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MONGE–AMPÈRE GRAVITATION AS A 0-LIMIT OF GOOD RATE FUNCTIONS

LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

Monge–Ampère gravitation is a modification of the classical Newtonian gravitation where the linear
Poisson equation is replaced by the nonlinear Monge–Ampère equation. This paper is concerned with
the rigorous derivation of Monge–Ampère gravitation for a finite number of particles from the stochastic
model of a Brownian point cloud, following the formal ideas of a recent work by Brenier (Bull. Inst.
Math. Acad. Sin. 11:1(2016), 23–41). This is done in two steps. First, we compute the good rate function
corresponding to a large deviation problem related to the Brownian point cloud at fixed positive diffusivity.
Second, we study the 0-convergence of this good rate function, as the diffusivity tends to zero, toward a
(nonsmooth) Lagrangian encoding the Monge–Ampère dynamic. Surprisingly, the singularities of the
limiting Lagrangian correspond to dissipative phenomena. As an illustration, we show that they lead to
sticky collisions in one space dimension.

1. Introduction

Monge–Ampère gravitation. On a periodic domain such as Td
= (R/Z)d, Newtonian gravitation is

commonly described in terms of the density of probability f (t, x, ξ) to find gravitating matter at time t ,
position x ∈ Td and velocity ξ ∈ Rd, subject to the Vlasov–Poisson equation

∂t f (t, x, ξ)+ divx(ξ f (t, x, ξ))− divξ (∇ϕ(t, x) f (t, x, ξ)) = 0,

1ϕ(t, x) =

∫
Rd

f (t, x, ξ) dξ − 1, (t, x, ξ) ∈ R × Td
× Rd ,

where ϕ is the gravitational potential. Notice that the averaged density, say 1, has been subtracted out
from the right-hand side of the Poisson equation, due to the periodicity of the spatial domain. This is a
common feature of computational cosmology and it lets the uniform density be a stationary solution. The
Vlasov–Poisson system can be seen as an “approximation” to the more nonlinear Vlasov–Monge–Ampère
(VMA) system

∂t f (t, x, ξ)+ divx(ξ f (t, x, ξ))− divξ (∇ϕ(t, x) f (t, x, ξ)) = 0, (1)

det(I + D2ϕ(t, x)) =

∫
Rd

f (t, x, ξ) dξ, (t, x, ξ) ∈ R × Td
× Rd , (2)

where the fully nonlinear Monge–Ampère equation substitutes for the linear Poisson equation of Newtonian
gravitation. Indeed, for “weak” gravitational potentials, by expanding the determinant around the identity
matrix I, we get

det(I + D2ϕ(t, x)) ∼ 1 + tr(D2ϕ(t, x)) = 1 + 1ϕ(t, x)
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and recover the Newtonian model approximately (and exactly as d = 1). In this paper, we will speak of
“Monge–Ampère gravitation” (“MAG” in short). The Vlasov–Monge–Ampère system was introduced
and related to the Vlasov–Poisson system in [Brenier and Loeper 2004], and studied as an ODE on the
Wasserstein space in [Ambrosio and Gangbo 2008]. It can also be solved numerically thanks to efficient
Monge–Ampère solvers recently designed by Mérigot [2011]. It was argued in [Brenier 2011] that MAG
may also be seen as an approximation of Newtonian gravitation for which the “Zeldovich approximation”
[1970] (see [Frisch et al. 2002; Brenier et al. 2003]), popular in computational cosmology, becomes exact.

Derivation of a discrete model of MAG. In what follows, we will not be directly interested in the
aforementioned system, but rather in its discrete version, i.e., when the number of particles is finite.
As is well known in optimal transport theory [Brenier 1987; 1991; Villani 2003], the Monge–Ampère
equation (2) is solved by the unique function ϕ such that the map Id+∇ϕ realizes the optimal transport with
quadratic cost from the density

∫
f dξ to the Lebesgue measure. Then, the kinetic equation (1) is known

to be the continuous version of the Newton equations of classical mechanics in a potential given by ϕ.
In the discrete setting, the stationary Lebesgue measure is replaced by a family A = (a1, . . . , aN ) ∈

(Rd)N of N ≥ 1 points in Rd (here we make the presentation in Rd instead of Td for the sake of simplicity).
One can for instance think of a regular lattice approximating in some region a constant density, even though
in the sequel the particular choice of (a1, . . . , aN ) will play no role. We will consider the evolution of a
cloud X = (x1, . . . , xN ) of N particles x1, . . . , xN in Rd whose dynamic is ruled by the (−1/N )-convex
function induced by the discrete optimal transport problem

F(X) := − min
σ∈SN

1
2N

N∑
i=1

|xi − aσ(i)|
2
= −

1
2

W 2
2

(
1
N

N∑
i=1

δai ,
1
N

N∑
i=1

δxi

)
, (3)

where W2 is the so-called Wasserstein distance on P2(R
d), the set of Borel probability measures on Rd

having a finite second-order moment. At least in the case where the optimization problem in (3) admits a
unique minimizer σopt = σ X

opt, the analogue of (1), (2) in this framework is easily seen to be formally,

for all i = 1, . . . , N ,
d 2

dt2 xi (t) = xi (t) − aσopt(i), (4)

which can be rewritten as, letting Xt := (x1(t), . . . , xN (t)),

1
N

d 2

dt2Xt = −∇F(Xt). (5)

Following the ideas of the recent paper [Brenier 2016], we will derive this discrete dynamic from the
very elementary stochastic model of a Brownian point cloud. However, in [Brenier 2016], the derivation
was obtained by applying two successive large deviation principles (LDP), through a purely formal use of
the Freidlin–Wentzell theory [1998]. The main purpose of the present paper is to explain how such a
derivation can be made rigorous by substituting for one of the applications of the LDP a PDE method
inspired by the famous concept of “onde pilote” introduced by Louis de Broglie [1927] at the early stage
of quantum mechanics.
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Dealing with the singularities. Due to the lack of uniqueness in the discrete optimal transport problem,
solutions of (4) are not always well-defined a priori. Otherwise stated, F is singular, and therefore ∇F
in (5) is not everywhere meaningful. A standard choice to give sense to (5) is to restate it as

−
1
N

d 2

dt2Xt ∈ ∂ F(Xt), (6)

where ∂ F(Xt) is the subdifferential of F at Xt , or

−
1
N

d 2

dt2Xt = ∇F(Xt),

where ∇F(Xt) is the element of ∂ F(Xt) with minimal Euclidean norm (see Definition 8 below). In these
formulations, existence results are available even in the nondiscrete case [Ambrosio and Gangbo 2008].

This is not what we do: our approach selects minimizers of actions appearing as 0-limits of good rate
functions associated with some LDP, under endpoint constraints. These curves do solve (4) in the case
where σopt is unique, but this time, the relaxation is made at the level of the Lagrangian formulation, and
not at the level of the Hamiltonian one. In view of (5), we would expect to find the action∫ t1

t0

{
|Ẋt |

2

2
− N F(Xt)

}
dt, (7)

where t0, t1 are some prescribed initial and final times. Instead, our derivation ends up with the smaller
action ∫ t1

t0

{
|Ẋt |

2

2
+

|Xt − ∇ f (Xt)|
2

2

}
dt, (8)

f (X) := max
σ∈SN

N∑
i=1

xi aσ(i) =

N∑
i=1

xi aσ X
opt(i)

, X = (x1, . . . , xN ) ∈ (Rd)N .

Note that these two actions coincide on curves X such that, for almost every t , σ
Xt
opt is unique (see

Section 2.7 for more details). Unexpectedly, this action is exactly the one previously suggested by the
third author in [Brenier 2011] in order to include dissipative phenomena (such as sticky collisions in one
space dimension) in the Monge–Ampère gravitational model!

The classical theory for sticky particles vs. our approach. Systems of particles moving along the line
and that stick together when they meet have been studied for a long time, for instance because they were
suggested to model the formation of large structures in the universe [Zeldovich 1970]. On the mathematical
side, a lot of works have been devoted to studying the limit of this kind of system when the number of
particles tends to infinity (see for instance [E et al. 1996; Brenier and Grenier 1998]), and the most recent
works generally build on a connection with the theory of optimal transport (see [Natile and Savaré 2009;
Brenier et al. 2013; Hynd 2020]). An example illustrating this link, which is one of the main theorems
in [Natile and Savaré 2009], is that up to a change of time, the one-dimensional pressureless Euler system
with sticky collisions is the gradient flow in the Wasserstein space of −

1
2 W 2

2 (m, · ), where m ∈ P2(R) is
a reference probability measure on the line. In plain English, in these models, particles are only allowed
to stick when they meet, and it corresponds to the optimal way of decreasing a certain functional.
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Our approach is different. In fact, our model is a least action principle, and therefore is conservative
and time-reversible. In this context, sticky collisions happen due to the presence of an internal energy,
corresponding to the discontinuities of the potential energy X 7→ −

1
2 |X − ∇ f (X)|2 (see formula (51)),

and which grows when particles aggregate. Kinetic energy can hence be transferred into internal energy
through perfectly inelastic shocks. An output of these considerations is that in our case, particles are not
only allowed to stick together; they can also separate.

Outline. In Section 2 we show how to derive MAG starting from a finite number of Brownian particles.
This is done in several steps, the main one being the 0-convergence towards the “effective” singular
functional (8) of the good rate functions associated with the large deviations of the solutions of a family
of SDEs (up to a change of time). This is stated in Theorem 9, which is our main result. Section 3 is
devoted to the proof of Theorem 9. The purpose of Section 4 is to show that in one space dimension, the
dissipative phenomena induced by this functional lead to sticky collisions.

Notation. We will work with N particles in Rd, and hence in (Rd)N. Points of (Rd)N will be denoted with
capital letters, mainly X , Y or Z . Curves with values in (Rd)N will be denoted with calligraphic letters
X , Y or Z . The positions of X , Y and Z at time t ∈ R will be denoted by Xt , Yt and Zt respectively.

In order to avoid heavy notation, in most cases, the laws of the processes that we will consider will
be continuously parametrized. In these cases, we will use abuses of notation: for instance, we will say
that the family of laws (µη)η>0 is tight whenever it is tight for sufficiently small values of η. This is
equivalent to (µηn )n∈N being tight for all (ηn) ∈ (R∗

+
)N decreasing to 0.

2. Derivation of the discrete model

2.1. The stochastic model of a lattice with Brownian motion. Take A = (a1, . . . , aN ) ∈ (Rd)N to be a
family of N > 1 points in Rd. We assume each point of this lattice to be subject to Brownian motion for
times t ≥ 0. At time t , the position of point i is

ai +
√

εBi
t ,

where (Bi )i=1,...,d is a family of N independent normalized Brownian curves and ε monitors the (common)
level of noise. As a consequence, at time t > 0, the density of probability ρε(t, X) for the point cloud

(a1 +
√

εB1
t , . . . , aN +

√
εB N

t )

to be observed at location X = (x1, . . . , xd) ∈ (Rd)N, up to a permutation σ ∈ SN of the labels, is easy
to compute. We find

ρε(t, X) =
1

N !
√

2πεt
d N

∑
σ∈SN

N∏
i=1

exp
(
−

|xi − aσ(i)|
2

2εt

)
,

or, in short,
1

N !
√

2πεt
Nd

∑
σ∈SN

exp
(
−

|X − Aσ
|
2

2εt

)
,



MONGE–AMPÈRE GRAVITATION AS A 0-LIMIT OF GOOD RATE FUNCTIONS 2009

where | · | denotes the euclidean norm in Rd or (Rd)N depending on the context, and where, for all
X = (x1, . . . , xN ) ∈ (Rd)N, we let

Xσ
= (xσ(1), . . . , xσ(N )).

This was the starting point of the discussion made in [Brenier 2016], using a double large deviation
principle.

In the present paper, we rather turn to a PDE viewpoint, where ρε is the solution of the heat equation
in (Rd)N,

∂ρε

∂t
(t, X) =

ε

2
1ρε(t, X), (9)

with, as initial condition, the delta measure located at A = (a1, . . . , aN ) ∈ (Rd)N and symmetrized with
respect to σ ∈ SN , namely

ρε(0, X) =
1
N !

∑
σ∈SN

δAσ . (10)

In some sense, we have solved the heat equation in the space of “point clouds” (Rd)N /SN , with initial
position A, defined up to a permutation σ ∈ SN of the labels i = 1, . . . , N.

2.2. “Surfing” the “heat wave”. After solving the heat equation (9)–(10), in the space of “clouds”
(Rd)N /SN , we introduce the companion ODE in the space (Rd)N :

dX ε
t

dt
= vε(t,X ε

t ), vε(t, X) = −
ε

2
∇ log ρε(t, X), (11)

or, more explicitly

vε(t, X) =
1
2t

∑
σ∈SN

(X − Aσ ) exp(−|X − Aσ
|
2/(2εt))∑

σ∈SN
exp(−|X − Aσ |2/(2εt))

=
1
2t

(
X −

∑
σ∈SN

Aσ exp((X · Aσ )/(εt))∑
σ∈SN

exp((X · Aσ )/(εt))

)
, (12)

where if U and V are in (Rd)N, then U · V denotes the inner product between U and V. This velocity is
chosen so that

∂ρε

∂t
(t, X) + div(ρε(t, X)vε(t, X)) = 0,

i.e., for the density ρε to be transported by the velocity field vε. We may solve this ODE for arbitrarily
chosen position Xt0 ∈ (Rd)N (up to reordering) and initial time t0 > 0.

Put another way, we consider the characteristics corresponding to the heat equation (9)–(10), interpreted
as a continuity equation, associated to our Brownian point cloud.

Remark 1. By doing that change of perspective, we just mimic the idea of quantum particles driven by
the “onde pilote”, as imagined by Louis de Broglie [1927; 1959] at the early stage of quantum mechanics.
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Indeed, in our case, the velocity vε
= ∇ϕε is the gradient of the scalar function ϕε

:= (−ε/2) log ρε,
and the pair (ρε, ϕε) is easily seen to solve the system

∂tρ
ε
+ div(ρε

∇ϕε) = 0,

∂tϕ
ε
+

1
2
|∇ϕε

|
2
= −

ε2

2
1

√
ρε

√
ρε

,
(13)

that is, the characteristics follow the trajectories of Newton’s law in a potential induced by ρε.
In the quantum case, something very similar can be found with the help of the Madelung transform

[1927]. Namely, if the complex function 9ε solves the Schrödinger equation

i∂t9
ε
+

ε

2
19ε

= 0,

writing 9ε
=

√
ρεeiϕε/ε for a pair (ρε, ϕε) of real functions, then this pair is shown to formally solve the

very similar system 
∂tρ

ε
+ div(ρε

∇ϕε) = 0,

∂tϕ
ε
+

1
2
|∇ϕε

|
2
=

ε2

2
1

√
ρε

√
ρε

,
(14)

and this observation was the starting point of de Broglie’s interpretation of quantum mechanics. In this
case, the potential in the right-hand side of the second equation is called the Bohm quantum potential.
However, the analysis of (14) is substantially more difficult than the one of (13), due to the possible
vanishing of the wave function 9ε during the evolution.

This analogy is not a coincidence. Indeed, it is known [von Renesse 2012] that the Schrödinger equation
in its Madelung formulation (14) is formally the Hamiltonian flow corresponding to the Lagrangian

Lε
quantum(ρ, ∇ϕ) :=

1
2

∫ {
|∇ϕ|

2
−

∣∣∣ε2∇ log ρ

∣∣∣2}
ρ,

in the geometry of optimal transport, while system (13), which admits solutions of the heat equations as
particular solutions, is rigorously the Hamiltonian flow corresponding to the Lagrangian

Lε
heat(ρ, ∇ϕ) :=

1
2

∫ {
|∇ϕ|

2
+

∣∣∣ε2∇ log ρ

∣∣∣2}
ρ,

in the geometry of optimal transport [Conforti 2019]. The latter Lagrangian appears naturally in the
theory of entropic optimal transport; see [Gentil et al. 2017; Gigli and Tamanini 2020].

2.3. Large deviations of the “heat wave” ODE. Let us now add to the ODE of the previous subsection a
noise of the form

dX ε,η
t = vε(t,X

ε,η
t ) dt +

√
η

t
dWt , (15)

where η is a positive number, (Wt) is a standard Brownian motion in (Rd)N, and where the scaling
prefactor 1/

√
t has been chosen to recover MAG at Section 2.6. That is, we include a second time-

dependent level of noise to the model: we perturb the characteristics that were already generated, through
the heat equation, by the Brownian motion of our original point cloud.
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Our main finding is that when η and ε are small and up to a change of time, the trajectories charged
by the solution of this SDE starting from P ∈ (Rd)N at time t0 > 0 and which happen to be close to
Q ∈ (Rd)N at time t1 > t0 are well-approximated by MAG.

The purpose of the rest of this section will be to make this rough statement precise. When we say that
some random trajectories are well-approximated by MAG, we mean that they are close in the uniform
topology to minimizers of the action (8), with large probability. Justifying this fact will require several steps
and intermediate functionals. As the times t0 and t1, as well as the endpoints P and Q, will be fixed in what
follows, we decided not to refer to them in the notation for the different functionals and laws that will appear.

Since for fixed ε > 0 and t ≥ t0 > 0, vε is a smooth velocity field, the existence of a strong solution
and pathwise uniqueness for (15) is standard once fixed a law for the initial position X ε,η

t0 at some t0 > 0.
Since we want to consider indistinguishable particles, a relevant choice of initial law consists in taking
X ε,η

t0 = Pσ with probability 1/(N !), given some P ∈ (Rd)N and σ ∈ SN . For convenience, from now on,
we denote by {Pσ

} the set {Pσ
: σ ∈SN }. The law just described is nothing but the uniform law on {Pσ

}.

Remark 2. Actually, at this stage, it would be possible to reintroduce distinguishability: Theorem 3,
Corollary 4, Proposition 7 and Theorem 9 below could easily be written for distinguishable particles,
that is, with constraints on the endpoints of the curves, and not on these endpoints up to reordering.
We decided to keep on working on clouds of indistinguishable particles in order to avoid crossings of
trajectories in Section 4.

The first step consists in using classical Freidlin–Wentzell theory [1998] (see also [Dembo and Zeitouni
1998]) in order to pass to the limit η → 0, while ε > 0 is kept fixed, in the sense of large deviations
(we omit the proof since it consists in adapting in a straightforward way [Dembo and Zeitouni 1998,
Theorem 5.6.3] to time-dependent entries and more general initial law for the SDE).

Theorem 3. Let us fix two positive times 0 < t0 < t1 and P ∈ (Rd)N. For fixed ε > 0 and as η → 0, the
family of laws (µε,η) of the solution of (15) between times t0 and t1 and starting from the uniform law on
{Pσ

} satisfies the LDP on C0([t0, t1]; (Rd)N ) with good rate function L0
ε defined for all X = (Xt)t∈[t0,t1] by

L0
ε(X ) =

{ 1
2

∫ t1
t0

|Ẋt − vε(t,Xt)|
2
× t dt if X ∈ H 1([t0, t1]; (Rd)N ) and Xt0 ∈ {Pσ

},

+∞, else.
(16)

In the rest of the article, we will call these kind of functionals “actions”, instead of the usual terminology
“good rate function”.

An outcome of this result is that with large probability, when η is small, X η,ε
t1 is close to the position

at time t1 of the solution of the ODE (11) starting from P, up to reordering. But now, we want to use
Theorem 3 in order to describe the behavior of the solutions of the SDE (15) when η is small, under the
large deviation assumption that its final position X ε,η

t1 is far from this expected value.
For this, we take Q ∈ (Rd)N, and we assume that we observe X ε,η

t1 to be close to Q, up to reordering.
To quantify this closeness, we consider a new small parameter δ > 0, and we work with the laws (µε,η)

from Theorem 3, conditioned to the event
{
X ε,η

t1 ∈
⋃

σ∈SN
B(Qσ , δ)

}
, where for a given X ∈ (Rd)N,

B(X, δ) stands for the closed ball of center X and radius δ. MAG will be obtained by studying the limit
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of these conditional laws when η → 0, then δ → 0 and finally ε → 0. We refer to Remark 12 for a
discussion about the order in which we let the different parameters tend to 0.

Concerning the limit η → 0, Theorem 3 implies the following.

Corollary 4. Let us fix ε, δ > 0, and call Eδ the closed subset of C0([t0, t1]; (Rd)N ) defined by

Eδ
:=

{
X ∈ C0([t0, t1]; (Rd)N ) : Xt1 ∈

⋃
σ∈SN

B(Qσ , δ)

}
.

The family of conditional laws (µδ
ε,η := µε,η( · : Eδ))η>0 is tight. Moreover, its limit points for the topology

of narrow convergence as η → 0 only charge minimizers of the functional

Lδ
ε(X ) =

{1
2

∫ t1
t0

|Ẋt−vε(t,Xt)|
2
×t dt if X ∈ H 1([t0, t1];(Rd)N ),Xt0 ∈ {Pσ

} and Xt1 ∈
⋃

σ∈SN
B(Qσ,δ),

+∞, else.
(17)

Proof. Let us first prove the tightness property. Let X be a curve in the interior of Eδ. As it satisfies an
LDP associated with a good rate function in a Polish space, by virtue of [Dembo and Zeitouni 1998,
Exercise 4.1.10], for fixed ε > 0, the family of laws (µε,η)η>0 is exponentially tight. Hence, there is a
compact K (we call K c its complement in C0([t0, t1]; (Rd)N )) such that

lim sup
η→0

η log µε,η(K c) ≤ −L0
ε(X ) − 1.

Therefore, we find

lim sup
η→0

η log µδ
ε,η(K c) = lim sup

η→0
{η log µε,η(K c

∩ Eδ) − η log µε,η(Eδ)}

≤ lim sup
η→0

η log µε,η(K c) − lim inf
η→0

η log µε,η(E̊δ)

≤ −L0
ε(X ) − 1 + L0

ε(X ) ≤ −1.

The tightness follows.
Now, let us consider µ a limit point of (µδ

ε,η) as η → 0, and (ηn) a sequence of positive numbers
decreasing to 0, with µδ

ε,ηn
→ µ as n → +∞. We will argue that whenever X is not a minimizer of Lδ

ε,
then X is not in the support of µ. First, for all η > 0, the support of µδ

ε,η is a subset of Eδ. As the latter
is closed, this is also the case for the support of µ. So let us take X ∈ Eδ, which is not a minimizer
of Lδ

ε. In particular, L0
ε(X ) > infEδ L0

ε . As L0
ε is lower semicontinuous, there exists an open set U of

C0([t0, t1]; (Rd)N ) containing X such that infU L0
ε > infEδ L0

ε . Let us show that µ(U ) = 0.
By the Portmanteau theorem, we have

µ(U ) ≤ lim inf
n→+∞

µδ
ε,ηn

(U ).

By the definition of (µδ
ε,η), we have

ηn log µδ
ε,ηn

(U ) = ηn log µε,ηn (U ∩ Eδ) − ηn log µε,ηn (E
δ) ≤ ηn log µε,ηn (U ) − ηn log µε,ηn (E̊

δ).

The large deviation principle of Theorem 3 lets us estimate the lim sup of this quantity by

lim sup
n→+∞

ηn log µδ
ε,ηn

(U ) ≤ inf
E̊δ

L0
ε − inf

U
L0

ε.
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To conclude that this quantity is negative, and therefore that µδ
ε,ηn

(U ) tends to 0 as n → +∞, it suffices
to notice that infE̊δ L0

ε = infEδ L0
ε (for instance by the easy fact that the infimum of Lδ

ε is continuous with
respect to δ), and to use the definition of U. The result follows. □

2.4. From the 0-convergence of the actions to the narrow convergence of the laws. In the previous
subsection, we justified why the conditional laws (µδ

ε,η) from Corollary 4 are well-described by the
action Lδ

ε defined by formula (17) as η → 0: in this limit, these laws mainly charge small neighborhoods
of minimizers of that action. Now, we want to argue that in order to study these laws when not only η is
small, but also δ and ε, we have to study the action Lδ

ε in that regime, in the sense of 0-convergence.
This assertion relies on the two following lemmas:

Lemma 5. Let (�, d) be a metric space, and (Ln)n∈N be a sequence of lower semicontinuous functionals
from � to R+ ∪ {+∞} having compact sublevels, uniformly in n ∈ N. Assume that (Ln) has a 0-limit L.
Assume furthermore that L is not uniformly equal to +∞. Finally, consider (µn) ∈ P(�)N a sequence of
Borel probability measures on �, such that, for all n, µn only charges minimizers of Ln . Then, (µn) is
tight, and any of its limit points in the narrow topology only charges minimizers of L.

Lemma 6. The family of actions (Lδ
ε) defined in (17) have compact sublevels in C0([t0, t1]; (Rd)N ),

uniformly in ε, δ > 0.

Using these lemmas, we see that if we manage to identify a 0-limit L for Lδ
ε as ε, δ → 0, then in this

limit, any family (µδ
ε) of limits of (µδ

ε,η) as η → 0 will mainly charge small neighborhoods of minimizers
of the limiting L . Before doing so in the next subsection, let us prove our two lemmas.

Proof of Lemma 5. Let x be a minimizer of L, and (xn) be an associated recovery sequence, that is,
xn → x as n → +∞, and lim supn→+∞ Ln(xn) ≤ L(x) = infL. Up to forgetting the first terms, we can
assume that Ln(xn) is finite for all n ∈ N. Now, call M := supn∈N Ln(xn). By assumption, the set

K :=

⋃
n∈N

{z ∈ � : Ln(z) ≤ M}

is compact, and by definition of M it contains all the minimizers of all the functionals Ln , n ∈ N.
Therefore, for all n ∈ N, µn(K ) = 1, and the tightness follows.

Let µ be a limit point of (µn) for the topology of narrow convergence. Up to considering a subsequence,
we assume that µn → µ. Let x be in the support of µ. It is easy to see that there exists a sequence (xn)

such that xn → x as n → +∞, and, for all n ∈ N, xn is in the support of µn . But then by assumption,
for all n, xn is a minimizer of Ln , and therefore, by standard considerations about 0-convergence, x is a
minimizer of L. □

Proof of Lemma 6. For all ε, δ > 0, the action Lδ
ε coincides with L0

ε (defined in (16)) inside of the closed set
Eδ and is +∞ outside of this closed set. Therefore, we just need to prove that L0

ε has compact sublevels,
uniformly in ε > 0. Actually, precompacity suffices by lower semicontinuity of L0

ε . To do so, we will
use the following bound, which holds as a consequence of (12) for all ε > 0, t ∈ [t0, t1] and X ∈ (Rd)N :

|vε(t, X)| ≤
|A| + |X |

2t0
. (18)
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We will prove that, for all M > 0, there exists M ′ > 0 (uniform in ε) such that, for all ε > 0 and
X ∈ C0([t0, t1]; (Rd)N ), whenever L0

ε(X ) ≤ M, we have

1
2

∫ t1

t0
|Ẋt |

2 dt ≤ M ′.

This is enough to conclude since it is well-known that the set H 1([t0, t1]; (Rd)N ) is compactly embedded
in C0([t0, t1]; (Rd)N ).

So let us consider M, ε > 0, and a curve X such that L0
ε(X ) ≤ M . Note that in particular, Xt0 ∈ {Pσ

}.
We have, for all t ∈ [t0, t1],

1
2

∫ t

t0
|Ẋs |

2 ds =

∫ t

t0

|Ẋs − vε(s,Xs) + vε(s,Xs)|
2

2
ds

≤

∫ t1

t0
|Ẋs − vε(s,Xs)|

2 ds +

∫ t

t0
|vε(s,Xs)|

2 ds

≤
1
t0

∫ t1

t0
|Ẋs − vε(s,Xs)|

2
× s ds +

1
4t2

0

∫ t

t0
(|A| + |Xs |)

2 ds

≤
2M
t0

+
(t1 − t0)|A|

2

2t2
0

+
1

2t2
0

∫ t

t0

∣∣∣∣Xt0 +

∫ s

t0
Ẋτ dτ

∣∣∣∣2

ds

≤
2M
t0

+
t1 − t0

t2
0

{
|A|

2

2
+ |P|

2
+

∫ t

t0

∫ s

t0
|Ẋτ |

2 dτ ds
}
,

where we used (18) to get the third line. We deduce our claim from the Grönwall lemma. □

2.5. The convergence results. As already explained, understanding the behavior of families (µδ
ε) of limit

points of (µδ
ε,η) as η → 0 when ε and δ are small amounts to understanding the behavior of the family

of actions (Lδ
ε) in the 0-convergence sense. This is what we propose to do now. More specifically, we

will see that (Lδ
ε) has a 0-limit, when first δ → 0, and then ε → 0. Doing so, we ensure that limit points

of the family (µδ
ε) in the relevant asymptotic only charge minimizers of the corresponding actions; see

Corollary 11 below. We discuss the question of swapping these limits in Remark 12.
Thanks to the smoothness of vε, the first 0-limit, as δ → 0, is very simple and we omit the proof.

Proposition 7. Let ε > 0. As δ tends to zero, the family of actions (Lδ
ε) 0-converges to

Lε(X ) =

{1
2

∫ t1
t0

|Ẋt − vε(t,Xt)|
2
× t dt if X ∈ H 1([t0, t1]; (Rd)N ),Xt0 ∈ {Pσ

} and Xt1 ∈ {Qσ
},

+∞, else.

The second 0-convergence, as ε → 0, is more intricate and can be seen as the main result of this paper,
because it involves the singular limit of the vector fields (vε) as ε → 0. Before stating it, we need to
introduce a few objects.

Define the following smooth functions, which are convex in X :

for all ε > 0, t > 0, X ∈ (Rd)N , fε(t, X) := εt log
[

1
N !

∑
σ∈SN

exp
(

X · Aσ

tε

)]
. (19)
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It has the property that, for all ε > 0, t > 0, and X ∈ (Rd)N,

vε(t, X) =
X − ∇ fε(t, X)

2t
.

As a consequence, we can rewrite Lε for all ε > 0 as

Lε(X )=

{1
2

∫ t1
t0

|Ẋt−(Xt−∇ fε(t,Xt))/(2t)|2×t dt if X ∈H 1([t0, t1];(Rd)N ),Xt0 ∈{Pσ
} and Xt1 ∈{Qσ

},

+∞ else.

When ε tends to zero, by virtue of the so-called Laplace’s principle, we have the pointwise convergence

lim
ε→0

fε(t, X) = max
σ∈SN

X · Aσ
=: f (X). (20)

Notice that f is linked to the function F defined in (3) by the formula,

for all X ∈ (Rd)N , f (X) =
|A|

2
+ |X |

2

2
+ N F(X). (21)

The function f no longer depends on the time variable, and it is a convex function with finite values.
As a consequence, for each X ∈ (Rd)N, the subdifferential ∂ f (X) of f at X is nonempty. We will consider
the extended gradient ∇ f (X) of f at X defined as:

Definition 8 (extended gradient). We define the extended gradient of a real-valued convex function h
at X , denoted by ∇h(X), to be the element of ∂h(X) with minimal Euclidean norm.

We are now ready to state our result concerning the limit ε → 0.

Theorem 9. As ε tends to 0, the family of actions (Lε)ε>0 0-converges to

L(X ) =

{1
2

∫ t1
t0

|Ẋt−(Xt−∇ f (Xt))/(2t)|2×t dt if X ∈ H 1([t0, t1];(Rd)N ),Xt0 ∈ {Pσ
} and Xt1 ∈ {Qσ

},

+∞ else
(22)

for the topology of uniform convergence of C0([t0, t1]; (Rd)N ).

Remark 10. It is relevant to wonder what exactly in the convergence fε → f implies Theorem 9. It is not
so simple to answer due to the dependence in t of fε and because the proof involves several manipulations
of formula (22). However, the main step of the proof is Lemma 15 below. Now, at least in the autonomous
case, several works that are posterior to the first version of the present paper study results similar to
Lemma 15 in greater generality, namely in Hilbert spaces [Ambrosio et al. 2021] or in measured metric
spaces [Monsaingeon et al. 2023]. In [Ambrosio et al. 2021], the good notion of convergence for fε → f
is Mosco convergence. We give more details on this in Remark 16.

As a consequence of Lemmas 5 and 6, this theorem clearly implies the following.

Corollary 11. Consider the family of laws (µδ
ε,η) defined in Corollary 4, and three sequences (ηn)n∈N,

(δm)m∈N and (εp)p∈N decreasing to 0. Then, there exist subsequences (η′
n)n∈N, (δ′

m)m∈N and (ε′
p)p∈N

such that the triple limit
lim

p→+∞
lim

m→+∞
lim

n→+∞
µδm

εp,ηn

exists in the topology of narrow convergence and only charge minimizers of L as defined by (22).
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In particular, if L admits a unique minimizer X , the whole family converges:

lim
ε→0

lim
δ→0

lim
η→0

µδ
ε,η = δX .

Let us now comment on the order in which these limits are taken.

Remark 12. Up to potentially considering subsequences, we are studying the behavior of the conditioned
laws (µδ

ε,η) in the limit limε→0 limδ→0 limη→0, and one could wonder whether these limits could be
swapped. We recall that ε stands for the level of noise of the original point cloud, that η stands for the
level of perturbation of the companion ODE, and that δ is the precision of the observation at the final time.

• Swapping limε→0 and limδ→0 is easy: it amounts to studying the dependence of the limiting action (22)
when Q varies. Essentially, this swap would be a consequence of the fact that vε is bounded on compact
sets, uniformly in time and ε.

• Swapping limδ→0 and limη→0 would be more delicate, but doable as well. We would first need to prove
that the family (µδ

ε,η) from Corollary 4 converges when δ → 0, with fixed ε and η, as classically done
in the theory of bridges of processes, and then write a large deviation principle for these bridges in place
of Theorem 3.

• Finally, not taking into consideration the limit in δ because of the two previous points, the question
of how to swap limε→0 with limη→0 relates to the question of building solutions to SDEs with singular
coefficients, and lies beyond the scope of this article. A related question that we also do not want to
address is the question of quantifying how small η needs to be with respect to ε to be able to take a
simultaneous limit in ε and η. To answer it, we would need to study the dependence in ε of the rates
of convergence in the large deviation principle, which is probably a very delicate question, once again
because of the singularities of vε appearing as ε → 0.

We will prove Theorem 9 in Section 3 below, but before doing so, let us show that up to changing time,
we recover MAG. Notice L has compact sublevels as a consequence of the 0-convergence and Lemma 6.
Hence, the existence of global minimizers for L (and hence for all the forthcoming functionals) follows
from the direct method of calculus of variations.

2.6. A change of time leading to Monge–Ampère gravitation. Through the change of variable

t = exp(2θ), Zθ = Xexp(2θ), θ0 =
1
2 log t0, θ1 =

1
2 log t1,

we observe that, for all X ∈ C0([t0, t1]; (Rd)N ), L(X ) =
1
23(Z), with

3(Z) =

{
1
2

∫ θ1
θ0

|Żθ − (Zθ − ∇ f (Zθ ))|
2 dθ if Z ∈ H 1([θ0, θ1]; (Rd)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.

(Recall the definition (20) of f .)
It turns out to be equivalent to the following one (in which we recognize (8)):

3′(Z) =

{∫ θ1
θ0

{ 1
2 |Żθ |

2
+

1
2 |Zθ−∇ f (Zθ )|

2
}

dθ if Z ∈ H 1([θ0,θ1];(R
d)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.
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To see this, it suffices to expand the square and to remark that the mixed product is an exact time derivative,
so that its integral only involves the endpoints P and Q. This is done in a slightly different context in the
proof of Lemma 14 below.

2.7. Application of the least action principle. We observe that the points Z where f is differentiable are
those for which the maximum in the definition (20) of f is reached by a unique permutation σopt so that
∇ f (Z) is nothing but Aσopt . For such points Z , we get

1
2 |Z − ∇ f (Z)|2 =

1
2 |Z − Aσopt |

2
= −N F(Z)

(by definition (3) of F), while, on the set N of nondifferentiability of f , we rather have

1
2 |Z − ∇ f (Z)|2 < −N F(Z);

see for instance Proposition 27 below in the case of dimension 1. So the action we have obtained in the
previous section, namely 3′, bounds from below

3+(Z) =

{∫ θ1
θ0

{1
2 |Żθ |

2
− N F(Zθ )

}
dθ if Z ∈ H 1([θ0, θ1]; (Rd)N ),Zθ0 ∈ {Pσ

} and Zθ1 ∈ {Qσ
},

+∞ else.

This second action, already announced in (7), is definitely strictly larger than the first one for those curves
θ → Zθ which take values in N (where f and F are not differentiable) on a set of times θ ∈ [θ0, θ1] with
positive Lebesgue measure. So the least action principle may provide different optimal curves, depending
on the action we choose. However, if a curve is optimal for 3′ and almost surely takes value outside of N ,
then it must also be optimal for 3+. Clearly, it is much easier to get the optimality equation for such a
curve, by working with 3+ rather than with 3′. By varying action 3+, we get (6) as optimality equation.
Therefore, the optimal curves of our functional 3′ taking value in N for a negligible set of times solve (4)
(in a distributional sense), which is the MAG discrete model announced in the Introduction.

Of course, these equations have to be suitably modified for those curves which are optimal for the
action 3′ but not for 3+ because they take values in N for a nonnegligible amount of time. At this stage,
we do not know how to do it. However, at least in the one-dimensional case d = 1, such modifications
are tractable and correspond to sticky collisions as xi (t) = x j (t) occurs for different “particles” of labels
i ̸= j and during intervals of times of strictly positive Lebesgue measure; see Section 4.

3. Proof of the 0-convergence

The purpose of this section is to prove Theorem 9.

3.1. The proof as a consequence of three lemmas. As we will see, Theorem 9 will be a consequence
of three lemmas that we state below. Lemmas 14 and 15 both involve a family of smooth functions
(gε)ε>0 on [θ0, θ1]×Rp for some θ0 < θ1 and p ∈ N, pointwise converging to a L1

loc function g. On these
functions, we will assume the following:

Assumptions 13. (H1) For all ε > 0 and θ ∈ [θ0, θ1], gε(θ, 0) = 0.

(H2) For all ε > 0 and θ ∈ [θ0, θ1], gε(θ, · ) is convex. Therefore, g(θ, · ) is convex as well.
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(H3) The maps ∇gε are uniformly bounded, that is,

L := sup
ε>0

sup
θ∈[θ0,θ1]

sup
Y∈Rp

|∇gε(θ, Y )| < +∞. (23)

Therefore, we also have
sup

θ∈[θ0,θ1]

sup
Y∈Rp

|∇g(θ, Y )| ≤ L .

(H4) The distributional derivative ∂θ g is L2([θ0, θ1]; L∞

loc(R
d)N ), and, for all Y ∈ H 1([θ0, θ1]; (Rd)N ),

the map θ 7→ g(θ,Yθ ) is also H 1, with, for almost all θ ∈ [θ0, θ1],

d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) + ∇g(θ,Yθ ) · Ẏθ . (24)

(H5) The maps ∂θ∇gε are uniformly bounded, that is,

M := sup
ε>0

sup
θ∈[θ0,θ1]

sup
Y∈Rp

|∂θ∇gε(θ, Y )| < +∞. (25)

In order to keep the proofs simple, we did not try to optimize these assumptions for Lemmas 14 and 15,
which are probably true in a far more general context (see Remark 16 in the case of Lemma 15). However,
as we will see in the proof of Theorem 9, it suffices to check these assumptions for the family ( fε)ε>0

after suitable change of temporal and spatial scale. This is done in Lemma 17.

Lemma 14. Let us consider θ0 < θ1 ∈ R, η ∈ C∞([θ0, θ1]; R∗
+
) and a family (gε)ε>0 of smooth functions

from [θ0, θ1] × Rp to R pointwise converging to a function g, which satisfy (H1), (H3), (H4) and (H5)
from Assumptions 13. If a family of curves (Yε)ε>0 in H 1([θ0, θ1]; Rp) uniformly converges to a curve
Y ∈ H 1([θ0, θ1]; Rp), then∫ θ1

θ0

Ẏε
θ · ∇gε(θ,Yε

θ )η(θ) dθ
ε→0−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ.

Lemma 15. Let us consider θ0 < θ1 ∈ R, η ∈ C∞([θ0, θ1]; R∗
+
) and a family (gε)ε>0 of smooth functions

from [θ0, θ1] × Rp to R pointwise converging to a function g, and satisfying (H2), (H3)and (H5) from
Assumptions 13. Let us fix R, S ∈ Rp and define for ε > 0 and Y ∈ C0([θ0, θ1]; Rp)

Kε(Y) :=

{
1
2

∫ θ1
θ0

{
|Ẏθ |

2
+ |∇gε(θ,Yθ )|

2
}
η(θ) dθ if Y ∈ H 1([θ1, θ1]; Rp),Yθ0 = R and Yθ1 = S,

+∞ else,

K (Y) :=

{
1
2

∫ θ1
θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ if Y ∈ H 1([θ1, θ1]; Rp),Yθ0 = R and Yθ1 = S,

+∞, else.

Then (Kε)ε>0 0-converges to K for the topology of uniform convergence of C0([θ0, θ1]; Rp).

Remark 16. This lemma is the keystone of the proof, and one may wonder how it can be generalized and
what is really necessary among our assumptions. In [Ambrosio et al. 2021], we show that at least when (gε)

and g have no dependence on θ and η ≡ 1, the result holds true, even in Hilbert spaces, whenever (gε) is
a family of proper lower semicontinuous uniformly λ-convex functions Mosco converging towards g,
plus some uniform Lipschitz conditions at the extreme points.
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Lemma 17. With the notation of Theorem 9, let us define θ0 := log t0/2, θ1 := log t1/2, p = d N , and for
θ ∈ [θ0, θ1], ε > 0 and Y ∈ (Rd)N ,

gε(θ, Y ) :=
fε(exp(2θ), exp(θ)Y )

exp(2θ)
and g(θ, Y ) :=

f (exp(θ)Y )

exp(2θ)
. (26)

Then (gε)ε>0 converges pointwise to g, and satisfies (H1), (H2), (H3), (H4) and (H5) from Assumptions 13.

In the next subsections, we will prove these three lemmas one by one. The most involved one is
undoubtedly Lemma 15, which can be seen as the main step in the proof of Theorem 9. Let us start by
proving Theorem 9 using Lemmas 14, 15 and 17.

Proof of Theorem 9. In this proof, the notation X = Xt will stand for a generic curve from [t0, t1]
to (Rd)N. Associated with X , we define by Y = Yθ the curve from [θ0, θ1] to (Rd)N, where θ0 := log t0/2,
θ1 := log t1/2, and, for all θ ∈ [θ0, θ1], Yθ := Xexp(2θ)/ exp(θ). Note that X is H 1 if and only if Y
is H 1. If (X ε)ε>0 is a family of curves from [t0, t1] to (Rd)N, we define in the same way the family of
corresponding curves (Yε)ε>0 from [θ0, θ1] to (Rd)N.

A quick computation shows that, for all X ∈ H 1([θ0, θ1]; (Rd)N ), considering η(θ) := exp(2θ) and
(gε)ε>0, g as defined in Lemma 17, we have

Lε(X ) =
1
2

∫ t1

t0

∣∣∣∣Ẋt −
Xt − ∇ fε(t,Xt)

2t

∣∣∣∣2 dt
t

=
1
4

∫ θ1

θ0

|Ẏθ + ∇gε(θ,Yθ )|
2η(θ) dθ (27)

=
1
4

∫ θ1

θ0

{|Ẏθ |
2
+ |∇gε(θ,Yθ )|

2
}η(θ) dθ +

1
2

∫ θ1

θ0

Ẏθ · ∇gε(θ,Yθ )η(θ) dθ (28)

and

L(X ) =
1
2

∫ t1

t0

∣∣∣∣Ẋt −
Xt − ∇ f (Xt)

2t

∣∣∣∣2 dt
t

=
1
4

∫ θ1

θ0

|Ẏθ + ∇g(θ,Yθ )|
2η(θ) dθ

=
1
4

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ +

1
2

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (29)

(Note that due to Lemma 17, g is convex with respect to the space variable, and so ∇g is well-defined.)

Proof of the 0-lim inf: Let X ε
ε→0−−→ X for the topology of uniform convergence. Of course, we also

have Yε
ε→0−−→ Y . Without loss of generality, we can suppose

lim inf
ε→0

Lε(X ε) < +∞.

Indeed, if it is not the case, there is nothing to prove. Let us take (εn)n∈N to be a sequence tending to 0
along which the lim inf is achieved.

As ∇gε(θ, Y ) is bounded uniformly in ε, θ, Y (this is (H3)), we easily deduce with (27)

lim sup
n→+∞

∫ θ1

θ0

|Ẏεn
θ |

2 dθ < +∞.

In particular, by the lower semicontinuity of this H 1 seminorm with respect to uniform convergence, Y is
in H 1([θ0, θ1]; (Rd)N ). Applying Lemma 14, thanks to Lemma 17, we have∫ θ1

θ0

Ẏεn
θ · ∇gεn (θ,Yεn

θ )η(θ) dθ n→+∞
−−−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (30)



2020 LUIGI AMBROSIO, AYMERIC BARADAT AND YANN BRENIER

On the other hand, for n sufficiently large, Lεn (X εn ) < +∞. So the endpoints of X εn belong to a finite
set, and because of the convergence X εn →X , for even larger n the endpoints of X εn are independent of n.
In other terms, X εn

t0 = Pσ0 and X εn
t1 = Qσ1 with σ0, σ1 independent of n. Hence, for such n, Yεn satisfies

the endpoint constraint for Kεn with R := Pσ0/
√

t0 and S := Qσ1/
√

t1. Hence, applying Lemma 15
thanks to Lemma 17, we have

1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ = K (Y) ≤ lim inf

n→+∞
Kεn (Y

εn )

= lim inf
n→+∞

1
2

∫ θ1

θ0

{|Ẏεn
θ |

2
+ |∇gεn (θ,Yεn

θ )|2}η(θ) dθ. (31)

The result follows easily by gathering (28), (30), (31) and (29).

Proof of the 0-lim sup: Let X ∈ C0([t0, t1]; (Rd)N ). Without loss of generality, we can suppose that
X ∈ H 1([t0, t1]; (Rd)N ) and that it satisfies the endpoint constraint for L . In particular, Y belongs to
H 1([θ0, θ1]; (Rd)N ) and satisfies the endpoint constraint for K with R := Xt0/

√
t0 and S := Xt0/

√
t1.

Lemmas 15 and 17 let us find a family (Yε)ε>0 converging to the corresponding Y such that

lim sup
ε→0

Kε(Yε) ≤ K (Y). (32)

In particular Yε is in H 1 for sufficiently small ε, and by Lemmas 14 and 17,∫ θ1

θ0

Ẏε
θ · ∇gε(θ,Yε

θ )η(θ) dθ
ε→0−−→

∫ θ1

θ0

Ẏθ · ∇g(θ,Yθ )η(θ) dθ. (33)

The result follows easily from (28), (32), (33) and (29), by noticing, that because of (32), Yε satisfies the
endpoint constraint for Kε. Hence, for such ε, X ε satisfies the endpoint constraint for Lε. □

3.2. Proof of Lemma 14. The proof of Lemma 14 just consists in integrating by parts and using the
convergence properties of (gε)ε>0.

Proof of Lemma 14. Integration by parts: First, notice that as soon as Y ∈ H 1([θ0, θ1]; Rp) and ε > 0,
then θ 7→ gε(θ,Yθ ) and θ 7→ g(θ,Yθ ) are also in H 1, with, for almost every θ ,

d
dθ

gε(θ,Yθ ) = ∂θ gε(θ,Yθ ) + ∇gε(θ,Yθ ) · Ẏθ and d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) + ∇g(θ,Yθ ) · Ẏθ .

It is clear in the case of gε because gε is smooth, and it is the assumption (H4) in the case of g. As a
consequence, by an integration by parts, it suffices to prove that whenever (Yε)ε>0 converges to Y as
ε → 0 for the topology of uniform convergence,

gε(θ1,Yε
θ1

)η(θ1) − gε(θ0,Yε
θ0

)η(θ0) −

∫ θ1

θ0

gε(θ,Yε
θ )η

′(θ) dθ −

∫ θ1

θ0

∂θ gε(θ,Yε
θ )η(θ) dθ

ε→0−−→ g(θ1,Yθ1)η(θ1) − g(θ0,Yθ0)η(θ0) −

∫ θ1

θ0

g(θ,Yθ )η
′(θ) dθ −

∫ θ1

θ0

∂θ g(θ,Yθ )η(θ) dθ.
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Convergence term by term: The convergence

gε(θ1,Yε
θ1

)η(θ1) − gε(θ0,Yε
θ0

)η(θ0) ε→0−−→ g(θ1,Yθ1)η(θ1) − g(θ0,Yθ0)η(θ0)

is an easy consequence of the pointwise convergence and of the uniform Lipschitz bound (H3).
For the same reason, we have, for all θ ∈ [θ0, θ1], gε(θ,Yε

θ ) ε→0−−→ g(θ,Yθ ). But on the other hand,
because of (H1) and (H3), gε is locally bounded, uniformly in ε. Hence,∫ θ1

θ0

gε(θ,Yε
θ )η

′(θ) dθ
ε→0−−→

∫ θ1

θ0

g(θ,Yθ )η
′(θ) dθ

is a consequence of the dominated convergence theorem.
Because of (H1) and (H5), for all θ , (∂θ gε(θ, · ))ε>0 is compact for the topology of local uniform

convergence. But its only possible limit point is the distributional derivative ∂θ g. As a consequence,
(∂θ gε)ε>0 converges pointwise to ∂θ g, and because of the uniform bound (H5), for all θ , ∂θ gε(θ,Yε

θ ) ε→0−−→

∂θ g(θ,Yθ ). Because of (H1) and (H5), ∂θ gε is locally bounded, uniformly in ε, and so∫ θ1

θ0

∂θ gε(θ,Yε
θ )η(θ) dθ

ε→0−−→

∫ θ1

θ0

∂θ g(θ,Yθ )η(θ) dθ

is also a consequence of the dominated convergence theorem. □

3.3. Proof of Lemma 15. Before entering the proof of Lemma 15, we need to state a few standard results
concerning the extended gradient ∇ as defined in Definition 8, and its links with the so-called resolvent
map. These tools could even be set in the infinite-dimensional setting, that is, in Hilbert spaces [Strömberg
1996], or in metric spaces [Ambrosio et al. 2005].

The following proposition is a lower semicontinuity property of the slope with respect to both conver-
gence of the function and of the evaluation point.

Proposition 18. Consider h : Rp
→ R a convex function with finite values. Let (hε)ε>0 be a family of

convex functions on Rp pointwise converging to h, and let (X ε)ε>0 be a family of points in Rp converging
to X. Then

|∇h(X)| ≤ lim inf
ε→0

|∇hε(X ε)|.

Proof. As all these functions are convex and h has finite values, standard arguments show that the
convergence of hε → h is also locally uniform. First of all, if

lim inf
ε→0

|∇hε(X ε)| = +∞,

there is nothing to prove. Else, up to considering a subsequence, there exists D ∈ Rp such that

lim
ε→0

∇hε(X ε) = D.

But sending ε → 0 in the inequality,

for all Y ∈ Rp, hε(Y ) ≥ hε(X ε) + ⟨∇hε(X ε), Y − X ε
⟩,

and using the local uniformity of the convergence, we see that D ∈ ∂h(X) (that is, the subdifferential is
upper semicontinuous). So |D| ≥ |∇h(X)|, and the result follows. □
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For τ > 0 and X ∈ Rp, define the resolvent operator by

Jτ,h(X) := argmin
Y∈Rp

h(Y ) +
|Y − X |

2

2τ
.

Once again, the following proposition is standard. It is an application in the very simple case of convex
functions in finite dimension of the so-called maximal monotone operators theory in Hilbert spaces,
for which we refer for instance to [Brézis 1973] (see in particular Section 2.4 for the properties of the
resolvent in a general setting).

Proposition 19. (1) We have for all X ∈ Rp and τ > 0,

|∇h(Jτ,h(X))| ≤

∣∣∣∣ X − Jτ,h(X)

τ

∣∣∣∣ ≤ |∇h(X)|. (34)

(2) If h is differentiable at Jτ,h(X) for some X ∈ Rp, then the following first-order condition holds:

X − Jτ,h(X)

τ
= ∇h(Jτ,h(X)).

(3) If (hε)ε>0 is a family of convex functions on Rp pointwise converging to h, then, for all τ > 0
and X ∈ Rp,

Jτ,hε
(X)

ε→0−−→ Jτ,h(X). (35)

Proof. By [Brézis 1973, Lemma 2.1], we have

X − Jτ,h(X)

τ
∈ ∂h(Jτ,h(X)). (36)

The first inequality in (34) and the second point of the statement follow.
To get the second inequality in (34), apply the monotone inequality of [Brézis 1973, Definition 2.1]

to the maximal monotone operator ∂h (see [Brézis 1973, Example 2.1.4]), with x1 = X , x2 = Jτ,h(X),
y1 = ∇h(X) ∈ ∂h(X) and (X − Jτ,h(X))/τ ∈ ∂h(Jτ,h(X)), thanks to (36). We find〈

∇h(X) −
X − Jτ,h(X)

τ
, X − Jτ,h(X)

〉
≥ 0,

which can be rewritten as ∣∣∣∣ X − Jτ,h(X)

τ

∣∣∣∣2

≤

〈
X − Jτ,h(X)

τ
, ∇h(X)

〉
.

Therefore, the result follows from the Cauchy–Schwarz inequality.
Let us now focus on the third point. Let us fix τ > 0 and X ∈ Rp, and set,

for all ε > 0, Y ∈ Rp, fε(Y ) := hε(Y ) +
|Y − X |

2

2τ
and f (Y ) := h(Y ) +

|Y − X |
2

2τ
.

The family ( fε)ε>0 converges pointwise to f , but by convexity and finiteness of the limit, as before, this
convergence is also locally uniform. As a consequence, the only thing to prove is that for sufficiently small



MONGE–AMPÈRE GRAVITATION AS A 0-LIMIT OF GOOD RATE FUNCTIONS 2023

ε0 > 0, the set {Jτ,hε
(X) : 0 < ε ≤ ε0} is bounded. Indeed, if it is the case, by local uniform convergence,

any limit point Z of Jτ,hε
(X) as ε tends to 0 would satisfy

f (Z) ≤ lim sup
ε→0

fε(Jτ,hε
(X)) ≤ lim

ε→0
fε(Jτ,h(X)) = f (Jτ,h(X)),

so that, by the definition of Jτ,h(X), Z = Jτ,h(X), which lets us conclude.
Call B the open ball of center Jτ,h(X) and radius 1. We have by the strict convexity of f and minimality

of Jτ,h(X)

f (Jτ,h(X)) < inf
Y∈∂ B

f (Y ),

and this property is open for the topology of local uniform convergence. Hence, we can find ε0 sufficiently
small so that for all ε ≤ ε0

fε(Jτ,h(X)) < inf
Y∈∂ B

fε(Y ).

Then, if Y /∈ B, we call Y the projection of Y on ∂ B and λ := 1/|Y − Jτ,h(X)| ≤ 1, so that Y =

(1 − λ)Jτ,h(X) + λY. As soon as ε ≤ ε0, fε(Y ) > fε(Jτ,h(X)). By using the convexity inequality

fε(Y ) ≤ (1 − λ) fε(Jτ,h(X)) + λ fε(Y ),

we find fε(Y ) > fε(Jτ,h(X)). As a consequence, {Jτ,hε
(X) : 0 < ε ≤ ε0} ⊂ B and the result follows. □

We are now ready for the proof of Lemma 15.

Proof of Lemma 15. Proof of the 0-lim inf: It is straightforward using Fatou’s lemma, Proposition 18 and
the lower semicontinuity of Y 7→

∫ θ1
θ0

|Ẏθ |
2 dθ with respect to the topology of uniform convergence.

Proof of the 0-lim sup: Let us consider a curve Y ∈ H 1([θ0, θ1]; Rp) with Yθ0 = R and Yθ1 = S (else
there is nothing to prove). For all ε > 0 and τ > 0, we define

Yτ,ε
: θ 7→ Jτ,gε(θ,· )(Yθ ),

and correspondingly
Yτ

: θ 7→ Jτ,g(θ,· )(Yθ ).

First, we prove

lim sup
τ→0

lim sup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ,ε
θ |

2
+ |∇gε(θ,Yτ,ε

θ )|2}η(θ) dθ ≤
1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ. (37)

We will then choose τ as a function of ε and show how to fix the endpoints.

Proof of (37): By the second point of Proposition 19, for all ε, τ, θ , we have

Yθ = Yτ,ε
θ + τ∇gε(θ,Yτ,ε

θ ).

For all θ , gε(θ, · ) is convex, so Y 7→ Y +∇gε(θ, Y ) is invertible and its inverse is 1-Lipschitz. In addition,
the smoothness of gε = gε(θ, Y ) with respect to θ lets us deduce from Y ∈ H 1 that Yτ,ε is in H 1, and
that, for almost all θ ,

Ẏθ = (I + τD2gε(θ,Yτ,ε
θ )) · Ẏτ,ε

θ + τ∂θ∇gε(θ,Yτ,ε
θ ).
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By the convexity of gε, we have I ≤ I + τD2gε in the sense of symmetric matrices, and hence

|Ẏτ,ε
θ | ≤ |Ẏθ − τ∂θ∇gε(θ,Yτ,ε

θ )| ≤ |Ẏθ | + τ M. (38)

Recall that M was defined in the uniform integrability assumption (25) on ∂θ∇gε. (In the case when
∂θ∇gε = 0, we recover the known fact that for h independent of time, Jτ,h is contractive.) Then, we
deduce

limsup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ,ε
θ |

2
+|∇gε(θ,Yτ,ε

θ )|2}η(θ)dθ
(34),(38)

≤ limsup
ε→0

1
2

∫ θ1

θ0

{
(|Ẏθ |+τ M)2

+

∣∣∣∣Yθ−Yτ,ε
θ

τ

∣∣∣∣2}
η(θ)dθ

(35)
≤

1
2

∫ θ1

θ0

{
(|Ẏθ |+τ M)2

+

∣∣∣∣Yθ−Yτ
θ

τ

∣∣∣∣2}
η(θ)dθ

(34)
≤

1
2

∫ θ1

θ0

{(|Ẏθ |+τ M)2
+|∇g(θ,Yθ )|

2
}η(θ)dθ.

Formula (37) follows.

Choice of τ = τ(ε): Because of (37), and because,

for all ε > 0, Yτ,ε
θ0 τ→0−−→ R and Yτ,ε

θ1 τ→0−−→ S,

it is possible to find a nonincreasing function τ = τ(ε) converging sufficiently slowly to 0 so that

lim sup
ε→0

1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+ |∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ ≤
1
2

∫ θ1

θ0

{|Ẏθ |
2
+ |∇g(θ,Yθ )|

2
}η(θ) dθ, (39)

Yτ(ε),ε
θ0 ε→0−−→ R and Yτ(ε),ε

θ1 τ→0−−→ S. (40)

Fixing the endpoints: For fixed ε and small δ > 0, we will define Zδ,ε as a slight modification of the
curve Yε,τ (ε) in such a way that Zδ,ε joins R to S. For this, we just set for θ ∈ [θ0, θ1]

Zδ,ε
θ =


R + ((θ − θ0)/δ)(Yτ(ε),ε

δ0+δ − R) if θ ∈ [θ0, θ0 + δ],

Yτ(ε),ε
θ if θ ∈ [θ0 + δ, θ1 − δ],

S + ((θ1 − θ)/δ)(Yτ(ε),ε
δ1−δ − S) if θ ∈ [θ1 − δ, θ1].

A quick computation shows

1
2

∫ θ1

θ0

{|Żδ,ε
θ |

2
+ |∇gε(θ,Zδ,ε

θ )|2}η(θ) dθ

≤
1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+|∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ +∥η∥∞

(
|Yτ(ε),ε

θ0+δ − R|
2

2δ
+

|Yτ(ε),ε
θ1−δ − S|

2

2δ
+ δL2

)
, (41)

where L is defined in the uniform Lipschitz assumption (23) for gε.
Let us estimate |Yτ(ε),ε

θ0+δ − R|
2/2δ. We have

|Yτ(ε),ε
θ0+δ − R|

2

2δ
≤

|Yτ(ε),ε
θ0

− R|
2

δ
+

|Yτ(ε),ε
θ0+δ −Yτ(ε),ε

θ0
|
2

δ
≤

|Yτ(ε),ε
θ0

− R|
2

δ
+

∫ θ0+δ

θ0

|Ẏτ(ε),ε
θ |

2 dθ.
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Because of (38), (25) and Y ∈ H 1, the integral
∫ θ0+δ

θ0
|Ẏτ(ε),ε

θ |
2 dθ tends to 0 as δ → 0, uniformly in ε: we

bound it by a function vi = vi (δ) tending to 0 as δ → 0. In the same way,

|Yτ(ε),ε
θ1−δ − S|

2

2δ
≤

|Yτ(ε),ε
θ1

− S|
2

δ
+ v f (δ),

where v f (δ) → 0 as δ → 0.
Plugging these bounds into (41), we get

1
2

∫ θ1

θ0

{|Żδ,ε
θ |

2
+ |∇gε(θ,Zδ,ε

θ )|2}η(θ) dθ

≤
1
2

∫ θ1

θ0

{|Ẏτ(ε),ε
θ |

2
+ |∇gε(θ,Yτ(ε),ε

θ )|2}η(θ) dθ + ∥η∥∞

(
u(ε)

δ
+ v(δ)

)
,

where u(ε) := |Yτ(ε),ε
θ0

− R|
2
+ |Yτ(ε),ε

θ1
− S|

2
→ 0 as ε → 0 by (40), and v(δ) := vi (δ)+v f (δ)+δL2

→ 0
as δ → 0. Hence, choosing δ(ε) :=

√
u(ε), we find with the help of (39) that Zδ(ε),ε is a recovery sequence

for the 0 − lim sup of Kε towards K. □

3.4. Proof of Lemma 17. The proof is straightforward, and relies on explicit computations.

Proof of Lemma 17. Let us define for X ∈ (Rd)N

h(X) := log
[

1
N !

∑
σ∈SN

exp(X · Aσ )

]
. (42)

For ε > 0, θ ∈ [θ0, θ1] and Y ∈ (Rd)N, we have by the definition of fε and gε (formulas (19) and (26)
respectively)

gε(θ, Y ) = εh
(

Y
ε exp(θ)

)
. (43)

Proof of (H1): It is obvious.

Proof of (H2): By (43), it suffices to check that h is convex. Differentiating (42) twice, we get for all
X ∈ (Rd)N

D2h(X) = ⟨Aσ
⊗ Aσ

⟩X − ⟨Aσ
⟩X ⊗ ⟨Aσ

⟩X = ⟨Aσ
− ⟨Aσ

⟩X ⟩X ⊗ ⟨Aσ
− ⟨Aσ

⟩X ⟩X , (44)

where if a is a function of σ , then ⟨a(σ )⟩X stands for

⟨a(σ )⟩X :=

∑
σ∈SN

a(σ ) exp(X · Aσ )∑
σ∈SN

exp(X · Aσ )
.

It follows that D2h(X) is a nonnegative symmetric matrix.

Proof of (H3): In view of (43) and as θ0 >−∞, it suffices to check that ∇h is bounded. Differentiating (42)
at X ∈ (Rd)N leads to

∇h(X) = ⟨Aσ
⟩X ,

which is clearly bounded by |A|.

Proof of (H4): By the definitions (20) of f and (26) of g, we have for all θ ∈ [θ0, θ1] and Y ∈ (Rd)N

g(θ, Y ) =
f (Y )

exp(θ)
.
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The integrability property of ∂θ g is clear; let us check (24). Let us consider Y ∈ H 1([θ0, θ1]; (Rd)N ). The
function g is locally Lipschitz both in θ and Y. As a consequence, the map G : θ 7→ g(θ,Yθ ) is also H 1.

Now, instead of proving (24), we will prove that for all curves D = Dθ such that, for almost all
θ ∈ [θ0, θ1], Dθ belongs to the subdifferential of g(θ, · ) at Y = Yθ , we have for almost all θ ∈ [θ0, θ1]

d
dθ

g(θ,Yθ ) = ∂θ g(θ,Yθ ) +Dθ · Ẏθ ,

so that (24) is an application of this property to Dθ := ∇g(θ,Yθ ). Notice that this property implies that
up to negligible sets, Dθ · Ẏθ does not depend on the choice of D. Let us give ourselves such a curve D.

Let us take a point θ ∈ (θ0, θ1) where both Y and G are differentiable (this happens for almost every θ ).
We have

G ′(θ) = lim
δ↓0

1
δ

{
f (Yθ+δ)

exp(θ + δ)
−

f (Yθ )

exp(θ)

}
= −

f (Yθ )

exp(θ)
+ lim

δ↓0

g(θ,Yθ+δ) − g(θ,Yθ )

δ

≥ −
f (Yθ )

exp(θ)
+ lim sup

δ↓0
Dθ ·

Yθ+δ −Yθ

δ
= ∂θ g(θ,Yθ ) +Dθ · Ẏθ ,

where we used g(θ,Yθ+δ) ≥ g(θ,Yθ ) +Dθ · (Yθ+δ −Yθ ) to get the second line.
In the same way, we have

G ′(θ) = lim
δ↓0

1
δ

{
f (Yθ )

exp(θ)
−

f (Yθ−δ)

exp(θ − δ)

}
≤ ∂θ g(θ,Yθ ) +Dθ · Ẏθ .

The result follows from gathering these two inequalities.

Proof of (H5): Using (43), we get for all ε > 0, θ ∈ [θ0, θ1] and Y ∈ (Rd)N,

∂θ∇gε(θ, Y ) = −
1

exp(θ)

(
∇h

(
Y

ε exp(θ)

)
+ D2h

(
Y

ε exp(θ)

)
·

Y
ε exp(θ)

)
.

As we already saw in (H3) that ∇h is bounded, it suffices to prove that X 7→ D2h(X) · X is bounded. Let
us expand everything in (44) and apply X to the right. We get

D2h(X) · X =

∑
σ,η∈SN

X · (Aσ
− Aη)Aσ exp(X · (Aσ

+ Aη))∑
σ,η∈SN

exp(X · (Aσ + Aη))
.

As a consequence, it suffices to show that, for each σ, η ∈ SN ,

T (σ, η, X) :=
X · (Aσ

− Aη) exp(X · (Aσ
+ Aη))∑

σ ′,η′∈SN
exp(X · (Aσ ′

+ Aη′

))

is bounded, uniformly in X . First, if η = σ , then T (σ, σ, X) = 0. Else, let us use the bound∑
σ ′,η′∈SN

exp(X · (Aσ ′

+ Aη′

)) ≤ exp(2X · Aσ ) + exp(2X · Aη),

obtained by only keeping the terms corresponding to σ ′
= η′

= σ and σ ′
= η′

= η in the sum. This leads to

|T (σ, η, X)| ≤
|X · (Aσ

− Aη)| exp(X · (Aσ
+ Aη))

exp(2X · Aσ ) + exp(2X · Aη)
=

|X · (Aσ
− Aη)|

exp(−|X · (Aσ − Aη)|) + exp(|X · (Aσ − Aη)|)
,

which is clearly bounded uniformly in X . The result follows. □
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4. The case of dimension 1: sticky collisions

In this section, we will study the global minimizers of the functional 3′ obtained in Section 2.6, in
dimension d = 1. If we call t the time variable and if we replace θ0 and θ1 by 0 and T respectively, due
to the invariance of the functional through translation in time, 3′ reads

3′(Z) =

{∫ T
0

{1
2 |Żt |

2
+

1
2 |Zt−∇ f (Zt)|

2
}

dt if Z ∈ H 1([0,T ];RN ),Z0 ∈ {Pσ
} and ZT ∈ {Qσ

},

+∞ else,
(45)

where
f (X) = max

σ∈SN
X · Aσ , X ∈ RN . (46)

Here, we chose a strictly ordered A = (a1, . . . , aN ), that is, such that a1 < · · · < aN , P, Q ∈ RN and
T > 0. Once again, when X = (x1, . . . , xN ) ∈ RN and σ ∈ SN , we let Xσ

:= (xσ(1), . . . , xσ(N )), and
{Pσ

} and {Qσ
} refer to {Pσ

: σ ∈SN } and {Qσ
: σ ∈SN } respectively. Of course P = (p1, . . . , pN ) and

Q = (q1, . . . , qN ) can be supposed to be ordered, that is, p1 ≤ · · · ≤ pN and q1 ≤ · · · ≤ qN . We recall
that we defined the extended gradient ∇ f in Definition 8. As already noticed in Section 2.5, the existence
of global minimizers for 3′ follows from the direct method of calculus of variations. Uniqueness does
not hold in general, even up to permutations.

The purpose of the section is two-fold. On the one hand, we will show that the model has nice regularity
properties: any global minimizer of 3′ is smooth except on a finite number of “sticking” or “separation”
times.1 On the other hand, we will justify as claimed in Section 2 that 3′ describes a model with sticky
collisions in the sense that a minimizer Z = (z1(t), . . . , zN (t)) of 3′ will typically exhibit some sticking
effects as zi (t) = z j (t) for i ̸= j on nontrivial intervals.

To describe the sticking effect, it is convenient to introduce the following definition:

Definition 20 (partition of [[1, N ]]). Let X ∈ RN. We say that X is divided according to π(X) when π(X)

is the partition of [[1, N ]] induced by the relation,

for all (i, j) ∈ [[1, N ]]
2, i ∼ j ⇐⇒ xi = x j .

We call C(X, i) the class of i ∈ [[1, N ]] in π(X), namely, C(X, i) = { j : x j = xi }.

The main result of the section is the following:

Theorem 21 (regularity of the optimal trajectories). For given A, P, Q ∈ RN and T > 0 as before, let Z
be a global minimizer of 3′ defined in (45). Then Z is continuous and there exist

0 = t0 < t1 < · · · < tp = T,

a family of times such that, for each i = 1, . . . , p, Z is smooth on [ti−1, ti ], and π(Z) is constant
on (ti−1, ti ).

It will be quite clear from the proof that sticking effects do occur. This exactly means that there exist
trajectories Z for which, with the notation of Section 2.7, 3′(Z) < 3+(Z). For such trajectories, Zt is

1Notice that 3′ is invariant under time inversion, so that if particles are allowed to stick, they are also allowed to separate.
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located on the set where f is not differentiable for a set of times of positive Lebesgue measure. But in
dimension 1, this set is exactly the set where at least two particles are located at the same place. That is,
the set of times when π(Z) ̸= {{1}, . . . , {N }} is typically of positive Lebesgue measure. As a consequence
of Theorem 21, it is even a finite union of intervals.

Still it might be convenient to illustrate the sticking effects included in the model by the following
easy proposition. It asserts that the set of times when all the particles are stuck is an interval: if all the
particles are stuck at two different times, the cheapest behavior between these two times is to remain
stuck. It also shows that this phenomenon occurs: if all the particles are sufficiently close at the initial
and final time, then they necessarily stick together during a nontrivial interval along the evolution.

Proposition 22 (intervals of full degeneration). (1) For given A, P, Q ∈ RN and T > 0 as before, let
Z = (z1(t), . . . , zN (t)) be a global minimizer of 3′. Suppose there exist two times 0 ≤ t1 < t2 ≤ T
such that

z1(t1) = · · · = zN (t1) and z1(t2) = · · · = zN (t2).

Then, for all t ∈ [t1, t2], we have z1(t) = · · · = zN (t).

(2) For given A ∈ RN and T > 0 as before, the set U of endpoints P, Q ∈ RN with the property that, for
all minimizers Z = (z1(t), . . . , zN (t)) of 3′, the set of times

{t ∈ [0, T ] : z1(t) = · · · = zN (t)}

is a nontrivial interval, is a neighborhood of {P, Q ∈ RN
: p1 = · · · = pN and q1 = · · · = qN }.

The proof of Proposition 22 uses almost nothing and is given in Section 4.2. Except for that, the whole
section is dedicated to the proof of Theorem 21. For this we take once for all A, P, Q ∈ RN and T > 0,
A being strictly ordered and P, Q being ordered.

Even if all the arguments are elementary, we will need a certain number of steps, including:

• The explicit computation of the potential |X − ∇ f (X)|2 (Section 4.1 and 4.4).

• The justification of a priori knowledge on the optimal trajectories: they can be supposed to be ordered
at all times (Section 4.3).

• The conservation of energy and momentum holds during shocks2 (Section 4.5).

Then, the main ingredient in the proof of Theorem 21 is an estimate given in Section 4.6: during
a nonpathological shock (pathological shocks are excluded a posteriori), at least one particle has a
lower-bounded jump in its velocity (Proposition 31). We finally provide the proof of Theorem 21 in
Section 4.7.

Throughout the section, we will work with several types of finite sets: the partitions of type π(X)

and the class of particles of type C(X, i). Some of the arguments or computations will deal with their
cardinality. Thus, if F is a finite set, we will denote by #F its cardinality.

2We say that Z presents a shock at time t if t is a discontinuity point of π(Z); see Definition 30.
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4.1. Properties of the extended gradient. In Lemma 24, we gather easy properties of ∇ f that will be
needed in the following. Before doing so, let us introduce some notation.

Definition 23. Let π be a partition of [[1, N ]]. We call Eπ the linear subspace of RN of all X such that π

is a refinement of π(X), that is,

Eπ :=

⋂
C∈π

⋂
i, j∈C

{X = (x1, . . . , xN ) ∈ RN
: xi = x j }.

Lemma 24 (properties of ∇ f ). (1) The extended gradient ∇ f has the following symmetry:

for all X ∈ RN, σ ∈ SN , ∇ f (Xσ ) = (∇ f (X))σ . (47)

(2) The function X 7→ |X − ∇ f (X)| is symmetric:

for all X ∈ RN, σ ∈ SN , |Xσ
− ∇ f (Xσ )|2 = |X − ∇ f (X)|2. (48)

(3) If X is ordered, then ∇ f (X) is the orthogonal projection of A on Eπ(X).

(4) If X is ordered and i ∈ {1, . . . , N },

(∇ f (X))i =
1

#C(X, i)

∑
j∈C(X,i)

aj . (49)

(Recall that C(X, i) is defined in Definition 20.)

Remark 25. The extended gradient ∇ f is completely characterized by points (1) and (3) (or (4)) of
Lemma 24.

Proof. (1) Let σ ∈SN . By the definition (46) of f , for all X ∈ RN, f (Xσ ) = f (X). Letting I σ
: X 7→ Xσ,

we easily deduce that at the level of subdifferentials: ∂ f (Xσ ) = I σ (∂ f (X)). We conclude by the fact that
I σ is orthogonal.

(2) It is a direct consequence of point (1).

(3) Let X = (x1, . . . xN ) ∈ RN be an ordered vector. Considering the definition (46) of f and noticing
that the maximum is achieved exactly for those σ such that Xσ

= X , it appears that ∇ f (X) belongs to
the convex hull:

Conv({Aσ
: σ ∈ SN such that Xσ

= X}).

For a given i ∈ {1, . . . , N }, we call V i
∈ RN the vector whose j -th coordinate is 1 if j ∈ C(X, i) and 0

otherwise. On the one hand, we have Eπ(X) = Span{V i
: i = 1, . . . , N }, and on the other hand, for all i ,

the scalar product V i
· Y is constant on the above-mentioned convex hull. So we deduce

A − ∇ f (X) ∈ (Eπ(X))
⊥.

Hence, we just have to prove that ∇ f (X) ∈ Eπ(X). If i, j ∈ {1, . . . , N } are such that xi = x j , let us apply
formula (47) to the permutation σ := (i, j):

(∇ f (X))i = ((∇ f (X))σ )j = (∇ f (Xσ ))j = (∇ f (X))j .

The result follows.
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(4) Let X be ordered and i ∈ {1, . . . , N }. As ∇ f (X) ∈ Eπ(X), with the notation of the proof of (3),

(∇ f (X))i =
1

#C(X, i)

∑
j∈C(X,i)

(∇ f (X))j =
1

#C(X, i)
∇ f (X) · V i

=
1

#C(X, i)
A · V i

=
1

#C(X, i)

∑
j∈C(X,i)

aj ,

where we used A − ∇ f (X) ⊥ V i to get the first identity in the second line. □

The three next subsections will be dedicated to consequences of this lemma:

• A proof of Proposition 22.

• When proving Theorem 21, it is enough to consider ordered trajectories (Proposition 26).

• For ordered trajectories, the potential in 3′ can be decomposed as sum of a smooth “external”
potential and an “internal” energy only depending on π(X) (Proposition 27).

4.2. Proof of Proposition 22. With the help of Lemma 24, we are ready to prove Proposition 22.

Proof of Proposition 22. (1) Without loss of generality, we can suppose t1 = 0 and t2 = T, that is,
P = (p1, . . . , pN ) and Q = (q1, . . . , qN ) are such that p1 = · · · = pN and q1 = · · · = qN .

Call 9 the orthogonal projection on the line E[[1,N ]] := {X = (x, . . . , xN ) ∈ RN
| x1 = · · · = xN }. It

suffices to prove that when Z is a continuous trajectory joining P to Q, then 3′(9(Z)) ≤ 3′(Z), and with
equality if and only if Z = 9(Z). As 9 is 1-Lipschitz, it reduces the kinetic part of 3′. For the potential
part, we remark that, for all X ∈ RN, Eπ(9(X)) = E[[1,N ]] ⊂ Eπ(X). As a consequence, by point (3) of
Lemma 24, we have as soon as X is ordered ∇ f (9(X)) = 9(∇ f (X)). Hence

|9(X) − ∇ f (9(X))|2 = |9(X − ∇ f (X))|2 ≤ |X − ∇ f (X)|2,

with equality if and only if X ∈ E[[1,N ]], i.e., if and only if 9(X) = X . This property is extended to
nonordered X using (48), and the result follows.

(2) The function 3′ = 3′(P, Q) , defined for all P, Q ∈ RN as the minimal value of 3′, is continuous.
Indeed, if P, P ′, Q, Q′

∈ RN are chosen so that |P ′
− P|+|Q′

− Q| ≪ 1 and if Z is a trajectory joining P
to Q, we can find a trajectory Z̃ joining P ′ to Q′ with3

3′(Z̃) ≤ 3′(Z) + o
(P ′,Q′)→(P,Q)

(1). (50)

To do so, it suffices to choose τ ∼ |P ′
− P| + |Q′

− Q|, and to define Z̃ as the trajectory joining P ′ to P
in straight line between times 0 and τ , joining P to Q between times τ and T − τ by following Z with
a proper affine change of time, and finally joining Q to Q′ in straight line between times T − τ and T.
This shows that 3′ is lower semicontinuous, but the continuity is obtained by noticing that the o in (50)
is locally uniform on P, Q ∈ RN. The argument is easily adapted to show that 3̃′ = 3̃′(P, Q), defined

3With a slight abuse of notation, we do not refer explicitly to the dependence of 3′ on P, Q.
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for P, Q ∈ RN by

3̃′(P, Q) := inf{3′(Z) : Z whose set of t such that Zt ∈ E[[1,N ]] is negligible},

is also continuous. Additionally, the set U defined in the statement clearly satisfies

V := {P, Q ∈ RN
: 3′(P, Q) < 3̃′(P, Q)} ⊂ U .

By the continuity of 3′ and 3̃′, V is an open set. Hence it remains to prove that

{P, Q ∈ RN
: p1 = · · · = pN and q1 = · · · = qN } = E[[1,N ]] × E[[1,N ]] ⊂ V.

To do so, we take P, Q ∈ E[[1,N ]] and Z a curve joining P to Q such that {t : Zt ∈ E[[1,N ]]} is negligible,
we still call 9 the orthogonal projection on E[[1,N ]], and we prove that

3′(Z) ≥ 3′(9(Z)) + a,

where a > 0 does not depend on Z . Let us call 8 := Id −9 the orthogonal projection on the orthogonal
of E[[1,N ]]. As in the proof of the first point, ∇ f ◦ 9 = 9 ◦ ∇ f . As a consequence

3′(Z) =

∫ T

0
{|9(Żt)|

2
+ |9(Zt) − 9(∇ f (Zt))|

2
} dt +

∫ T

0
{|8(Żt)|

2
+ |8(Zt) − 8(∇ f (Zt))|

2
} dt

= 3′(9(Z)) +

∫ T

0
{|Ż⊥

t |
2
+ |Z⊥

t − 8(∇ f (Zt))|
2
} dt,

where Z⊥
=Z⊥

t := 8(Zt) is a curve joining 0 to 0. But for almost all t , Zt /∈ E[[1,N ]], so as we saw in the
proof of the first point, ∇ f (Zt) /∈ E[[1,N ]]. As ∇ f only takes a finite number of values (see Lemma 24),
for almost all t , 8(∇ f (Zt)) belongs to some finite set, say G, which does not contain 0. Hence,∫ T

0
{|Ż⊥

t |
2
+ |Z⊥

t − 8(∇ f (Zt))|
2
} dt ≥

∫ T

0
{|Ż⊥

t |
2
+ dist(Z⊥

t ,G)2
} dt,

where dist(Z ,G) denotes the distance from Z to G. Because Z⊥ joins 0 to 0 and G does not contain 0, this
last integral is easily seen to be bounded below away from 0 independently of Z , and the result follows. □

4.3. Ordering of the particles. The purpose of this subsection is to show that when proving Theorem 21,
we can restrict ourselves to study trajectories that remain ordered (see Figure 1). This is due to the
following proposition.

Proposition 26. Let Z = Zt be a global minimizer of 3′. We call Z̃ = Z̃ t the trajectory obtained by
reordering the coordinates of Z in increasing order. Then Z̃ is also a global minimizer of 3′.

Moreover, Z has the regularity stated in Theorem 21 if and only if Z̃ does.
In particular, 3′ always admits an ordered minimizer, and it is enough to prove Theorem 21 for such

minimizers.

Thanks to this proposition, from now on, we only work with ordered minimizers of 3′. These minimizers
Z = Zt satisfy in particular Z0 = P and ZT = Q (as we chose them to be ordered in the first place).
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0

T

p1 p2 p3

q1 q2 q3

0

T

p1 p2 p3

q1 q2 q3

Figure 1. These two trajectories share their initial and final positions up to ordering and
their actions. But to the right, the order is preserved, while to the left, this is not the case.

Proof. Let Z and Z̃ be as in the statement of the proposition. Point (2) of Lemma 24 implies∫ T

0
|Z̃ t − ∇ f (Z̃ t)|

2 dt =

∫ T

0
|Zt − ∇ f (Zt)|

2 dt.

We call 9 : RN
→ RN the operator that reorders the coordinates of a vector in increasing order, so that

in particular, for all t , Z̃ t = 9(Zt). A simple application of the rearrangement inequality shows that 9 is
1-Lipschitz. In particular, it reduces the action of curves∫ T

0
|
˙̃Z t |

2 dt ≤

∫ T

0
|Żt |

2 dt.

By adding the two last formulas, and by noticing that the endpoint constraint is fulfilled, we get 3′(Z̃) ≤

3′(Z). As Z is a minimizer, this inequality is in fact an equality, and Z̃ is also a minimizer.
Note that both Z and Z̃ are continuous because they have finite action. Hence, the second claim of the

proposition is a consequence of the two following facts:

• For all t ∈ [0, T ], #π(Z̃ t) = #π(Zt).

• For any continuous trajectory t ∈ I 7→ Xt ∈ RN, where I is an interval, t 7→ π(Xt) is constant if and
only if t 7→ #π(Xt) is constant.

Indeed in that case, t 7→ π(Zt) and t 7→ π(Z̃ t) are constant on the same intervals, and the result follows.
The first point and the “only if” part of the second point are trivial.
For the “if” part of the second one, we reason by contraposition. Suppose s 7→π(Xs) has a discontinuity

at time t and we prove that s 7→ #π(Xs) also does. If s 7→ π(Xs) has a discontinuity at time t , we can
find two distinct accumulation points π1 and π2 of s 7→ π(Xs) at time t . As the set Eπ is closed for all π ,
we find that Xt belongs to Eπ1 ∩ Eπ2 . But this set is nothing but Eπ̄ , where π̄ is the finest partition of
which π1 and π2 are refinements, that is, the partition corresponding to the relation

i ∼ j ⇐⇒ there exists C ∈ π1 ∪ π2 such that {i, j} ⊂ C.

In particular, π(Xt) is a refinement of π̄ and as π1 ̸= π2,

#π(Xt) ≤ #π̄ < max(#π1, #π2).

So s 7→ #π(Xs) has a discontinuity at time t , and the result follows. □
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4.4. Decomposition of the potential. Here, we compute explicitly the values of the potential X 7→

|X − ∇ f (X)|2 on ordered vectors X ∈ RN. Notice that, for such vectors X , π(X) has an additional
structure: if C ∈ π(X), then C is an interval of integers. We say that such partitions are ordered. We
prove the following:

Proposition 27. For all ordered X ∈ RN,

|X − ∇ f (X)|2 = |X − A|
2
+ h(π(X)) − |A|

2, (51)

where h is defined on a partition π of [[1, N ]] by

h(π) :=

∑
C∈π

1
#C

∣∣∣∣∑
j∈C

aj

∣∣∣∣2

. (52)

In particular, h has the following monotonicity property: if π and π ′ are two ordered partitions and if π ′

is a strict refinement of π , then h(π) < h(π ′).

The more particles are stuck together, the lower h is. This is the reason for which 3′ favors the sticking
of particles. The function −h/2 can be understood as the internal energy of the system.

Dropping the constant term |A|
2/2 in (51) and defining 3′′ on a trajectory Z by

3′′(Z) =

{
1
2

∫ T
0 {|Żt |

2
+|Zt−A|

2
+h(π(Zt))}dt if Z ∈ H 1([0,T ];RN ),Z0 = P and ZT = Q,

+∞ else,
(53)

it is clear that 3′ and 3′′ have the same minimizers in the class of ordered trajectories. Hence, as a
consequence of Proposition 26, it suffices to prove the conclusion of Theorem 21 for the minimizers
of 3′′ in the class of ordered trajectories.

Proof of Proposition 27. Let X ∈ RN be an ordered vector. By point (3) of Lemma 24, we have
A−∇ f (X) ∈ (Eπ(X))

⊥ and both X and ∇ f (X) ∈ Eπ(X). So using the Pythagorean theorem twice, we get

|X − ∇ f (X)|2 = |X − A|
2
− |A − ∇ f (X)|2 = |X − A|

2
+ |∇ f (X)|2 − |A|

2.

The identities (51) and (52) are obtained by computing |∇ f (X)|2 using (49).
If we recap, h(π) is the squared norm of the orthogonal projection of A on Eπ . But if π ′ is a refinement

of π , Eπ ⊂ Eπ ′ , and hence h(π) ≤ h(π ′). The strict inequality is obtained by noticing with the help
of (49) and using the strict ordering of A that if in addition π and π ′ are ordered and π ′

̸= π , then the
projection of A on Eπ ′ does not belong to Eπ . □

4.5. Conserved quantities. In this subsection, we discuss two simple and yet structural properties of the
dynamic prescribed by the functionals 3′, 3′′: the Hamiltonian of the system is conserved (Proposition 28),
and its center of mass draws a smooth curve (Proposition 29). In particular, the momentum of the system
is conserved during shocks.

Proposition 28. Let Z be an ordered minimizer of 3′′. Then

E = E(t) :=
1
2{|Żt |

2
− |Zt − A|

2
− h(π(Zt))} (54)

is constant in the sense of distributions.
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Proof. The proof is completely standard and is done by comparing the value of 3′′ on Z and t 7→Zt+εϕ(t)

for small ε and functions ϕ that are smooth and compactly supported in (0, T ). □

Proposition 29. Let Z = (z1(t), . . . , zN (t)) be an ordered minimizer of 3′′. Call a := (a1 +· · ·+aN )/N
and for t ∈ [0, T ]

M(t) :=
1
N

N∑
i=1

zi (t) and P(t) :=
1
N

N∑
i=1

żi (t).

(M is well-defined for all t , and P for almost all t .) Then M,P solve distributionally

Ṁ(t) = P(t), Ṗ(t) = M(t) − a.

In particular, M is smooth and P coincide almost surely with a smooth function.

Proof. Here the proof consists in comparing the value of 3′′ on Z and t 7→ Zt + εϕ(t)V for small ε,
smooth and compactly supported ϕ, and where we call V = (1, . . . , 1). The only somehow unusual thing
to remark is that π and hence h ◦ π are invariant under translations in the direction of V. □

4.6. Shocks, isolated shocks and minimal deviation. This subsection contains the main estimate that
allows us to prove Theorem 21. Roughly speaking, if at time t some of the particles stick or separate,
there is a lower bound on the change of the velocity of at least one particle. The proof of Theorem 21
will then consist in showing that this cannot happen an infinite number of times.

Let us first define as “shocks” these sticking and separating behaviors:

Definition 30 (shocks). Let X = Xt = (x1(t), . . . , xN (t)) be a continuous trajectory on RN.

(1) We call a shock of X a triplet (t, q, C) with t ∈ [0, T ], q ∈ R and C ⊂ [[1, N ]] such that

• C ∈ π(Xt),
• for all i ∈ C , xi (t) = q ,
• for all τ > 0, there exists s ∈ (t − τ, t + τ) such that C /∈ π(Xs).

(2) If (t, q, C) is a shock of X , we say that it is isolated if (t, q) is isolated in

{(t ′, q ′) : there exists C ′
⊂ [[1, N ]] such that (t ′, q ′, C ′) is a shock},

i.e., if there is no other shock than (t, q, C) in the neighborhood of (t, q) ∈ [0, T ] × R.

We provide in Figure 2 a picture of a shock which does not seem to be isolated. The following result
is the main step in the proof of Theorem 21.

Proposition 31. Let Z = (z1(t), . . . , zN (t)) be an ordered minimizer of 3′ (or equivalently a minimizer
of 3′′ in the class of ordered trajectories), and let t ∈ [0, T ].

(1) If particle i is not involved in a shock at time t , then for s in the neighborhood of t , C := C(Zs, i) is
constant and zi is a smooth solution of

z̈i (s) = zi (s) −
1

#C

∑
j∈C

aj . (55)
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p1 = p2 = p3

q1 q2 q3

0

T

Figure 2. A shock with three particles which does not seem to be isolated. We will see
later on that this kind of shock cannot occur in our model.

In particular, if i is involved in an isolated shock at time t , then zi admits left and right derivatives at
time t , denoted by żi (t−) and żi (t+) respectively.

(2) There is α = α(N , A) > 0 such that for any isolated shock (t, q, C), calling i := min C ,

żi (t−) − żi (t+) ≥ α. (56)

(Note that the quantity żi (t−) − żi (t+) is not affected by time inversion. In particular, this lower
bound is coherent with the invariance of the Lagrangian through time inversion.)

Proof. (1) If particle i is not involved in a shock at time t , by the definition of a shock, it means that
C := C(Zt , i) ∈ π(Zs) for all s in a neighborhood of t . In particular, for all j ∈ C and s sufficiently close
to t , by (49),

(∇ f (Zs))j =
1

#C

∑
k∈C

ak .

On the other hand, it is easy to find a neighborhood U of (t, zi (t)) in [0, T ] × R such that, for all
j ∈ {1, . . . , N } and all s ∈ [0, T ], (s, z j (s)) ∈ U implies j ∈ C .

As a consequence, if ξ : [0, T ] → R is smooth and compactly supported in a sufficiently small
neighborhood of t , and if ε is sufficiently small, by defining Z̃ = (z̃1(s), . . . , z̃N (s)) for any j ∈{1, . . . , N }

and s ∈ [0, T ] by

z̃ j (s) :=

{
z j (s) + εξ(s) if j ∈ C,

z j (s) else,

then π(Z) and π(Z̃) (and hence ∇ f (Z) and ∇ f (Z̃)) coincide at all time. The ODE follows from
comparing the values of 3′ on Z and trajectories of type Z̃ .

In particular, by boundedness of Z , if particle i is not involved in a shock at time t , |z̈i | is bounded by
a constant that is not depending on t . The existence of żi (t−) and żi (t+) at the times of isolated shocks
follows easily.

(2) This is the heart of our study of the dynamical system, and maybe the less standard part of Section 4.
But still the idea is very easy: with the notation of the statement, if żi (t−) − żi (t+) is too small, then it
is cheaper to stick particle i with other particles, as shown in Figure 3. The proof goes as follows.
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t q

t+λσ

t+σ

t q

t+λσ

t+σ

Figure 3. To the left, a piece of the trajectory Z, and to the right, the competitor Zσ,λ

that we describe in the proof.

Step 1: Definition of a competitor. Let us consider (t, q, C) an isolated shock. Because it is isolated, we
can find τ > 0 such that the particles of C are not involved in another shock between times t − τ and
t + τ . By the definition of a shock, we cannot have C ∈ π(Zs) for all s ∈ (t − τ, t + τ), so either, for all
s ∈ (t − τ, t), C /∈ π(Zs) or, for all s ∈ (t, t + τ), C /∈ π(Zs). Without loss of generality, we suppose
that the second one holds: the particles of C are not all stuck right after the shock. Moreover, by our
choice of τ , for all C ′

⊂ C , the assertion C ′
∈ π(Zs) is either true or false independently of s ∈ (t, t + τ).

Then, for s ∈ (t, t + τ), the following definitions of C1, C2 ∈ π(Zs) do not depend on s:

C1 := C(Zs, i) for i = min C and C2 := C(Zs, i) for i = min C\C1.

(The classes C1 and C2 are the two leftmost packs of particles of C right after the shock.) Let us define
for j = 1, 2

kj := #C j , vj := żi (t+) for i ∈ C j , and p :=
k1v1 + k2v2

k1 + k2
. (57)

For 0 ≤ σ < τ and λ ∈ [0, 1), we define a competitor Zσ,λ
= (zσ,λ

1 (s), . . . , zσ,λ
N (s)) by setting for all

i = {1, . . . , N } and s ∈ [0, T ]

zσ,λ
i (s) =


zi (s) if i /∈ C1 ∪ C2 or s /∈ (t, t + σ),

q + (s − t)p if i ∈ C1 ∪ C2 and s ∈ (t, t + λσ),

t+σ −s
(1−λ)σ

(q + λσ p) +
s−(t+λσ)

(1−λ)σ
zi (t + σ) if i ∈ C1 ∪ C2 and s ∈ (t + λσ, t + σ).

(See Figure 3 for an illustration of this competitor.) We will get a lower bound on v2 − v1 by comparing
the value of 3′′ on Z and Zσ,λ, and by differentiating the corresponding inequality first with respect to σ

at σ = 0 (we zoom so that the particles of Z only travel along straight lines), and then with respect to λ

at λ = 0 (we compute the first variation of the action when we let the particles stick together).

Step 2: A lower bound on v2 −v1. The partitions π(Zσ,λ
s ) and π(Zs) coincide at all times except between

t and t + λσ , when π(Zs) is a strict refinement of π(Zσ,λ
s ). Hence, letting

δ = δ(N , A) := min{h(π) − h(π ′) : (π, π ′) ordered partition of [[1, N ]], π strict refinement of π ′
} > 0,
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we have, for all s ∈ (t, t + λσ),

h(π(Zλ,σ
s )) + δ ≤ h(π(Zs)). (58)

As Zσ coincide with Z for times outside (t, t + σ) and for coordinates that are not in C1 ∪ C2, by
definition (53) of 3′′, we have

3′′(Zσ,λ) − 3′′(Z) =

∑
i∈C1∪C2

∫ t+σ

t
{|żσ,λ

i (s)|2 + |zσ,λ
i (s) − ai |

2
− |żi (s)|2 − |zi (s) − ai |

2
} ds

+

∫ t+λσ

t
{h(π(Zσ,λ

s )) − h(π(Zs))} ds

≤

∑
i∈C1∪C2

∫ t+σ

t
{|żτ,σ

i (s)|2 − |żi (s)|2} ds − δλσ + o
σ→0

(σ ), (59)

where to obtain the second line, we used (58) and the fact that between times t and t +σ , both zi and zσ,λ
i

remain at a distance of order σ of q .
Let us consider i ∈ C j for j = 1, 2. On one hand, as zi admits vj as a right derivative at time t , we have∫ t+σ

t
|żi (s)|2 ds = v2

j σ + o
σ→0

(σ ). (60)

On the other hand, we can compute explicitly∫ t+σ

t
|żσ,λ

i (s)|2 ds = λp2σ + (1 − λ)σ

(
zi (t + σ) − (q + λpσ)

(1 − λ)σ

)2

= λp2σ +
1

(1 − λ)σ
(q + vjσ + o

σ→0
(σ ) − q − λpσ)2

= λp2σ + (vj − λp)2 σ

1 − λ
+ o

σ→0
(σ ). (61)

By plugging (60) and (61) into (59) and by using the definition (57) of k1, k2 and p, we get

3′′(Zσ,λ) − 3′′(Z) ≤

{
(k1 + k2)λp2

+
k1(v1 − λp)2

+ k2(v2 − λp)2

1 − λ
− k1v

2
1 − k2v

2
2 − δλ

}
σ + o

σ→0
(σ )

= {(k1 + k2)p2
+ k1v

2
1 + k2v

2
2 − 2p(k1v1 + k2v2) − δ(1 − λ)}

λ

1 − λ
σ + o

σ→0
(σ )

=

{
k1v

2
1 + k2v

2
2 −

(k1v1 + k2v2)
2

k1 + k2
− δ(1 − λ)

}
λ

1 − λ
σ + o

σ→0
(σ )

=

{
k1k2

k1 + k2
(v2 − v1)

2
− δ(1 − λ)

}
λ

1 − λ
σ + o

σ→0
(σ ).

By the minimality of 3′′(Z), this quantity must be nonnegative. If we divide it by λσ , and if we let σ

and then λ go to zero, we end up with

k1k2

k1 + k2
(v2 − v1)

2
≥ δ. (62)
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Step 3: Conservation of momentum during an isolated shock and conclusion. Because (t, q, C) is isolated,
it is easy to justify that we can replace V by the vector V C whose j-th coordinate is 1 if j ∈ C and 0
otherwise in the proof of Proposition 29. Doing so, we obtain the “local” conservation of momentum

1
#C

∑
i∈C

żi (t−) =
1

#C

∑
i∈C

żi (t+) =: PC(t).

By ordering of the particles, we have, for i = min C ,

żi (t−) ≥ PC(t) =
1

#C

∑
i∈C

żi (t+) ≥
k1

#C
v1 +

#C − k1

#C
v2.

(Indeed, j ∈ C 7→ ż j (t−) and j ∈ C 7→ ż j (t+) are clearly nonincreasing and nondecreasing respectively.)
By recalling that v1 = żi (t+) and using (62), we get

żi (t−) − żi (t+) ≥
#C − k1

#C
(v2 − v1) ≥

#C − k1

#C

√
k1 + k2

k1k2
δ.

The minimal right-hand side’s value is
√

δ/(#C2 − #C), obtained for k1 = #C − 1 and k2 = 1. Hence, we
get the result by choosing α =

√
δ/(N 2 − N ). □

4.7. Conclusion: proof of Theorem 21. We are now ready to give the proof of Theorem 21. We give
ourselves Z a global minimizer of 3′. Thanks to Proposition 26, we can suppose that Z is ordered, and
thanks to Proposition 27, we can consider 3′′ instead of 3′.

Because of Proposition 31, it suffices to prove that there is a finite number of shocks. Indeed, in that
case one can take for 0 = t0 < t1 < · · · < tp = T the moments of these shocks (and the endpoints of
[0, T ]). The smoothness of Z on each [ti−1, ti ], i = 1, . . . , p, follows directly from Proposition 31. Then
π(Z) is constant on each (ti−1, ti ), i = 1, . . . , p, because by Definition 30 of a shock, at each time of
discontinuity of π(Z), there is at least one shock.

The set
{(t ′, q ′) : there exists C ′

⊂ [[1, N ]] such that (t ′, q ′, C ′) is a shock}

is easily seen to be compact. So if it is not finite, it admits at least one accumulation point. That is, if
there is an infinite number of shocks, then there is at least one shock which is not isolated. Let us consider
such a shock (t, q, C) with minimal number of particles involved, i.e., with minimal #C . The rest of the
proof is dedicated to showing that the existence of (t, q, C) leads to a contradiction.

Step 1: The velocities are bounded. As Z is continuous on [0, T ], it is bounded. On the other hand, by
definition, h ≤ |A|

2. Now if i ∈ {1, . . . , N } and t ∈ [0, T ] is such that Z is differentiable at t (which is
true for almost any t), recalling the definition (54) of E ,

żi (t)2
≤ |Żt |

2
≤ 2E + |Zt − A|

2
+ h(π(Zt)),

which is bounded uniformly in t .

Step 2: All the shocks in the neighborhood of (t, q) that are distinct from (t, q) are isolated. Let U be
a neighborhood of (t, q) in [0, T ] × R such that, for all s ∈ [0, T ] and i ∈ {1, . . . , N }, (s, zi (s)) ∈ U
implies i ∈ C . This is possible since Z is continuous and, for all j /∈ C , z j (t) ̸= q by Definition 30 of a
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shock. Let us consider (t ′, q ′, C ′) a shock with (t ′, q ′) ∈ U. If #C ′ < #C , then (t ′, q ′, C ′) is isolated by
the minimality of #C . If #C ′

= #C , then C ′
= C by the definition of U. But then it is easy to adapt the

proof of point (1) of Proposition 22 to prove that C ∈ π(Zs) for all s between t and t ′, and so there is no
shock in U between t and t ′. Hence there exists at most one such shock in U : either one before t or one
after t , but not both because else (t, q, C) would contradict the third point of the definition of a shock.
Up to reducing U, we can then exclude (t ′, q ′, C ′).

Step 3: Conclusion using Proposition 31. As (t, q, C) is not isolated, there is an infinite number of
(isolated) shocks in U. Without loss of generality, we can assume that there is an infinite number of shocks
in U after time t . Call i ∈ C the smallest index such that particle i is involved in an infinite number of
shocks in U after time t . When i ̸= min C , up to reducing U and by the minimality of i , we can assume
that no particle j ∈ C with j < i is involved in a shock in U after time t .

As the shocks in U involving i after time t are isolated (Step 2), we can enumerate their times in
decreasing order (tp)p∈N. The boundedness of Z together with (55) allows us to take M as an upper
bound for z̈i between the times of shocks. For all p ∈ N and s ∈ (tp+1, tp), taking α as in (56), we have

żi (s) = żi (t0−) +

p∑
k=1

{
żi (tk−) − żi (tk+) −

∫ tk

tk−1

z̈i (τ ) dτ

}
−

∫ s

tp

z̈i (τ ) dτ

≥ żi (t0−) + pα − M(t0 − t),

which contradicts Step 1 as soon as p is sufficiently large. □
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