparent by Design methods, also called intrinsic methods, require a specific

section. In the recent explosion of work on “explainable ML”, the main focus of the

authors was on post-hoc methods (Section 2.1.1), where a second model is created to

36

Chapter 2 - Background

explain the first black-box model. This is because it is easier to create a reasonably

accurate black-box model and then explain it rather than create a transparent one.

The complexity of black-box models will always be an advantage in terms of accuracy

over transparent ones. It only matters the quantity and the quality of the data.

Often, companies and researchers throw all the data into the model, and something

will come up. The prediction explanation only comes in second after a model with

acceptable accuracy has been obtained. However, this is problematic since post-

hoc explanations are often unreliable and misleading. The problem with post-hoc

explanations is that they must be wrong. They cannot have perfect fidelity with

respect to the original model. If the explanation were completely faithful to what

the original model computes, the explanation would equal the original model. One

would not need the original model in the first place, only the explanation. This leads

to the danger that any explainer for a black-box model can accurately represent the

original model in parts of the feature space. An inaccurate explanation model limits

trust in the explanation and, by extension, trust in the black-box it is trying to

explain. An explainable model that has a 90% agreement with the original model

indeed explains the original model most of the time. However, an explanatory

model that is correct 90% of the time is wrong 10% of the time. If a tenth of the

explanations is incorrect, one cannot trust the explanations, and thus one cannot

trust the original black-box. If we cannot know whether our explanation is correct,

we cannot trust either the explanation or the original model. Transparent by design

methods come to solve this problem. Due to the intrinsic transparency nature, the

prediction decision process is known by construction. However, the accuracy of the

prediction would suffer from this design. Usually, transparent-by-design models are

weaker in terms of accuracy than black-box models. Also, they are usually difficult

to build since they require considerable knowledge of the data used.

In most cases, it is a matter of a trade-off between accuracy and transparency,

and the use depends on the case. In high-stack decision-making problems, like

37

Chapter 2 - Background

healthcare, it is usually preferable to use a transparent method since there is the

need to justify the action [3]. However, even in this case, if an algorithm can save

lives with a 10% improvement against the transparent model, why would you not

use it?

The explanations produced for such types of methods are of the same typology

as the one presented before. However, they are not derived from a black-box but

are built together with the model. The final model can not only predict new data

but, at the same time, can also explain it. The most simple example architecture

of a transparent-by-design model is Decision Trees. Decision Trees have been the

primary type of interpretable design models for quite a while. Due to their high

interpretability, they are the go-to algorithm for real-world business applications.

They can be explained as a series of questions of the type of if-else statements

that are very human-friendly. Also, the time required for the learning algorithm to

make predictions is very low. However, they are unstable, relatively inaccurate, and

prone to overfitting. A small change in data can lead to a vastly different decision

tree. This can be rectified by replacing a single decision tree with a random forest of

decision trees. By doing this, we increase the complexity of the model and, therefore,

lower its transparency. Tools like xgboost [63], which relies on Boosting Tree, have

implemented some Feature Relevance in years to explain their prediction, but they

remain a black-box for all intents.

A ruled-based classifier is a similar approach to Decision trees [64], always based

on rule explanation. It provides an output set of rules requiring no further ex-

planations. Nevertheless, the comprehensibility of rule models is also not without

caveats. For example, while individual rules may be well understood, the complete

rule model may lose its explainability if there are too many rules. Interpretable

Decision Sets (IDS) [65] is a rule learning algorithm that provides means for balanc-

ing the model size and other facets of interpretability with prediction performance

through user-set weights.

38

Chapter 2 - Background

Furthermore, ruled-based explainers are not the only methods to make trans-

parent by design models. InterpretML4 is a package from Microsoft that offers a

new interpretability algorithm called Explainable Boosting Machine (ebm), which

is based on Generalized Additive Models (gams). Generalized additive models

were initially invented by Trevor Hastie and Robert Tibshirani in 1986 [66]. Al-

though gam does not receive sufficient popularity yet as a random forest or gradi-

ent boosting in the data science community, it is undoubtedly a powerful yet simple

technique. The idea of gam is that the relationships between the individual pre-

dictors and the dependent variable follow smooth functions that can be linear or

non-linear. These relationships can be estimated simultaneously and then added up.

y = f1(x1)+f2(x2)+ ... This allows computing the exact contribution of each feature

to the final prediction y. Although a gam is easy to interpret, its accuracy is signifi-

cantly less than more complex models that permit interactions. For this reason, Lou

et al. [67] also added interaction terms in the sum of the contributions and called

it ga2m: y =
∑

fi(xi) +
∑

fij(xi, xj) As a result, GA2M significantly increases

the prediction accuracy but still preserves its nice interpretability. Although the

pairwise interaction terms in ga2m increase accuracy, it is highly time-consuming

and CPU-hungry. ebm solves the computational problem by learning each smooth

function f(x) using bagging and gradient boosting techniques. The functions are

modeled as straightforward decision trees, and the resulting adding function of the

prediction is a stepwise function. This results in a better computational cost without

losing accuracy or interpretability. An example is shown in Figure 2.5

These methods, while fully transparent, have lower performance than very com-

plex black-boxes like Neural Networks. The next step in transparent by design

methods is to make Neural Networks transparent. The groundbreaking work on this

topic is done by Chen et al. [68]. They won the FICO challenge in 2018 by producing

a model capable of performance similar to other black-boxes but fully transparent.

4https://interpret.ml/

39

Chapter 2 - Background

Figure 2.5: TOP : Overall global explanation (left), an example of a global explanation
(right).
BOTTOM : Local explanations of ebm: left, a record classified as 1 ; right a record
classified as 0.

They call their globally interpretable model a two-layer additive risk model. It was

designed to resemble traditional subscale models, where the features are partitioned

into meaningful subgroups, and the subgroup scores are later combined into a global

model. They combined these features by summing the sub-features and applying

a sigmoid activation function as in classic Neural Networks. The scores of every

sub-feature are computed by minimizing a classification loss. The interpretability

in this type of model is in the sub-feature system. Since we have a score for every

feature, we can decompose the final prediction in singular feature contribution as

ebm did before. The drawback of this approach is that building the subfeature is

not done automatically and requires solid domain knowledge to do it efficiently.

More problems arise when moving to image or text data. For years Deep Neural

Networks have been predominant in the image domain world. Due to the data’s

complexity, transparent design methods suffer in performance even more than be-

fore. New techniques are arising that promise to enhance the transparency of Deep

Neural Networks, but we are far from creating a fully transparent-by-design method.

The most promising approach to transparency is by using Concepts. Most ML

40

Chapter 2 - Background

models operate on low-level features like edges and lines in a picture that does not

correspond to high-level concepts that humans can easily understand. In [14, 69],

they pointed out that feature-based explanations applied to state-of-the-art complex

black-box models can yield non-sensible explanations. Concept-based explainability

constructs the explanation based on human-defined concepts rather than represent-

ing the inputs based on features and internal model (activation) states. This idea

of high-level features is more familiar to humans, that are more likely to accept it.

High-level concepts could be used to design a transparent model. During training,

each layer of a deep learning model encodes the features of the training images into a

set of numerical values and stores them in its parameters. The lower layers of a neu-

ral network will generally learn basic features such as corners and edges. The higher

layers of the neural network will detect more complex features such as faces, objects,

and entire scenes. Ideally, a neural network would represent concepts relevant to

the classes of images it is meant to detect. Nevertheless, we do not know that, and

deep learning models are prone to learning the most discriminative features, even if

they are the wrong ones.

2.1.8 Desiderata of an explanation

There are many concepts and opinions regarding the desiderata for an explanation.

First of all, the literature agrees that there is no universal type of explanation

that is good for everyone and for all purposes: in some contexts, a more high-level

explanation is needed; in others, a more technical one, depending on who is receiving

the explanation and why the explanation is required.

The goodness of an explanation should be evaluated by considering its validity

and utility. In the literature, these desiderata are evaluated in terms of goodness,

usefulness, and satisfaction of explanations. The state-of-the-art provides both qual-

itative and quantitative methodologies for evaluating explanations.

Regarding the qualitative evaluation, it values the actual usability of explana-

41

Chapter 2 - Background

tions from the point of view of the end-user, such as if they satisfy human curiosity

and trust. A large body of research has identified that one of the critical variables

that may influence decisions about automation use is a user’s trust in the automa-

tion. Users tend to use AI that they trust while rejecting the one they do not.

For appropriate use to occur, users’ trust must match the true capabilities of the

AI system. The appropriateness of trust can be evaluated in terms of its calibra-

tion [70], or “the correspondence between a person’s trust in the automation and

the automation’s capabilities”. Trust is often seen as a ’single-direction road,’ i.e.,

something that needs to be increased. However, ’trust’ in AI technologies must

be reduced to boost transparency-based models. In this context, an interesting

work of Doshi-Velez [11] proposes a systematization of evaluation criteria into three

categories:

1. Functionally-grounded metrics aim to evaluate the interpretability by ex-

ploiting some formal definitions used as proxies, and they do not require hu-

mans for validation.

2. Application-grounded evaluation methods require human experts able to

validate the specific task and explanation under analysis [71, 72].

3. Human-grounded metrics evaluate the explanations through humans who

are not experts. The goal is to measure the overall understandability of the

explanation in simplified tasks [65, 73].

Quantitative evaluation concerns metrics that try to define how well a method

produces valid explanations quantitatively. They are tied down to the explanation

type since they are usually used to compare other explainers producing the same

explanation.

Feature importance explanations indicate the impact of a particular feature on

the final prediction. In particular, they rank the features from the most important to

42

Chapter 2 - Background

Figure 2.6: Example of Insertion (on the left) and Deletion (on the right) metric com-
putation performed with lime and a hockey image from the imagenet dataset. For the
Deletion metric, every pixel is substituted with a black one until we have a fully black
image. For the Insertion metric, the image starts blurred, and then pixels are “added”
by restoring their opacity. The red dot in the graphs indicates the position of the images
(50% deleted/inserted).

the less one, giving them a score. One way to validate feature importance explainers

is to check the true importance of features. This metric is called faithfulness [74]

and consists of removing features from the original sample in the order given by

the feature importance explanation and observing the drop in black box accuracy.

The intuition behind deletion is that removing the “cause” will force the black-

box to change its decision. A complementary approach is to insert features instead

of removing them. monotonicity evaluates the importance of the features in the

prediction by incrementally adding each one in order of increasing importance given

by the feature importance. In this case, we expect that the black-box performance

increases by adding more and more features, thereby resulting in monotonically

increasing model performance. Petsiuk et al. [33] gives a similar approach to deletion

and insertion metrics. They measured the modification in accuracy for every feature

removal or inserted and obtained an accuracy curve with respect to the number of

features. The final score is given by the area under the accuracy drop curve. For

deletion, the lower the better, for insertion, the greater the better (Figure 2.6).

Regarding rule-based methods, the comparison is difficult. In this case, the eval-

43

Chapter 2 - Background

uation focuses on the performance of the explainer and how close the explainer f

is to the black-box model b. Fidelity aims to evaluate this, in particular how good

is f at mimicking the black-box decisions. There may be different specializations

of fidelity, depending on the type of methods under analysis [36]. Rule-based ex-

planations usually output a decision tree, a surrogate model which tries to mimic

the original black-box. Fidelity uses standard accuracy to compare the prediction

between the black-box and the surrogate model on the instances used to train the

black-box. The more similar the two models are, the close the fidelity is to one.

Prototype and counterfactual explanations are the most challenging type of ex-

planations to evaluate. Nevertheless, they need to guarantee some desirable prop-

erties. Bien et al. [45] postulated that a desirable prototype set for a class l would

satisfy the following properties: cover as many training points as possible of the

same class l, covers as few training points as possible of classes different from l,

and must accurately represent the data. In other words, a good set of prototype

explanations should cover as better as possible the possible categories in the data

(sparsity) as well to be accurate to new instances (accuracy).

For Counterfactual explanations, the most widely used and shared desirable

properties are: validity, minimality, similarity, plausibility, discriminative power,

actionability, causality, and diversity. The most rigorous and inspiring works in this

direction are Mothilal et al. [54], Verma et al. [75], and Guidotti et al. [9].

- Validity. A counterfactual x′ is valid iff it actually changes the classification

outcome with respect to the original one, i.e., b(x′) = b(x).

- Minimality (Sparsity). There should not be any other valid counterfactual

example x′′ such that the number of different attribute value pairs between x

and x′ is higher than the number of different attribute value pairs between x

and x′′.

- Similarity (Proximity). A counterfactual x′ should be similar to x, i.e., given

44

Chapter 2 - Background

a distance function d in the domain of x, the distance between x and x′ should

be as small as possible.

- Plausibility (Reliability). Given a reference population X, a counterfactual

x′ is plausible if the feature values in x′ are coherent with those in X. This

practically means that the feature values of x′ should not be higher/smaller

than those observable in X, and that x′ should not be labeled as an outlier

with respect to the instances in X. Plausibility helps increase trust towards

the explanation: it would be hard to trust a counterfactual if it suggests a

combination of unrealistic features.

- Actionability (Feasibility). Given a set A of actionable features, i.e., features

that can be mutated, a counterfactual x is actionable iif all the differences

between x′ and x refers only to actionable features that can be changed. Ex-

amples of non-actionable features that cannot be changed in a counterfactual

are age, gender, race, etc. Indeed, a counterfactual should never change the

non-actionable (immutable) features.

- Diversity. Let C be a set of (valid) counterfactuals for the instance x. Diverse

counterfactuals should form the counterfactual explanation C, i.e., while every

counterfactual x′ ∈ C should be minimal and similar to x, the difference among

all the counterfactuals in C should be maximized [54, 76]. For instance, three

(similar) counterfactuals saying that a yearly income of 15,000$, of 15,100$,

and 14,800$ is going to change the outcome are less useful than three (different)

counterfactuals saying that the outcome can be changed (i) with a yearly

income of 15,000$, (ii) by owning a car, or (iii) by first paying back the other

debts. Indeed, with the second set of diverse counterfactuals, there are more

possible actions to change the classification outcome.

Finally, the last propriety we want from an explanation is to not change over sub-

sequent runs or with slightly different inputs. stability aims at validating how stable

45

Chapter 2 - Background

the explanations are. It can be evaluated by exploiting the Lipschitz constant [74]

as

Lx = max
∥ex − ex′∥
∥x− x′∥

, ∀x′ ∈ Nx

where x is the explained instance, ex the explanation and Nx is a neighborhood of

instances x′ similar to x. Another way to measure stability is sensitivity. It has been

shown that models with high explanation sensitivity are prone to adversarial attacks:

Interpretation of Neural Networks is Fragile [77]. Explanation sensitivity [78] mea-

sures the extent of explanation change when the input is slightly perturbed. The

sensitivity metric measures the maximum sensitivity of an explanation using the

Monte Carlo sampling-based approximation. By default, it samples multiple data

points from a subspace of an infinite sphere of a predefined radius. Note that the

maximum sensitivity is similar to the Lipschitz [79] continuity metric, however, it is

more robust and easier to estimate.

2.2 Benchmarking of XAI methods

The metric presented in the previous section can be used to assess the quality of

explanations. However, each time a new method is proposed, some of the available

metrics are exploited to evaluate the goodness of the explanations extracted, such

as in [36, 80]. In addition, some authors also propose new metrics along with their

methods of explanation. This thus leads to great difficulty in comparing explana-

tions obtained from different explainers. For this reason, we evaluate the goodness

of explanations obtained using the most popular explainers presented before using

the same quantitative methodology. To achieve this goal, we compared the explana-

tions obtained from applying different explainers, considering the different metrics

in the literature. Given a dataset DL with labels L, the methodology followed for

comparing the different explanations is as follows:

46

Chapter 2 - Background

1. Split the dataset DL into train and test, obtaining Dtrain with its labels Ltrain

and Dtest with its labels Ltest;

2. Define and train a black-box model b on the train set Dtrain and Ltrain;

3. Test the black-box b on the test set Dtest, obtaining Tpred = b(Dtest);

3. Explain Tpred, the local predictions of b, using an explainer E, obtaining a set

of explanations Exps = E(b,Dtest, Tpred).

4. Apply the metrics available depending on the type of input data and the kind

of explanation provided.

To compare the performance of the metrics, we adapted the Nemenyi test. For each

dataset, we record the average ranking of explainers for a given metric and then run

the Nemenyi test to see if one method is statistically better than another.

We divided the explainers into two categories based on the data type they handle:

tabular explainers and image explainers.

Tabular Datasets: We consider three benchmark datasets for the tabular data:

all of them have different characteristics that may affect the performance of the

explainers. For all of them, we apply a standard pre-process: we replaced the cate-

gorical variables using a TargetEncoder, replaced the missing values using the mean

(of median) of the column under analysis, and removed the outliers by visualizing

the statistical distribution of the variables. We analyzed adult5: a binary classi-

fication with the task of predicting if a person earns more or less than 50K per

year. It has 14 attributes (numerical and categorical) and 48842 records. Then, we

considered german6: a binary classification for predicting the credit risk of a per-

son. It has 20 attributes, mostly categorical, with 1000 records. Lastly, compass7:

a multi-class dataset, in which the goal is to predict the recidivism of a convicted

5adult: https://archive.ics.uci.edu/ml/datasets/adult
6german: https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
7compass: https://www.kaggle.com/datasets/danofer/compass

47

https://archive.ics.uci.edu/ml/datasets/adult
https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://www.kaggle.com/datasets/danofer/compass

Chapter 2 - Background

adult german compass mnist cifar imagenet

black-box LG XGB CAT LG XGB CAT LG XGB CAT CNN CNN VGG16
F1-score 0.65 0.82 0.80 0.66 0.75 0.79 0.63 0.69 0.68 0.99 0.74 0.76

Table 2.1: We report here the weighted F1 score for the various black-boxes.

Table 2.2: Comparison on fidelity and faithfulness of the explanation methods. We report
the mean and the standard deviation over a subset of 50 test set records.

Fidelity Faithfulness
Dataset Black-Box

lime shap dalex anchor lore lime shap dalex

adult

LG 0.98 (0.21) 0.61 (0.43) 0.35 (0.03) 0.99 (0.05) 0.98 (0.03) 0.10 (0.30) 0.38 (0.37) 0.08 (0.03)
XGB 0.98 (0.03) 0.88 (0.02) 0.64 (0.07) 0.98 (0.03) 0.98 (0.04) 0.03 (0.32) 0.36 (0.49) 0.27 (0.31)
CAT 0.96 (0.32) 0.78 (0.51) 0.70 (0.15) 0.99 (0.21) 0.98 (0.43) 0.10 (0.32) 0.44 (0.37) 0.11 (0.30)

german

LG 0.98 (0.06) 0.91 (0.23) 0.57 (0.21) 0.73 (0.09) 0.98 (0.12) 0.23 (0.60) 0.19 (0.63) 0.20 (0.03)
XGB 0.99 (0.10) 0.82 (0.02) 0.65 (0.03) 0.80 (0.03) 0.98 (0.21) 0.16 (0.26) 0.44 (0.21) 0.31 (0.09)
CAT 0.98 (0.05) 0.67 (0.12) 0.63 (0.09) 0.62 (0.31) 0.98 (0.35) 0.34 (0.33) 0.43 (0.32) 0.33 (0.12)

compass

LG 0.95 (0.31) 0.83 (0.41) 0.23 (0.03) 0.53 (0.46) 0.82 (0.03) 0.12 (0.56) 0.41 (0.54) 0.11 (0.08)
XGB 0.97 (0.21) 0.43 (0.33) 0.45 (0.23) 0.67 (0.42) 0.87 (0.03) 0.19 (0.44) 0.56 (0.38) 0.13 (0.13)
CAT 0.98 (0.27) 0.54 (0.10) 0.55 (0.30) 0.22 (0.92) 0.81 (0.02) 0.22 (0.42) 0.57 (0.32) 0.18 (0.07)

person, with 3 classes of risk recidivism. It has 21800 records and 10 variables, all

of them categorical except age.

Tabular Black-Boxes and Explainers: For comparing the tabular explainers,

we define and train 3 ML models, for each dataset: a Logistic Regression (LG),

then XGBoost8 (XGB), and Catboost9 (CAT). The performances of the black-box

models are reported in Table 2.110. For validating the explanations on tabular

data, we refer to seven explanation methods already presented in Section 2.1.8. For

feature importance, we considered lime with 5000 synthetic samples to generate for

each record to explain, shap, and dalex with the break down method. The results

obtained from the applications of these metrics are reported in Table 2.2 for fidelity

and faithfulness, while in Table 2.3, we report the stability. The monotonicity is not

reported since, for every method, it was False, showing that no method complies

with this requirement.

In Figure 2.7, we report an overall ranking evaluation of the explanation methods

8https://xgboost.readthedocs.io/en/stable/
9https://catboost.ai/

10The dataset was split into train and test with ratio 80%− 20%

48

Chapter 2 - Background

Table 2.3: Comparison on the stability metric. We report the mean and the standard
deviation over a subset of 50 test records.

Stability
Dataset Black-Box

lime shap dalex anchor lore

adult

LG 24.37 (2.74) 1.52 (4.49) 5.40 (0.10) 22.36 (8.37) 21.76 (11.80)
XGB 10.16 (6.48) 2.17 (2.18) 6.00 (0.06) 26.53 (13.08) 30.01 (20.52)
CAT 0.35 (0.43) 0.03 (0.01) 4.3 (0.04) 6.51 (4.40) 27.80 (70.05)

german

LG 18.8 (0.73) 19.01 (23.4) 12.54 (0.05) 101.0 (62.7) 622.1 (256.7)
XGB 26.08 (14.5) 38.43 (30.6) 5.12 (0.10) 121.4 (98.4) 725.8 (337.2)
CAT 2.49 (9.91) 15.92 (10.71) 3.54 (0.9) 123.7 (76.86) 756.7 (348.2)

compass

LG 0.51 (0.21) 0.54 (0.10) 11.42 (19.24) 112 (23.52) 321.3 (261.4)
XGB 0.676 (0.30) 13.67 (21.64) 6.00 (0.06) 97.20 (18.04) 229.1 (39.61)
CAT 2.49 (9.91) 14.22 (10.01) 4.33 (0.04) 100.7 (60.60) 526.9 (341.5)

Figure 2.7: Critical difference plot for Nemenyi test (α = 0.05). We compare the tabular
explanations in terms of fidelity and stability computable for all the explanation kinds.

in terms of fidelity and stability. From this plot, we can clearly see that lore

and anchor, which are the rule-based methods, perform better than the feature

importance ones. This result is particularly interesting because feature importance

methods are more studied than logical explanations, even though the latter is more

similar to human thinking [81]. Our experiments show that rule-based methods

have high fidelity, correctly replicating the black-box behavior. This fact is also

highlighted by the stability results, which are extremely good for lore, followed

by anchor. Regarding the feature importance methods, lime also has excellent

fidelity, but unfortunately, this method suffers in terms of stability due to its random

generation of the neighborhood. shap and dalex, instead, do not exhibit good

fidelity but are better in terms of stability w.r.t. lime. Finally, in Table 2.2, we

present faithfulness. shap achieves the best results, being the metrics with values

between−1 and 1. However, we remark that none of the methods reached optimality.

49

Chapter 2 - Background

Table 2.4: Insertion (left) and deletion (right) metrics expressed as AUC of accuracy
vs. percentage of removed/inserted pixels. The reported value represents the mean of
the scores obtained on a subset of 100 instances of the dataset, and the value on the
parenthesis is the standard deviation. Best results are highlighted in bold, and second
best results are underlined.

Insertion Deletion
mnist cifar imagenet mnist cifar imagenet

lime 0.807 (0.14) 0.41 (0.21) 0.34 (0.25) 0.388 (0.21) 0.221 (0.19) 0.051 (0.05)
deep-shap 0.981 (0.01) 0.32 (0.28) 0.25 (0.22) 0.182 (0.18) 0.187 (0.32) 0.098 (0.09)
grad-shap 0.980 (0.01) 0.46 (0.24) 0.35 (0.24) 0.188 (0.19) 0.153 (0.24) 0.056 (0.07)

ϵ-lrp 0.976 (0.02) 0.56 (0.20) 0.28 (0.19) 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)
intgrad 0.975 (0.03) 0.64 (0.22) 0.37 (0.23) 0.128 (0.01) 0.118 (0.07) 0.019 (0.04)
deeplift 0.976 (0.02) 0.57 (0.20) 0.28 (0.19) 0.120 (0.01) 0.127 (0.11) 0.014 (0.02)

smoothgrad 0.959 (0.03) 0.55 (0.23) 0.34 (0.26) 0.135 (0.04) 0.153 (0.13) 0.033 (0.05)
xrai 0.956 (0.04) 0.58 (0.21) 0.40 (0.26) 0.151 (0.04) 0.144 (0.07) 0.086 (0.11)

grad-cam 0.941 (0.04) 0.57 (0.20) 0.21 (0.19) 0.297 (0.20) 0.153 (0.12) 0.139 (0.12)
grad-cam++ 0.941 (0.04) 0.52 (0.22) 0.32 (0.26) 0.252 (0.13) 0.283 (0.24) 0.081 (0.10)

rise 0.978 (0.03) 0.61 (0.21) 0.50 (0.26) 0.120 (0.01) 0.124 (0.07) 0.044 (0.05)

Nevertheless, shap turns out to be the best in this context, followed by dalex and

lime.

Image Datasets: For the experiments on images, we considered three datasets.

The handwritten number classification dataset mnist11. It has ten classes, from

0 to 9, and the images are low resolution (28x28) and greyscale. Then, cifar12:

low resolution (32x32) color images dataset with ten classes, ranging from dogs to

airplanes. Lastly, imagenet13: composed of high resolution color images (224x224),

with a 1000 classes. We chose these datasets because they are the most utilized,

and we have different classes with various image dimensions.

Image Black-Boxes and Explainers: On these three datasets, we trained the

models most used in literature to evaluate the explanation methods: for mnist

and cifar we trained a convolutional neural network with two convolutions and

two linear layers, while for imagenet we decided to use the VGG16 network [82].

The performances of the black-box models are reported in Table 2.1. For the lime

11http://yann.lecun.com/exdb/mnist/
12http://image-net.org/
13https://www.cs.toronto.edu/ kriz/cifar.html

50

http://yann.lecun.com/exdb/mnist/
http://image-net.org/
https://www.cs.toronto.edu/~kriz/cifar.html

Chapter 2 - Background

Table 2.5: Sensitivity metric and runtime results, the lower, the better. The best results
are highlighted in bold, second best results are underlined. The reported value represents
the mean of the scores obtained on a subset of 100 instances of the dataset, and the
value on the parenthesis is the standard deviation. Runtime is expressed in seconds, and
uncertainty is on the last decimal.

Sensitivity Runtime
mnist cifar imagenet mnist cifar imagenet

lime 2.509 (1.261) 1.529 (2.176) 2.090 (0.612) 1.9 10 50
deep-shap 0.198 (0.071) 1.649 (1.054) 0.089 (0.189) 4.4 5.2 8.4
grad-shap 0.615 (0.099) 1.986 (0.931) 0.153 (0.357) 3.1 4.2 6.5

ϵ-lrp 0.394 (0.113) 2.311 (0.752) 0.207 (0.806) 1.5 1.3 2.1
intgrad 0.262 (0.121) 1.851 (1.063) 0.131 (0.738) 0.03 0.06 5.01
deeplift 0.293 (0.132) 2.272 (1.039) 0.055 (0.010) 2.2 1.3 3.2

smoothgrad 9.498 (5.847) 1.367 (0.506) 1.829 (0.350) 0.04 0.07 0.8
xrai 2.256 (0.512) 1.072 (0.621) 0.310 (0.225) 1.1 1.5 18

grad-cam 0.605 (1.519) 0.877 (1.110) 0.093 (0.592) 0.1 0.15 0.25
grad-cam++ 0.132 (0.165) 0.339 (0.537) 0.047 (0.292) 0.1 0.15 0.25

rise 0.117 (0.041) 0.501 (1.310) 0.501 (0.461) 0.5 2.3 21.4

Figure 2.8: Critical difference plot for Nemenyi test with α = 0.05.

segmentation, we used the quickshift algorithm [83] with a neighborhood size of

2000. In intgrad, xrai, and deeplift, we used a black image as the background.

For deep-shap and grad-shap, 100 images are taken randomly from the training

set and used to approximate the Shapley values. In grad-cam and grad-cam++,

the last convolutional layer was selected from which to calculate the gradients. For

the masking of rise, we used 2000 masks generated randomly. Deletion/Insertion

results are reported in Table 2.4 and the Sensitivity results in Table 2.5.

For image data, the best method, in general, is rise. However, as highlighted

51

Chapter 2 - Background

in Figure 2.8, none of the methods has statistical significance to be considered

better than the rest. All the methods are very noisy and unstable, as pointed out

from the stability and the high standard deviation among all the methods in the

deletion/insertion metrics. lime and xrai suffers from stability issues due to the

randomness of the segmentation pre-processing. lime is also the worst method

when measuring accuracy. Guided methods like smoothgrad are even worst than

random methods when computing the stability of the explanations. We support

the findings of [14] in which they pointed out that guided methods are not good

explainers. smoothgrad is okay in high-resolution images, but this is caused

by the fact that the guided perturbation plays an inferior role than the gradient

computation. In general, gradient approaches like intgrad and deeplift are the

best approaches for accuracy, especially when dealing with high-resolution images.

The computation is fast and stable, even if we compute the second-order gradients

like in grad-cam++. intgrad and deeplift are more precise than grad-cam

and grad-cam++ since the saliency maps produced by these last two methods

are coarse and unrefined. shap based methods work only on low-resolution images

due to the approximation factor. The higher the resolution, the more images are

needed as background to better approximate the Shapley values. However, in doing

this, the memory used and the runtime increase exponentially. rise is the best

compromise and can reach a high level of accuracy and stability, even if it is based

on random masking.

2.3 The Latent Space

Real-world data are often redundant and large in size. This poses challenges not

only for computational efficiency but also for representation modeling. Consider,

for example, the Swiss roll in figure 2.9. The data is in three dimensions, but only

two dimensions are sufficient to represent the same object when we unroll it. This

52

Chapter 2 - Background

is called dimensionality reduction by manifold learning. The basic assumption is

that high-dimensionality data often have lower dimensionality embedding that is

sufficient to represent the content of the original data.

Figure 2.9: An example of manifold dimensionality reduction. (Image courtesy of
golden.com/wiki)

Now, if we extend this concept to the data representation problem, we realize

that there is a lower dimensional space sufficient to describe the contents of our

dataset. We call such a space “latent space”. It is a low-dimensional manifold

of high-dimensional data in which we expect all instances of the dataset to be in

close proximity. Two main categories of algorithms are capable of obtaining such

space: dimensionality reduction methods and generative models. Dimensionality

reduction methods create features with simple combinations of original features,

while generative models incorporate non-linear relationships. Both types of models

seek to incorporate data information in a latent space as reduced as possible.

2.3.1 Dimensionality Reduction Techniques

Dimensionality reduction is defined as the transformation of data from a high-

dimensional space into a low-dimensional space so that the low-dimensional repre-

sentation retains some meaningful properties of the original data, ideally close to its

intrinsic dimension. [84] Basically, it transforms our data from a higher-dimensional

53

Chapter 2 - Background

space into a lower-dimensional space while preserving as much information as pos-

sible.

Dimensionality reduction techniques were born for visualization. Data visualiza-

tion boosts the ability to process information in an easy and faster way to compare

and make conclusions out of it. However, as humans, the higher the dimension, the

more difficult it is to analyze the data and derive a conclusion since we can see three

dimensions at a time maximum. For N dimensional data, we need N dimensions,

which we can only visualize two or three at a time, and in our big-data era, with

data with a load of features, it is not feasible. It might take us days or months to

perform any meaningful analysis, which requires much time. So it is common to

reduce data dimension to 2 or 3 dimensions using techniques called dimensionality

reduction.

Reducing the dimension of the data is beneficial not only for visualization but

also for learning. In machine learning, it is believed that the greater the number

of features, the better our prediction, but this is not always true. If we keep on

increasing the number of features after a certain point, the performance of our ma-

chine learning algorithm tends to decrease. This phenomenon is called Curse of

Dimensionality, and it describes the explosive nature of increasing data dimensions

and its resulting exponential increase in computational efforts required for its pro-

cessing and analysis. This term was first introduced by Richard E. Bellman [85] to

explain the increase in the volume of Euclidean space associated with adding extra

dimensions in the area of dynamic programming. Applied to machine learning, this

means that an increase in the dimensions can, in theory, add more information to

the data, thereby improving the quality of data but practically increasing the noise

and redundancy during its analysis. As the dimensionality increases, the number

of data points required for good performance of any machine learning algorithm

increases exponentially. The reason is that we would need more data points for any

given combination of features for any machine learning model to be valid. For exam-

54

Chapter 2 - Background

Figure 2.10: Graphical representation of Hughes principle

ple, suppose a model needs at least 10 data points for each combination of feature

values to perform well. If we assume that we have one binary feature, then for its

2 unique values (0 and 1), we would need 21 · 10 = 20 data points. For 2 binary

features, we would have 22 unique values and need 22 ·10 = 40 data points. Thus, for

k-number of binary features, we would need 2k · 10 data points. Hughes (1968) [86],

in his study, concluded that with a fixed number of training samples, the predictive

power of any classifier first increases as the number of dimensions increases, but

after a specific value of dimensions, the performance deteriorates. Thus, the curse

of dimensionality is also known as the Hughes phenomenon.

Reducing the number of features in the training data helps reduce this effect and

offers other benefits as well:

- Minimize the space required to store the data.

- Fewer dimensions will take low time complexity in training a model.

- As dimensions decrease, the possibility of overfitting the model also decreases.

- It will remove all the correlated features in our data.

Many techniques were developed to transform the data from a high-dimensional

55

Chapter 2 - Background

space to a low one.

The Principal Component Analysis (pca) [87] is one of the dimensionality re-

duction techniques widely used in Machine Learning. The main idea behind pca

is to figure out patterns and correlations among various features in the data set.

On finding a strong correlation between different variables, a final decision is made

about reducing the dimensions of the data in such a way that the significant data is

retained. The new variables obtained from the initial set are called principal compo-

nents. Principal components are calculated so that the newly obtained variables are

highly significant and independent. Specifically, the principal components are the

eigenvectors of the covariance matrix of the data. By calculating the eigenvectors

of the covariance matrix, we can identify the directions of maximum variance of the

data and, thus, the directions of maximum information. There could be more than

one dimension where the information is spread. By ordering the principal compo-

nents by their eigenvalues is possible to obtain a ranking from the most important

dimensions to the less ones. Only components that account for about 90% variance

of the data are kept.

After pca, lda is the most commonly used dimensionality reduction technique

in machine learning, statistics, and pattern recognition. The goal of this algorithm

is always to project a dataset to a lower dimensional space, but with a separability

not only on the features of the data but also on the categories in order to avoid

overfitting and to reduce the computational power. Both pca and lda are linear

reduction techniques, but unlike pca, lda focuses on maximizing the separability

of groups. lda uses features to create new dimensions and tries to project the data

onto new axes to maximize the separation of the data and the categories or groups.

This is why lda is a supervised learning algorithm since it uses target values to find

the new axes. pca tries to find the components that maximize the variance, while

on the other hand, lda tries to find the one that maximizes the separability of the

categories and minimizes the variance among categories.

56

Chapter 2 - Background

Another way to aggregate data is by similarity. The method of t-distributed

Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction method used

to visualize data in 2D and 3D maps. t-SNE finds non-linear connections between

the data based on their similarity. The more similar are two instances, the more

probable it is to be close in the reduced space. The first stage of the algorithm

is calculating the Euclidean distances of each point from all of the other points.

Then, it takes these distances and transforms them into conditional probabilities

representing the similarity between every two points. The conditional probability

pi|j of point xj to be next to point xi is represented by a Gaussian centered at xi

with a standard deviation of sigmai. pi|j is therefore the probability that i would

pick j as its neighbor: the more similar i is to j, the higher the probability. After

computing the joint probability pij =
pj|i+pi|j

2n
, t-SNE creates a dataset of random

points in a low-dimensional space and calculates a joint probability distribution for

them as well. Now we use the Kullback-Leiber (KL) divergence to make the joint

probability distribution of the data points in the low dimension as similar as possible

to the one from the original dataset. This is done by using gradient descent. The

cost function that the gradient descent tries to minimize is the KL divergence of the

joint probability distribution between the high and low-dimensional space. From this

optimization, we get the values of the points in the low-dimension dataset and use

them for our visualization. This loss is difficult to optimize and requires significant

use of computational resources. Another problem of t-SNE is the restriction of

the reduced dimensions. Due to the exponential computational costs of calculating

KL divergence, dimensions larger than three are prohibitive from a running time

perspective. For this reason, t-SNE is always used as a visualization technique

rather than a dimensionality reduction one.

A very similar algorithm to t-SNE is UMAP. Uniform Manifold Approximation

and Projection (UMAP) is a dimension reduction technique that can be used for

visualization similarly to t-SNE but also for general non-linear dimension reduction.

57

Chapter 2 - Background

The improvement of UMAP over t-SNE is to preserve more of the global structure of

the data with superior run time performance. Furthermore, UMAP has no computa-

tional restrictions on embedding dimensions, making it viable as a general-purpose

dimension reduction technique for machine learning. UMAP uses local manifold

approximations to construct a topological representation of the high dimensional

data. A similar process can be used to construct an equivalent topological repre-

sentation given some low-dimensional data representation. UMAP then optimizes

the layout of the data representation in the low dimensional space to minimize the

cross-entropy between the two topological representations. It does that by building

a graph of the data in the original space, and it tries to preserve its proprieties in

the reduced space. Due to this topological preservation, UMAP can generate bet-

ter reduced space than t-SNE. However, UMAP is not perfect, and it comes with

its vulnerabilities. One of the core assumptions of UMAP is that there exists a

manifold structure in the data. Because of this, UMAP can tend to find various

structures within the noise of a dataset, similar to the way the human mind finds

structured constellations among the stars. As more data are sampled, the number

of structures evident from noise will tend to decrease, and UMAP becomes more

robust. However, care must be taken with small sample sizes of noisy data or data

with only large-scale manifold structures.

t-SNE considers the distance between data pairs, but this does not preserve the

global structure of the data. TRIMAP is a dimensionality reduction method that

uses triplet constraints to form a low-dimensional embedding of a set of points.

The triplet constraints are of the form “point i is closer to point j than point k”.

By using triplets, TRIMAP provides a significantly better global view of the data

than the other dimensionality reduction methods, such as t-SNE and UMAP. The

global structure includes relative distances of the clusters, multiple scales in the

data, and the existence of possible outliers. The triplets are sampled from the high-

dimensional representation of the points, and a weighting scheme is used to reflect

58

Chapter 2 - Background

the importance of each triplet. TRIMAP defines a global score to quantify the

quality of an embedding in reflecting the global structure of the data. One major

problem of this approach is that it highly depends on initialization.

While the non-linearity of dimensionality reduction methods can improve data

representation, at the same time, reduced dimensions lose their meaning. In par-

ticular, the dimensions of the UMAP, t-SNE, and TRIMAP latent spaces have no

specific meaning, unlike PCA, where the dimensions are the directions of greatest

variance in the source data. For several use cases, the interpretability of the reduced

dimension is of critical importance.

2.3.2 Generative models

When speaking about learning, there are two types of approaches on how a model

learns: discriminative models and generative models. The first approach tries to

learn only the unique features that help distinguish between different classes in

training data. This class belongs mostly to machine learning classification algo-

rithms. They try to estimate P (y|x) that is the probability of a class y given an

instance x.

On the other hand, generative models try to learn the distribution of the data

rather than identifying unique features that can help distinguish different classes.

They learn a latent space in which they place data: the more similar two data

are, the more likely they are to be close in latent space. In this way, such models

actually understand the data distribution and offer a significant advantage over

discriminative models: data generation. By determining the distribution from which

the training samples were generated, new data can be generated by sampling from

this distributions14.

However, they have their weaknesses. Compared with a discriminative model,

14Estimating a distribution mean to estimate distribution parameters (like mean and standard
deviation)

59

Chapter 2 - Background

Figure 2.11: Standard architecture of an autoencoder generative model

quantitatively evaluating the model performance of generated data is challenging,

so they are difficult to train. Discriminative models can be quickly evaluated using

standard metrics such as accuracy and F1 score on the labels of the dataset. Gen-

erative models, instead, generate new data that has to be similar to the one in the

training dataset. They usually minimize different types of losses to ensure different

proprieties of the generated data.

The world mainly focuses on discriminative modeling because it fits well with

real-world problems. Rarely do problems need to know the distribution from which

samples were generated to generate artificial samples, but instead, they need to

classify new samples given the training data, thus a classification task. Nevertheless,

recent advances in image and text generation have revived generative modeling,

which is now growing and finding many new applications.

Autoencoders Autoencoders are the most common type of generative models.

They are composed of two parts: An encoder and a decoder (Figure 2.11). The

encoder takes as input the raw data (x) and outputs a vector (z) in a reduced space

called the latent space. The decoder takes the vector z in the latent space as input

and tries reconstructing the data in the original space. The encoder and the de-

coder are usually machine learning models, particularly neural networks. Standard

neural networks called feed-forward are usually used, while convolutional layers are

preferred when using complex data, such as images. The dimension of the vector

60

Chapter 2 - Background

z is usually lower than x since we want z to capture only the meaningful factors

of variations that can describe the input data. It needs to be trained to work as

with all machine learning models. The goodness of autoencoders lies in their ability

to reconstruct data from their latent representations to their original features. A

perfect autoencoder should have the output of its decoder identical to the input of

the encoder. The loss usually employed is the metric that computes the difference

between the original and reconstructed data. Data is then generated by randomly

taking data in the latent space and decoding it with the decoder.

When building an autoencoder, it is important that it does not store all the

information. Instead, it should be constrained to prioritize which information should

be kept and which should be discarded. This constraint is introduced in the following

ways:

- number of layers: It is possible to keep as many layers in the encoder and

decoder as you require. Usually, the number of nodes decreases as it increases

the number of layers in the encoder and vice-versa for the decoder.

- number of nodes in the latent layer: It is always better to have less number

of nodes in this layer than the input size. The smaller size of the latent layer

leads to better compression.

- loss: The mean squared error or binary cross entropy are usually chosen for

the loss function.

To improve the latent representation, several autoencoder variations exist. The

most famous one is called Variational AutoEncoder (VAE). A Variational Autoen-

coder [88] can be defined as an autoencoder whose training is regularized to ensure

that the latent space has suitable properties that enable the generative process. Like

a standard autoencoder, a variational autoencoder is an architecture composed of

both an encoder and a decoder. It is trained to minimize the reconstruction er-

ror between the encoded-decoded data and the initial data. However, in order to

61

Chapter 2 - Background

introduce some regularization of the latent space, there is a slight modification of

the encoding-decoding process: instead of making the encoder output an encoding

vector of size n, we output two vectors of size n: a vector of means and another

vector of standard deviations. VAE encodes the inputs as a mixture of Gaussian

distributions. To decode back from the latent space, it is possible to sample from

these distributions and then use the decoder. This modification adds a stochastic

factor to the model that helps the sparsity of generated data. The loss function that

is minimized when training a VAE is composed of a ”reconstruction term” and a

”regularization term” (on the latent layer). The regularization term is expressed as

the Kullback-Leibler divergence between the returned distribution and a standard

Gaussian. With this regularization term, we prevent the model from encoding data

far apart in the latent space and encourage returning distributions to ”overlap” as

much as possible. Naturally, as for any regularization term, this comes at the price

of a higher reconstruction error on the training data. Training a VAE is a trade-off

between the reconstruction error and the KL divergence. The admirable propriety

of VAE is that the introduction of regularization tends to create a ”gradient” over

the information encoded in the latent space. For example, a point of the latent

space that would be halfway between the means of two encoded distributions com-

ing from different training data should be decoded in something that is somewhere

between the data that gave the first distribution and the data that gave the second

distribution as the autoencoder may sample it in both cases.

Several other variations exist. β-VAE [89] is an augmenting of the original VAE

framework with a single hyper-parameter β that modulates the learning constraints

applied to the model. These constraints limit the capacity of the latent informa-

tion channel and control the emphasis on learning statistically independent latent

factors. β-VAE with β = 1 corresponds to the original VAE framework. With

β > 1, the model is pushed to learn a more efficient latent representation of the

data. Adversarial Autoencoders are a modification of the original architecture of

62

Chapter 2 - Background

autoencoders. The encoder’s output is used not only to feed the decoder but also

as input to a discriminative model. The input of the discriminative model is the

concatenation of the label and the latent space of the autoencoder. Training is

performed by minimizing the autoencoder loss and a cross-entropy term between

the data label and the discriminative model’s output. The idea behind adversarial

autoencoders is that it is possible to train the encoder to produce a latent space that

looks like a distribution of choice. This is achieved with a different neural network

model that learns to distinguish the output of a network from a real-world example

of the target. However, instead of learning to tell noise from real cat pictures, the

discriminator learns to tell the latent space from the chosen distribution and gives

feedback to the encoder about how unfair the distribution of the latent space is.

The encoder learns to distribute the code as desired from this feedback in the form

of a gradient.

Generative Adversarial Networks. is the other generative model that has re-

cently gained popularity. A Generative Adversarial Network (GAN) [90] observes

the given dataset and generates new samples that fit the underlying distribution in

the given data samples with the help of two models, which are adversaries of each

other. Hence the name Generative Adversarial Networks. A generative adversarial

network (GAN) consists of two components:

- The generator learns to generate plausible data. The generated instances

become negative training examples for the discriminator.

- The discriminator learns to distinguish the generator’s fake data from real

data. The discriminator penalizes the generator for producing implausible

results.

Both the generator and the discriminator are neural networks. The generator out-

put is connected directly to the discriminator input (Figure 2.12). Through back-

63

Chapter 2 - Background

Figure 2.12: Architecture of GAN model

propagation, the discriminator’s classification provides a signal that the generator

uses to update its weights.

Two steps compose the training: firstly, the discriminator is trained, and then

later, the generator. The following steps compose the Discriminator training:

1. The discriminator classifies both real data and fake data from the generator.

2. The discriminator loss penalizes the discriminator for misclassifying a real

instance as fake or a fake instance as real.

3. The discriminator updates its weights through back-propagation from the dis-

criminator loss through the discriminator network.

After it is time for the Generator Training Procedure:

1. Sample random noise.

2. Produce generator output from sampled random noise.

3. Get discriminator ”Real” or ”Fake” classification for generator output.

4. Compute loss from discriminator classification.

64

Chapter 2 - Background

5. Back propagates through both the discriminator and generator to obtain gra-

dients.

6. Use gradients to change only the generator weights.

As the generator improves with training, the discriminator performance gets worse

because the discriminator cannot easily tell the difference between real and fake.

If the generator succeeds perfectly, then the discriminator has a 50% accuracy. In

effect, the discriminator flips a coin to make its prediction. This progression poses

a problem for the convergence of the GAN as a whole: the discriminator feedback

gets less meaningful over time. If the GAN continues training past the point when

the discriminator is giving completely random feedback, then the generator starts

to train on junk feedback, and its quality may collapse. Convergence is often a

fleeting rather than a stable state for a GAN. As a result, the generator model maps

the latent input vector (z) to an output similar to the training dataset’s data. The

primary objective of GANs was to generate new samples from the given dataset.

Moreover, since the invention of GANs, they have grown to accomplish this task

with better results and added features.

In recent years several GAN variation has been introduced. Progressive GAN was

introduced in 2017 [91], where the authors showed that the quality of the generated

images could be increased significantly by training the generator to output low-

resolution images at the beginning and increase the resolution as the training went

on. Regular GANs adopt the sigmoid cross-entropy loss function. This loss function

will cause the problem of vanishing gradients for the samples on the right side of

the decision boundary but still far from the actual data. LSGAN [92] will use

Least Square loss instead of binary cross-entropy loss for both the generator and

the discriminator. Wasserstein GAN [93] is another variation on Discriminator loss;

this time, the loss used is the Wasserstein one. Using this loss, the discriminator

does not classify instances. For each instance, it outputs a number. This number

65

Chapter 2 - Background

Figure 2.13: Examples of images generated by GANs

does not have to be less than one or greater than zero, so we cannot use 0.5 as a

threshold to decide whether an instance is real or fake. Discriminator training makes

the output bigger for real instances than for fake ones. Several other variation are

described here [94, 95, 96, 97, 98, 99]

2.3.3 Understanding the Latent space

Generative models, as the name says, have the goal of generating multiple samples

starting from the dataset one provides. However, since auto-encoders learn the

natural feature of the dataset in the latent space, this space could be meaningful

for understanding the data. Several works have demonstrated the performance

capabilities of the latent space in doing clustering [100], and sometimes these clusters

are even better than doing it in the input space [101]. Nevertheless, performance

is not all; researchers have recently focused on latent space explorations and the

66

Chapter 2 - Background

Figure 2.14: J-Diagram. The three corner images are inputs to the system, with the
top left being the ”source” (A) and the other two being ”analogy targets” (B and C).
Adjacent to each figure is the reconstruction resulting from running images through both
the encoder and decoder of the model. The bottom right image shows the result of applying
the analogy operation (B + C) – A. All other images are interpolations.

possible implications. Latent space features are easy to visualize because it is easier

to sample data from it and use the decoder to represent the data in the original

input space. In image recognition tasks, some dimensions of the latent space can be

attributed to the position of the object in the image [102]. Interpolation is used to

traverse between two known locations in latent space. Research on generative models

often uses interpolation to demonstrate that a generative model has not simply

memorized the training examples [103]. In creative applications, interpolations can

provide smooth transitions between two decoded images [104]. For example, it

is possible to move from different pictures of faces, Figure 2.14, or from different

sketches [105] or fonts [106] or even molecules [107].

These examples show us the great potential of latent space reasoning, but since

an autoencoder reduces many variables to just a few variables, many aspects of

67

Chapter 2 - Background

system behavior can be deduced. For example, it is possible to take the average of

all the latent vectors for user-specified features, woman pictures, for example, and

the average for all the user-specified non-woman pictures. We then compute the

difference between these two average vectors and obtain the so-called gender vector.

To change the gender of an image, add the gender vector to the corresponding latent

vector; the amount of gender vector added controls how much we want to change the

gender. This technique was introduced by [108], and vectors like the gender vector

are sometimes called attribute vectors. Moreover, this reasoning is expandable to

every possible feature one can think of.

However, autoencoders are not perfect, and while it is great that such profound

principles as gender can be inferred, sometimes such models infer other things that

are wrong or undesirable. For example, [104] the addition of a smile vector in some

face models will make faces smile more and appear more feminine. Why? Because

in the training data, more women than men were smiling. So these models may not

just learn in-depth facts about the world but also internalize prejudices or erroneous

beliefs. Once such a bias is known, it is often possible to make corrections. However,

finding those biases requires careful auditing of the models, and it still needs to be

made clear how these audits can be exhaustive. More broadly, why do attribute

vectors work, when they work, and when they fail? At the moment, the answers to

these questions need to be better understood.

Another way of understanding the latent space is by interaction [109]. Interaction

can be a powerful tool for producing explanations of machine learning models. By

allowing users to interact with the model and explore its behavior, interaction can

provide a more intuitive and accessible way to understand the underlying concepts

and patterns. One way interaction can be used to produce explanations is through

interactive visualizations. These visualizations allow users to explore the relation-

ships between different features and characteristics of the data, and to see how the

model responds to changes in these features. For example, users can manipulate

68

Chapter 2 - Background

sliders or other controls to adjust the input data and observe how the model output

changes in response. Another way interaction can be used is through interactive

natural language processing (NLP) interfaces [110]. These interfaces allow users to

interact with the model through natural language queries, providing a more intuitive

and accessible way to understand the model’s behavior. For example, users can ask

the model to explain why it made a certain prediction or to provide more details on

the factors that influenced its decision. In addition to these techniques, interaction

can also be used to facilitate collaboration between humans and machine learning

models [111]. By allowing users to provide feedback and input into the model’s

behavior, interaction can help to improve the accuracy and interpretability of the

model and to ensure that it is aligned with the needs and goals of its users.

Interactive generative adversarial networks, or iGANs, [112] are another example

of latent space exploration. The final result is utilizing these variations of GAN in an

interface to generate images of different things, like shoes, t-shirts, and landscapes

2.15. Conventionally, such an interface would require the programmer to write a

program containing a great deal of knowledge about the image. Instead of doing

this, Zhu et al. train a GAN model using 5050 thousand images downloaded from

the internet. They then use that generative model to build an interface that lets a

user roughly sketch the shape of the object, and the model will reproduce the object

most similar to the sketch.

Rather than using variational autoencoders, these interfaces are based on GANs.

However, the underlying idea is still to find a low-dimensional latent space that can

represent (say) all landscape images and map that latent space to a corresponding

image. Again, we can think of points in the latent space as a compact way of

describing landscape images. Roughly speaking, the way the iGANs work is as

follows. Whatever the current image is, it corresponds to some point in the latent

space. The interface works by finding a point in the latent space near the current

image so the image is not changed too much but also comes close to satisfying the

69

Chapter 2 - Background

Figure 2.15: Interactive image generation framework example. The user uses the brush
tools to generate an image from scratch (top row) and then adds more scribbles to refine
the result (second and third rows). In the last row, we show the most similar real images
to the generated images. (dashed line for the sketch tool and color scribble for the color
brush)

imposed constraints. This is done by optimizing an objective function that combines

the distance to each imposed constraint, and the distance moved from the current

point.

The compressed nature of latent space helps not only to understand the data

but also to produce explanations. The latent space created by generative models is

a compressed representation of data based on Euclidean distance: this implies that

the distance between data can be found quickly and easily. The distance between

data with many features translates into the latent space in the distance between a

few features. In addition, very different features can be compared. The distance

between categorical (fixed number of possibilities) and continuous features is difficult

to evaluate in the data domain. However, everything is converted in the latent space

where distances can be computed using the Euclidean distance. One of the most

common explanations retrieved from the latent space are counterfactuals. We can

search for counterfactuals in the latent space and retrieve data using a decoder.

Integrating the latent space into the counterfactual search can be done in two ways:

by adding an additional term in the loss used for the search or by performing the

70

Chapter 2 - Background

search directly in latent space [113, 58]. The data are usually encoded in a latent

space, then it is performed the search for a point that is considered a counterfactual,

decode it back into the original feature space using the decoder, and check if it

has a different prediction. This process is facilitated because the latent space is a

Euclidean space, and every point can be decoded back easily into the original space

using the decoder. Most of the works using this procedure focus on images. Data

encoding in the latent space can be computed in different ways. In [114], a median

absolute deviation is used as a distance measure, while in [115], they minimized the

fisher information.

Other methods tried to interpret the latent space features to generate counter-

factual data. One of them is counterfactual Recourse Using Disentangled Subspaces

(CRUDs) by Downs et al. [116]. CRUDs is a probabilistic model that uses con-

ditional subspace variational autoencoders (CSVAEs) that extracts latent features

relevant to a prediction. CSVAE partitions the latent space into two parts: learning

representations that predict the labels and learning the remaining latent represen-

tations required to generate data. In CRUDs, counterfactuals that target desirable

outcomes are generated using CSVAEs in four major steps: (1) disentangling latent

features relevant for classification from those that are not, (2) generating counter-

factuals by changing only relevant latent features, filtering counterfactuals given

constraints, and (4) summarise counterfactuals for interpretability. The result in-

dicates that CRUDS counterfactuals preserve the true dependencies between the

covariates better than other approaches. Guidotti et al. used a decision tree to help

generate rules in the latent space. Adversarial Black box Explainer generating La-

tent Exemplars (ABELE) by Guidotti et al. [51] is a local model-agnostic explainer

for image data that uses Aversarial AutoEncoderes (AAEs) that aim at generating

new counterfactuals that are highly similar to the training data. ABELE generates

counterfactuals in four steps: (1) by generating a neighborhood in the latent feature

space using the AAEs, (2) by learning a decision tree on the generated latent neigh-

71

Chapter 2 - Background

borhood by providing local decision and counterfactuals rules, (3) by selecting and

decoding exemplars and counter-examples satisfying these rules, and (4) by extract-

ing the saliency maps out of them. Guidotti et al. found that ABELE outperforms

current state-of-the-art algorithms, such as LIME, in terms of coherence, stability,

and fidelity.

Several authors take the concept of crossing the decision boundary in the la-

tent space for counterfactual search. Joshi et al. [117] presented a novel approach

to characterizing and explaining black-box supervised models via examples. An

unsupervised implicit generative model is used to approximate the data manifold

and subsequently used to guide the generation of increasingly confounding examples

given a starting point. These examples are used to probe the target black-box in sev-

eral ways. In particular, they demonstrate the utility of manifold guided examples

in automatically detecting bias in black-box learning with respect to a potentially

protected attribute as well as for model comparison. The proposed method also

allows the visualization of training progression and provides insights complemen-

tary to notions of calibration of the black-box model. Limitations of the proposed

method include reliance on the implicit generator as a proxy of the data manifold.

However, the authors specified that their approach is model agnostic both in terms

of architectures and training mechanisms for the generative model. They used im-

ages as they are easy to visualize even in high dimensions. Samangouei et al. [118]

introduced ExplainGAN to interpret black box classifiers by visualizing boundary-

crossing transformations. These transformations are designed to be interpretable by

humans and provide a high-level conceptual intuition underlying a classifier’s deci-

sions. This visualization style can overcome limitations of attribution and example-

by-nearest-neighbor methods by making spatially localized changes along with visual

examples. While not explicitly trained to act as a saliency map, ExplainGAN’s maps

are very competitive at demonstrating saliency. They also introduced a new metric,

Substitutability, that evaluates how much label-capturing information is retained

72

Chapter 2 - Background

when performing boundary-crossing image transformations.

Another critical feature of latent space is to group data based on similarity. By

putting similar data together, it is possible to identify the data closely resembling

different instances. These data are called prototypes, and they are a type of expla-

nation introduced in Section 2.1.5. The most common way to search latent space

prototypes is by clustering. Clustering is proven to be more effective on the latent

space. Barbakh et al. [119] introduce a set of latent clustering algorithms whose per-

formance function is such that the algorithms overcome one of the weaknesses: its

sensitivity to initial conditions which leads it to converge to a local optimum rather

than the global optimum. Their online learning algorithms illustrate their conver-

gence to optimal solutions, which standard methods fail to find. Moreover, prototype

explanation can be extracted from clustering. After learning the latent space, the

prototypes are selected as cluster centers of the clustering algorithm trained on such

space. Kleinerman et al. [120] demonstrated that this approach is particularly effi-

cient on health records. They propose a novel deep learning-based patient treatment

selection approach using latent-space prototyping. Machine-assisted treatment se-

lection commonly follows one of two paradigms: a fully personalized paradigm which

ignores any possible clustering of patients, or a sub-grouping paradigm which ig-

nores personal differences within the identified groups. While both paradigms have

shown promising results, each suffers from important limitations. The use of latent

space prototyping allows for balancing between the two paradigms and allows bet-

ter results. In an extensive evaluation, using both synthetic and Major Depressive

Disorder (MDD) real-world clinical data describing 4754 patients from clinical trials

for depression treatment, they show that their approach favorably compares with

state-of-the-art approaches.

A pervasive use of the latent space is for anomaly detection. When placing data

in latent space, data clusters are clearer, and exceptions can be better identified.

Liu et al. showed that it is possible to use the latent space of a generative model

73

Chapter 2 - Background

to build prototypes and then use them to detect deviations from them to catch

anomalies [121]. Anomaly detection in automated quality inspection is essential for

guaranteeing industrial products’ surface quality. They proposed a semi-supervised

anomaly detection method Dual Prototype Auto-Encoder (DPAE), based on the

latent space paradigm. At the training stage, DPAE is optimized to minimize the

reconstruction loss between the input of the encoder and the output of the decoder.

At the same time, DPAE also minimizes the distance between the latent vectors and

the standard prototypes, which are iteratively updated to represent the center of

the latent vectors of defect-free samples. Given a test sample, the model can auto-

matically generate two latent vectors: one for the sample and one for the prototype.

As a result, the distance between the two vectors of the standard sample tends to be

closer, resulting in small errors for standard samples and large errors for anomalies,

which can be adopted as a criterion to detect the anomalies. Some approaches have

shown that it is possible to use energy-based optimization methods [122] to detect

anomalies and generate data. Due to the latent space’s low dimensionality and the

top-down network’s expressiveness, a simple energy-based method in latent space

can capture regularities in the data effectively. A similar concept is used in Abati

et al. [123], where this time, the prototypes found in the latent space are used to

detect novelties instead of anomalies. They designed a general framework where a

deep autoencoder with a parametric density estimator learns the probability distri-

bution underlying its latent representations through an autoregressive procedure.

They show that a maximum likelihood objective, optimized in conjunction with the

reconstruction of standard samples, effectively acts as a regularizer for the task at

hand by minimizing the differential entropy of the distribution spanned by latent

vectors. Unlike prior works, this proposal does not make any assumption about the

nature of the novelties, making our work readily applicable to diverse contexts.

Other uses of the latent space prototypes are for face identification [124], guided

generation of sentences [125], and for other explanations generations like SMs [51].

74

Chapter 3

Interactive exploration of the

latent space

In this first latent space analysis, we used an interactive visualization to unveil the

unknown meaning of the latent space dimensions. In particular, we interactively

explored the latent space of a variation autoencoder guided by SHAP scores. We

developed a model agnostic approach for explaining the outcome of a black box

model based on two steps:

1. A variational autoencoder maps multi-dimensional input features to a bi-

dimensional space.

2. A widely used explanation technique, i.e., SHAP [25], is exploited to measure

the relevance of each input attribute to the position in the latent space.

The combination of the two techniques enables the effective visualization and explo-

ration of the contribution of each original feature to the latent space. Modifications

on a single input feature generate a spatial offset on the latent space visualization,

allowing cognitive-friendly navigation of the joint modification of multiple attributes.

We chose a specific family of variational autoencoder architectures, called Con-

ditional Variational Autoencoder (CVAE), which exploits the outcome of a classi-

75

Chapter 3 - Interactive exploration of the latent space

fication model to generate a latent space where data are grouped by the similarity

of their attributes and the prediction label assigned by the black box. We exploit

this mapping to encode the classification provided by the black box to be explained

in the latent space positions. The underlying idea of autoencoders is to create a

more informative latent representation of data that holds more valuable properties

than real input data. By enhancing the latent space embeddings with prediction

labels, we can observe how the modification of the features affects the position in

the latent space and deduce which features need to be modified in order to alter

the black box predictions. Creating such adequate latent space is a challenging

task that is fulfilled by autoencoders forcing themselves to use a latent dimension

lower than the input to model the same amount of information. We can efficiently

map multi-dimensional points into a display using a low-dimensional space (i.e., two

dimensions). The positions of instances in the latent space can be used to reason

about the internal mechanism adopted during the classification. The low dimen-

sionality forces the autoencoder to maximize the contribution of relevant features,

discarding those that are marginal for the classification task. For this reason, we

learn the mapping using a training set labeled by the black box.

However, since Neural Networks are considered black box models [5], also autoen-

coders can be automatically considered black boxes. The reasons why an instance

is mapped to a specific position remain unknown since the autoencoder model does

not reveal linear and non-linear relationships with the data properties. Therefore,

the latent space cannot be considered an interpretable space, and the relationship

between the latent feature and the real one is unknown. To overcome this, we ex-

ploit and re-adapt existing eXplainable Artificial Intelligence (XAI) techniques to

unveil the meaning of the features in the latent space and make them understand-

able. Our idea is that, since the latent space algorithm is a Neural Network, we can

apply XAI techniques to explain the latent space in terms of the input features. Our

contribution focuses on building an explanation for the latent space mapping. The

76

Chapter 3 - Interactive exploration of the latent space

explanation method is based on the SHAP (SHapley Additive exPlanations) [25]

technique, which returns the contribution of each input feature to the final clas-

sification. We apply the SHAP method to the mapping model, yielding a sum of

linear contribution for both the x and y components. If we consider a single input

feature, its contribution is approximated by SHAP as a vector in latent space: an

increase or decrease in the value of the input feature produces an increase or de-

crease in its length without changing direction. Since we are considering multiple

input attributes, the final position in the latent space is the vector sum of the single

feature contributions. The order of the importance of the features is a result of the

SHAP method, going from the most relevant to the less relevant (more details in

Section 3.2).

A recent study [126] described interactivity as an added value when speaking

about explainability. We used a popular interactive framework called DASH to

visualize the explanations with interaction. We developed an interactive framework

that allows users to interact with the input features and understand how modifying

them influences the latent space position. The single contributions are presented as

linear contributions that we can map directly on the latent space, giving the user a

visual overview of the outcome. We leverage interactivity to let the user vary the

values of the input space (i.e., the original attributes of the instance) to explore the

resulting mapping in the latent space display. In this way, the user can explore how

variation in the input may influence the mapping of the autoencoder and, hence,

the relevance of features. The variation of a feature f influences the final mapping

of the point, since it modifies the magnitude of the vector corresponding to f . Our

framework makes it possible to observe how changes to real features affect/or do

not affect changes in the latent features and guide the data into different prediction

regions.

The rest of the chapter is organized as follows: Section 3.1 recalls the notions

needed to understand the proposed methodology, which is illustrated in Section 3.2.

77

Chapter 3 - Interactive exploration of the latent space

Section 3.3 presents the interactive framework. Finally, Section 3.4 concludes the

paper by discussing known limitations and proposing future research directions.

3.1 Meaning of SHAP explanations

This section will explain what SHAP scores are to understand our implementation

fully. Our contribution leverages the widely used XAI method named SHAP (SHap-

ley Additive exPlanations) [25]. The goal of SHAP is to explain the prediction for

any instance x as a sum of contributions from its individual feature values. SHAP

employs game theory to obtain single-feature contributions. It uses Shapley values

to define how to distribute the output of a model among all the input features.

SHAP is a game-theoretic approach, based on Shapley values, to explain the output

of any machine learning model. The explanation is provided as a sum of relevance

from the input feature values. Note that the “feature value” xi here refers to the

numerical or categorical value of a feature i for the instance x. Each value is consid-

ered as a contribution to a cooperative game whose payout is the final prediction.

Accordingly to the input instance, Shapley values estimate the payout among the

input features.

We can clarify the intuition behind SHAP with the following example. A group

F of people is playing a basketball game where the goal is to make as many baskets

as possible, and we want to compute the contribution of player j. SHAP removes

player j from group F and repeats the game. The difference between the scores

obtained with and without player j represents how much player j has contributed

to the final scores in this scenario. SHAP computes this difference for every possible

combination of other players, removing a different player every time. First, it re-

moves player j and the player j′, then j and j′′, then j, j′, and j′′, etc.. The average

of these scores is the Shapley value of player j representing the contribution of j to

the initial score.

78

Chapter 3 - Interactive exploration of the latent space

If we consider that player j is an input feature, F is the set of all features, and

the basket game is a machine learning model f , then we can move to a machine

learning setting. Here, a Shapley value represents for each feature j the change in

the model prediction when conditioning on that feature. Formally, consider S as a

possible subsets of F without the feature j, i.e., S ⊆ F \ {j}. The prediction of the

model is obtained with that feature present fS∪{i} and with the feature withheld fS.

Then the two predictions are subtracted fS∪{i}−fS. Since the effect of withholding a

feature depends on what other features are present during the prediction, the above

differences are computed for all possible subsets S. The Shapley values ϕj are then

computed as a weighted average of all possible differences.

ϕj =
∑

S⊆F\{j}

|S|!(|F | − |S| − 1)!

|F |!
[
fS∪{j} − fS

]
(3.1)

The computation of the Shapley values is exponential with the number of features.

Kernel SHAP implements an approximated estimation of the Shapley values by

using a weighted linear regression [25]. The connection between linear regression

and Shapley values is that Eq. 3.1 is a difference of means. Since the mean is

also the best least-squares point estimate for a dataset, it is natural to search for

a weighting kernel that causes linear least squares regression to approximate the

Shapley values. This variation is implemented into the so-called Kernel SHAP

method. The regression coefficients estimate the Shapley values with a weighted

linear regression model and an appropriate weighting kernel. The only requirement

of Kernel SHAP is a black box (the autoencoder in our case) and a set of points

to train the weighted linear regression. The more points, the more accurate the

approximation of the Shapely values.

The other challenge to compute Shapley values is the correct estimation of sup-

pressing one of the features. Since many machine learning models are based on fixed-

length input, suppressing a single feature is impossible. To overcome this problem,

79

Chapter 3 - Interactive exploration of the latent space

Kernel SHAP substitutes the value of a feature with the mean value observed over

the whole dataset. If all the features are replaced with their corresponding means,

it is possible to identify a mean input instance with the corresponding mean predic-

tion value. This value is also called the expected value and is the model’s prediction

when all the feature values are set with the mean value.

3.2 Methodology

This section describes how we performed the exploration in the latent space. We will

describe the cluster analysis, how we applied SHAP, and the interactive framework.

Our objective is to analyze a given data by encoding it in the latent space using

an autoencoder. Firstly, we can perform a cluster analysis of the latent space.

Then, we use SHAP to unveil why a point has been encoded in a particular part

of the space. Guided by the SHAP score, we can move to different portions of the

latent space with different predictions. The scores returned by SHAP allow us to

understand which real features have influenced the position in the latent space most.

Therefore, we can use these scores to explain the role played by the real features

w.r.t the machine learning model. We organize this section in two parts: the first

focuses on describing the latent space structure, while the second focuses on how

the explanation is created.

3.2.1 Neighborhood Analysis

Let D⟨X, Y ⟩ be a dataset where X = {x1, . . . , xn} represents the features space,

while Y = {y1, . . . , yn}, represents the label space. Let b a black box model trained

on D which return the prediction labels Ŷ = {ŷ1, . . . , ŷn}. Without loss in generality

and for simplifying the presentation, we may consider a binary classification task and

use the probability returned by the classifier as labels. However, we remark that this

process can be expanded to multi-class problems. Given a record x ∈ X, represented

80

Chapter 3 - Interactive exploration of the latent space

Figure 3.1: Here, we have the distribution analysis of the two clusters analyzed in the
Titanic dataset. The violet distribution is the distribution of the points belonging to the
cluster highlighted in the right figure, while the dark green is the distribution of the left
one. The features are sorted in descending order from the most separated distributions
on the right to the least separated one on the left. The feature “Sex” and “Title” are the
ones that characterize the clusters: all the points in the blue cluster are men with a low
title.

as a vector xi ∈ Rm, the corresponding classification of the black box ŷ = b(x) and an

autoencoder A, we indicate with the notation z = A(x) the encoding of the instance

x with A. Thus, we indicate with z the latent representation of x according to A. As

a model, we adopted a particular type of autoencoder called Conditional Variational

Autoencoder (CVAE). A Conditional Variational Autoencoder is a Variational Auto

Encoder with extra input to both the encoder and the decoder. In addition to

traditional data, a CVAE concatenates to the encoder and the decoder the output

probability value ŷ of the black-box b. This additional information allows the latent

space to represent the data not only by their features but also by their predictions.

Two data are mapped to the same point in latent space if they are similar to the

features and black-box prediction. We indicate with the notation z = A([x, ŷ]) the

CVAE encoding of the instance x.

Typically, the representation of D in the latent space has a clustering-based

structure [100], i.e., similar points are grouped in close areas in the latent space. In

addition, CVAEs exploit the information given by ŷ to place instances into the space

accordingly with their labels. Then, with our proposal, we can observe the neighbors

in the latent space, identifying common feature characteristics among the instance

81

Chapter 3 - Interactive exploration of the latent space

X1
X2

X3
.
.
.

Xn

Z 1

Z k

ɸx
ɸx
ɸx
.
.
.

ɸx

1

2

3

n

SHAPAE

ɸx
1
= (ɸx

1

(1) ɸx
1

(2)

, , ,...

ɸx
1

ɸx2

ɸx3

Z

ɸx
1

(k))
Z
^

.

.

.

Figure 3.2: Illustration of SHAP vectors. For every feature in the input space x, SHAP
returns a vector of dimension equal to the latent space. The sum of these vectors from
the expected value gives the final position in the latent space.

in the same group and catching the correlation with the target variable ŷ. With our

framework, it is possible to define and select different neighborhoods in the latent

space and compare the distributions of the real features of the points in the two

groups. In Figure 3.1 there is an The features with the most different distributions

among the two selected sets are the ones that characterize the belonging to the

groups. In particular, if we select two clusters with points with different labels, it is

possible to identify the discrimination features. For example, we can select a cluster

with many points with target label L and another one with a lot of ¬L and notice

that the points in the L cluster are characterized by the value of the feature “Male”

set to true.

3.2.2 Establishing the Interactive Connection via SHAP

Given an instance x ∈ X and a CVAE autoencoder A trained on [x, ŷ], our goal is to

find the explanation e unveiling why x has been encoded in the latent representation

z = A(x). We highlight that we assume that the autoencoder A is well-trained as it

is meaningless to explain the behavior of a model not adequately learned. The pro-

82

Chapter 3 - Interactive exploration of the latent space

posed explanation is built from the Kernel SHAP method to estimate the Shapley

values of z. We rely on the kernel version of SHAP since it is the one that works

with NNs [25]. Kernel SHAP adopts a specially-weighted local linear regression to

estimate the SHAP values for any model. Our exploration approach is based on

the approximation of the SHAP’s contributions as coefficients of a linear equation.

The sum of these coefficients gives the final position in the latent space. This ap-

proximation has two advantages: on one hand, it allows efficient computation of the

Shapley values; on the other hand, after an initial computation for all the boundary

values of the attributes, the position on the latent space can be approximated with

linear interpolation, making the visualization and interaction more responsive.

We can interpret these values in terms of comparison with the expected predic-

tion. As described before, the expected prediction ẑ is the latent representation,

corresponding to substituting every feature value with its mean in the dataset D.

Thus we can project this feature in the latent space at its representation ẑ and use

that location as a reference position. Given the Shapley value of the instance x, we

can add the contribution of each value starting from the reference position ẑ. Thus,

starting from the expected prediction ẑ, we can sum to it the contribution of every

input feature in the dimension k and obtain the position in the latent space, i.e., the

latent representation z = ẑ +
∑

m ϕ⃗(xm). As illustrated in Figure 3.2, the output

returned by SHAP can be considered as a vector ϕ⃗xi
which components are the

contributions of a feature in a specific dimension of the latent space. Therefore, if

we sum these vectors starting from the expected value position ẑ, the output will be

the original position z in the latent space. For example, a typical output would be:

the feature “Title” has contributed a value of 1 to the first dimension of the latent

space and 1.5 to the second one, so it is relevant for both latent space dimensions.

Instead, the feature “age” has contributed 1.5 to the first dimension and 0.1 to the

second one, so it is relevant only for the first dimension of the latent space and does

not affect the other one.

83

Chapter 3 - Interactive exploration of the latent space

Figure 3.3: Interactive framework for the titanic dataset. We have several sliders of the top
ten most informative features on the left, ordered by relevance. The violet letter e on the
bottom of every slider is the expected value for that particular feature. The two columns
on the right of the sliders are in order: the feature’s value and the shap score’s vector
representation. On the right, we have a graph of the latent space learned. The points
are labeled red and blue according to the prediction label. The point taken into analysis
is selected using a black viewfinder. The expected position is the origin of the two gray
axes, and the black vectors represent the contributions of each feature, the sum of which
lead from the expected value to the actual point. By modifying the Title feature from 1
to 4, we can see how the position of the point is changed in the latent space following the
shap vector. By moving above the expected value of the feature, the effect in the latent
space is given by the shap vector highlighted in pink.

An explanation for a classified instance is built around exploring the Shapley

values contributions. First, the contributions of each feature are sorted by order

of magnitude. The user can then change the value of one of the input features

to observe how the position of z in the latent space changes. Those features with

higher relevance will produce a broader impact on the latent space since their cor-

responding magnitude is larger. We leverage an exploration strategy based on a

low-dimensional latent space to allow an efficient and comprehensible visualization

of the induced space, i.e., two or three dimensions. When the user explores a new

instance, the corresponding latent position is determined, and the vectors represent-

ing the contributions of the feature are computed and mapped on the visual space

as vector arrows (Figure 3.3). The variation of one of the attributes affects changing

84

Chapter 3 - Interactive exploration of the latent space

the magnitude of the vector arrows displayed on the visualization. We clarify this

aspect by highlighting that, since SHAP values can be approximated with linear

regression, they also have some linear properties concerning the expected value. For

example, consider a feature like age ranging from 0 to 100 with expected value 40,

and consider that the value 80 has a SHAP score of 0.6. If we substitute the value

of the feature to 40, then the SHAP score would be 0 since the contribution of age

equal to the expected value is null. However, if we substitute the value with 20, the

SHAP score will be negative due to the linear propriety. Since the position in the

latent space is given by the SHAP values, we can use them as a guide to increase

or decrease feature values in the real space to move points to different positions in

the latent space. SHAP vector directions are reported on the right of the sliders in

Figure 3.3, allowing the user to see how the change of an input feature will result in

a modification of the position in the latent space. This allows the user to explore the

latent space guided by the direction of the SHAP scores and analyze the prediction

in different space portions.

3.3 The Interactive Framework

Finally, this section demonstrates how the interactive framework can be used as an

explanation tool. Moving into the latent space guided by SHAP scores can provide

insights to identify homogeneous groups of points, outliers, or close points with

different predictions despite their similar latent characteristics. In particular, this

last case can help identify misclassifications or malicious use of the black box, for

example, through adversarial instances or isolated data. Since it is interesting to

analyze different latent positions by playing with the input features, we realized

an interactive framework, acting as a front-end for our latent space explanation

proposal, that allows the user to analyze the distribution of latent points and interact

with their SHAP values (Figure 3.4).

85

Chapter 3 - Interactive exploration of the latent space

(a) Latent Space Exploration: on the left, we have ten sliders of the top 10 most important features
given by SHAP in order of importance from top to bottom. On the right, the latent space created
by the autoencoder is represented with the SHAP vector explanation for a given point.

(b) Clustering Analysis: the user can select two different clusters and analyze the distributions in
the histogram plot at the bottom.

Figure 3.4: How the interface is presented to the user. On the top, there is the latent
space exploration guided by SHAP scores, while on the bottom, there is the clustering
analysis

86

Chapter 3 - Interactive exploration of the latent space

The central component of our solutions is the visualization of the latent space.

The two dimensional visualization of the latent space is built as a scatter plot, where

latent instances are represented as points. The projection of the expected value is

highlighted as the intersection of two dotted lines. Contributions of single values

are visualized as black arrows oriented accordingly to the coefficients returned by

the SHAP explanation method. The destination location of z is highlighted with

a viewfinder shape. The latent space visualization is linked with a set of sliders

where the user can specify values for each attribute. The user selects a point in the

latent space, and the sliders update with the new feature values. The higher the

SHAP score, the more important the feature, so we sorted the sliders in descending

order of importance. Each slider highlights the minimum and maximum values for

that feature along with its expected value position represented as a small violet e.

In addition, we also provide directional vectors for each feature to help the user to

predict the direction and verse of the translation in the latent space. Every feature

is encoded as a vector in the latent space, and the user can move the sliders to

change the magnitude of the corresponding vector arrow. In Figure 3.5, there is a

small example of the effect of the modification. If we substitute the value of the

feature with its expected value, then the contribution in the latent space is zero.

Suppose we modify to values lower than the expected value. In that case, the effect

will be the one highlighted by the green vector, whose magnitude increases linearly

the more distance we move from the expected value. Conversely, if we set a value

higher than the expected value, the effect will be highlighted by the pink vector.

Due to the propriety of the SHAP values, these vectors are always one opposite of

the other.

When the user changes one of the values on a slider, a new instance is generated,

the black box classifies it, and the SHAP values are computed. The vectors are

then updated on the latent space visualization. Since the number of features of

the dataset may be large, we decided to visualize only the sliders of the top 10

87

Chapter 3 - Interactive exploration of the latent space

Figure 3.5: effect of the feature modification in the latent space. Here, the feature Age is
represented with an expected value of 40. If the feature has this value, then the contribu-
tion in the latent space is null. If we set a lower value, the green vector guides the effect,
and a higher value follows the pink one.

most representative features selected in decreasing order of magnitude (from top to

bottom) of the SHAP scores. The two displays are mutually linked: when a slider

is changed, the latent space visualization is updated; when a point in the scatter

plot is clicked, the corresponding feature values are loaded in the set of sliders. Due

to visualization purposes, we decided to fix the latent space dimension with k = 2,

but we remind that our approach remains valid for higher dimensions.

The interface is divided into two parts. On the top, the sliders and the latent

space visualization allow the exploration of latent space by changing the value of

the input feature. On the bottom, the user can perform a neighborhood analysis

by selecting groups of points from two instances of the latent space visualization

(Figure 3.1). The two groups of points are then analyzed to determine which features

distinguish one group from the other. The differences are visualized as a set of violin

plots, comparing the distribution of observed values in the two groups. The violin

plots are sorted accordingly with features that maximize the distance of the mean

of distributions.

We tested our framework with a publicly available tabular dataset, i.e., the

88

Chapter 3 - Interactive exploration of the latent space

Titanic dataset, which contains the data of real Titanic passengers.1 Each passenger

is labeled as a survivor (red) or not-survivor (blue). Every categorical feature

is transformed into a one-hot dimension vector equal to the number of possible

categorical values. The continuous variables are normalized in the range [-1,1]. The

dataset contains 1310 passengers described by attributes such as age, passenger

class, sex, fee, etc. As a classification model, we trained an xgboost model [127]. A

web application that implements our framework is accessible at the following link:

https://kdd.isti.cnr.it/LSE/. The source code is also available on GitHub: the link

is available from the web application URL.

The latent space created by the autoencoder is illustrated on the right of Fig-

ure 3.3. Most of the data labeled as non-survivor are concentrated in the lower

right part of the latent space. The survived people, instead, are more sparse. The

most critical features reported by our method are Title and Cabin. However, if we

look at the contributions of the SHAP score, only the feature Title can move from

the bottom blue cluster to the top red one while Cabin is more responsible for the

x-axis movements. These two features are the most informative ones of our dataset;

in addition, the number of features with a score bigger than zero is 19, 30% of the

60 original features. This sparsity means that many of our features do not represent

our data at all.

We selected two clusters in the interface to analyze the difference in distributions.

We selected the one on the right with many not survived people and the one closer at

the top. We can see, as expected, that the feature “Title” is the most representative

of the two clusters (Figure 3.1). In the blue cluster, the people have lower titles

than those in the red. However, the people in the blue cluster are all men. We

conclude that in the dataset, there is a correlation between the features “Sex” and

“Title”. Male people with a lower title are the ones with meager survival chances.

In Figure 3.3, we took a point in the blue cluster on the bottom and tried to modify

1https://www.kaggle.com/c/titanic/data

89

https://kdd.isti.cnr.it/LSE/
https://www.kaggle.com/c/titanic/data

Chapter 3 - Interactive exploration of the latent space

its most relevant features to move it to the top cluster. In particular, we can see that

the feature “Title” contributes to the cluster’s direction and has a lower value than

the expected one. By modifying this feature to a value greater than the expected

value (i.e., on the right of the e placeholder), we discovered that it is possible to

move the point from the original cluster to the one in the center, which is mainly

labeled as survivor. The more we increase the value, the more the point will be in

the top part of the space. Interestingly the feature “Sex” has a low SHAP value

meaning that our model is only looking at the feature “Title” for distinguishing

points.

3.4 Discussion and Future Directions

In this chapter, we explored the possibility of using an explanation methodology that

exploits the combination of latent spaces learned by a conditional autoencoder with

a feature relevance method, namely SHAP. Interactive learning is a novel framework

of explanations where, in each step, the user interacts directly by modifying and cor-

recting the explanation. This interactive feedback has been proven to be essential

for better comprehension of the black-box decision [128], and here it is no exception.

We have extracted beneficial information about the data under analysis by utilizing

an interactive exploration of the latent space to evaluate the position of single in-

stances or groups of points. This interactive framework is perfect for exploring the

latent space and extracting information about the black-box predictions.

However, it is not free of problems. SHAP scores are expensive to compute

and they are still an approximation of the actual Shapley values. A faster method

similar to SHAP in leveraging a similar procedure for identifying the importance

of the features is DALEX [129]. DALEX employs a different strategy to approx-

imate Shapley values, using a greedy search to find the best feature to remove.

In our implementation, we used SHAP because it is one of the most well-known

90

Chapter 3 - Interactive exploration of the latent space

XAI procedures. However, we plan to experiment our proposal with DALEX as fu-

ture work. Another difficulty encountered was the conditional autoencoder training.

While autoencoders are the most popular and established generative models, they

lack training consistency. Different runs could produce very different results. In

general, evaluating the goodness of the created latent space is difficult, particularly

if the generated latent space is suitable for explanation exploration. Autoencoder

training problems are well known in the actual state-of-the-art and, for now, with-

out any solutions. The conditional variation is better for representing explanations,

but most of the stability problems remain. About the interaction framework, it

lacks smooth animations. A further development could be to introduce real-time

visual-based animation to bind the changes on the sliders with the updates on the

visualization. This would help the user better understand the movements in the

latent space even more.

Although this interactive approach may seem attractive at first glance, we are

trying to explain a black-box using an auto-encoder, which is itself a black-box.

How can we be sure of its behavior? We will never know whether the problem

encountered comes from the black-box or the autoencoder: we will never know who

is right and wrong. To solve this problem, in the next chapter, we will examine the

possibility of transparently creating the latent space so that we know precisely how

the latent space is created and better analyze the black-box.

91

Chapter 4

Interpretable by Design Latent

Space

In this chapter, we tried to answer the question: is it possible to create the latent

space transparently and retain its similarity and classification properties? Can this

new interpretable latent space be used to train ML models and produce explana-

tions?

We found in the last chapter that the latent space has properties that enable

researchers to understand the data better and produce better models. However, it is

usually created using black-box models such as autoencoders. This makes it difficult

to use as an explanation technique since one must apply a post-hoc technique on it

as well as on the black-box, doubling the effort. An emerging, more ambitious ob-

jective is to define novel Machine Learning (ML) methodologies to construct models

that are transparent-by-design, i.e., models that natively deliver accurate classifi-

cations together with trustworthy explanations [3] (Section 2.1.7). In particular,

we propose a new approach to perform classification and explanation, named ILS

for Interpretable Latent Space. ILS foresees the simultaneous construction of an

Interpretable Latent Space and of a classifier trained on such latent space in the

training phase. Then, the latent space is used to obtain classification and retrieve

92

Chapter 4 - Interpretable by Design Latent Space

Algorithm 1: ILS(x,X, Y,K, f)
Input : x - instance to classify and explain, X - training data, Y - labels, K - list of latent space

dimensions, f - classifier training function
Output: y - classification, x′ - counterfactual explanation

Train(X,Y, f,K):
1 M← LearnBestLatentSpace(X, f,K); //find best latent space

2 Z ←M(X); //turn training data into latent space

3 b← f(Z, Y); //train classifier on the latent space

4 return b,M;

Predict and Explain(x, b, Z,M):
5 z ←M(x); //get latent representation

6 ŷ ← b(z); //apply prediction

7 x′ ← GetCounterfactual(z, b, Z,M) //get counterfactual explanation

8 return ŷ, x′;

explanations simultaneously. ILS uses a similarity loss to transform data from the

real space to the latent space using a linear model. Then, from this latent space, a

counterfactual explanation is extracted. We show how this approach enables a new

use of the learned model such that, when applied to an instance x, it returns a coun-

terfactual example, i.e., another instance x′ with minimal changes to the features of

x that is classified differently (see Section 2.1.6).

Thus, the main contribution of this chapter is twofold. First, an interpretable

latent space is defined based on a linear encoding of the original data space. Second,

we show how the newly defined interpretable latent space properties allow us to

find a counterfactual example. We extensively evaluate our proposal with various

tabular and image datasets. First, we observe that the interpretable latent space

actually preserves similarities better than other approaches in the literature [87, 130].

Second, we assess qualitatively and quantitatively the counterfactuals provided by

our method compared to others.

The rest of the chapter is organized as follows. Section 4.1 illustrates the pro-

posed methodology. Then, Section 4.2 reports the experimental results comparing

ILS against state-of-the-art methods. Discussion and future research directions are

discussed in Section 4.3.

93

Chapter 4 - Interpretable by Design Latent Space

4.1 Methodology

We introduce here the Interpretable Latent Space (ILS) method, and we show how

it is able to return an explanation in the form of counterfactual instances besides

the classification outcome. The idea of ILS is to create an interpretable latent space

in which the position of a point in the latent space can be explained exactly in terms

of input characteristics. By using an interpretable mapping instead of an opaque

Ml model, we can know exactly how the data were mapped in the latent space and

be able to trace their position in the input space without the help of a decoder. We

claim that the latent space created by ILS is interpretable since the linear mapping

of the input features can be represented in the latent space in the form of vectors

(Figure 4.1 (left)). Transparency can be exploited to obtain the counterfactual

explanation of a classifier trained in such a space. Using a transparent mapping,

it is possible to translate the explanation made in the latent space into the input

space in an effortless way. Like most classification methods, ILS has a train phase

and a predict phase. The latter is indeed a predict & explain phase.

The whole procedure, illustrated in Algorithm 1, starts by learning the latent

space modelM from the training set X. WithM, we indicate a model able to map

the input dataset X ∈ Rn into a latent version Z ∈ Rk. A set of latent dimensions

K is tried and the best k dimension is selected among this set (line 1). Details

about the latent space learning are discussed and formalized in Section 4.1.1. Then,

M is applied to X to obtain the latent representation of the dataset Z ∈ Rk (line

2). Finally, a classifier b is trained on Z through the training function f (line 3).

After the latent space training, the predict & explain procedure works as follows.

Given an instance x, x is turned into its latent representation z, and the classifier

is applied to obtain its prediction (lines 5-6). Then, the prediction ŷ is explained

by exploiting the interpretability of the learned space, returning a counterfactual

instance x′ (Line 7). Details on how the counterfactual is constructed are given in

94

Chapter 4 - Interpretable by Design Latent Space

Figure 4.1: Scheme of the vector model used for creating explanations. Left: represen-
tation of the input features in the latent space. Right: we illustrate a step in the ILS
algorithm to modify the input features based on the position of the latent space, as ex-
plained in Section 4.1.2. The best update found by ILS is (X̄2), p is the projector to the
different class center, p′ is the new projector for the next step

Section 4.1.2.

4.1.1 Interpretable Latent Space Learning

ILS is based on a linear transformation that enables the transparent mapping be-

tween the input and latent features. The idea is to learn a latent space by combining

a similarity loss analogous to the one utilized in t-SNE [131] with the mapping rea-

soning of PCA: the data are mapped into the space based on the similarity between

them. Our objective is that similar instances in the original input space should be

close also in the latent space that we are trying to build. Linear models have been

proven in recent years [25] to be the best methodology to produce explanations,

in the sense that it is possible to isolate the contribution of each feature to the

prediction. In line with these insights, we propose a procedure to build an inter-

pretable latent space using a linear mapping M that transforms the input space

X of dimension n into a latent space of dimension k, i.e., Z = M(X) such that

95

Chapter 4 - Interpretable by Design Latent Space

Algorithm 2: LearnLatentSpace(X, k)
Input : X - training data, k - latent space dimension
Output:M - trained transformation model

1 i← 0; //init. iteration index

2 Li ←∞; //initialize loss

3 M← init(); //initialize model weights

4 SX ← PairwiseSimilarity(X); //original similarity matrix

5 while Li−1 > Li do //until the loss decreases

6 Z ←M(X) //get latent representation

7 SZ ← PairwiseSimilarity(Z); //latent similarity matrix

8 Li ← KLD(SX , SZ); //compute Kullback{Leibler Divergence loss

9 M← update(M, Li); //Update the model using backpropagation

10 i← i+ 1

11 returnM;

zj = w0x0 +w1x1 + · · ·+wixi + · · ·+wnxn, where w are the weights of the modelM,

x is an instance belonging to the input space Rn, z its transformation to the latent

space Rk, and k is the number of latent dimensions. In the literature, the k param-

eter is challenging to select and is usually provided heuristically. Hence we have two

objectives: finding the “best” weights w for the linear modelM and the best latent

space dimension k. The former is achieved by Algorithm 2 (LearnLatentSpace),

while the latter from Algorithm 3 (LearnBestLatentSpace).

LearnLatentSpace (Algorithm 2) starts by initializing the modelM with random

weights (line 3). Thus, we use gradient optimization [132] to minimize an unsuper-

vised loss that encourages similarity between near points. We adopt the similarity

probability loss introduced in [131] with a different purpose: instead of using the

similarity loss for visualizing a space in two dimensions, we use it to create a new

data space that enjoys the requested similarity property.

More in detail, the similarity of a point xj to a point xi is the probability that

xi would pick xj as its neighbor if neighbors were picked in proportion to their

probability density under a Gaussian distribution centered at xi. Formally, the

probability is given by

PairwiseSimilarity =
exp (−||xi − xj||2/2σ2

i)∑
k ̸=i exp (−||xi − xk||2/2σ2

i)

96

Chapter 4 - Interpretable by Design Latent Space

Algorithm 3: LearnBestLatentSpace(X,K, f)
Input : X - training data, K - list of latent space dimensions, f - classifier training function
Output:M - Trained model

1 M← ∅; //empty best transformation model

2 s← 0; //init. best model score

3 for k ∈ K do
4 M′ ← LearnLatentSpace(X, k); //learn latent space with k dimensions

5 Z ←M′(X); //get latent representation

6 b← f(Z, Y) //train classifier on Z

7 s′ ← evaluate(b(Z), Y); //evaluate classification performance

8 if s < s′ then
9 M←M′; //take best transformer w.r.t classifier performance

10 returnM;

where xi and xj are the two points, and σ is the variance of the Gaussian. Al-

gorithm 2 computes the similarity probability of any two points xi and xj in the

input space (Line 4) and in the latent space (Line 7). The more two points are

similar, the higher this value. From a computational point of view, the issue with

using this similarity loss is that it requires calculating the similarity between every

pair of instances. However, since the fit is performed by gradient optimization, it

is possible to divide the data into fixed-sized batches and compute the similarity

matrix separately for any small batch of points. This operation can be done only

once for the input data, but it needs to be repeated every time for the latent space

since the position of the point in Z changes after every iteration. The two matrices

must have similar distributions to enjoy the previously described similarity prop-

erty. Therefore, the final loss function that we minimize is the Kullback–Leibler

divergence [133] (line 8) between the matrices SX and SZ :

L(SX , SZ) = KL(SX∥SZ)

where SX and SZ are the similarity matrices computed respectively on the input

space X and the latent space Z. This loss is back-propagated to update the weights

wi of the model M until convergence (line 9)1.

The other algorithm LearnBestLatentSpace described by Algorithm 3 is designed

1For the convergence problem, we used the early stopping technique.

97

Chapter 4 - Interpretable by Design Latent Space

to select the best space by varying the dimension of the latent space k. After

initializing an empty model and setting its score to zero (lines 1-2), the following

procedure is repeated for each dimension k (cycle for 3-10). Given k, it learns

M′, mapping the input space to a k-dimensional latent space (line 4). Next, X is

mapped into its latent representation Z according to M ′, and a classifier b is trained

on Z (line 6). The performance of the classifier is used to assess the goodness of

M′ (line 8). Finally, the latent space with the smallest size returning the highest

classification performance is returned by LearnBestLatentSpace (lines 8-9). The

LearnBestLatentSpace procedure is costly because it trains the classifier for every

latent space dimension. We highlight that k is a crucial parameter, as its value can

determine the goodness of the latent space.

4.1.2 Counterfactual Explanations

This section describes the methodology employed by ILS to extract counterfactual

explanations exploiting the interpretability of the latent space. We refer here to

binary classification, but the approach easily extends to multi-class classifiers.

Let x = {x1, x2, . . . , xn} be an input data point for which we want to provide a

prediction and its explanation. The first step of GetCounterfactual , illustrated in

Algorithm 4 and used by ILS in line 7 of Algorithm 1, is to find the best counter-

factual explanation by choosing the direction in the latent space. Given z as the

latent representation of x (line 1), GetCounterfactual computes the position of the

nearest centroid of the points in the latent space with opposite predictions of z’s

(line 2). This is realized using a clustering algorithm on those points in the latent

space with opposite predictions with respect to z and by taking the centroid c of

the cluster nearest to z (line 3). Taking the nearest sample is insufficient since we

could move towards a single sample that could be wrongly classified. The direction

to move in the latent space to change the outcome for z is expressed in line 7 by the

projector p = c−z. The goal is to find the best feature xi such that its new value x̄′i

98

Chapter 4 - Interpretable by Design Latent Space

Algorithm 4: GetCounterfactual(x, b, Z,M)

Input : x - instance to classify and explain, b - classifier, Z - latent training set,
M - latent transformation model,

Output: x′ - counterfactual explanation

1 z ←M(x); // get latent representation

2 C ← Clustering(z′|z′ ∈ Z ̸=); // centroids with different prediction

3 i← argmin
i

d(Ci, z) // find the centroid

4 c← Ci

5 x̄← x; // init. counterfactual

6 while b(M(x)) = b(M(x̄)) do
7 p← c− z // Find the vector projecting in the centroid direction

8 u← ∅; // possible updates

9 for i ∈ [1, n] do
10 x′i ← Equation2 (x̄, i, p,M) //calculate update for feature i

11 ui ← x′i; //store update

12 i← argmin
i∈[1,n]

{deuclidean(ui, c)} // find best update

13 x̄i ← x′i // apply the best update

14 return x̄;

moves the candidate counterfactual x̄ towards the desired prediction. In particular,

each input feature xi is responsible for a direction of movement in the latent space

as shown in the example in Figure 4.1 (left)). This is repeated (lines 6-15) until the

prediction for x̄, the counterfactual candidate, is different from the prediction of the

instance under analysis, i.e. until b(M(x)) ̸= b(M(x̄)).

The goal of ILS is to find the new value of xi such that the projection p′ of the

instance point x′ is perpendicular to the feature direction (Figure 4.1 (right)). More

formally, this translates in p′ · (Wix
′
i) = 0 (Equation (1)), where p′ = c− z′, z′ is the

position in the latent space by modifying the input feature i, and Wi is the vector

of the ith weight of the model M with dimension k.

99

Chapter 4 - Interpretable by Design Latent Space

0 = p′ · (Wix
′
i) = x′i ∗

(
k∑

j=1

p′jwji

)
= x′i ∗

k∑
j=1

(
cj − z′j

)
wji (4.1)

=
k∑

j=1

(
cj −

n∑
l=1

x′lwjl

)
wji (4.2)

=
k∑

j=1

(
cj −

n∑
l ̸=i

xlwjl − x′iwji

)
wji (4.3)

=
k∑

j=1

(
cjwji −

(∑
l ̸=i

xkwjl

)
wji − x′iw

2
ji − bjwji

)
(4.4)

→ x′i =

∑k
j=1 cjwji −

∑k
j=1

(∑n
l ̸=i xlwjl

)
wji∑

j w
2
ji

(4.5)

By substituting the value of p′, we obtain Equation (1). This equality would be

valid only if the scalar product of p′ and Wi part would be 0. Then, ILS substitutes

the value of z′ and extracts the x′i value from the summation corresponding to the

modification needed. The rest of the steps retrieves x′i.

Going back to Algorithm 4, by applying the formula of Equation (2), ILS finds

all the possible modifications of the ith feature of x (line 10). Then, it selects the

update x′i that, if applied to x̄ brings it to be more similar to c than the other

possible updates analyzed (line 11). At this stage, the update is applied to the ith

feature (line 11). The procedure is iterated until a different prediction is obtained

for x̄. We underline that it is not said that the features to update are different in

every iteration. Indeed, the best feature i to be updated may be the same that was

already modified some iteration ago. This is due to the fact that the position in the

latent space changes at every iteration, and it is necessary for some refinement of

the modification done before.

100

Chapter 4 - Interpretable by Design Latent Space

4.2 Experiments

We conducted two types of experiments. The first type of experiment aims to

verify the goodness of the latent space created and compare it with other literature

approaches. The second type of experiment is aimed at validating the counterfactual

explanations produced.

Datasets. We ran experiments on a selection of twelve small and medium-sized

datasets widely referenced for classification tasks and publicly available. Table 4.1

shows summary statistics on the datasets2.

Table 4.1: Datasets statistics.

dataset credit adult cover clean1 clean2 isolet madelon sonar soybean anneal mnist fashion

instances 1,000 48,842 581,012 476 6,598 7,797 2,600 208 683 898 70,000 70,000
features 59 7 54 166 166 617 500 60 35 38 784 784

class values 2 2 7 2 2 26 2 2 19 6 10 10

4.2.1 Latent Space Evaluations

First, we evaluate the quality of the latent space created by ILS. In line with [134],

we used different methods, datasets, and metrics described in the following.

Competitors. We compared ILS against two categories of algorithms: autoen-

coders and dimensionality reduction methods. Since ILS is a hybrid approach of

these two categories, we decided to include both in the experiments. The methods

tested are PCA [87], UMAP [135], TMAP [136], and VAE [130], described in Sec-

tion 2.3. For ILS, we used the Adam optimizer [132] with a learning rate of 1e-3

and a batch size of 4096. For the VAE, we trained it using early stopping of 5 for

a maximum of 1000 epochs using the Adam optimizer, a learning rate of 1e-4, and

a batch size of 4096. We decided to use three hidden layers with dimensions equal

to the number of input features divided by 2. For PCA, UMAP, and TRIMAP,

we used the standard parameters. We highlight that we did not compare against

2ILS code; UCI and pytorch datasets; PCA, UMAP, and TMAP methods links.

101

https://archive.ics.uci.edu/ml/index.php
https://pytorch.org/vision/0.8/datasets.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://github.com/lmcinnes/umap
https://github.com/eamid/trimap

Chapter 4 - Interpretable by Design Latent Space

Figure 4.2: Metrics used to evaluate ILS

t-SNE as its main goal is to define a 2d space for visualization purposes rather than

a latent space to perform further mining. Also, t-SNE is rarely employed for latent

dimensions higher than 3.

Metrics. We considered two types of evaluation metrics: space quality metrics

and accuracy metrics (Figure 4.2). Space quality metrics verify different desired

proprieties of the space, while accuracy metrics measure the performance of clas-

sification models trained on the latent space. To measure the relative positioning

of neighborhoods, we sample observations and compute the Random Triplet Ac-

curacy [134], which is the percentage of triplets whose relative distance order is

preserved in the high and low-dimensional spaces; the closer to 1, the better. Also,

we measure the outliers preservation: we want an outlier in the input space to remain

an outlier in the latent space. We used the Local Outlier Algorithm (LOF) [137] to

measure which points are labeled outlier or inlier in space. We ran the algorithm

in both spaces to check for changes. The percentage of the changes gives the final

score. We called this metric Outlier Preservation: the lower, the better. The clas-

sification quality of the latent space is measured using three classification models.

A K-Nearest Neighbours (KNN) [138] classifier, a SVM [138] and a Neural Network

(NN). For each method, we partition the embedding into five folds, each time using

four folds as the training data and the remaining fold to evaluate accuracy. The

metric is denoted as accuracy: the closer to 1, the better.

Results. We trained every algorithm on different latent space dimensions and

102

Chapter 4 - Interpretable by Design Latent Space

Table 4.2: Space quality metrics. The best scores are in bold.

Random Triplet Accuracy Outlier Preservation

Name ILS VAE PCA UMAP TMAP ILS VAE PCA UMAP TMAP

credit .9525 .6731 .9525 .6958 .6803 .0000 .0000 .0000 .0000 .0109
adult .9560 .7218 .9309 .7318 .6093 .0309 .0946 .0394 .0031 .0111
cover .9838 .7191 .9740 .7369 .6863 .0013 .0018 .0026 .0643 .1905
clean1 .9862 .7730 .9868 .8069 .8132 .0220 .0063 .0031 .0000 .0145
clean2 .9861 .8371 .9895 .6949 .7761 .0079 .0007 .0052 .0622 .1207
isolet .9669 .7972 .9572 .7498 .7912 .0021 .0013 .0002 .0153 .0510
madelon .7738 .5197 .7052 .5977 .6246 .0115 .0011 .0000 .0000 .4038
sonar .9511 .7928 .9885 .7813 .7180 .0000 .0000 .0000 .0000 .0153

soybean .9654 .7807 .9479 .7685 .7733 .0306 .0284 .0197 .0349 .0243
anneal .9927 .7348 .9880 .7441 .7537 .0033 .0000 .0017 .0216 .1464
mnist .9425 .7375 .9130 .6278 .5993 .0012 .0010 .0011 .0044 .0195

fashion .9734 .7888 .9598 .7365 .7772 .0020 .0031 .0016 .0074 .0343

wins 9 0 4 0 0 3 5 6 5 0

evaluated the metrics for every dimension. We tested the following latent dimensions

K = {2, 3, 4, 5, 7, 10, 15, 20, 25, 30} to covert most of the possible dimensions while

not exaggerating on computational times. For ILS, we chose the variance in the

similarity loss σ = 1 since our data are normalized in the range [−1, 1]; different

normalization may require a different value of σ. In Table 4.2, we report the best

latent space dimension results according to space evaluation metrics. Table 4.2 (left)

shows that ILS is the best to preserve distances, with PCA as the second best. The

other approaches largely fail in preserving the original distances. This is probably

due to the fact that the preservation of the distance is not explicitly minimized.

Table 4.2 (right) shows the results of the outlier preservation metric. We do not

have a clear winner with respect to this score. TMAP is significantly the worst

approach3.

In Figure 4.3, we report the scores of the classification models with varying latent

dimension k for the adult dataset. Other datasets have similar behavior. Overall,

3TMAP crashed for k > 10 due to the exponential computational cost.

103

Chapter 4 - Interpretable by Design Latent Space

Table 4.3: Accuracy metrics. The best scores are in bold. Uncertainty is on the third
decimal.

KNN Accuracy SVM Accuracy NN Accuracy
N

am
e

IL
S

V
A

E

P
C

A

U
M

A
P

T
M

A
P

IL
S

V
A

E

P
C

A

U
M

A
P

T
M

A
P

IL
S

V
A

E

P
C

A

U
M

A
P

T
M

A
P

credit .749 .704 .745 .715 .701 .743 .710 .742 .710 .704 .742 .736 .706 .713 .699
adult .840 .784 .837 .825 .775 .840 .830 .832 .831 .830 .844 .815 .835 .827 .828
cover .719 .605 .722 .671 .536 .930 .921 .938 .897 .891 .836 .772 .877 .801 .776
clean1 .878 .610 .877 .770 .830 .843 .793 .840 .840 .833 .905 .588 .880 .685 .799
clean2 .934 .857 .955 .924 .883 .965 .961 .962 .955 .949 .972 .899 .988 .933 .929
isolet .803 .579 .826 .850 .748 .879 .515 .875 .864 .853 .936 .651 .928 .834 .853
madelon .722 .537 .795 .614 .581 .847 .542 .884 .605 .676 .753 .521 .870 .579 .668
sonar .826 .663 .813 .791 .791 .878 .791 .842 .871 .806 .835 .748 .813 .769 .756

soybean .888 .536 .873 .884 .873 .897 .827 .886 .902 .899 .891 .580 .895 .847 .884
anneal .963 .769 .958 .917 .910 .985 .938 .977 .953 .948 .987 .769 .978 .889 .907
mnist .977 .953 .928 .969 .743 .973 .973 .974 .972 .975 .973 .972 .973 .969 .976

fashion .813 .830 .822 .811 .612 .851 .841 .855 .827 .828 .867 .866 .860 .815 .840

wins 7 1 3 1 0 7 0 3 1 1 7 0 4 0 1

increasing the latent dimensions leads to better results, although there is a sort of

“magic” dimension for every dataset at which the improvement is saturated. This

supports the approaches taken by most papers in literature where a fixed latent

dimension is used for all the experiments. Still, finding this dimension without

trying them all is unclear, and ILS is not an exception. Table 4.3 shows KNN,

SVM, and NN accuracy. For KNN, ILS produces a better latent space for most

of the datasets. For SVM accuracy, we observe similar results. We notice that

VAE does not perform well for tabular data, but it recovers on images. UMAP is

generally better than TMAP, while PCA is the second best approach.

4.2.2 Counterfactuals Evaluations

In this section, we discuss the creation of counterfactual explanations through the

interpretable latent space. As a classifier, we use KNN, but the same process can

be directly applied to any classifier.

Competitors. We compare our proposal against two model-agnostic methods

104

Chapter 4 - Interpretable by Design Latent Space

2345 7 10 15 20 25 30
0.76

0.78

0.80

0.82

0.84
KN

N
Ac

cu
ra

cy

2345 7 10 15 20 25 30
0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

SV
M

 A
cc

ur
ac

y

ILS
VAE
PCA

UMAP
TMAP

2345 7 10 15 20 25 30

0.78

0.80

0.82

0.84

NN
 A

cc
ur

ac
y

Figure 4.3: Accuracy of classifiers on adult varying the number of latent dimensions k.

Table 4.4: Example of counterfactuals produced by ILS, Gradient, and GSG for adult.
Change to the original instance are highlighted in blue.

age hours education married occupation gender country

y1 = 0
ŷ1 = 0

x1 25 50 High School Married Factory Worker Male US
ILS 25 50 High School Not Married Services Male US
GD 45 80 Dropped Married Services Male US
GSG 36 40 High School Not Married Factory Worker Male US

y3 = 1
ŷ3 = 0

x2 32 50 College Not Married Services Male US
ILS 32 50 College Not Married Prof Specialty Male US
GD 29 48 College Not Married Services Male US
GSG 31 51 College Not Married Services Male US

y4 = 0
ŷ4 = 1

x3 31 50 Community College Not Married Gov Male US
ILS 31 50 Community College Married Gov Male US
GD 20 38 Community College Not Married Gov Male US
GSG 30 51 Community College Not Married Gov Male US

that return counterfactual explanations differently. We selected these algorithms

because, similarly to ILS, they are among the few model and data-agnostic ap-

proaches. As a first comparison method, we search for a counterfactual of a sample

x by minimizing the distance between the sample x and the centroid c of the opposite

class, following the gradient descent (GD). After every gradient iteration, we modify

the instance and check the prediction. We stop iterating as soon as the prediction

changes. The other method is called Growing Spheres Generation [53] (GSG). The

GSG procedure relies on a generative approach, growing a sphere of synthetic in-

stances around x to find the closest counterfactual x′. Given x, GSG ignores the

direction of the closest classification boundary. Indeed, GSG generates candidate

counterfactuals randomly in all directions of the feature space until the decision

boundary of the classifier is crossed and the closest counterfactual to x is retrieved.

105

Chapter 4 - Interpretable by Design Latent Space

age hoursPerWeek education marital_status occupation gender native_country
0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f c
ha

ng
e

ILS
gradient
GS

Figure 4.4: Histogram of the percentage of changes in the features among the three meth-
ods. GD and GSG algorithms focus more on the first two features, which are the contin-
uous ones for the adult dataset.

Figure 4.5: Example of counterfactuals produced by ILS, GD, and GSG for the mnist

dataset. The counterfactual classes target are 8, 9, and 8 from left to right.

We selected these two approaches among the many available ones [139, 57] since

they are two popular agnostic approaches to search for counterfactual explanations

regardless of model and data type.

Qualitative Evaluation. We report in Tables 4.4 and Figure 4.5 the coun-

terfactual explanations returned by ILS, GD, and GSG for the adult and mnist

dataset, respectively. We highlight that, for adult, the features age and hoursPer-

Week are continuous, while the others are discrete. In datasets with mixed con-

tinuous and discrete values, we observe that GD and GSG methods tend to focus

more on the continuous features to change the prediction. For example, for x1 of

Table 4.4, ILS produces a counterfactual by modifying the marital status and the

occupation of the person, while GD and GSG also modify the age and the hours

per week. Another example that highlights this behavior is given by x3, where ILS

produces a counterfactual by only modifying the marital status while GD and GSG

change the first two continuous features again. To further highlight this, we gen-

106

Chapter 4 - Interpretable by Design Latent Space

Table 4.5: Counterfactual explanations metrics evaluation. ILS returns counterfactuals
with minimal changing of input features while retaining a good result also in the distance
metrics.

ddist dcount impl % Success Run Time

ILS GD GSG ILS GD GSG ILS GD GSG ILS GD GSG ILS GD GSG

adult 2.74 1.15 0.54 0.43 0.50 0.60 0.14 0.32 0.42 1.00 1.00 0.99 0.01 0.10 1.92
credit 2.94 2.86 1.40 0.11 0.99 0.39 2.62 1.84 1.40 1.00 1.00 0.98 0.03 0.20 1.75
clean1 4.16 4.09 1.16 0.09 1.00 0.19 3.99 4.01 1.16 1.00 1.00 0.72 0.04 0.26 1.33
clean2 4.09 3.32 0.45 0.06 1.00 0.18 3.73 3.31 0.45 1.00 1.00 0.11 0.21 0.51 14.2
madelon 1.96 1.02 - 0.004 1.00 - 1.95 1.02 - 1.00 1.00 0.00 0.08 0.07 -
mnist 4.65 3.11 8.13 0.03 1.00 0.17 4.65 3.11 5.30 1.00 1.00 1.00 0.18 0.24 12.6

erated counterfactuals for the whole data in the adult dataset and checked which

features were modified by the method.

In Figure 4.4 is reported the percentage of modifications of each input feature.

We observe that GSG and GD change the first two features (age and hoursPer-

Week) considerably more times than ILS because it is easier in real space to modify

continuous variables than categorical ones to obtain the desired effect. For image

datasets, such as the mnist examples illustrated in Figure 4.5, all methods resemble

adversarial attacks [2] where only a few pixels are modified, and the counterfactu-

als found are very far from real samples in the dataset. The counterfactuals found

by GD are very confusing, and the modifications from the original image look like

random background noise. On the other hand, ILS and GSG capture a small set of

pixels that modify the attributed class.

Metrics. The quality of the found counterfactuals is evaluated with different

metrics. We have chosen datasets with binary classification and a dataset on images

for comparison with different data types. For mnist, since it is a multi-class dataset,

we follow the approach proposed in [53] and search counterfactuals for a selected

class. We decided to measure the proximity between x and its counterfactual x̄ in

two different fashions. The first one, named disdist, is the average Euclidean dis-

tance between x and the counterfactual x̄. The second measure computed, discount,

107

Chapter 4 - Interpretable by Design Latent Space

quantifies the average number of features changed between a counterfactual x̄ and

x.

disdist =
1

|X|
∑
x∈X

d(x, x̄) discount =
1

|X|m
∑
x∈X

m∑
i=1

1x̄i ̸=xi

where 1 returns 1 if cond is true, 0 otherwise, and m is the number of features.

Also, we measured the implausibility of the generated counterfactuals in terms of

how close a counterfactual x̄ is to the reference population X. It is the average

distance of x̄ from the closest instance in the X. The lower, the better.

impl =
1

|X|
∑
x∈X

min
x̂∈X

d(x̄, x̂)

We used the test set as reference population X. Finally, we computed the success

rate of the algorithm to produce a counterfactual instance.

Results. The results are presented in Table 4.5. By modifying the instance

in the latent space, our ILS method searches for counterfactuals focusing on fewer

features than other methods. The counterfactuals found by ILS are more humanely

understandable since human reasoning often involves modifying only one feature at

a time. In contrast, other methods can search for counter exemplars more plausible

and more similar to the original example by altering more features. ILS as GD has

a success rate of producing a counterfactual of 100% in contrast to GSG, which is

not always successful. In particular, for the dataset clean2, the success rate of GSG

is lower than 10%, and for madelon, GSG completely fails. ILS is the faster method

among the three to return counterfactuals. Since ILS can select the right feature

to modify to change the prediction, it is faster than GSG, which has to generate

many points and call the classifier for each of them to obtain a prediction. All three

approaches fail to find plausible counterfactuals for images.

108

Chapter 4 - Interpretable by Design Latent Space

4.3 Discussion and Future Directions

In this chapter, we explored the possibility of creating the latent space transparently.

We introduced ILS, a method that foresees the construction of an Interpretable La-

tent Space for simultaneously classifying and explaining. Through the use of an

interpretable model, it is possible to create a latent space that maps the data by

similarity. However, this space is difficult to evaluate, due to the lack of metrics in

literature. We proposed a methodology to evaluate ILS against several approaches

producing similar types of latent space, demonstrating that our proposal improves

with respect to the state-of-the-art. Besides interpretability, we have observed su-

perior performance on different metrics assessing the quality of the latent space and

the accuracy of classification models built on it. Moreover, the transparent nature of

the transformation allows the position of points in latent space to be interpreted in

terms of vectors, enabling counterfactual explanations of the classification methods

built on it. We have shown how a counterfactual explanation can be produced using

ILS and compared it to state-of-the-art explainers. ILS is able to produce coun-

terexemplars that change fewer features than their competitors, allowing simpler

explanations for humans. However, the counterexemplars created could be better

both in terms of proximity and plausibility. This problem may be related to the

search in latent space. A linear transformation is great for keeping the transforma-

tion interpretable, but there is no indication of the direction in which to move for

finding counterfactuals. Our methodology uses cluster centroids of opposite classes

as direction, however, this approach is not accurate since not all the clusters in the

latent space are pure. Moreover, since the black-box is learned after the latent space

is created, it is not possible to bind the space with its predictions. Another effect of

the transparent nature of the latent space transformation is that it does not allow

the latent space much freedom. Usually, when building a ML model, there is a

trade-off between performance and interpretability [140, 141, 142], and ILS is no ex-

109

Chapter 4 - Interpretable by Design Latent Space

ception. The linear transformation is great for finding explanations, but it is limited

in terms of expressiveness. This is quite clear in the counterfactuals created for the

dataset mnist. The counterfactuals are confusing and quite far from a convincing

explanation.

In the next chapter, we will explore the possibility of using black-box predictions

to constrain the creation of latent space and create a clear direction in which to move

to find explanations.

110

Chapter 5

Latent Space Post-Hoc

Explanations

In this chapter we will try to answer our third research question: Can the latent

space proprieties help us in producing better explanations than in the input space?

What type of post-hoc explanations can be obtained? How do they compare with

other approaches in the literature? As seen in Chapter 2 there are several ways for

extracting explanations from black-box models [50]. One way to explain a prediction

is in terms of similarity to other data. For example, “Your loan was denied because

you are very similar to another person who defaulted on your loan.” In particular,

human categorization can be modeled as the use of prototypes: representative ex-

amples of the category as a whole [40]. The membership of an item in the category

is determined by its similarity to the prototypes of the category. Following this idea,

it is possible to extract a set of samples that best divide the data into different sets,

each with its own characteristics. By observing the similarity of a data item to this

dataset, it is possible to assign it to one of the prototype categories, allowing the

user to better categorize the model decision.

A different intuitive way is instead to provide the changes to alter the outcome

of the black-box. Counterfactual or contrastative thinking [48] is a concept in psy-

111

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.1: Representation of a possible adversarial problem in counterfactual explana-
tions. Points G and H can be selected as counterfactual explanations even if they are
clearly adversarial examples.

chology that involves the human tendency to create possible alternatives to events

that have already occurred; something that is contrary to what actually happened.

In XAI these changes can be given in terms of records with similar characteristics as

the instance of interest but with an altered outcome. For instance, a record with dif-

ferent features or a text with missing/added words [12, 49]. In this sense, we speak

about instance-based counterfactual explanations [50] or counter-exemplars [51]. In

the following, we adopt the short name counterfactual explanations to refer to this

type of explanation.

Counterfactual explanations are among the most widely used tools in XAI due

to their simplicity and understandability and they can be classified under several

aspects [9]. However, a counterfactual is usually defined as the minimal changes that

alter a model’s prediction. This definition overlaps with adversarial attacks: a type

of attack that is made on ML models in which slightly altered data are proposed to

the model that is nevertheless classified in a totally different way. Adversarial attacks

are used to demonstrate the fragility of a black-box, whereas a counterfactual should

highlight the model’s decisions and not try to break it. In literature, the difference

112

Chapter 5 - Latent Space Post-Hoc Explanations

between a counterfactual and an adversarial sample is not clear. In this chapter,

we defined Robustness : the property of a counterfactual explanation to be free from

adversarial attacks. This metric can be put together with the other metrics presented

in Section 2.1.8 used to evaluate the goodness of a counterfactual explanation. The

presence of an adversarial sample in the data can alter counterfactual explanations

in dangerous ways. In Figure 5.1 this problem is highlighted in which two adversarial

samples can be selected as an explanation for an entire set of data points.

Our objective is to exploit a latent space representation of the data to search for

Counterfactual and Prototype explanations while respecting the criteria of Robust-

ness as well the others presented in Section 2.1.8 (Proximity, Plausibility,Diversity,Accuracy

and Sparsity). By placing data in the latent space based on similarity, it is easier

to measure distances and better categorize data into groups, allowing us to find

better prototype explanations. Beside that latent space models are perfect for cre-

ating counterfactual explanations since they can generate data similar to the original

one [143, 144]. Having both prototype and counterfactual explanations is a power-

ful way to gain a deeper understanding of the behavior of machine learning models.

By examining both types of explanations together, we can better understand the

strengths and limitations of the model, and gain insights into its inner reasoning.

Overall, the combination of prototype and counterfactual explanations provides a

powerful tool for understanding and improving the behavior of machine learning

models.

However, the creation of latent space representations is unsupervised, meaning

that there is no indication of how to move in the space to alter the prediction of an

instance. Another problem is that the mapping between the input features and the

latent space is done by neural networks (NNs), which introduces several nonlinear

transformations making the relationships between latent space dimensions and real

features incomprehensible for humans [145]. This makes it difficult to recover the

counterfactuals found in the encoded latent space.

113

Chapter 5 - Latent Space Post-Hoc Explanations

In this chapter, we present a method for searching Counterfactual and Pro-

totypical explanations via Interpretable Latent Space (CP-ILS). CP-ILS produces

local prototypes and counterfactual explanations able to overcome the problems

highlighted above by exploiting a transparent latent space representation. Indeed,

CP-ILS builds a transparent latent space representation by using a linear approach

and by taking advantage directly of the predictions of a given black-box model.

CP-ILS uses the real space and the predictions of a black-box to construct a latent

space. Prototype explanations are achieved by looking at similarities in this cus-

tom designed space, while counterfactual explanations are obtained in the form of

diverse instances following the prediction direction of the data. The counterfactual

explanations are decoded back into the real space using the linear nature of the

transformation, making the whole process transparent. Our experiments demon-

strate that it is possible to use the interpretable latent space representations of

CP-ILS for generating explanations for tabular data obtaining better results than

current explanation methods taken individually. The results show that CP-ILS

outperforms several state-of-the-art counterfactual explanation methods w.r.t. met-

rics quantifying Proximity, Robustness, Plausibility, and Diversity and prototype

methods regarding Accuracy and Sparsity. Also, thanks to its linear latent space

approach, CP-ILS enables the actionability of the counterfactual explanations. The

user can select which features of the input wants to modify, and CP-ILS will produce

a counterfactual with only that subset of features changed, if possible. We focus our

analysis on tabular data. However, we highlight that our proposal remains valid for

every data type.

5.1 Methodology

This section describes the proposed Counterfactual and Prototypical explanations

via Interpretable Latent Space (CP-ILS), and it is divided into two parts. The first

114

Chapter 5 - Latent Space Post-Hoc Explanations

part reports the methodology used to learn the latent space representations, and the

second part focuses on how to exploit the latent space to produce the counterfactual

and prototype explanations.

5.1.1 Constrained Interpretable Latent Space with Black

Box Predictions

CP-ILS is based on a linear transformation which enables the transparent mapping

between the input features and the latent ones. We opted for this direction because

linear models have been proven in recent years to be the best methodology to pro-

duce explanations [25, 146]. Indeed, through linear transformations, it is possible

to isolate the contribution of each feature to the prediction. The idea is to cre-

ate/learn a latent space by combining a similarity loss analogous to the one utilized

in Chapter 4 in which the data are mapped into the space based on the similarity

between them. However, this time the latent space is also created using black-box

predictions, increasing the data information.

The pseudo-code is illustrated in Algorithm 6. Formally, CP-ILS learns a linear

model M, which maps the input features X into a latent one Z by using a linear

transformation: Z =M(x) = W · x = w0x0 +w1x1 + · · ·+wixi + · · ·+wnxn, where

W are the weights of the transformation, x is an instance belonging to the input

space Rn, z its transformation to the latent space ∈ Rk, and k is the number of

latent dimensions. Hence, the first objective is to find the “best” weights W for the

linear model M, given a specific dimension k.

CP-ILS maps the data X into the latent space Z based on data similarity. Also,

we want this mapping to be transparent to not lose the link between the latent and

the real features and be able to decode easily from the latent space back into the real

one without the use of any extra ML model. If we relax the hypothesis of linearity,

then to decode back in the input space there is the need for a decoder.

115

Chapter 5 - Latent Space Post-Hoc Explanations

Algorithm 5: CP−ILS (X, x, b)

Input : X - data, x - instance to explain, b - black-box
Output: C - set of counterfactual explanations,

P - set of prototype explanations

1 i← 0; // init. iteration index

2 n← length(x); // compute features length

3 k ← 2; // init. latent space dimensions

4 Si →∞; // init. latent space score

5 ŷ ← b(X); // obtain the black-box predictions

6 while Si−1 < Si ∧ k < n do
7 M← LatentLearning(X, b, k); // learn the model

8 Z ←M([X, ŷ]); // compute latent space for X

9 Si ← Score(Z); // compute the new score

10 k ← k + 1;
11 i← i+ 1;

12 P ← PrototypeSearch(x,X,M, b, n); // compute the prototype explanation

13 C ← CounterfactualSearch(x,M, b); // compute the counterfactual explanation

14 return (P,C);

The weights W of the transformation need to be learned from the data X based

on feature similarity. The concept of similarity between two samples has been con-

sistently seen in terms of feature similarity. However, we think that the prediction

similarity between samples should be also taken into account. The prediction label

ŷ = b(x) adds more information into the latent space representation and contributes

to identify the relevant features to alter the prediction. As illustrated in Figure 5.2,

creating a latent space using black-box predictions allows more correct examples

to be found. The red circle H at the bottom of the original space (left) cannot

be a good counterfactual example for points A, B, and C because it will probably

be an adversarial point. On the other hand, in the latent space (right), the data

are rearranged according to the similarity of both features and prediction outcome,

allowing for more diverse and less contradictory counterfactuals.

However, using only the prediction as similarity data near the decision boundary

will be mapped close to points that are very far away. Instead, by using the proba-

bility of the prediction, the model can effectively distinguish between these types of

116

Chapter 5 - Latent Space Post-Hoc Explanations

Algorithm 6: LatentLearning(X, b, k)

Input : X - training data, k - latent dimensions, b - black-box
Output: M - trained transformation model

1 i← 0; // init. iteration index

2 Li ←∞; // initialize loss

3 M← init(); // initialize model weights

4 ŷ ← b(X); // obtain the black-box predictions

5 SX ← PairwiseDistance(X); // original sim. matrix

6 while Li−1 > Li do // until the loss decreases

7 Z ←M([X, ŷ]); // get latent representation

8 SZ ← PairwiseDistance(Z); // latent sim. matrix

9 Li ← KLD(SX , SZ); // compute KL-Divergence loss

10 M← update(M, Li); // update using backprop.

11 i← i+ 1;

12 returnM;

data in the latent space. Two points close in the latent space will have similar fea-

tures as well as similar prediction probability given by the black box. Therefore, CP-

ILS uses gradient optimization [132] to minimize a loss that encourages both feature

and prediction similarity. In particular, as loss function L, CP-ILS adopts a modified

similarity probability loss introduced in Section 4.1.1. Similar to Section 3.2, CP-ILS

concatenates to the data x the predictions probabilities ŷ given by the black-box b,

i.e., [x, ŷ]. Thus, we have Z = W ·[x, ŷ] = w0x0+w1x1+· · ·+wixi+· · ·+wnxn+wŷŷ.

More in detail, the similarity between two records xj and xi is the probability that

xi would pick xj as its neighbor if neighbors were picked in proportion to their

probability density under a Gaussian distribution centered at xi. More formally:

PairwiseDistance(xi, xj) =
exp (−d(xi, xj)/2σ2

i)∑
k ̸=i exp (−d(xi, xk)/2σ2

i)
(5.1)

where xi and xj are two records for which we compute the similarity, σ is the

variance of the Gaussian, and d the distance between xi and xj. The more two

samples are similar, the higher this value.

There are several ways to compute the distance d between two records. CP-ILS

117

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.2: Representation of the original data (left) and the rearrangement of CP-ILS
(right). The two points H and G are clearly two adversarial examples that can fool the
counterfactual methods to believe that these are valid explanations for the other data.
By reorganizing data by similarity and prediction the resulting counterfactuals are less
adversarial, more plausible, and also more diverse than if found in the original input
space.

computes the distance between the input features and sums the distance between

the black-box prediction. However, the Euclidean distance does not work correctly

with categorical values. To solve this problem that is typical of many counterfactual

explainers [9], CP-ILS computes the distance between the categorical and contin-

uous input features using a mixed distance [59] composed of two additive terms:

the normalized Hamming distance [147] for categorical features, and the cosine dis-

tance [148] for continuous features. The three distances are computed separately

and then added together (Equation 5.2).

d(xi, xj) =

(
h

m

)
·Hamming(xi, xj)+(

m− h

m

)
· Cosine(xi, xj)+

∥ŷi − ŷj∥2)

(5.2)

where h is the number of categorical features, and m is the total number of features.

From a computational point of view, the issue with using the similarity loss defined

in Equation 5.1 is that it requires computing the similarity between every pair of

118

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.3: Score computed for different latent space dimensions for the Adult dataset
with SVM as black-box. As a scoring function, we used the accuracy of a KNN model.
The metric computed indicates four as the best dimension.

instances in the real space and in the latent space. However, since the fit is performed

by gradient optimization, it is possible to divide the data into fixed-sized batches

and compute the similarity matrices separately for any small batch of samples. This

operation can be done only once for the input data, but it needs to be repeated every

time for the latent space since the position of the records in Z changes after every

iteration. Finally, the loss function minimized by CP-ILS is the Kullback–Leibler

divergence [133] between the matrices of distances: L(SX , SZ) = KL(SX∥SZ), where

SX and SZ are the similarity matrices computed respectively on the input space X

and the latent space Z. This loss is back-propagated to update the weights W until

convergence1.

When dealing with latent space representations, an essential parameter to select

is the number of latent space dimensions k. The size k of the latent space is often

chosen unwisely in the literature, usually based on the performance achieved in terms

of reconstruction of the input [149]. Increasing the size of the latent space allows the

space to store more information. This causes the creation of a particular dimension

for which only noise is added for subsequent dimensions, resulting in a kind of

1For the convergence problem, we used the Early Stopping technique.

119

Chapter 5 - Latent Space Post-Hoc Explanations

Algorithm 7: PrototypeSearch(x,X,M, b, n)

Input : x - Data to explain, X - reference data,M - latent space model, b -
black-box, n - nbr of prototype to produce

Output: P - Prototype explanation

1 Ŷ ← b(X); // compute data prediction in the latent space

2 Z ←M(X, Ŷ); // compute latent space position

3 centers← KMeans(Z); // obtain the centers

4 ŷ ← b(x); // compute data label in the latent space

5 z ←M(x, ŷ); // compute latent space position of the data to explain

6 P ← argmin
n

[d(z, c)]; // find the n most similar prototypes

7 return P ;

overfitting behavior. To avoid this effect, CP-ILS starts with the lowest possible

dimension of latent space, i.e., k = 2, and progressively increases the dimensions.

To identify possible overfitting behaviors, we tested several metrics, and we decided

to use the accuracy of a KNN [150] classifier trained on top of the created latent

space Z. The accuracy is computed on a validation set. In Figure 5.3 there is

represented an example of such behavior. As the dimensions increase, the KNN

score computed in the validation set performs better and better until we reach the

fourth dimension, where it starts decreasing. CP-ILS selects the last latent space

dimension before this accuracy drop.

After selecting the best latent space, CP-ILS begins the procedure to search for

counterfactuals in the latent space and decode them back into the real space using

the linear propriety of the learned mapping.

5.1.2 Post-Hoc Explanations

In this section, we describe how is possible to use latent space representations learned

by CP-ILS in the section before to search for Prototype and Counterfactual expla-

nations of the black-box b.

Formally, CP-ILS explanation is composed of the pair (P,C) where P is the set of

Prototypes most similar to the sample, and C is the set of possible Counterfactuals.

120

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.4: Representation of the contributions of the input features in the latent space.
By concatenating the prediction of the black to the input we obtain a prediction direction
along which we have similar points but different predictions.

The procedure to find the set of prototypes P is illustrated in Algorithm 7. After

we learned the weights W of the modelM we fix their values to fix the latent space.

Then CP-ILS applies KMeans clustering [151] on a reference population X mapped

into the latent space, to obtain a set of possible Prototypes which are the cluster

centers. Given an instance x, CP-ILS maps it into its latent space position z with

the procedure explained in the previous section. Then CP-ILS selects, from the

set of possible Prototypes the n most similar using the Euclidean distance d. We

selected as reference population X the training set, so the set P is the set of the

training data closest to the centers found.

After retrieving the prototype set, CP-ILS switches to Counterfactuals explana-

tions. For counterfactual explanations, we need to firstly understand how the input

features are mapped into the space. In particular, each input feature xi is respon-

sible for a direction of movement in the latent space as shown in the example in

Figure 5.4 (left). The dot product of the model M can be decomposed into a sum

of contributions whose sum gives the latent position z. Indeed, the contribution of

an input feature xi to a latent space with k dimensions can be seen as a vector of

dimensions equal to the dimensions of the latent space. Every feature in the input

121

Chapter 5 - Latent Space Post-Hoc Explanations

Algorithm 8: CounterfactualSearch(x,M, b)

Input : x - sample to explain,M - latent space model, b - black-box, s - latent
space step

Output: C - set of counterfactual explanations

1 ŷ ← b(x); // compute sample prediction

2 z ←M(x); // compute latent space position

3 C ← ∅;
4 for idx ∈ combination(n) do
5 while b(x+∆) = ŷ do // until same prediction

6 v ← z + s ∗ ∥wy∥; // set the destination

7 ∆← LagrangeMultipliers(idx, v); // compute optimization

8 s← s+ ϵ; // compute new step

9 Ci ← x+∆;

10 return C;

space contributed to a vector of k dimensions, which, when all added together, sum

up to the latent position z = W · [x, ŷ] = w0 · x0 + w1 · x1 + · · · + wn · xn + wŷ · ŷ,

where the weight wi is the latent direction of the respective feature xi. Since CP-

ILS concatenates the prediction ŷ of the black-box b to the input we obtain in the

latent space representation an additional direction wŷ which we call the prediction

direction. Alongside this direction we have samples with similar features but with

different predictions, which is crucial for finding counterfactuals.

The procedure to find a counterfactual is illustrated in Algorithm 8. Firstly, CP-

ILS encodes x into its latent space position z = W · [x, ŷ]. The next step is to move

from the encoded sample, toward the prediction direction until the black-box change

prediction. As illustrated in the left of Figure 5.5, the prediction direction is the

violet arrow, while the effect of the real features on the latent space is represented

by the black vectors. CP-ILS finds the minimum changes ∆ to the input features

in order to move toward the prediction direction. CP-ILS does that by taking

advantage of the linearity of the model M. Given an input data x, we need to

find the minimum changes ∆ to the input features to move in a new position v

which is located along the wy direction. This is an optimization problem, and

122

Chapter 5 - Latent Space Post-Hoc Explanations

since the mapping is obtained linearly is possible to solve it using the Lagrange

multipliers [152].

∇f(x⃗) =

l∑
l=1

λl∇gk(x⃗)

g1(x⃗) = · · · = gk(x⃗) = 0

where f is the function to minimize, g are the constraint functions and λl are the

multipliers. As function f to minimize, CP-ILS uses the square of ∆ multiplied by

one half, to simplify the gradient calculations. The constraints g are derived from

the latent space mapping, we have one constraint for every latent dimension.

f = 1

2

n∑
i=1

∆2
i

gl =
n∑

i=1

Wil(xi + ∆i)− vl = 0 l = [1, k]

where n is the number of features of x, vl is the value of the latent space position

in which we want to move for the l-th dimension with l ∈ [1, k], and k are the

dimensions of the latent space. By substituting f and g in the Lagrange multiplier

equation, we obtain:

∆i =

k∑
l=1

λlWil

n∑
i=1

k∑
r=1

λlWirWil = vl −
n∑

i=1

xiWil l = [1, k]

This linear system can be quickly solved using a linear solver. The solutions of this

system are the changes ∆ that satisfy f and can be applied to the input x to modify

its latent position to v. However, we do not know exactly in the prediction direction

where the prediction of the black-box would change. To overcome this CP-ILS select

v moving along the prediction direction of a fixed step s: v = z + s · ||wy||. After

computing the changes, CP-ILS queries the black-box to check if the prediction ŷ

has changed, if not another step is performed. In Figure 5.5 the search is performed

123

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.5: Visualization of the latent space created using two dimensions. The black
square represents a sample z for which to look for counterfactuals. The violet arrows
represent the path to follow, the black arrows are instead the effects of the input features
on the latent space. On the left, we have the ideal combination of the feature to move to
z +∆ while on the right the same movement is obtained with the progressive search.

in three steps toward the prediction direction. From the starting position z, until ŷ

changes2.

This procedure finds only one counterfactual sample for a given input x, and the

∆ are computed for all the input features. To meet the Diversity propriety requested

for a counterfactual method [54], we apply the minimization to different reduced

combinations of the features of x (Line 4). Since it would be impossible to compute

all the possible combinations due to exponential computing time, we only compute

the search for a fixed number of features. This is reasonable since a counterfactual

explanation with fewer features modified is better to comprehend from a human

standpoint [9]. Also, this enables the actionability of the counterfactual explanation.

The user can select only the features he wants to modify and keep fixed other ones

that are impossible to change, e.g., the age or the sex of a person. The minimization

with Lagrange multipliers can be reduced to a limited set of features. The user can

provide as input to CP-ILS a list of features that he or she wants to change, and

minimization is only performed on that reduced set of features. CP-ILS finds the

combination of these selected features that most shifts along the opposite prediction

2we used ϵ = 0.1 as starting step and made an increment step of 0.1

124

Chapter 5 - Latent Space Post-Hoc Explanations

direction. Thus a different counterfactual limited to that reduced set of features is

found.

5.2 Experiments

In this section, we report the experiments carried out to validate CP-ILS. First, we

illustrate the datasets used, the classifiers, and the experimental setup. Then, we

evaluated the goodness of the latent space created by CP-ILS. Finally, we evalu-

ate the prototype and counterfactual explanations found both in a qualitative and

quantitative way.

Datasets and Black-box Models. We ran experiments on a selection of three

datasets widely referenced for classification tasks and publicly available from the

UCI ML repository3. We tested on adult, compas, and german datasets. In ad-

dition, we added a real-world proprietary dataset called diva4. The datasets are

split: 80% training, 10% validation, and 10% test set. As black-box models, we

tested four different methods including XGBoost5. (XGB) [153], Random Forest

(RF) [154], Support Vector Machines6 (SVM) [155], and standard dense Neural

Networks7 (NN). We performed five-fold stratified cross-validation for every black-

box. Dataset descriptors and black-box performance are reported in Table 5.1.

Metrics. To evaluate the goodness of the latent space created we measured

the relative positioning of neighborhoods. We sampled random observations and

computed the Random Triplet Accuracy [134], which is the percentage of triplets

whose relative distance order is preserved in the high and low-dimensional spaces,

the closer to 1, the better. Also, we measured the outliers’ preservation because

we want an outlier in the input space to remain an outlier in the latent space. We

3https://archive.ics.uci.edu/ml/index.php
4https://kdd.isti.cnr.it/project/diva
5Implemented as xgboost https://xgboost.readthedocs.io/en/stable/.
6Implemented as scikit-learn https://scikit-learn.org/stable/.
7Implemented as the PyTorch library https://scikit-learn.org/stable/

125

https://archive.ics.uci.edu/ml/index.php
https://kdd.isti.cnr.it/project/diva
https://xgboost.readthedocs.io/en/stable/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.1: Description of datasets and performance of the black-boxes

adult compas german diva

nbr features 8 21 20 88
nbr instances 48842 6171 1000 8000

XGB .757 .956 .759 .927
RF .763 .966 .778 .905

SVM .763 .944 .777 .859
NN .755 .943 .775 .864

used the Local Outlier Algorithm (LOF) [137] to measure which points are labeled

outlier or inlier in space. We ran the algorithm in both spaces to check for changes.

The percentage of the changes gives the final score. We called this metric Outlier

Preservation: the lower, the better.

For CP-ILS we used the KNN accuracy metrics described in Section 5.1.1 to

select the best latent space dimensions. Since only CP-ILS can select the best latent

space dimension, for other approaches we trained every algorithm on different latent

space dimensions and evaluated the metrics for every dimension. Then we selected

the best scores among the dimensions. We tested the following latent dimensions

K = {2, 3, 4, 5, 7, 10, 15, 20, 25, 30} to cover most of the possible dimensions while

not exaggerating in computational times.

In Table 5.2 we report the results of the best latent space dimension according to

space evaluation metrics. Table 5.2 (left) shows that CP-ILS is the best to preserve

distances, with PCA as second best. The other approaches largely fail in preserving

the original distances. This is probably due to the fact that the preservation of

the distance is not explicitly minimized. Table 5.2 (right), shows the results of the

outlier preservation metric. We do not observe a clear winner with respect to this

score. Overall, CP-ILS, PCA, and TMAP seem better than VAE and UMAP.

126

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.2: Space quality metrics. Best scores are in bold, second best result are underlined.

Random Triplet Accuracy Outlier Preservation

XGB CP-ILS VAE PCA UMAP TMAP CP-ILS VAE PCA UMAP TMAP

adult .7833 .7218 .7709 .7318 .6093 .0025 .0010 .0016 .0022 .0024
compas .8535 .7191 .8140 .7369 .6863 .0009 .0014 .0012 .0012 .0001
german .8042 .7272 .7972 .7498 .7512 .0012 .0029 .0014 .0021 .0028
diva .8531 .7215 .7593 .7122 .7286 .0005 .0006 .0003 .0013 .0007

NN CP-ILS VAE PCA UMAP TMAP CP-ILS VAE PCA UMAP TMAP

adult .8647 .7525 .8234 .7167 .6167 .0019 .0013 .0018 .0029 .0006
compas .8735 .7152 .8923 .7186 .6152 .0013 .0009 .0017 .0027 .0025
german .8134 .7124 .8089 .7285 .7145 .0021 .0022 .0013 .0018 .0012
diva .7827 .6242 .7635 .7527 .6204 .0004 .0007 .0012 .0003 .0009

RF CP-ILS VAE PCA UMAP TMAP CP-ILS VAE PCA UMAP TMAP

adult .8664 .7109 .8103 .6067 .6129 .0020 .0022 .0022 .0011 .0001
compas .8235 .7325 .8017 .7096 .6105 .0009 .0016 .0013 .0013 .0014
german .7982 .7109 .8196 .7215 .6908 .0012 .0016 .0006 .0026 .0015
diva .7010 .6849 .7434 .7683 .6737 .0004 .0009 .0001 .0013 .0001

SVM CP-ILS VAE PCA UMAP TMAP CP-ILS VAE PCA UMAP TMAP

adult .8657 .7093 .8026 .7189 .6093 .0016 .0028 .0002 .0026 .0019
compas .8220 .7109 .8248 .7098 .6978 .0009 .0023 .0015 .0013 .0028
german .7728 .7267 .7708 .7590 .7098 .0012 .0006 .0002 .0022 .0016
diva .7415 .7018 .7459 .7094 .6570 .0003 .0024 .0016 .0001 .0004

wins 11 0 4 1 0 3 2 5 2 5

5.2.1 Prototype Explanation Evaluation

To prove the validity of our approach we propose in this section two experiments:

a simple example that makes intuitive sense of the goodness of clusters, then we

compared our approach against several competitors.

Firstly we took two very simple datasets and looked at the clusters created

in the latent space. We choose the iris dataset [156], as it is very simple and

clear, and also we created a synthetic dataset using two Gaussian distributions. We

then trained a xboost black-box model on it and create the latent space using the

technique described in Section 5.1.

As seen in Figure 5.6, the clusters are well-arranged and more separated in

the latent space, making it easier to identify patterns and relationships between

127

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.6: Visualization of the cluster in the latent space or iris and a synthetic dataset.

data points. The similarity loss helped to reduce noise and highlight meaningful

features in the data. The resulting clusters are arranged in a logical and interpretable

manner, allowing for more accurate clusters which will lead to meaningful insights

into the underlying structure of the data. The well-arranged and well-separated

clusters in the latent space demonstrate the effectiveness of these techniques in

improving the accuracy and interpretability of data analysis and modeling.

Competitors. We compared our proposal against different algorithms present in

the literature presented in Section 2.1.5 capable of producing prototype explana-

tions. We selected the most popular methods that use different approaches to the

problem with different focuses. In particular, we tested our approach against MMD-

Critic (MMD), Proto-Select (P-Sel), and Proto-DASH (P-DASH). These algorithms

128

Chapter 5 - Latent Space Post-Hoc Explanations

were designed to explain the label of the data rather than predictions. In order to

make a fair comparison with our approach, we used the prediction of the black-box

rather than the labels in the searching phase of every method.

Metrics. To evaluate the goodness of the prototypes explanations, we evaluated

on the test sets of every dataset two types of metrics that measure the 1-KNN Accu-

racy and the Sparsity for every set of prototypes found by the different explainers.

We measured the 1-KNN Accuracy of a set prototype explanations P using a 1-knn

classifier. The 1-knn accuracy metric is defined as the accuracy of a 1-knn classifier

built on the set of prototypes found by the explainer. The classification of a new

sample is defined as the classification of the most similar prototype in the set of all

prototypes.

1−KNNAccuracy =
1

n

n∑
i=0

1

[
b

(
min
p∈P

[d(Xi, p)]

)
= yi

]
where 1 returns 1 if [condition] is true, 0 otherwise, b is the black-box, X is the test

set of n instances, P is the set of prototypes, and y are the labels of the test set.

The closer to 1 the better.

We want a prototype to resemble the data it represents as much as possible,

both in terms of similarity and black-box prediction. We called this propriety of a

prototype explanation Sparsity, and we defined it as the percentage of data with the

same prediction as the closest prototype. More formally:

Sparsitiy =
1

n

n∑
i=0

1 [b(Xi) = b(pXi
)]

where 1 returns 1 if [condition] is true, 0 otherwise, n is the dimension of the set

X, pXi
is the prototype belonging to the set P closest to Xi, and b is the black-box.

The closer to one the better.

Results. One crucial parameter to select is the number of prototypes to be

129

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.3: Results of the metrics computed on adult and german datasets and on the four
black-boxes. The best results are highlighted in bold, second bests are underlined.

1-KNN Accuracy Sparsity

XGB CP-ILS P-Sel P-DASH MMD CP-ILS P-Sel P-DASH MMD

adult .8506 .7506 .8094 .8137 .8254 .7503 .8121 .8117
compas .9212 .8997 .8501 .9026 .9001 .8841 .8264 .8889
german .7804 .7400 .7252 .7356 .7890 .7273 .6648 .7375
diva .7763 .7670 .6386 .7740 .8301 .8059 .7524 .7573

NN CP-ILS P-Sel P-DASH MMD CP-ILS P-Sel P-DASH MMD

adult .8826 .7602 .8431 .8451 .8292 .7605 .8422 .8487
compas .9588 .9191 .8533 .9236 .9126 .8901 .8152 .9195
german .7959 .7650 .7501 .7905 .7993 .6471 .7532 .7893
diva .7876 .7275 .6302 .7975 .7986 .7341 .6795 .8173

RF CP-ILS P-Sel P-DASH MMD CP-ILS P-Sel P-DASH MMD

adult .9102 .8057 .8446 .8483 .8793 .8059 .8342 .8593
compas .9218 .9149 .8648 .8296 .8804 .9093 .8233 .8377
german .8704 .8406 .8453 .8705 .8921 .7796 .8377 .8885
diva .8142 .7723 .6370 .7857 .8277 .8027 .7605 .7565

SVM CP-ILS P-Sel P-DASH MMD CP-ILS P-Sel P-DASH MMD

adult .9432 .8065 .8348 .8832 .8312 .8065 .8023 .8726
compas .9403 .9248 .8794 .9137 .9359 .9000 .9000 .8853
german .9308 .9403 .9208 .9402 .9695 .9419 .9012 .9600
diva .8554 .8062 .7754 .7878 .8252 .7776 .8677 .8308

wins 13 1 0 2 10 1 1 4

included in the final set of explanations. Too low a value leads to an overgeneralized

set of prototypes that ignore some particular data set. A value that is too high, on

the other hand, carries the risk of overfitting and obtaining redundant prototypes.

We measured the two metrics for several prototype set dimensions. The best results

obtained for every method are reported in Table 5.3. Our approach outperforms the

competitors in 1-KNN Accuracy metric in every dataset and black-box apart from

NN in the diva dataset. Regarding Sparsity, our approach is evidently better while

struggling more especially when using NN and SVM black-boxes. In the adult

and german datasets, MMD-critic is the second best method which is surprising

due to its unsupervised nature. In compas and diva is outperformed by Proto-

select and Proto-DASH. In these two datasets, the black-boxes are better performing

130

Chapter 5 - Latent Space Post-Hoc Explanations

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.5

0.6

0.7

1-
kn

n
ac

cu
ra

cy
german / xgb

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.4

0.5

0.6

0.7

0.8

sp
ar

sit
y

(%
)

german / xgb

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.75

0.80

0.85

0.90

1-
kn

n
ac

cu
ra

cy

adult / rf

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.70

0.75

0.80

0.85

sp
ar

sit
y

(%
)

adult / rf

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.6

0.7

0.8

0.9

1-
kn

n
ac

cu
ra

cy

compas / svc

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.6

0.7

0.8

0.9

sp
ar

sit
y

(%
)

compas / svc

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.4

0.6

0.8

1-
kn

n
ac

cu
ra

cy

diva / nn

P-Sel
P-DASH
MMD
CP_ILS

3 4 5 6 7 8 9 10 12 14 16 18 20
nbr prototypes

0.5

0.6

0.7

0.8

sp
ar

sit
y

(%
)

diva / nn

P-Sel
P-DASH
MMD
CP_ILS

Figure 5.7: Evaluation of 1-KNN Accuracy and Sparsity of prototype explanations while
varying the number of prototypes on the explanation set. From top to bottom, we have
german/XGB, adult/RF, compas/SVM, diva/NN.

and therefore discover more complex patterns. This results in greater difficulty to

search for a set of prototypes in an unsupervised method such as MMD-critic. In

Figure 5.7 are reported the behavior of the two metrics while changing the number of

prototypes. As expected we observe, for both metrics, a low performance for all the

methods for low prototype numbers. The scores increase to a plateau indicating that

the maximum amount of information has been stored. Our approach outperforms

the other methods when using a number of prototypes greater than 10. For a

number less than 10, the results are fuzzy and no method is better than the others.

We conclude that our approach is in line with the current state of the art when

131

Chapter 5 - Latent Space Post-Hoc Explanations

summarizing data with a low number of prototypes, but for higher numbers, it is

able to discover peculiar groups of data that other approaches cannot.

5.2.2 Counterfactual Explanation Evaluation

In this section, we describe the results obtained for the counterfactual explanations

produced by CP-ILS.

Competitors. We compare our proposal against different algorithms present in

literature capable of producing counterfactual explanations. We selected the most

popular methods that use different approaches to the problem with different focuses.

We do not test any other methods [114, 51, 115] using latent space representations

since they only work for image data. For GSG, we used the suggested initial ratio of

0.1 with a factor of increase of 10, and for every radius, we generated 2000 samples

and checked for counterfactuals. For DiCE, we generated four counterfactuals. In

the WACH algorithm, we started with λ = 0.1 and then increased by 0.1 if the

algorithm failed to find a counterfactual. For CP-ILS we learned the best latent

space dimension with a batch size of 1024, Adam optimizer [132] with a learning

rate of 10−3, and early stopping of 3. The Lagrange multiplier equation is resolved

using the scipy library8.

Metrics. We measure the Proximity of a counterfactual x′ with its original sample

x, its Robustness, Plausibility, and the Diversity of the counterfactuals found. We

express all the evaluation metrics as distances, thus, for Proximity, Robustness, and

Plausibility measures, the lower the values, the better the counterfactuals returned;

for Diversity measures, the higher, the better. Some methods return more than one

counterfactual; then we selected the best counterfactual among the set returned.

We measure proximity in two different fashions [54, 9]. The first one, named

ddist, is the average distance between x and the counterfactual x′, the distance is

8https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html

132

https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.solve.html

Chapter 5 - Latent Space Post-Hoc Explanations

computed using a mixed distance defined in Equation 5.2:

ddist =
1

|X|
∑
x∈X

dmix(x, x′)

The second measure dcount, quantifies the average number of features changed be-

tween a counterfactual x′ and x, i.e.,

dcount =
1

|X|m
∑
x∈X

m∑
i=1

1x′
i ̸=xi

where 1 returns 1 if [condition] is true, 0 otherwise, and m is the number of features.

We measure Plausibility in terms of Implausibility [157] of the generated coun-

terfactuals in terms of the distance of x′ from the closest instance in the X. The

lower, the better.

dimpl =
1

|X|
∑
x∈X

min
x̃∈X

d(x′, x̃)

We use the test set as reference population X. The objective is to have a counter-

factual x′ close to a reference population X but near samples labeled opposite to

the original sample x. Besides, a counterfactual x′ near instances of a wrong class

will result in an adversarial sample.

With respect to Robustness, we define dadv to measure how much the found

counterfactual is similar in the class label to the reference population X. We measure

the density of the classes of samples closer to x′ in the reference population. First,

the samples are ordered by distance (c), and then the neighborhood X is selected9.

c = sorted[d(x′, x̃)] dadv =
1

|X|
∑
x∈X

1

10

10∑
i=1

1ci ̸=x̂′

Finally, we measure the Diversity in two fashions. The first one denoted as divdist,

9We used ten samples as neighborhood estimation.

133

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.4: Different counterfactuals found for a sample x of the adult dataset. For latent
and DiCE we have four different counterfactuals while for GSG and WACH only one
counterfactual is generated.

Age
Hours
Per
Week

Education
Marital
Status

Occupation Gender
Native
Country

Income

x 48.0 50.00 Prof School Married Prof Specialty Male US 0.754

CP-ILS 48.0 50.00 Prof School Not Married Prof Specialty Male US 0.350
CP-ILS 48.0 50.00 Prof School Married Blue Collar Male US 0.192
CP-ILS 40.0 50.00 Prof School Not Married Prof Specialty Male US 0.343
CP-ILS 42.0 37.10 Prof School Not Married Exec Managerial Male US 0.311

GSG 48.0 45.53 Dropout Married Prof Specialty Male US 0.186

DiCE 48.0 50.00 Community College Married Services Male US 0.318
DiCE 48.0 54.16 Dropout Married Prof Specialty Male US 0.187
DiCE 48.0 50.00 Dropout Married Prof Specialty Male US 0.186
DiCE 48.0 50.00 Community College Married Blue Collar Male US 0.197

WACH 41.0 38.09 Prof School Not Married Prof Specialty Male US 0.338

measures the average distance between the set of found counterfactuals E. In con-

trast, divcount measures the average number of different features.

divdist =
1

|E|2
∑
x′∈E

∑
x′′∈E

d(x′, x′′)

divcount =
1

|E|2m
∑
x′∈E

∑
x′′∈E

m∑
i=1

1x′
i ̸=x′′

i

To complete the evaluation, we computed the Success Rate (SR) of the various

algorithms when searching for a counterfactual as the percentage of the successful

counterfactual found over the test set.

Qualitative Results. The first qualitative comparison in Table 5.4 shows the

counterfactuals found by the four methods for an instance of the adult dataset and

predicted using the SVM. The task of this dataset is to predict if the income of

a person is greater than 50K. The instance x under analysis is a person with a

probability of an income bigger than 50K equal to 0.75%. This person is 48 years

old married male and has done a professional school which helps prepare students

134

Chapter 5 - Latent Space Post-Hoc Explanations

Figure 5.8: LEFT: Correlation matrix between the input features of the adult dataset
and the label “income”. RIGHT: Critical difference plot for Nemenyi test with α = 0.05.

for careers in specific fields. Examples include medical, law, pharmacy, business,

library, and social work schools.

First, we notice that the four methods disagree on what features to change. The

only unchanged features are gender and country of origin, which is a nice thing to see

to remove any possible gender bias from the black-box. CP-ILS is the only approach

that succeeds in identifying a single feature for which its change leads to a class

change. Indeed by modifying the marital status to “Not Married” or the occupation

to “Blue Collar”, the prediction decreases to 0.350 and 0.192, respectively. The term

“Blue Collar” refers to jobs typically involving manual labor and compensation by

an hourly wage. Thus, it is natural to think that the income decreases by moving

from specialized work to a manual one. Less intuitive is the change in the marital

status attribute. In this dataset, a “Married” person usually gains more than a “Not

Married” one because he is usually older with a stable job. This can also be seen

from the correlation matrix in Figure 5.8.

In the adult dataset, the features “Marital Status” and “Gender” strongly cor-

relate with the label “Income”. Also, these two features have a strong correlation

with each other. The SVM is making predictions based on one of the two and, in

135

Chapter 5 - Latent Space Post-Hoc Explanations

this case, choosing the “Marital Status” of a person.

The other counterfactual explainers found a correlation between “Occupation”

and “Marital Status”. However, they also added other useless features as a mod-

ification. For example, besides “Occupation”, DiCE also changed “Education” to

“Community College”, but the probability went to 0.197, the same as just chang-

ing the “Occupation”. Also, WACH changes the “Age”, “Hours Per Week”, and

“Marital status”, resulting in the same income prediction as just modifying the last

one. CP-ILS also lowered the “Age” in the third counterfactual. DiCE and GSG,

while not founding the “Marital Status” change, found a different counterfactual

modifying the “Hour Per Week” and “Education”, a feature never touched by our

approach. However, they disagree on the changes to be made to the “Hour Per

Week” feature, with GSG decreasing it while DiCE increasing it.

Moreover, the counterfactual found by GSG and DiCE is unrealistic. They both

changed the “Education” to “Dropout” meaning that the person has left school, but

they left untouched the “Occupation” feature. It is unrealistic that a person who

left school now works in a specialized industry.

Quantitative Results. Table 5.5 and Table 5.6 report the means and standard

deviation of the evaluation metrics for adult and compas, and diva and german,

respectively. CP-ILS outperforms competitors in all datasets, particularly in the

dcount metric. Indeed, as shown in the previous section, CP-ILS identifies which

features to modify to change the black-box’s prediction better than the competitors.

Moreover, the transparent latent space search helps the counterfactuals found to be

more similar to the training set samples than other methods since the space is

learned from the training set itself. In addition, generally, the Diversity of the

counterfactuals is better than the one of DiCE, especially for the divcount metric.

An interesting measure is the success rate of the creation of the counterfactuals.

GSG and CP-ILS have the best success rate, close to 100%, while DiCE and WACH

are the worst ones, in some cases lower than 30%.

136

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.5: Results of the counterfactual metrics computed on the four datasets and on the
four black-boxes plus the success rate (SR) of the algorithm for adult and compas. Best
results are highlighted in bold, second best results are underlined, W column highlights
the number of wins.

adult ddist dcount dimpl dadv divdist divcount SR W

NN

CP-ILS 0.604 ± 0.331 1.681 ± 0.981 0.069 ± 0.115 0.482 ± 0.261 10.667 ± 8.090 3.406 ± 0.327 94% 4
GSG 0.885 ± 0.323 4.480 ± 1.187 0.594 ± 0.229 0.640 ± 0.291 - - 100% 0
DiCE 1.686 ± 0.307 4.699 ± 1.084 0.114 ± 0.130 0.484 ± 0.312 1.724 ± 0.113 4.431 ± 0.490 83% 1
WACH 2.281 ± 1.370 7.364 ± 0.264 0.842 ± 0.538 0.327 ± 0.322 - - 87% 1

XGB

CP-ILS 0.385 ± 0.248 1.550 ± 0.841 0.022 ± 0.043 0.366 ± 0.190 2.054 ± 1.617 2.996 ± 0.664 100% 5
GSG 0.290 ± 0.209 1.800 ± 0.748 0.161 ± 0.128 0.823 ± 0.235 - - 100% 1
DiCE 1.063 ± 0.457 1.697 ± 0.811 0.577 ± 0.481 0.720 ± 0.247 1.148 ± 0.256 1.978 ± 0.650 76% 0
WACH 3.198 ± 1.190 7.000 ± 0.000 0.799 ± 0.403 0.558 ± 0.318 - - 88% 0

RF

CP-ILS 0.492 ± 0.378 1.917 ± 1.175 0.039 ± 0.068 0.264 ± 0.133 1.897 ± 1.572 2.837 ± 1.042 100% 5
GSG 0.392 ± 0.274 1.920 ± 1.026 0.230 ± 0.139 0.687 ± 0.282 - - 100% 1
DiCE 1.387 ± 0.564 2.447 ± 1.351 0.715 ± 0.522 0.534 ± 0.226 1.288 ± 0.285 2.314 ± 0.961 76% 0
WACH 2.193 ± 0.976 7.000 ± 0.000 0.992 ± 0.638 0.414 ± 0.290 - - 81% 0

SVM

CP-ILS 0.244 ± 0.266 1.105 ± 1.025 0.239 ± 0.076 0.665 ± 0.209 4.683 ± 0.631 4.440 ± 0.883 100% 5
GSG 0.835 ± 0.254 4.430 ± 1.283 0.673 ± 0.181 0.681 ± 0.291 - - 100% 0
DiCE 1.377 ± 0.199 2.105 ± 0.447 0.747 ± 0.521 0.691 ± 0.214 1.194 ± 0.170 1.809 ± 0.413 76% 0
WACH 2.492 ± 1.319 7.000 ± 0.000 0.992 ± 0.638 0.369 ± 0.354 - - 88% 1

compas ddist dcount dimpl dadv divdist divcount SR W

NN

CP-ILS 0.510 ± 0.000 1.000 ± 0.000 0.225 ± 0.121 0.767 ± 0.146 22.498 ± 9.317 6.623 ± 0.167 100% 4
GSG 0.977 ± 0.364 9.300 ± 3.410 0.807 ± 0.285 0.587 ± 0.266 - - 100% 0
DiCE 1.227 ± 0.668 9.296 ± 1.629 0.718 ± 0.465 0.385 ± 0.233 - - 27% 0
WACH 3.576 ± 0.266 24.906 ± 1.916 2.546 ± 0.067 0.275 ± 0.116 2.223 ± 0.477 8.046 ± 1.138 53% 2

XGB

CP-ILS 0.400 ± 0.286 1.230 ± 0.421 0.267 ± 0.131 0.417 ± 0.150 8.148 ± 8.329 6.647 ± 0.775 100% 3
GSG 0.328 ± 0.250 2.840 ± 1.454 0.392 ± 0.150 0.824 ± 0.228 - - 100% 1
DiCE 0.687 ± 0.486 1.333 ± 0.471 0.225 ± 0.166 0.522 ± 0.253 1.114 ± 0.352 2.037 ± 0.605 27% 1
WACH 3.492 ± 0.240 23.426 ± 1.717 2.484 ± 0.073 0.150 ± 0.133 - - 54% 1

RF

CP-ILS 0.432 ± 0.372 1.800 ± 0.529 0.297 ± 0.141 0.393 ± 0.200 7.609 ± 13.262 6.596 ± 0.963 100% 3
GSG 0.447 ± 0.330 2.760 ± 4.495 0.397 ± 0.170 0.711 ± 0.137 - - 100% 0
DiCE 0.713 ± 0.504 1.556 ± 0.497 0.206 ± 0.164 0.406 ± 0.208 0.976 ± 0.327 2.079 ± 0.585 27% 2
WACH 3.619 ± 0.330 26.217 ± 4.495 2.560 ± 0.147 0.117 ± 0.137 - - 60% 1

SVM

CP-ILS 0.690 ± 0.024 1.210 ± 0.407 0.256 ± 0.138 0.702 ± 0.154 6.149 ± 3.451 5.198 ± 1.471 100% 4
GSG 0.887 ± 0.344 7.130 ± 3.331 0.678 ± 0.244 0.488 ± 0.284 - - 100% 0
DiCE 0.749 ± 0.681 1.926 ± 0.716 0.225 ± 0.181 0.391 ± 0.185 1.371 ± 0.438 2.551 ± 0.881 27% 1
WACH 3.537 ± 0.232 23.922 ± 1.453 2.501 ± 0.058 0.104 ± 0.063 - - 51% 1

137

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.6: Results of the counterfactual metrics computed on the four datasets and on the
four black-boxes plus the success rate (SR) of the algorithm for diva and german. Best
results are highlighted in bold, second best results are underlined, W column highlight
the number of wins.

diva ddist dcount dimpl dadv divdist divcount SR W

NN

CP-ILS 0.415 ± 0.247 5.980 ± 0.498 0.435 ± 0.094 0.481 ± 0.090 1.650 ± 0.379 20.596 ± 0.588 100% 5
GSG 0.432 ± 0.562 37.800 ± 2.460 0.573 ± 0.523 0.751 ± 0.175 - - 100% 0
DiCE 1.679 ± 0.350 84.381 ± 1.120 1.281 ± 0.327 0.585 ± 0.427 0.630 ± 0.197 48.406 ± 0.855 70% 0
WACH 2.375 ± 0.684 87.364 ± 0.634 1.825 ± 0.439 0.146 ± 0.026 - - 63% 1

XGB

CP-ILS 0.325 ± 0.284 5.474 ± 3.903 0.403 ± 0.113 0.358 ± 0.272 0.291 ± 0.485 44.257 ± 1.457 100% 3
GSG 0.290 ± 0.595 35.623 ± 2.681 0.625 ± 0.453 0.769 ± 0.274 - - 100% 1
DiCE 0.682 ± 0.349 9.578 ± 1.087 0.781 ± 0.504 0.608 ± 0.202 1.186 ± 0.475 11.550 ± 1.237 78% 1
WACH 2.756 ± 0.347 87.972 ± 0.009 1.864 ± 0.190 0.236 ± 0.011 - - 72% 1

RF

CP-ILS 0.670 ± 0.470 19.205 ± 7.206 0.526 ± 0.395 0.321 ± 0.177 0.889 ± 0.286 78.994 ± 2.345 100% 2
GSG 0.396 ± 0.509 34.683 ± 2.070 0.629 ± 0.461 0.704 ± 0.143 - - 100% 1
DiCE 0.960 ± 0.581 9.834 ± 1.245 0.757 ± 0.513 0.455 ± 0.233 1.291 ± 0.465 3.059 ± 1.337 76% 2
WACH 2.593 ± 0.529 87.973 ± 0.010 1.902 ± 0.390 0.142 ± 0.008 - - 85% 1

SVM

CP-ILS 0.403 ± 0.320 5.906 ± 2.822 0.516 ± 0.342 0.570 ± 0.164 0.588 ± 0.216 20.104 ± 1.989 100% 2
GSG 0.390 ± 0.555 37.431 ± 2.130 0.471 ± 0.466 0.741 ± 0.184 - - 100% 2
DiCE 0.944 ± 0.450 9.724 ± 0.974 0.757 ± 0.418 0.611 ± 0.299 1.323 ± 0.466 3.125 ± 1.212 71% 1
WACH 2.527 ± 0.434 87.017 ± 0.044 1.812 ± 0.398 0.023 ± 0.082 - - 77% 1

german ddist dcount dimpl dadv divdist divcount SR W

NN

CP-ILS 0.209 ± 0.000 2.000 ± 0.000 0.207 ± 0.064 0.539 ± 0.252 2.544 ± 1.175 4.958 ± 0.086 100% 4
GSG 0.448 ± 0.200 19.380 ± 4.125 0.499 ± 0.102 0.697 ± 0.276 - - 100% 0
DiCE 0.546 ± 0.456 6.195 ± 2.192 0.283 ± 0.089 0.627 ± 0.282 2.228 ± 0.255 9.071 ± 1.598 77% 1
WACH 1.324 ± 0.321 19.39 ± 24.71 0.460 ± 0.238 0.191 ± 0.029 - - 23% 1

XGB

CP-ILS 0.115 ± 0.252 2.222 ± 0.462 0.245 ± 0.108 0.438 ± 0.154 6.897 ± 6.099 5.507 ± 0.879 100% 4
GSG 0.202 ± 0.175 1.840 ± 0.784 0.298 ± 0.118 0.601 ± 0.211 - - 100% 1
DiCE 0.245 ± 0.365 1.892 ± 1.420 0.272 ± 0.176 0.676 ± 0.209 1.316 ± 0.399 2.758 ± 1.501 74% 0
WACH 1.286 ± 0.270 14.713 ± 5.060 0.357 ± 0.033 0.300 ± 0.000 - - 27% 1

RF

CP-ILS 0.455 ± 1.317 2.130 ± 0.823 0.310 ± 1.059 0.479 ± 0.276 6.337 ± 5.483 5.111 ± 1.334 81% 3
GSG 0.687 ± 0.322 3.750 ± 2.334 0.357 ± 0.144 0.577 ± 0.220 - - 81% 0
DiCE 0.643 ± 0.659 4.676 ± 4.031 0.292 ± 0.239 0.578 ± 0.176 1.792 ± 0.687 5.552 ± 4.114 74% 2
WACH 1.250 ± 0.227 12.525 ± 6.177 0.366 ± 0.035 0.267 ± 0.047 - - 29% 1

SVM

CP-ILS 0.205 ± 0.011 1.850 ± 0.357 0.225 ± 0.079 0.802 ± 0.194 1.661 ± 0.966 5.356 ± 0.539 100% 5
GSG 0.725 ± 0.334 17.210 ± 3.639 0.528 ± 0.146 0.851 ± 0.244 - - 100% 0
DiCE 0.707 ± 0.639 2.635 ± 2.597 0.323 ± 0.245 0.891 ± 0.213 1.466 ± 0.459 3.518 ± 2.063 74% 0
WACH 1.137 ± 0.193 17.210 ± 8.143 0.365 ± 0.027 0.038 ± 0.048 - - 28% 1

138

Chapter 5 - Latent Space Post-Hoc Explanations

A separate discussion must be made for ddist and dadv. In rare cases, a method is

better in both metrics. It only occurs for adult, where CP-ILS produces counterfac-

tuals that are both similar and non-adversarial. When producing a counterfactual is

challenging to balance the distance with the original sample and the proximity with

samples of different classes. What ends up happening is that a record closer to the

original sample is more adversarial than one further away. It is not easy to judge a

winner for these metrics, but CP-ILS is always first in one of the two metrics and a

close second in the other. We report in Figure 5.8 the Critical Difference diagrams

that highlight the statistical relevance of the results. The comparison of the ranks

of all methods against each other is visually represented in Figure 5.8 with Crit-

ical Difference (CD) diagrams [158]. Two methods are tied if the null hypothesis

that their performance is the same cannot be rejected using the Nemenyi test at

α=0.05. CP-ILS has the average best rank considering all the measures, datasets,

and black-box models with statistically significant performance.

CP-ILS Latent Dimension Impact. We further investigate the duality of being

a close counterfactual without being adversarial by analyzing the variation of the

metrics computed for CP-ILS while varying latent space dimensions. Results for

adult with the SVM and for compas with XGB are presented in Figure 5.9 left and

right respectively. Other datasets and black-boxes present similar behaviors, and

we do not report them here due to lack of space. Also, increasing the number of

dimensions of the latent space means adding more freedom to the creation of the

latent representations. Hence, the information given by the input features is less

compressed, and the information in the dataset is stored more efficiently. However,

less compression results in a more meaningless latent space. It is as if the model is

learning the dataset itself instead of the hidden information inside it. This process

is very similar to overfitting, and it is captured by the dadv metric. Indeed, after

a particular dimension, this metric starts to increase until it reaches a maximum

plateau. From Figure 5.9 is clear that for adult when using more than five latent

139

Chapter 5 - Latent Space Post-Hoc Explanations

2 3 4 5 6 7 8

0.3

0.4
d d

is
t

2 3 4 5 6 7 8

0.3

0.4

d i
m

pl

2 3 4 5 6 7 8
3.5

4.0

4.5

5.0

di
v d

is
t

2345 7 10 15 20 25 330.4

0.5

0.6

0.7

d d
is

t

2345 7 10 15 20 25 33

0.34

0.36

d i
m

pl

2345 7 10 15 20 25 33
5.5

6.0

6.5

di
v d

is
t

2 3 4 5 6 7 8
Latent Dimension

1.5

2.0

d c
ou

nt

2 3 4 5 6 7 8
Latent Dimension

0.6

0.7

d a
dv

s

2 3 4 5 6 7 8
Latent Dimension

2

4

di
v c

ou
nt

2345 7 10 15 20 25 33
Latent Dimension

1.25

1.50

1.75

2.00

d c
ou

nt

2345 7 10 15 20 25 33
Latent Dimension

0.25

0.30

0.35

d a
dv

s

2345 7 10 15 20 25 33
Latent Dimension

2.5

5.0

7.5

10.0

di
v c

ou
nt

2 3 4 5 6 7 8

0.3

0.4

d d
is

t

2 3 4 5 6 7 8

0.3

0.4

d i
m

pl

2 3 4 5 6 7 8
3.5

4.0

4.5

5.0

di
v d

is
t

2345 7 10 15 20 25 330.4

0.5

0.6

0.7

d d
is

t

2345 7 10 15 20 25 33

0.34

0.36

d i
m

pl

2345 7 10 15 20 25 33
5.5

6.0

6.5

di
v d

is
t

2 3 4 5 6 7 8
Latent Dimension

1.5

2.0

d c
ou

nt

2 3 4 5 6 7 8
Latent Dimension

0.6

0.7

d a
dv

s

2 3 4 5 6 7 8
Latent Dimension

2

4

di
v c

ou
nt

2345 7 10 15 20 25 33
Latent Dimension

1.25

1.50

1.75

2.00

d c
ou

nt

2345 7 10 15 20 25 33
Latent Dimension

0.25

0.30

0.35

d a
dv

s

2345 7 10 15 20 25 33
Latent Dimension

2.5

5.0

7.5

10.0

di
v c

ou
nt

Figure 5.9: Counterfactual metrics in comparison with latent space dimension variation.
On the top in blue we have the adult dataset with the SVM black-box. On the bottom in
orange we have the compas dataset when using the XGB black-box. The dashed vertical
lines represent the dimension used for the experiments.

dimensions the metric sharply increases. An interesting behavior occurs for ddist.

This metric increases after the fifth dimension, but we notice a significant drop

also on higher dimensions. The best dimension for divdist is three while for divcount

is clearly four. Concerning dcount and dimpl, using five dimensions seems the best

parameter to obtain a lower score on both these metrics. In conclusion, there is

not a clear perfect dimension for which every metric is the best. Five seems the

best overall dimension, as pointed out also with the 1-KNN Accuracy metric in

Figure 5.3. Regarding the compas dataset, there is not a clearly good dimension

for every metric. CP-ILS has selected 7 as the best dimension using the overfitting

procedure described in Section 5.1.1. This is the best dimension for dcount and

140

Chapter 5 - Latent Space Post-Hoc Explanations

divdist. However other metrics pointed out different dimensions: 6 for divcount, ddist,

and dimpl, while 15 for dadvs. The lower dimensions seem to produce closer and more

plausible counterfactuals, which nevertheless look more like an adversarial attack

rather than a true explanation.

Finally, CP-ILS has a success rate close to 100%, very similar to GSG. DiCE

and WACH fail more easily. All methods have similar execution times with respect

to the counterfactual search, which is in the order of minutes. However, CP-ILS

must also construct the latent space representation which is time-consuming even if

it only has to be done once.

5.2.3 Comparison with Rule-based Explainers

Counterfactual examples and counterfactual rules are two different types of expla-

nations used in machine learning to generate explanations for decisions made by

machine learning models (see Section 2.1.4). Counterfactual examples involve gen-

erating instances that are similar to the original input but lead to a different decision

by the model. Counterfactual rules, on the other hand, involve generating rules that

indicate changes to the input that would lead to a different decision by the model.

However, we think it is useful to try to compare them to gain more insights into the

effectiveness of our CP-ILS method.

In this section, we compared the explanation produced by CP-ILS with LORE:

a very well-known method for producing counterfactual rules already presented in

Section 2.1.4). Since counterfactual rules and examples are two different, but very

similar types of explanations, we need a methodology to compare them. To do this,

we took the rules generated by LORE and used the thresholds given in the rule as

indications to produce a counterfactual example and then use the metrics already

presented in the section before. For example, if the rule is: “the prediction would

flip if feature A would be greater than 4.3”, then we substitute the value of feature

A, in the sample in analysis, with 4.3, and compute the metrics. For metrics, we

141

Chapter 5 - Latent Space Post-Hoc Explanations

computed ddist, dcount, dimpl, and dadvs. The results are shown in Table 5.7.

The results of the comparison showed that CP-ILS is better than LORE, creating

better explanations that are less adversarial (dadvs) and involve fewer changes to the

original input features dimpl. However, in the other two metrics dimpl and ddist, CP-

ILS was found to be marginally better than LORE. Both CP-ILS and LORE were

found to return very similar explanations to the original sample, with CP-ILS being

slightly more robust than LORE.

In addition, we also provide in Figure 5.10 some qualitative two examples taken

from the dataset adult and their corresponding explanations given by LORE and

CP-ILS. In the first example on left, there is described a female worker with an

income greater than 50k. The two methods were both able to identify the gender bias

of the black-box, where the attribute “Gender” is mainly responsible for the wrong

prediction. However, they disagree on the second feature to change, CP-ILS prefers

to change only the attribute “Occupation” while LORE suggests increasing the

attribute “Hours per Week”. In this example, changing only the feature “Gender”

highly decreases the probability output of the black-box model, but not enough to

surpass the 0.5 threshold set for changing its prediction. Therefore another feature

must be taken into account and CP-ILS as seen before is more inclined to select

categorical features rather than continuous ones. On the right of Figure 5.10, both

methods were able to identify the right feature to change.

Overall, the comparison showed that CP-ILS is a more effective model than

LORE for generating explanations for tabular data that are less adversarial and

involve fewer changes to the input features. However, both models are highly precise

in their explanations and are efficient in generating them.

142

Chapter 5 - Latent Space Post-Hoc Explanations

Table 5.7: Results of the counterfactual metrics computed on the four datasets and on the
four black-boxes for both LORE and CP-ILS. The best results are highlighted in bold.

dataset bb method ddist dcount dimpl dadv

a
d
u
l
t

NN
CP-ILS 0.569 ± 0.327 1.701 ± 0.979 0.071 ± 0.133 0.459 ± 0.279
LORE 0.616 ± 0.350 2.728 ± 0.987 0.079 ± 0.122 0.730 ± 0.291

XGB
CP-ILS 0.396 ± 0.234 1.556 ± 0.830 0.040 ± 0.021 0.399 ± 0.193
LORE 0.387 ± 0.279 1.799 ± 0.841 0.023 ± 0.062 0.470 ± 0.214

RF
CP-ILS 0.499 ± 0.373 1.870 ± 1.223 0.008 ± 0.048 0.273 ± 0.156
LORE 0.532 ± 0.380 2.929 ± 1.198 0.083 ± 0.080 0.474 ± 0.172

SVM
CP-ILS 0.280 ± 0.241 1.123 ± 1.039 0.193 ± 0.091 0.653 ± 0.223
LORE 0.264 ± 0.311 2.142 ± 1.040 0.274 ± 0.078 0.895 ± 0.256

c
o
m
p
a
s

NN
CP-ILS 0.493 ± 0.025 1.006 ± 0.028 0.242 ± 0.109 0.741 ± 0.138
LORE 0.558 ± 0.039 2.932 ± 0.029 0.272 ± 0.162 0.902 ± 0.151

XGB
CP-ILS 0.402 ± 0.306 1.190 ± 0.371 0.248 ± 0.174 0.401 ± 0.128
LORE 0.402 ± 0.314 1.765 ± 0.463 0.272 ± 0.152 0.561 ± 0.173

RF
CP-ILS 0.435 ± 0.364 1.849 ± 0.549 0.275 ± 0.187 0.437 ± 0.169
LORE 0.445 ± 0.419 1.814 ± 0.571 0.333 ± 0.151 0.394 ± 0.206

SVM
CP-ILS 0.731 ± 0.070 1.221 ± 0.444 0.232 ± 0.122 0.711 ± 0.178
LORE 0.702 ± 0.059 1.555 ± 0.408 0.279 ± 0.167 0.733 ± 0.181

g
e
r
m
a
n

NN
CP-ILS 0.460 ± 0.208 6.463 ± 1.465 0.399 ± 0.121 0.450 ± 0.056
LORE 0.416 ± 0.265 7.952 ± 1.520 0.435 ± 0.137 0.725 ± 0.116

XGB
CP-ILS 0.341 ± 0.291 4.487 ± 3.930 0.362 ± 0.089 0.355 ± 0.225
LORE 0.371 ± 0.326 4.518 ± 3.950 0.449 ± 0.162 0.670 ± 0.312

RF
CP-ILS 0.706 ± 0.422 20.43 ± 3.543 0.559 ± 0.398 0.562 ± 0.193
LORE 0.680 ± 0.512 19.20 ± 5.211 0.529 ± 0.427 0.326 ± 0.223

SVM
CP-ILS 0.396 ± 0.298 3.873 ± 2.812 0.536 ± 0.339 0.573 ± 0.152
LORE 0.421 ± 0.366 5.941 ± 2.849 0.554 ± 0.387 0.887 ± 0.211

d
i
v
a

NN
CP-ILS 0.167 ± 0.032 2.033 ± 0.025 0.198 ± 0.057 0.559 ± 0.224
LORE 0.211 ± 0.010 3.325 ± 0.037 0.220 ± 0.109 0.861 ± 0.266

XGB
CP-ILS 0.085 ± 0.216 2.252 ± 0.433 0.211 ± 0.139 0.457 ± 0.173
LORE 0.155 ± 0.271 2.240 ± 0.509 0.288 ± 0.109 0.562 ± 0.199

RF
CP-ILS 0.440 ± 1.366 2.133 ± 0.869 0.341 ± 1.088 0.446 ± 0.308
LORE 0.477 ± 1.360 2.468 ± 0.846 0.326 ± 1.107 0.523 ± 0.325

SVM
CP-ILS 0.241 ± 0.004 1.833 ± 0.403 0.226 ± 0.039 0.760 ± 0.180
LORE 0.238 ± 0.044 1.967 ± 0.373 0.236 ± 0.099 0.818 ± 0.239

143

Chapter 5 - Latent Space Post-Hoc Explanations

x1 = Age = 32,
HoursWeek = 32,
Education = Bachelors,
MaritialStatus = Married,
Occupation = Prof-specialty,
Gender = Female,
NativeCountry = US

Income → > 50k
bbpred → ≤ 50k

clore = Gender = Female
HoursWeek ≥ 38
bbpred → > 50k

ccp-ils = Gender = Female
Occupation = Exec-manager
bbpred → > 50k

x2 = Age = 48,
HoursWeek = 50,
Education = Prof-school,
MaritialStatus = Married,
Occupation = Prof-specialty,
Gender = Male,
NativeCountry = US

Income → > 50k
bbpred → > 50k

clore = MaritalStatus = NotMarried
bbpred → ≤ 50k

ccp-ils = MaritalStatus = NotMarried
bbpred → ≤ 50k

Figure 5.10: Two examples of explanations of LORE and CP-ILS from the adult dataset.

5.3 Discussion and Future Directions

In this chapter, we have presented CP-ILS, a prototype and counterfactual expla-

nation method that exploits the predictions of the black box to obtain a better

representation in the latent space. By examining prototypes and counterfactuals

together, humans can better understand the strengths and limitations of the model,

identify areas where it may be biased or misaligned with real-world data, and im-

prove its performance through targeted adjustments or training. We have compared

CP-ILS with several approaches that produce other types of latent space, showing

that our proposal improves the state-of-the-art performance. In particular, intro-

ducing labels into the latent space helps to create better clusters and a prediction

direction in the space that can be exploited to search for explanations. By following

this direction is possible to find the most similar sample to the original one but with

altered prediction. We evaluated the explanations returned using several metrics

144

Chapter 5 - Latent Space Post-Hoc Explanations

presented in Section 2.1.8. In addition, we tried to assess the robustness of the

counterfactuals produced by measuring how closely they resemble an adversarial

sample founding that our approach is one of the best. Indeed, using the prediction

of the data in the creation of the latent space helps in reducing adversarial sam-

ples since data with similar predictions are forced to be mapped closer together.

We have observed superior performance on several metrics assessing the quality of

the latent space and the goodness of the counterfactual and prototype explana-

tions obtained. CP-ILS is capable of resolving the problems of the previous chapter

producing counterfactuals that are closer and more plausible. However, still, some

problem remains, in particular how to choose the best latent space dimension. Our

experiments show that different metrics perform differently as the latent space di-

mension change, which means that there is no perfect dimension for every metric.

Our methodology selects the best among all, however, it is possible that a user is

only interested in a small sample of these metrics. For example, he wants an ex-

planation that is as close to the original as possible but it does not matter whether

it is plausible or not. Or he may want an additional condition that we have not

considered. We have tried to propose a methodology to select this parameter using

a KNN method, however, this is an initial application and a more robust method

needs to be explored.

Future research directions involve expanding the method to multi-class tabular

datasets. The use of multiple labels would result in a latent space with multiple

classification directions to follow, one for each label. Prototype explanation can be

enhanced using natural language. The addition of natural language can help users

better understand the key features and characteristics that are represented in the

latent space. For example, natural language can be used to describe the prototypes

and their relationship with the latent space, providing a more intuitive and accessible

explanation of the underlying concepts. In addition, we would like to study the

effects of our latent space when using image data. Indeed, from a particular point

145

Chapter 5 - Latent Space Post-Hoc Explanations

of view, image data are more complex than tabular data and require more complex

mapping to encode. However, from some preliminary experiments, it seems complex

to maintain the transparency required to apply Lagrange optimization. Therefore,

it is necessary to study a new ad-hoc method for this type of data.

146

Chapter 6

Conclusions

Explainable AI (XAI) is a rapidly growing field that aims to make AI systems more

transparent, accountable, and reliable. XAI techniques, such as feature importance

explanations and counterfactual analysis, provide insight into how AI models make

decisions and can help identify potential biases and errors. The importance of XAI

has become increasingly evident in various areas where the consequences of incorrect

decisions can be significant.

On the other hand, latent space models provide a compact and interpretable

representation of the underlying data, making it possible to generate new exam-

ples, explore relationships between variables, and reduce dimensionality. One of the

strengths of latent space models is their ability to capture complex relationships in

a simple and interpretable way. For example, in generative models, latent space

can be viewed as a compact representation of the underlying data distribution from

which new examples can be generated. Latent space models can be used to discover

patterns and relationships in data, making it possible to perform various tasks.

In this thesis, we have shown how it is possible to combine these two areas of

research to produce systems that are not only effective but also explainable and reli-

able. The combination of XAI and latent space generative models have the potential

to provide an even more powerful and interpretable tool for various applications.

147

Chapter 6 - Conclusions

Can we use the latent space to explore the decision boundary of the black-

box? Can XAI methods help enhance such exploration?

In chapter 3 we demonstrated how XAI techniques can be used to provide expla-

nations of how a generative model arrived at a particular sample, helping us to

understand relationships in latent space and identify black-box decisions. In partic-

ular by allowing users to interact with the model and manipulate the input data,

users can gain a deeper understanding of the factors that influence the model’s be-

havior and the decision boundary. One way to use interaction is to visualize the

decision boundary in the latent space and explore it through interactive visualiza-

tions. Sliders allow users to see how the model responds to changes in the input

data and to observe how the decision boundary changes as different features are

manipulated. XAI methods act as a guide for the user to move in the latent space

and better understand model behavior. Interpretation and exploration of latent

space are critical aspects of understanding the relationships among variables and

understanding how black-box decision-making occurs. Exploration of latent space

allows one to understand the relationships between variables and identify patterns

and structures that may not be evident in the original data.

Is it possible to construct a latent space using interpretable models and

still retain its proprieties? Can this new interpretable latent space be

used to train ML models and produce explanations?

However, the relationships between features must be discovered a posteriori using

an interaction framework because the latent space was created using a black-box

machine learning model. Therefore, in Chapter 4, we created the latent space using

an interpretable model by design, designed to provide insight into the underlying

relationships between variables and decision-making. Specifically, we used a linear

model in combination with a similarity loss to create an interpretable latent space

that provides a better understanding of the relationships between the variables and

148

Chapter 6 - Conclusions

the decision-making process, which can lead to improved performance and trans-

parency of the black-box trained on it. Constructing a latent space using a linear

model can provide several advantages in terms of producing better explanations for

machine learning models. Linear models are simpler and more interpretable than

more complex models, allowing a more compact representation of the data. Because

linear models are often more interpretable than more complex models, it is easier to

understand and explain the relationships between the input features and the output.

The coefficients of a linear model have a real meaning in the latent space, and it is

possible to identify which features are most important in determining the model’s

behavior. Our model called ILS can provide not only a better space in which to

perform classification but also provide human-understandable counterfactual expla-

nations of the patterns learned in it.

Using the latent space as a tool for producing post-hoc ex-

planations (chapter 5). Can the latent space proprieties help us in

producing better explanations than in the input space? What type of

post-hoc explanations can be obtained? How do they compare with other

approaches in the literature?

However, the counterfactual explanations produced by ILS lack robustness and plau-

sibility. The black-box is trained only after the latent space is created, and that

space does not reflect or account for the predictions of the black-box. Inspired by

the interpretable properties of the latent space, we added the black-box predictions

directly into the creation of the latent space. This additional constraint, however,

can only be applied if the black-box is trained before, turning our method into a

post-hoc method. We provide our explanation as a Prototype/Counterfactual pair

in order to enhance the understanding of the black-box internal reasoning. The core

of CP-ILS approach is the use of the label in the creation of the latent space. By

adding prediction in the creation of latent space, our CP-ILS method, presented in

149

Chapter 6 - Conclusions

Chapter 5, is able to produce better explanations. By moving in this direction in

latent space, it is possible to find similar data but with altered predictions. There-

fore, CP-ILS is able to find the correct changes in the input space to move along

this direction and then observe how the prediction changes. Another advantage of

using a prediction direction in latent space is that it allows finer control over coun-

terfactual explanations. For example, the magnitude of the change to be made can

be specified, allowing finer control over the effect of the change on the prediction.

The use of balck-box predictions also allows CP-ILS to return to better separate

data and return to the user local prototypes, making it easier to understand the

abstract concepts of the latent space. Prototype explanation is an intentional group

representation and in combination with natural language, can help users better un-

derstand latent space explanations. CP-ILS also enables a first approach to the

actionability of the counterfactual explanations. The user can select which features

to modify and CP-ILS is able to find the best combination that alters the predic-

tion. This type of interaction can be particularly useful in situations where the user

wants to understand why the model made a certain prediction, and what factors

were most influential in that decision. By exploring counterfactual scenarios, the

user can gain a deeper understanding of the underlying relationships between the

input data and the model’s output and can identify which features or parameters

are most important in determining the model’s behavior.

In all of the chapters of this thesis, we worked with tabular data. Our work

is extendable to every possible data type but with some trade-offs. The use of a

linear transformation in latent space models allowed us to obtain more precise and

interpretable explanations; however, the latent space created is simple, and more

complex data might be difficult to represent in this way. This is a trade-off between

interpretability and accuracy. On one hand, non-linear transformations can capture

more complex relationships between the data, leading to more accurate and complex

latent spaces. On the other hand, these models can be more difficult to interpret

150

Chapter 6 - Conclusions

and explain, as the underlying relationships may be more abstract.

In conclusion, XAI is a critical area of research that has great potential to im-

prove the transparency and accountability of AI systems. Further research in XAI

will be critical to build a future in which humans and AI can work together re-

liably and ethically and to ensure that AI is used for the benefit of society as a

whole. However, there are still many open challenges in XAI, such as ensuring that

XAI explanations are robust and do not mislead users, as well as protecting privacy

and avoiding unwanted disclosures. Latent space modeling has great potential for

building more powerful and interpretable AI systems. Further research in this area

will be critical to explore new applications, improve model performance, and make

latent space models more robust and accessible to non-experts.

151

Bibliography

[1] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and
Dan Dennison. Hidden technical debt in machine learning systems. Advances
in neural information processing systems, 28, 2015.

[2] Naveed Akhtar et al. Threat of adversarial attacks on deep learning in com-
puter vision: Survey II. CoRR, abs/2108.00401, 2021.

[3] Cynthia Rudin. Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intel-
ligence, 1(5):206–215, 2019.

[4] Alexandra Chouldechova. Fair prediction with disparate impact: A study of
bias in recidivism prediction instruments. Big data, 5(2):153–163, 2017.

[5] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca
Giannotti, and Dino Pedreschi. A survey of methods for explaining black box
models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

[6] Amina Adadi and Mohammed Berrada. Peeking inside the black-box: A
survey on explainable artificial intelligence (xai). IEEE Access, 6:52138–52160,
2018.

[7] Alejandro Barredo Arrieta, Natalia Dı́az-Rodŕıguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador Garćıa, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai. Information Fusion, 58:82–115, 2020.

[8] Andreas Theissler, Francesco Spinnato, Udo Schlegel, and Riccardo Guidotti.
Explainable AI for time series classification: A review, taxonomy and research
directions. IEEE Access, 10:100700–100724, 2022.

[9] Riccardo Guidotti. Counterfactual explanations and how to find them: litera-
ture review and benchmarking. Data Mining and Knowledge Discovery, pages
1–55, 2022.

152

BIBLIOGRAPHY

[10] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph
neural networks: A taxonomic survey. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2022.

[11] Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable
machine learning. arXiv preprint arXiv:1702.08608, 2017.

[12] Christoph Molnar. Interpretable Machine Learning. Lulu. com, 2020.

[13] Tim Miller. Explanation in artificial intelligence: Insights from the social
sciences. Artif. Intell., 267:1–38, 2019.

[14] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt,
and Been Kim. Sanity checks for saliency maps. In Advances in Neural Infor-
mation Processing Systems, pages 9505–9515, 2018.

[15] Alex A Freitas. Comprehensible classification models: a position paper. ACM
SIGKDD explorations newsletter, 15(1):1–10, 2014.

[16] Frank Pasquale. The black box society: The secret algorithms that control
money and information. Harvard University Press, 2015.

[17] Andrey Kurenkov. Lessons from the pulse model and discussion. the gradient,
2020.

[18] Bryce Goodman and Seth Flaxman. Eu regulations on algorithmic decision-
making and a “right to explanation”. In ICML workshop on human inter-
pretability in machine learning (WHI 2016), New York, NY. http://arxiv.
org/abs/1606.08813 v1, 2016.

[19] Sandra Wachter, Brent Mittelstadt, and Luciano Floridi. Why a right to
explanation of automated decision-making does not exist in the general data
protection regulation. International Data Privacy Law, 7(2):76–99, 2017.

[20] Giovanni Comandè. Regulating algorithms’ regulation? first ethico-legal prin-
ciples, problems, and opportunities of algorithms. In Transparent Data Mining
for Big and Small Data, pages 169–206. Springer, 2017.

[21] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining explanations: An overview of interpretability of
machine learning. In 2018 IEEE 5th International Conference on data science
and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[22] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and
Klaus-Robert Müller. Explainable AI: interpreting, explaining and visualizing
deep learning, volume 11700. Springer Nature, 2019.

153

BIBLIOGRAPHY

[23] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. Machine learn-
ing interpretability: A survey on methods and metrics. Electronics, 8(8):832,
2019.

[24] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i
trust you?” explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1135–1144, 2016.

[25] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In Advances in neural information processing systems, pages
4765–4774, 2017.

[26] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. arXiv preprint arXiv:1703.01365, 2017.

[27] Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott Lundberg, and Su-
In Lee. Learning explainable models using attribution priors. arXiv preprint
arXiv:1906.10670, 2019.

[28] Deng Pan, Xin Li, and Dongxiao Zhu. Explaining deep neural network models
with adversarial gradient integration. In Thirtieth International Joint Con-
ference on Artificial Intelligence (IJCAI), 2021.

[29] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen,
Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance propagation. PloS one,
10(7):e0130140, 2015.

[30] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. arXiv preprint
arXiv:1704.02685, 2017.

[31] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna
Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In Proceedings of the IEEE
international conference on computer vision, pages 618–626, 2017.

[32] Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Bal-
asubramanian. Grad-cam++: Generalized gradient-based visual explanations
for deep convolutional networks. In 2018 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV), pages 839–847. IEEE, 2018.

[33] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling
for explanation of black-box models. arXiv preprint arXiv:1806.07421, 2018.

154

BIBLIOGRAPHY

[34] Andrei Kapishnikov, Tolga Bolukbasi, Fernanda Viégas, and Michael Terry.
Xrai: Better attributions through regions. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4948–4957, 2019.

[35] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. Smoothgrad: removing noise by adding noise. arXiv preprint
arXiv:1706.03825, 2017.

[36] Riccardo Guidotti, Anna Monreale, Fosca Giannotti, Dino Pedreschi, Salva-
tore Ruggieri, and Franco Turini. Factual and counterfactual explanations for
black box decision making. IEEE Intell. Syst., 34(6):14–23, 2019.

[37] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-
precision model-agnostic explanations. In AAAI, volume 18, pages 1527–1535,
2018.

[38] Yao Ming, Huamin Qu, and Enrico Bertini. Rulematrix: Visualizing and
understanding classifiers with rules. IEEE transactions on visualization and
computer graphics, 25(1):342–352, 2018.

[39] Mark Craven and Jude W Shavlik. Extracting tree-structured representations
of trained networks. In Advances in neural information processing systems,
pages 24–30, 1996.

[40] Eleanor H Rosch. Natural categories. Cognitive psychology, 4(3):328–350,
1973.

[41] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are
not enough, learn to criticize! criticism for interpretability. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016.

[42] Karthik S Gurumoorthy, Amit Dhurandhar, Guillermo Cecchi, and Charu Ag-
garwal. Efficient data representation by selecting prototypes with importance
weights. In 2019 IEEE International Conference on Data Mining (ICDM),
pages 260–269. IEEE, 2019.

[43] Alberto Blanco-Justicia, Josep Domingo-Ferrer, Sergio Mart́ınez, and David
Sánchez. Machine learning explainability via microaggregation and shallow
decision trees. Knowledge-Based Systems, 2020.

[44] Peter Hase, Chaofan Chen, Oscar Li, and Cynthia Rudin. Interpretable image
recognition with hierarchical prototypes. In Proceedings of the AAAI Con-
ference on Human Computation and Crowdsourcing, volume 7, pages 32–40,
2019.

155

BIBLIOGRAPHY

[45] Jacob Bien and Robert Tibshirani. Prototype selection for interpretable clas-
sification. The Annals of Applied Statistics, pages 2403–2424, 2011.

[46] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and
Jonathan K Su. This looks like that: deep learning for interpretable im-
age recognition. In Advances in neural information processing systems, pages
8930–8941, 2019.

[47] Pang Wei Koh and Percy Liang. Understanding black-box predictions via
influence functions. arXiv preprint arXiv:1703.04730, 2017.

[48] Ruth MJ Byrne. Counterfactual thinking: From logic to morality. Current
Directions in Psychological Science, 26(4):314–322, 2017.

[49] Umang Bhatt et al. Explainable machine learning in deployment. In FAT*,
pages 648–657. ACM, 2020.

[50] Riccardo Guidotti et al. A survey of methods for explaining black box models.
ACM Comput. Surv., 51(5):93:1–93:42, 2019.

[51] Riccardo Guidotti, Anna Monreale, Stan Matwin, and Dino Pedreschi. Black
box explanation by learning image exemplars in the latent feature space. In
Joint European conference on machine learning and knowledge discovery in
databases, pages 189–205. Springer, 2019.

[52] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual expla-
nations without opening the black box: Automated decisions and the gdpr.
Harv. JL & Tech., 2017.

[53] Thibault Laugel et al. Comparison-based inverse classification for inter-
pretability in machine learning. In IPMU (1), CCIS, pages 100–111. Springer,
2018.

[54] Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining ma-
chine learning classifiers through diverse counterfactual explanations. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Trans-
parency, 2020.

[55] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for machine
learning. Foundations and Trends® in Machine Learning, 5(2–3):123–286,
2012.

[56] Ann L McGill and Jill G Klein. Contrastive and counterfactual reasoning
in causal judgment. Journal of Personality and Social Psychology, 64(6):897,
1993.

156

BIBLIOGRAPHY

[57] Ilia Stepin, Jose M Alonso, Alejandro Catala, and Mart́ın Pereira-Fariña. A
survey of contrastive and counterfactual explanation generation methods for
explainable artificial intelligence. IEEE Access, 9:11974–12001, 2021.

[58] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting,
Karthikeyan Shanmugam, and Payel Das. Explanations based on the missing:
Towards contrastive explanations with pertinent negatives. In Advances in
Neural Information Processing Systems, 2018.

[59] Riccardo Guidotti et al. Factual and counterfactual explanations for black
box decision making. IEEE Intell. Syst., 34(6):14–23, 2019.

[60] Shubham Sharma et al. CERTIFAI: counterfactual explanations for robust-
ness, transparency, interpretability, and fairness of artificial intelligence mod-
els. CoRR, abs/1905.07857, 2019.

[61] Shubham Rathi. Generating counterfactual and contrastive explanations using
SHAP. CoRR, abs/1906.09293, 2019.

[62] Adam White et al. Measurable counterfactual local explanations for any clas-
sifier. In ECAI, volume 325 of Frontiers in Artificial Intelligence and Appli-
cations, pages 2529–2535. IOS Press, 2020.

[63] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,
Hyunsu Cho, Kailong Chen, et al. Xgboost: extreme gradient boosting. R
package version 0.4-2, 1(4):1–4, 2015.

[64] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and predic-
tion, volume 2. Springer, 2009.

[65] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. Interpretable
decision sets: A joint framework for description and prediction. In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1675–1684, 2016.

[66] Trevor J Hastie and Robert J Tibshirani. Generalized additive models. Rout-
ledge, 2017.

[67] Yin Lou, Rich Caruana, Johannes Gehrke, and Giles Hooker. Accurate in-
telligible models with pairwise interactions. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 623–631, 2013.

157

BIBLIOGRAPHY

[68] Chaofan Chen, Kangcheng Lin, Cynthia Rudin, Yaron Shaposhnik, Sijia
Wang, and Tong Wang. An interpretable model with globally consistent ex-
planations for credit risk. arXiv preprint arXiv:1811.12615, 2018.

[69] Mengjiao Yang and Been Kim. Bim: Towards quantitative evaluation of in-
terpretability methods with ground truth. arXiv preprint arXiv:1907.09701,
2019.

[70] John D Lee and Katrina A See. Trust in automation: Designing for appropri-
ate reliance. Human factors, 46(1):50–80, 2004.

[71] Joseph Jay Williams, Juho Kim, Anna Rafferty, Samuel Maldonado,
Krzysztof Z. Gajos, Walter S. Lasecki, and Neil Heffernan. Axis: Gener-
ating explanations at scale with learnersourcing and machine learning. In
Proceedings of the Third (2016) ACM Conference on Learning @ Scale, L@S
’16, 2016.

[72] Adi Suissa-Peleg, Daniel Haehn, Seymour Knowles-Barley, Verena Kaynig,
Thouis R Jones, Alyssa Wilson, Richard Schalek, Jeffery W Lichtman, and
Hanspeter Pfister. Automatic neural reconstruction from petavoxel of electron
microscopy data. Microscopy and Microanalysis, 2016.

[73] Been Kim, Caleb M Chacha, and Julie A Shah. Inferring team task plans
from human meetings: A generative modeling approach with logic-based prior.
Journal of Artificial Intelligence Research, 2015.

[74] David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability
with self-explaining neural networks. Advances in Neural Information Pro-
cessing Systems, 31:7775–7784, 2018.

[75] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations
for machine learning: A review. arXiv preprint arXiv:2010.10596, 2020.

[76] Stratis Tsirtsis and Manuel Gomez Rodriguez. Decisions, counterfactual ex-
planations and strategic behavior. Advances in Neural Information Processing
Systems, 33:16749–16760, 2020.

[77] Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neu-
ral networks is fragile. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3681–3688, 2019.

[78] Chih-Kuan Yeh et al. On the (in) fidelity and sensitivity of explanations.
Advances in Neural Information Processing Systems, 32, 2019.

[79] David Alvarez-Melis and Tommi S Jaakkola. On the robustness of inter-
pretability methods. arXiv preprint arXiv:1806.08049, 2018.

158

BIBLIOGRAPHY

[80] Przemyslaw Biecek and Tomasz Burzykowski. Explanatory Model Analysis.
Chapman and Hall/CRC, New York, 2021.

[81] Francesco Bodria, Fosca Giannotti, Riccardo Guidotti, Francesca Naretto,
Dino Pedreschi, and Salvatore Rinzivillo. Benchmarking and survey of expla-
nation methods for black box models, 2021.

[82] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[83] Andrea Vedaldi and Stefano Soatto. Quick shift and kernel methods for
mode seeking. In Computer Vision - ECCV 2008, 10th European Conference
on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings,
Part IV, volume 5305 of Lecture Notes in Computer Science, pages 705–718.
Springer, 2008.

[84] Laurens Van Der Maaten, Eric Postma, Jaap Van den Herik, et al. Dimen-
sionality reduction: a comparative. J Mach Learn Res, 10(66-71):13, 2009.

[85] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[86] Gordon Hughes. On the mean accuracy of statistical pattern recognizers.
IEEE transactions on information theory, 14(1):55–63, 1968.

[87] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.

[88] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[89] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae:
Learning basic visual concepts with a constrained variational framework. Iclr,
2(5):6, 2017.

[90] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[91] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196, 2017.

159

BIBLIOGRAPHY

[92] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and
Stephen Paul Smolley. Least squares generative adversarial networks. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2794–2802, 2017.

[93] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv
preprint arXiv:1701.07875, 2017.

[94] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. In Advances in
neural information processing systems, pages 5767–5777, 2017.

[95] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Advances in neural information
processing systems, pages 2172–2180, 2016.

[96] David Berthelot, Thomas Schumm, and Luke Metz. Began: Boundary equilib-
rium generative adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

[97] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric.
arXiv preprint arXiv:1512.09300, 2015.

[98] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature
learning. arXiv preprint arXiv:1605.09782, 2016.

[99] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and
Charles Sutton. Veegan: Reducing mode collapse in gans using implicit varia-
tional learning. In Advances in Neural Information Processing Systems, pages
3308–3318, 2017.

[100] Mansheng Chen, Ling Huang, Chang-Dong Wang, and Dong Huang. Multi-
view clustering in latent embedding space. In AAAI, pages 3513–3520, 2020.

[101] Ming Yin, Weitian Huang, and Junbin Gao. Shared generative latent rep-
resentation learning for multi-view clustering. In AAAI, pages 6688–6695,
2020.

[102] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational
inference of disentangled latent concepts from unlabeled observations. arXiv
preprint arXiv:1711.00848, 2017.

[103] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

160

BIBLIOGRAPHY

[104] Tom White. Sampling generative networks. arXiv preprint arXiv:1609.04468,
2016.

[105] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv
preprint arXiv:1704.03477, 2017.

[106] Erik Bernhardsson. Analyzing 50k fonts using deep neural net-
works. URL https://erikbern. com/2016/01/21/analyzing-50k-fontsusing-
deep-neural-networks. html, 2016.

[107] Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representa-
tion of molecules. ACS central science, 4(2):268–276, 2018.

[108] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and
Ole Winther. Autoencoding beyond pixels using a learned similarity metric.
In International conference on machine learning, pages 1558–1566. PMLR,
2016.

[109] Wolfgang Stammer, Patrick Schramowski, and Kristian Kersting. Right for
the right concept: Revising neuro-symbolic concepts by interacting with their
explanations. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 3619–3629, 2021.

[110] Benjamin Shickel and Parisa Rashidi. Sequential interpretability: methods,
applications, and future direction for understanding deep learning models in
the context of sequential data. arXiv preprint arXiv:2004.12524, 2020.

[111] Wolfgang Stammer, Marius Memmel, Patrick Schramowski, and Kristian Ker-
sting. Interactive disentanglement: Learning concepts by interacting with their
prototype representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10317–10328, 2022.

[112] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Gen-
erative visual manipulation on the natural image manifold. In European con-
ference on computer vision, pages 597–613. Springer, 2016.

[113] Arnaud Van Looveren et al. Interpretable counterfactual explanations guided
by prototypes. In ECML/PKDD (2), volume 12976 of Lecture Notes in Com-
puter Science, pages 650–665. Springer, 2021.

[114] Rachana Balasubramanian et al. Latent-cf: A simple baseline for reverse
counterfactual explanations. CoRR, abs/2012.09301, 2020.

161

BIBLIOGRAPHY

[115] Pau Rodŕıguez et al. Beyond trivial counterfactual explanations with diverse
valuable explanations. In ICCV, pages 1036–1045. IEEE, 2021.

[116] Michael Downs, Jonathan L Chu, Yaniv Yacoby, Finale Doshi-Velez, and Wei-
wei Pan. Cruds: Counterfactual recourse using disentangled subspaces. ICML
WHI, 2020:1–23, 2020.

[117] Shalmali Joshi, Oluwasanmi Koyejo, Been Kim, and Joydeep Ghosh.
xgems: Generating examplars to explain black-box models. arXiv preprint
arXiv:1806.08867, 2018.

[118] Pouya Samangouei, Ardavan Saeedi, Liam Nakagawa, and Nathan Silber-
man. Explaingan: Model explanation via decision boundary crossing trans-
formations. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 666–681, 2018.

[119] Wesam Barbakh and Colin Fyfe. Online clustering algorithms. International
Journal of Neural Systems, 18(03):185–194, 2008.

[120] Akiva Kleinerman, Ariel Rosenfeld, David Benrimoh, Robert Fratila, Caitrin
Armstrong, Joseph Mehltretter, Eliyahu Shneider, Amit Yaniv-Rosenfeld,
Jordan Karp, Charles F Reynolds, et al. Treatment selection using proto-
typing in latent-space with application to depression treatment. PloS one,
16(11):e0258400, 2021.

[121] Jie Liu, Kechen Song, Mingzheng Feng, Yunhui Yan, Zhibiao Tu, and Liu
Zhu. Semi-supervised anomaly detection with dual prototypes autoencoder for
industrial surface inspection. Optics and Lasers in Engineering, 136:106324,
2021.

[122] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learn-
ing latent space energy-based prior model. Advances in Neural Information
Processing Systems, 33:21994–22008, 2020.

[123] Davide Abati, Angelo Porrello, Simone Calderara, and Rita Cucchiara. Latent
space autoregression for novelty detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June 2019.

[124] Chi Su, Shiliang Zhang, Fan Yang, Guangxiao Zhang, Qi Tian, Wen Gao, and
Larry S Davis. Attributes driven tracklet-to-tracklet person re-identification
using latent prototypes space mapping. Pattern Recognition, 66:4–15, 2017.

[125] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. Gen-
erating sentences by editing prototypes. Transactions of the Association for
Computational Linguistics, 6:437–450, 2018.

162

BIBLIOGRAPHY

[126] Alison Smith-Renner, Ron Fan, Melissa Birchfield, Tongshuang Wu, Jordan
Boyd-Graber, Daniel S Weld, and Leah Findlater. No explainability without
accountability: An empirical study of explanations and feedback in interac-
tive ml. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–13, 2020.

[127] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794, 2016.

[128] Stefano Teso and Kristian Kersting. Explanatory interactive machine learning.
In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,
pages 239–245, 2019.

[129] Hubert Baniecki, Wojciech Kretowicz, Piotr Piatyszek, Jakub Wisniewski, and
Przemyslaw Biecek. dalex: Responsible Machine Learning with Interactive
Explainability and Fairness in Python. arXiv:2012.14406, 2020.

[130] Yunchen Pu et al. Variational autoencoder for deep learning of images, labels
and captions. In NIPS, pages 2352–2360, 2016.

[131] Laurens Van der Maaten et al. Visualizing data using t-sne. Journal of
machine learning research, 9(11), 2008.

[132] Diederik P. Kingma et al. Adam: A method for stochastic optimization. In
ICLR (Poster), 2015.

[133] Solomon Kullback et al. On information and sufficiency. The annals of math-
ematical statistics, 22(1):79–86, 1951.

[134] Yingfan Wang et al. Understanding how dimension reduction tools work: An
empirical approach to deciphering t-sne, umap, trimap, and pacmap for data
visualization. J. Mach. Learn. Res., 22:201:1–201:73, 2021.

[135] Leland McInnes and John Healy. UMAP: uniform manifold approximation
and projection for dimension reduction. CoRR, abs/1802.03426, 2018.

[136] Ehsan Amid and Manfred K. Warmuth. Trimap: Large-scale dimensionality
reduction using triplets. CoRR, abs/1910.00204, 2019.

[137] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.
LOF: identifying density-based local outliers. In SIGMOD Conference. ACM,
2000.

[138] Pang-Ning Tan, Michael S. Steinbach, Anuj Karpatne, and Vipin Kumar.
Introduction to Data Mining (Second Edition). Pearson, 2019.

163

BIBLIOGRAPHY

[139] André Artelt and Barbara Hammer. On the computation of counterfactual
explanations–a survey. arXiv preprint arXiv:1911.07749, 2019.

[140] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. Ex-
plainable ai: A review of machine learning interpretability methods. Entropy,
23(1):18, 2020.

[141] George Baryannis, Samir Dani, and Grigoris Antoniou. Predicting supply
chain risks using machine learning: The trade-off between performance and
interpretability. Future Generation Computer Systems, 101:993–1004, 2019.

[142] Salvador Garćıa, Alberto Fernández, Julián Luengo, and Francisco Herrera.
A study of statistical techniques and performance measures for genetics-based
machine learning: accuracy and interpretability. Soft Computing, 13(10):959–
977, 2009.

[143] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19,
2011.

[144] Martin Wattenberg et al. How to use t-sne effectively. Distill, 1(10):e2, 2016.

[145] Mariana Curi et al. Interpretable variational autoencoders for cognitive mod-
els. In IJCNN, pages 1–8. IEEE, 2019.

[146] Przemys law Biecek. Dalex: explainers for complex predictive models in r. The
Journal of Machine Learning Research, 19(1):3245–3249, 2018.

[147] Bill Waggener et al. Pulse code modulation techniques. Springer Science &
Business Media, 1995.

[148] Nasir Ahmed et al. Discrete cosine transform. IEEE transactions on Comput-
ers, 100(1):90–93, 1974.

[149] Kien Mai Ngoc et al. Finding the best k for the dimension of the latent space
in autoencoders. In International Conference on Computational Collective
Intelligence, pages 453–464. Springer, 2020.

[150] Evelyn Fix et al. Discriminatory analysis. nonparametric discrimination: Con-
sistency properties. ISR, 57(3):238–247, 1989.

[151] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful
seeding. Technical report, Stanford, 2006.

[152] R Tyrrell Rockafellar. Lagrange multipliers and optimality. SIAM review,
35(2):183–238, 1993.

164

BIBLIOGRAPHY

[153] Tianqi Chen et al. Xgboost: A scalable tree boosting system. In KDD, pages
785–794. ACM, 2016.

[154] Leo Breiman. Random forests. Machine learning, pages 5–32, 2001.

[155] John Platt et al. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin classi-
fiers, 10(3):61–74, 1999.

[156] Ronald A Fisher. The use of multiple measurements in taxonomic problems.
Annals of eugenics, 7(2):179–188, 1936.

[157] David Alvarez-Melis et al. Towards robust interpretability with self-explaining
neural networks. In NeurIPS, pages 7786–7795, 2018.

[158] Janez Demsar. Statistical comparisons of classifiers over multiple data sets.
J. Mach. Learn. Res., 7:1–30, 2006.

165

	Introduction
	Background
	eXplainable Artificial Intelligence (XAI)
	Existing XAI Taxonomy for Explanation Methods
	Categorization of Explanations
	Feature Importance
	Rule-Based
	Prototypes
	Counterfactuals
	Transparent by Design Methods
	Desiderata of an explanation

	Benchmarking of XAI methods
	The Latent Space
	Dimensionality Reduction Techniques
	Generative models
	Understanding the Latent space

	Interactive exploration of the latent space
	Meaning of SHAP explanations
	Methodology
	Neighborhood Analysis
	Establishing the Interactive Connection via SHAP

	The Interactive Framework
	Discussion and Future Directions

	Interpretable by Design Latent Space
	Methodology
	Interpretable Latent Space Learning
	Counterfactual Explanations

	Experiments
	Latent Space Evaluations
	Counterfactuals Evaluations

	Discussion and Future Directions

	Latent Space Post-Hoc Explanations
	Methodology
	Constrained Interpretable Latent Space with Black Box Predictions
	Post-Hoc Explanations

	Experiments
	Prototype Explanation Evaluation
	Counterfactual Explanation Evaluation
	Comparison with Rule-based Explainers

	Discussion and Future Directions

	Conclusions

