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MAXIMIZERS OF NONLOCAL INTERACTIONS OF WASSERSTEIN TYPE

Almut Burchard1, Davide Carazzato2,* and Ihsan Topaloglu3

Abstract. We characterize the maximizers of a functional that involves the minimization of the
Wasserstein distance between sets of equal volume. We prove that balls are the only maximizers by
combining a symmetrization-by-reflection technique with the uniqueness of optimal transport plans.
Further, in one dimension, we provide a sharp quantitative refinement of this maximality result.
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1. Introduction

In this paper we study a max–min problem involving the Wasserstein distance between two sets of equal
volume. Specifically, for any p > 1 we consider the following energy defined on subsets of RN :

Wp(E) := inf
{
Wp(L

N E,L N F ) : |F | = |E|, |E ∩ F | = 0
}
, (1.1)

where Wp(µ1, µ2) is the p-Wasserstein distance between two measures µ1, µ2 ∈ M+(RN ) with µ1(RN ) =
µ2(RN ) < +∞. Here L N denotes the Lebesgue measure in RN , and for any measurable set E ⊂ RN , we
use the notation |E| = L N (E).

The right hand side of (1.1) defines a free boundary problem associated with optimal partial transport. In
these problems, given two measures µ1, µ2 and a mass m ≤ min{µ1(RN ), µ2(RN )}, the objective is to select
portions µ̃1, µ̃2 of mass m that minimize Wp(µ1, µ2). Caffarelli and McCann [1] introduce this problem, prove
basic results on existence and uniqueness, and analyze the geometry of the solution when p = 2. They show that
for i = 1, 2, each of the optimal measure µ̃i agrees with µi on some set Fi (the active regions) and vanishes on
the complement. A fundamental concern addressed in [1] is the regularity of the free boundaries ∂Fi. Subsequent
refinements of these regularity results can be found in [2, 3].

In the case of (1.1), the source for the partial transport problem is µ1 = µ̃1 = LN E, the mass ism = LN (E),
the target measure is µ2 = LN (RN \ E), and the active region for the target is F . This belongs to a class
of problems where the Wasserstein distance is minimized among mutually singular measures that has been
investigated by Buttazzo, Carlier, and Laborde in [4] for any p ≥ 1. In particular, given a measure µ they
prove that the infimum is achieved among measures that are singular with respect to µ. Under the additional
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2 A. BURCHARD ET AL.

constraint that the measure has density bounded by 1, they show that the optimal solution is given by the
characteristic function of a set.

In [4] the authors also analyze the perimeter regularization of (1.1). Namely, they consider the problem

inf
{
P (E) + λWp(LN E,LN F ) : E,F ⊂ RN , |E ∩ F | = 0, |E| = |F | = 1

}
, (1.2)

and show that minimizers exist for arbitrary λ > 0, if the admissible sets E and F are required to be subsets of
a bounded domain Ω. This problem (with p = 1) is proposed by Peletier and Röger as a simplified model for
lipid bilayer membranes where the sets E and F represent the densities of the hydrophobic tails and hydrophilic
heads of the two part lipid molecules, respectively [5, 6]. The perimeter term represents the interfacial energy
arising from hydrophobic effects, while the Wasserstein term models the weak bonding between the heads and
tails of the molecules.

When posed over the unbounded space, Buttazzo, Carlier and Laborde prove the existence of minimizers
for the problem (1.2) in two dimensions. Xia and Zhou [7] extend this result to higher dimensions but under
the additional assumptions that λ is sufficiently small and that p < n/(n− 2). Recently, Novack, Venkatraman
and the third author [8] prove that minimizers to (1.2) exist in any dimension and for all values of λ > 0
and p ∈ (1,∞). Simultaneously, Candau-Tilh and Goldman [9] also obtain the existence of minimizers via an
alternative argument and characterize global minimizers in the small λ regime. The analysis in [9] and [8] show
that there is a direct competition between the perimeter and the Wasserstein terms in (1.2). This, also as pointed
out by Rupert Frank to the third author, leads to the question whether the functional (1.1) is maximized when
the set E is a ball. Here, we resolve this question for p > 1.

It often happens that we need to relax a functional to exploit some compactness. We denote by Am the class
of admissible densities with mass m that we use to relax the problem, i.e.,

Am :=

{
ρ ∈ L1(RN ) : 0 ≤ ρ ≤ 1,

∫
ρ dx = m

}
.

We will use the shorthand notation A := A1 when we deal with probability densities. We define the relaxation
of (1.1) to densities ρ with 0 ≤ ρ ≤ 1 as follows:

Wp(ρ) := inf

{
Wp(ρ, ρ

′) : 0 ≤ ρ′, 0 ≤ ρ+ ρ′ ≤ 1,

∫
ρ′ dx =

∫
ρ dx

}
. (1.3)

Our main result is the following theorem.

Main Theorem. The unique maximizer of (1.3) in the class Am, up to translations, is the characteristic
function of a ball B with |B| = m.

By [10], Proposition 5.2 in the case p = 2, and by the same result combined with [4], Theorem 3.10 and [9],
Proposition 2.1 in the case p ̸= 2, the expression (1.3) extends the definition on sets given in (1.1). By these
results, we also have that for any ρ ∈ Am there is a unique density ηρ realizing (1.3) when p > 1. Note that, for
p > 1 [11], Theorem 2.44 guarantees that there is only one optimal transport plan πρ between ρ and ηρ, and it
is induced by a map.

The class of transport plans, which we will call admissible plans, that play a role in the definition of Wp(ρ)
is given by

APρ :=
{
π ∈ M+(RN × RN ) : (p1)#π = ρL N , (p2)#π ≤ (1− ρ)L N

}
,

where M(RN ) denotes the set of signed Borel measures in RN , and M+(RN ) ⊂ M(RN ) denotes the set of non-
negative measures. Here p1 and p2 are the two usual projections from RN × RN in RN . Notice that, thanks
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to the properties of the push-forward, it is automatically true that the density of (p2)#π with respect to L N

belongs to Am whenever ρ ∈ Am and π ∈ APρ.

Remark 1.1. We point out that the energy Wp(ρ) can be defined on any metric space with a reference measure
(in our case, the Euclidean space RN endowed with L N ). If (X, d) is a Polish metric space, and γ ∈ M+(X) is
a Borel measure, then for any density ρ : X → [0, 1] we can define its Wasserstein energy as

Wp(ρ) := inf

{
Wp(ργ, ρ

′γ) : 0 ≤ ρ′, ρ+ ρ′ ≤ 1,

∫
ρ′ dγ =

∫
ρdγ

}
,

and the p-Wasserstein distance can be defined in any metric space. We continue to denote by APρ the set of
admissible plans, i.e.

APρ = {π ∈ M+(X ×X) : (p1)#π = ργ, (p2)#π ≤ (1− ρ)γ} .

We cannot expect to have many invariance properties in an abstract setting, but some analytic-flavoured features
could be retrieved in wide generality. We will not use this abstract formulation in this paper, with the exception
of Proposition 3.3 where we consider the space X = R+ with a weight. This appears because in Section 3 we
reduce to radial densities, and it is convenient to look at them as 1-dimensional densities (a weight pops up
because of the coarea formula).

Plan of the paper

In Section 2 we introduce some preliminary results that are useful for the problem. After recalling briefly
some well-known theorems about the existence and uniqueness of the optimal transport map, we introduce some
very simple properties of the functional Wp that were essentially already present in the literature for slightly
different problems. In particular, Lemma 2.6 is devoted to the saturation of the constraint in a certain region,
and Corollary 2.7 provides a uniform control on the transport distance. These two results are quite robust,
as they do not require any geometric property of the Euclidean space, but just its metric-measure structure.
Lemma 2.9 and Lemma 2.10 are an original contribution. The first one, which shows the continuity of the
functional Wp with respect to the weak∗ convergence (when there is no loss of mass), is fundamental for the
existence of maximizers for Wp. The second one, on the other hand, shows that some symmetries of a density
ρ can be inherited by the optimal plan πρ that realizes Wp(ρ). In Section 3 we deal with the maximizers of
Wp, whose existence is proved in Proposition 3.2 applying the concentration compactness principle. This is a
building block also for our successive characterization of the maximizers, since we combine a symmetrization
technique and the uniqueness of the optimal transport plan to show that the maximizers have some symmetry.
We proceed as follows:

1. prove that the segments maximize a 1-dimensional weighted version of Wp, in Proposition 3.3;
2. prove that, if ρ is a given maximizer, then the optimal transport plan realizing Wp(ρ) is radial. This is

contained in Corollary 3.5, as a consequence of Lemma 3.4;
3. combine the first two points to show that the maximizers have to be star-shaped sets, and then con-

clude that the ball is the only possible maximizer thanks to the saturation of the constraint exposed in
Lemma 2.6. This is contained in Theorem 3.6, and it is our main contribution.

Finally, in Section 4 we prove a quantitative version of this maximality result in one dimension, where we
show that the deficit of maximality is controlled from below by the square of an asymmetry given as the L1

distance between the ball and any density. Our inequality is asymptotically sharp, in the sense that the exponent
of the asymmetry cannot be lowered.

A few days before submitting this paper, we became aware of the independent work by Candau–Tilh, Goldman
and Merlet [12] (posted on arXiv on September 6, 2023) studying the same maximization problem. Their result is
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more general, as it considers a broader class of cost functions in the transport problem. In particular, they prove
that the characteristic function of the ball maximizes (1.3) when the transport cost is of the form c(x) = h(|x|)
with a continuous and increasing function h such that h(0) = 0 and h → ∞ as |x| → ∞. Our strategy, pursued
in Section 3 is more geometric, and circumvents the need to introduce Kantorovich potentials in the transport
problem. While we believe that also our strategy can be extended to cover more general cost functions, our
proofs rely on the metric structure induced by the p-Wasserstein distance as well as on the homogeneity of the
cost function which allows us to use scaling properties of the energy.

Notation

Throughout the paper, with an abuse of notation, we will denote the Wasserstein distance between two disjoint
set, Wp(L N E,L N F ), by Wp(E,F ). By Br(x) we will denote the open ball of center x and radius r, and we
will write Br for Br(0). The cube of side length 2l centered at the origin will be denoted by Ql = [−l, l]N ⊂ RN ;

hence, Ql(x) = x+Ql. We will use the notation Ek
∗
⇀ f to denote the convergence of a sequence of sets {Ek}k∈N

in the sense that the sequence of measures {L N Ek}k∈N weak∗ converges to the measure fL N .
For ρ ∈ A by ηρ we will denote any density in A such that Wp(ρ) = Wp(ρ, ηρ). Note that for p > 1 we

have that ηρ is unique (cfr. [4], Rem. 3.11). Similarly, for ρ ∈ A, πρ will denote the optimal plan Wp
p (ρ) =∫

|x − y|p dπρ(x, y), and Tρ is the optimal transport map that induces πρ. If we have a density f , we will
sometimes use the short-hand notation T#f to denote the push forward of the measure T#(fL N ).

2. Preliminary results

2.1. The optimal transport problem

We introduce in this section the optimal transport problem The general theory is well developed, and goes
far beyond the needs of this paper. We state the relevant results just in the setting that we need. The interested
reader may find much more general statements, and much deeper developments, in the references that we cite,
as well as in other books on the subject. A crucial restriction that we impose is to work with cost c(x) = |x|p
with p > 1 and (mostly) in the Euclidean space RN . This plays a role when we characterize the maximizers of
Wp since we use some uniqueness result valid for these special cost functions. Other parts of our strategy work
also for p = 1 with a slightly different discussion. The next definitions describe rigorously our framework.

A general setting for the optimal transport problem is that of Polish metric spaces, which are defined as
follows.

Definition 2.1 (Polish metric space). A metric space (X, d) is Polish if it is complete and separable.

Definition 2.2 (Push forward). Let (X, dX) and (Y, dY ) be two Polish metric spaces. Given f : X → Y a Borel
function, and given a measure µ ∈ M(X), the push forward of µ induced by f is a new measure denoted by
f#µ. It is defined as follows: for every A ⊂ Y Borel, we have that

(f#µ)(A) = µ(f−1(A)).

Given a Polish metric space (X, d), a real exponent p > 1, and two measures µ1, µ2 ∈ M+(X) with µ1(X) =
µ2(X) < +∞, we can consider the optimal transport problem with cost c(x) = |x|p:

W p
p (µ1, µ2) = inf

{∫∫
X×X

|x− y|p dπ(x, y) : π ∈ M+(X ×X) : (p1)#π = µ1, (p2)#π = µ2

}
.

It is well known that for every couple of marginals µ1 and µ2 the infimum is attained (see [11], Thm. 1.3 for a
more general result). In some special cases, there are some structure theorems for the optimal transport plans,
i.e. those measures π that realize the aforementioned infimum. The following is such a result that holds for
strictly convex costs.



MAXIMIZERS OF NONLOCAL INTERACTIONS OF WASSERSTEIN TYPE 5

Theorem 2.3 ([11], Theorem 2.44). Let p > 1 be given, and µ1, µ2 ∈ M+(RN ) be two measures with µ1(RN ) =
µ2(RN ) < +∞. Suppose that µ1 ≪ L N and that Wp(µ1, µ2) < +∞. Then, there is a unique optimal transport
plan π, and it is of the form

π = (Id, T )#µ1,

where T denotes the unique optimal transport map.

In Section 3 it is crucial to characterize the maximizers in one dimension to later pass to higher dimension.
Our task is simplified in one dimension because the transport problem has a very easy solution.

Theorem 2.4 ([11], Remarks 2.19). Let p > 1 be given, and let µ1, µ2 ∈ M+(R) be two measures with µ1(R) =
µ2(R) < +∞. If they are non-atomic, then the only optimal transport map realizing Wp(µ1, µ2) is monotone.

2.2. Properties of Wp

The most basic fact is the following existence theorem.

Theorem 2.5 ([10], Section 5). Let p > 1 be given. For any m > 0 and for any ρ ∈ Am, there exists a unique
density, called ηρ ∈ Am, realizing the infimum in (1.3).

Combining this result with Theorem 2.3 we obtain the existence and uniqueness of the optimal transport
plan πρ and the map inducing it, called Tρ, which satisfy

Wp
p (ρ) = W p

p (ρ, ηρ) =

∫
|x− y|p dπρ(x, y) =

∫
|x− Tρ(x)|pρ(x) dx.

We point out that the objects ηρ, πρ and Tρ all depend implicitly on p. We do not stress that dependence
because we suppose p > 1 to be fixed in the whole paper.

The following lemma establishes a key a geometric property of the optimal plan πρ. In the case of the
quadratic cost (p = 2) on RN , this property is known, see for example [1], Corollary 2.4 and [10], Lemma 5.1.
The proof of the following lemma is purely metric and uses only the optimality of ηρ.

Lemma 2.6 (Interior ball condition). Let (X, d) be a Polish metric space, and let γ ∈ M+(X) be a given
measure. Let ρ : X → [0, 1] be a Borel density. If π is an optimal plan to compute Wp(ρ) and (x, y) ∈ sptπ, then

(p2)#π = (1− ρ)γ γ − a.e. in B|y−x|(x). (2.1)

Moreover, (p2)#π ≥ min{1− ρ, ρ}γ.

Proof. We first show that (p2)#π saturates the constraint in the ball, and the second statement will follow
easily. The idea is very simple: if π does not saturate the constraint in that ball, then we can lower the energy of
ρ adding some mass close to x. We define r = |y − x|. Let us suppose by contradiction that there exist ε, δ > 0
and a set E ⊂ Br−4δ(x) with γ(E) strictly positive and finite and such that

(1− ρ)γ − (p2)#π ≥ εγ in E.

We take µ1 = (p1)#(π Bδ(x) × Bδ(y)) and µ2 = εγ E, and we modify π in the following way: we take
0 < t < min{1, µ1(X)/µ2(X)}, and we take

π̃ = π − t
µ2(X)

µ1(X)
π (Bδ(x)×Bδ(y)) +

t

µ1(X)
µ1 × µ2.
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One can check that π̃ ∈ APρ thanks to our choice of t. Since π is an optimal plan to compute Wp(ρ), we have
that

0 ≤
∫

|x′ − y′|p (dπ̃ − dπ)

≤ −t
µ2(X)

µ1(X)

∫
Bδ(x)×Bδ(y)

|x′ − y′|p dπ +
t

µ1(X)

∫
|x′ − y′|p dµ1 dµ2

≤ −t
µ2(X)

µ1(X)
(r − 2δ)pµ1(X) +

t

µ1(X)
(r − 4δ + δ)pµ1(X)µ2(X)

= tµ2(X) [(r − 3δ)p − (r − 2δ)p] < 0,

and thus we reach a contradiction.
We now address the second inequality. Suppose by contradiction that the opposite inequality holds in a set

E ⊂ X with
∫
E
ρdγ > 0. Then, thanks to what we have proved so far, we know that the set

{x ∈ E : sptπ ∩ ({x} ×X) = (x, x)} (2.2)

has full γ-measure in E. In fact, if this was not the case, then we could find E′ ⊂ E with γ(E′) > 0 and such
that, for every x ∈ E′, there exists y ∈ X \ {x} such that (x, y) ∈ sptπ. Then, using (2.1) we find an open
covering of E′ where the contradiction hypothesis is not satisfied, contrary to the definition of E. Condition
(2.2) means that we are not moving mass in E, and thus

(p2)#(π (E ×X)) = (p1)#(π (E ×X)) = ρχ
E
γ.

But then (p2)#π ≥ (p2)#(π (E ×X)) = ρχ
E
γ, which is incompatible with our contradiction hypothesis.

Corollary 2.7. Consider the functional Wp on the Euclidean space RN with the usual metric and the Lebesgue
measure L N . There exists a constant CN < +∞ such that, for any ρ ∈ Am and for any (x, y) ∈ sptπρ, we have
that

|x− y| ≤ CNm
1
N . (2.3)

Here, πρ is any optimal transport plan πρ associated to ρ and ηρ. In particular Wp
p (ρ) ≤ CNm1+ p

N .

Proof. This is a consequence of Lemma 2.6. If r > 0 we have that∫
Br(z)

ρ+ ρ′ dx ≤ 2m

for all ρ′ ∈ Am and all z ∈ RN . Thus, if we fix r such that |Br| = 2m, then the conclusion (2.1) of Lemma 2.6
fails for any pair of points (x, y) with |x− y| > r. Hence such a pair cannot lie in sptπρ. It follows that every
pair (x, y) ∈ sptπρ satisfies

|x− y| ≤ r =

(
2

ωN

) 1
N

m
1
N .

The estimate on Wp(ρ) follows by integrating this inequality with respect to the measure πρ.

Remark 2.8. We report here the scaling behavior of the energy Wp, which is established in [8], Lemma 2.5
for sets. Let ρ be a density satisfying the constraint 0 ≤ ρ ≤ 1 and let t > 0 be a given constant. If we rescale
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ρ̃(x) = ρ(x/t), then Wp
p (ρ̃) = tp+NWp

p (ρ). In fact, it is sufficient to consider the density ηρ(·/t), rescaling
appropriately the transport map.

Lemma 2.9 (Continuity of Wp). Let ρ ∈ Am be a given density and let {ρn}n∈N ⊂ Am be a sequence such that

ρn
∗
⇀ ρ. Then, the limit of Wp(ρn) exists and Wp(ρ) = limn Wp(ρn).

Proof. We prove this proposition in two steps. In the first step we establish that for any p ≥ 1 (1.3) is the lower
semicontinuous envelope of the functional in (1.1) in the class Am with respect to the weak-∗ topology. As a
consequence, Wp is lower semicontinuous in Am. In the second step we obtain the upper semicontinuity of Wp

in Am.

Step 1. Thanks to Remark 2.8 it suffices to consider the case m = 1. Let {En}n∈N be a sequence of sets with

|En| = 1 such that En
∗
⇀ ρ for some ρ ∈ A, and let us call ρn = χ

En
. Since we preserve the total mass, we know

that for any ε > 0 there exist R > 0 and k ∈ N such that
∫
BR

ρn dx > 1− ε for every n > k. Using Corollary 2.7

we know that the transport distance is uniformly bounded by a constant C, and thus
∫
BR+C

ηρn dx ≥ 1− ε for

any n > k. Therefore, up to a subsequence, we have that also ηρn

∗
⇀ ρ′ for some density ρ′ with

∫
ρ′ dx = 1. It

is then easy to see that ρ+ ρ′ ≤ 1 almost everywhere, and thus

Wp(ρ) ≤ Wp(ρ, ρ
′) ≤ lim inf

n
Wp(ρn, ηρn

) = Wp(ρn),

where we used the well-known lower semicontinuity of the Wasserstein distance (it is sufficient to take the
weak limit of the optimal transport plans). This proves that the functional in (1.3) is smaller than the lower
semicontinuous envelope of Wp with respect to the weak∗ topology. Next, we will find a sequence that realizes
the equality, proving that our definition of Wp(ρ) in A is the lower semicontinuous envelope of the functional
defined in (1.1).

Given ρ ∈ A, for any n ∈ N we consider a partition of RN with a family of cubes Fn = {Qk
n}k∈N with

diameter 1/n. Thanks to the compatibility condition ρ+ ηρ ≤ 1, for any n we can find two sets En and Fn with
|En ∩ Fn| = 0 and such that

|En ∩Qk
n| =

∫
Qk

n

ρdx, |Fn ∩Qk
n| =

∫
Qk

n

ηρ dx, ∀Qk
n ∈ Fn.

It is immediate to see that En
∗
⇀ ρ and Fn

∗
⇀ ηρ as n → +∞. Recalling m = 1, we also note that Wp(En, ρ) ≤

diam(Qk
n) and Wp(ηρ, Fn) ≤ diam(Qk

n). To see this, it is sufficient to consider the (non-optimal) transport plan
given by

πn =
∑
k∈N

1

|En ∩Qk
n|
(χ

En∩Qk
n
L N )× (ρχ

Qk
n
L N ) ∈ P(RN × RN ), (2.4)

and notice that |x− y| ≤ diam(Qk
n) = 1/n for any (x, y) ∈ sptπn. The proof of the inequality for Fn and ηρ is

analogous, and thus we obtain that

Wp(En, Fn) ≤ Wp(En, ρ) +Wp(ρ, ηρ) +Wp(ηρ, Fn) ≤
2

n
+Wp(ρ, ηρ).

This, combined with the first part, shows that

Wp(ρ) = inf
En

∗
⇀ρ,|En|=m

lim inf
n

Wp(En) ∀ρ ∈ A.
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Step 2. We recall that, thanks to Theorem 2.3, there exists an optimal transport map for every transport
problem that we consider in this paper. Up to taking a subsequence, we may suppose that limn Wp(ρn) exists,
and argue that Wp(ρ) = limn Wp(ρn). Since we can extract such a subsequence from any given subsequence of
{ρn}n, this will guarantee the existence of that limit for the entire sequence.

We proceed by contradiction, and we suppose that there exists δ > 0 such that Wp(ρ) < limn Wp(ρn) − δ.
The idea is to modify ηρ and produce a competitor to compute Wp(ρn), proving that we cannot have a strict
inequality. To proceed with this plan we first truncate the densities to guarantee a convergence in Wasserstein
distance. Up to taking another subsequence, we can suppose that ηρn

∗
⇀ ρ′ for some ρ′ ∈ A with ρ + ρ′ ≤ 1

(using the same argument as in Step 1). Since the sequences {ρn}n and {ηρn}n do not lose mass, for any ε < 1/2
there exists n̄, k1 ∈ N such that ∫

RN\Q3k1

(ρn + ηρn
) dx < ε ∀n > n̄. (2.5)

We will choose ε later on in order to make some approximations precise enough to obtain a contradiction out
of the strict inequality.

Now take k2 = ⌈3/ε⌉, so that k2ε ∈ [3, 3 + ε], and we consider the cube Q̄ = [−k1k2ε, k1k2ε]
N . It is easy to

see that we can partition RN with a family F = {Qk}k∈N of cubes with side length equal to ε and such that
|Qk ∩ Q̄| ∈ {0, εN} (i.e. F contains two disjoint subfamilies that partition Q̄ and RN \ Q̄). Moreover, it is also
possible to find a partition of RN \ Q̄ with a family F̃ = {Q̃k}k∈N of cubes with side length k2ε. We will use the
first partition to control the cost of an approximation of ηρ inside Q̄, where we move mass at short distance.
The second one, on the other hand, will be used to estimate the energy carried by the mass outside of that
cube (thanks to (2.5), that mass is small). We call T the optimal transport map between ρ and ηρ, and for any
n we define the truncated densities ρ̃n = ρnχQ̄

. For any n we also take Ln > 0 such that
∫
QLn

ρ dx =
∫
ρ̃n dx,

and we define the densities ζn := ρχ
QLn

and ζ ′n := (Tρ)#ζn. Since ρn
∗
⇀ ρ, then ρ̃n

∗
⇀ ρχ

Q̄
and we can choose

the sequence {Ln}n to be bounded. Moreover, we have that ζn
∗
⇀ ρχ

Q̄
. Since the supports of the truncated

densities are equibounded, then the pth-moment of ζn converges, as well as the pth-moment of ρ̃n, and thus
Wp(ρ̃n, ζn) → 0 (see e.g. [11], Thm. 7.12).

We take h1
n any non-negative density such that ρn + h1

n ≤ 1 and for any k ∈ N∫
Qk

h1
n dx = min

{∫
Qk

ζ ′n dx,

∫
Qk

1− ρn dx

}
.

Since ζ ′n = (Tρ)#ζn, we can apply Corollary 2.7 and see that spth1
n is contained in QLn+C for any n, where C is

a constant depending only on N . Since ρ̃n
∗
⇀ ρχ

Q̄
and ζ ′n

∗
⇀ (Tρ)#(ρχQ̄

), then we have that
∥∥h1

n

∥∥
1
−∥ζ ′n∥1 → 0

(notice that here only a finite number of cubes in F play an active role). We choose any non-negative density
h2
n with spth2

n ⊂ 3Q̄ and such that

ρn + h1
n + h2

n ≤ 1 and
∥∥h1

n + h2
n

∥∥
1
= ∥ρ̃n∥1 ,

and our candidate to compute Wp(ρ̃n) will be ρ̃′n := h1
n + h2

n. Observe that, by definition of h1
n and thanks to

the properties of the push-forward of measures, we have that
∥∥h1

n

∥∥
1
≤ ∥ζ ′n∥1 = ∥ζn∥1 = ∥ρ̃n∥1. Thanks to the

triangle inequality for the p-Wasserstein distance, we have that

Wp(ρ̃n, ρ̃
′
n) ≤ Wp(ρ̃n, ζn) +Wp(ζn, ζ

′
n) +Wp(ζ

′
n, ρ̃

′
n).

The first term on the right hand side is going to 0 because, as we already noticed, the sets sptρ̃n and sptζn
are uniformly bounded and these densities are converging to ρχ

Q̄
. Hence, up to taking n̄ large enough, we can
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suppose that Wp(ρ̃n, ζn) < ε. Likewise, the last term is controlled by ε, and we use a plan similar to (2.4) to
show this.

We choose a density ζ ′′n ≤ ζ ′n such that∫
Qk

ζ ′′n dx =

∫
Qk

h1
n dx ∀k ∈ N,

and we consider the plan

π̃n =
∑
k∈N

1∥∥∥h1
nχQk

∥∥∥
1

(ζ ′′nχQk
L N )× (h1

nχQk
L N ) +

1

∥h2
n∥1

((ζ ′n − ζ ′′n)L
N )× (h2

nL N ),

where the sum is intended to run only on the indices for which h1
nχQk

is not identically zero. Using π̃n as test

plan to compute Wp(ζ
′
n, ρ̃

′
n) we obtain the following upper bound:

W p
p (ζ

′
n, ρ̃

′
n) ≤

∫
|x− y|p dπ̃n(x, y) ≤ Cεp + diam(spt(h2

n + ζ ′n))
(
∥ζ ′n∥1 −

∥∥h1
n

∥∥
1

)
≤ Cεp,

where we used that the mass of h1
n remains inside the small cubes with side length ε, and the remaining mass

is transported at finite distance in any case (the constant C depends only on N and p). The last inequality
holds if we take n̄, and thus n, large enough, and if we adjust the constant C. Adding up the various terms, we
conclude that for any n > n̄ there is an optimal transport plan πn for ρ̃n and ρ̃′n such that

Wp(ρ̃n, ρ̃
′
n) =

(∫
|x− y|p dπn(x, y)

) 1
p

≤ Wp(ζn, ζ
′
n) + Cε.

To conclude, we observe that the cubes in F̃ are so large that we can find a non-negative density h3
n such that

ρn + ρ̃′n + h3
n ≤ 1 and ∫

Q̃k

h3
n dx =

∫
Q̃k

ρn dx ∀k ∈ N.

Therefore, we consider the plan γn associated to ρn and ρ̃′n + h3
n defined as

γn = πn +
∑
k∈N

1∥∥∥ρnχ
Q̃k

∥∥∥
1

(ρnχ
Q̃k

L N )× (h3
nχQ̃k

L N ),

again summing only on the cubes with non-trivial measure. This gives the following estimate forW p
p (ρn, ρ̃

′
n+h3

n):

W p
p (ρn, ρ̃

′
n + h3

n) ≤
(
Wp(ζn, ζ

′
n) + Cε

)p

+ C
∥∥h3

n

∥∥
1

≤
(
Wp(ρ) + Cε

)p

+ C
∥∥h3

n

∥∥
1

≤
(
Wp(ρn)− δ + Cε

)p

+ Cε.

Since δ > 0 is fixed and since the constant C in that estimate depends only on N and p, we can find ε small
enough so that W p

p (ρn, ρ̃
′
n + h3

n) < Wp
p (ρn), and this is impossible since ρ̃′n + h3

n is a competitor in the definition
of Wp(ρn).
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The next lemma describes particular symmetries of the problem (1.3) which are crucial in proving properties
of maximizers of Wp in the next section.

Lemma 2.10 (Symmetries of the transport problem). Let F : RN → RN be an isometry and let ρ ∈ A be a
given density such that F#(ρL N ) = ρL N . Then the following hold:

1. F#(ηρL N ) = ηρL N and F̃#πρ = πρ, where F̃ is the map from RN × RN into itself defined as F̃ (x, y) =
(F (x), F (y)).

2. If F is a reflection of the form F (x) = x− 2⟨x, ν⟩ν for some ν ∈ SN−1, then we have that

πρ ({(x, y) : ⟨x, ν⟩⟨y, ν⟩ < 0}) = 0. (2.6)

In other words, πρ does not transport mass from one side of the reflection hyperplane {x : ⟨x, ν⟩ = 0} to
the other.

Proof. We recall that the optimal plan πρ is unique (see Thm. 2.3). Also, notice that F#(ρL N ) and F#(ηρL N )
are absolutely continuous with respect to the Lebesgue measure, and we have that F#(ρL N ) = (ρ ◦ F )L N

and F#(ηρL N ) = (ηρ ◦ F )L N . Therefore, it is trivial to see that F#(ρL N ) ∈ A, F#(ηρL N ) ∈ A and F#((ρ+
ηρ)L N ) ≤ L N .

It is easy to see that π̃ρ = (F̃ )#πρ is a transport plan associated to F#(ρL N ) and F#(ηρL N ): by the

properties of the push forward, we have that (p1 ◦ F̃ )#πρ = (p1)#(F̃#πρ), and p1 ◦ F̃ = F ◦ p1, therefore
(p1)#π̃ρ = F#(ρL N ). An analogous property holds for the second projection p2, and thus π̃ρ has the cor-
rect marginals. Then, we consider the plan (πρ + π̃ρ)/2, whose marginals are ρL N and 1

2 (ηρ + ηρ ◦ F )L N , and
we observe that

Wp
p (ρ) ≤

1

2

∫
|x− y|p dπρ(x, y) +

1

2

∫
|x− y|p dF̃#πρ(x, y)

=
1

2

∫
|x− y|p dπρ(x, y) +

1

2

∫
|F (x)− F (y)|p dπρ(x, y) = W p

p (ρ, ηρ),

where we used that F is an isometry to obtain the last identity. This implies that ηρ ◦ F is also an optimal
density to compute Wp(ρ). Since there exists a unique density which realizes Wp(ρ), then ηρL N = F#(ηρL N )

and F̃#πρ = πρ.
In order to prove (ii), suppose that F (x) = x− 2⟨x, ν⟩ν for some ν ∈ SN−1. From the previous point we know

that πρ satisfies F̃#πρ = πρ. We want to prove that, whenever (2.6) does not hold, we can find a better plan,
contradicting the definition of πρ. In fact, we consider the plan

π̃ρ = πρ (H1 ×H1) + πρ (H2 ×H2) + (Id, F )#(πρ (H1 ×H2)) + (Id, F )#(πρ (H2 ×H1)),

where H1 = {x : ⟨x, ν⟩ > 0} and H2 = F (H1) = {x : ⟨x, ν⟩ < 0}. We observe that, since (p1)#πρ and (p2)#πρ

are absolutely continuous with respect to Lebesgue measure, then πρ does not give mass to ∂(Hi × Hj) for
any i, j ∈ {1, 2}. Therefore, π̃ρ is a probability measure, and the well-known properties of the push-forward

operation guarantee that (p1)#π̃ρ = ρL N . Since πρ = F̃#πρ and F̃ (H1×H2) = H2×H1, then πρ (H1×H2) =

F̃#(πρ (H2 ×H1)). With this observation we arrive to

((p2)#π̃ρ) H1 = (p2)# (πρ (H1 ×H1)) + (p2)# ((Id, F )#(πρ (H1 ×H2)))

= (p2)# (πρ (H1 ×H1)) + (p2)#

(
(Id, F )#F̃#(πρ (H2 ×H1))

)
= (p2)# (πρ (H1 ×H1)) + (p2)# ((F, Id)#(πρ (H2 ×H1)))

= (p2)# (πρ (H1 ×H1)) + (p2)# (πρ (H2 ×H1))

= (p2)#(πρ (RN ×H1)) = ((p2)#πρ) H1,
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where we used that (Id, F ) ◦ F̃ = (F, Id) and the fact that F is an isometry to pass from the second to the third
line. Arguing in the same way, one can also see that ((p2)#π̃ρ) H2 = ((p2)#πρ) H2. This is sufficient to say
that ρL N + (p2)#(π̃ρL N ) ≤ L N , and thus π̃ρ ∈ APρ. Now we can compare the costs associated to π̃ρ and πρ.
Discarding the common terms, we get that∫

|x− y|p d(π̃ρ − πρ) =

∫
(H1×H2)∪(H2×H1)

(|x− F (y)|p − |x− y|p) dπρ(x, y), (2.7)

and a simple geometric argument shows that the function inside the integral is strictly negative. Therefore,
if the domain appearing in the right hand side of (2.7) has positive πρ measure, then π̃ρ is a strictly better
competitor to compute Wp(ρ), in contradiction with the definition of πρ. To conclude, we observe that we have
just proved that πρ((H1 ×H2) ∪ (H2 ×H1)) = 0, and this is equivalent to (2.6).

3. Maximizer of Wp

3.1. Existence of maximizers

In this section we first prove the existence of maximizers of the energies (1.3) in A by applying the concen-
tration compactness principle to a maximizing sequence of densities, where we consider them as measures. Even
though we consider a maximization problem, our strategy works since Wp is continuous with respect to the
weak∗ convergence, as shown in Lemma 2.9. Here we state concentration compactness lemma for measures for
the convenience of the reader.

Lemma 3.1 (Concentration compactness, [13]). Let µn ∈ P(RN ) be a given sequence of probability measures.
Then there exists a subsequence (not relabelled) such that one of the following holds:

1. (Compactness) There exists a sequence of points xn ∈ RN such that, for every ε > 0, there exists L > 0
large enough such that µn(QL(xn)) > 1− ε.

2. (Vanishing) For every ε > 0 and every L > 0 there exists n̄ ∈ N such that

µn(QL(x)) < ε ∀x ∈ RN ,∀n > n̄.

3. (Dichotomy) There exist λ ∈ (0, 1) and a sequence of points xn ∈ RN with the following property: for any
ε > 0, there exists L > 0 such that, for any L′ > L there exist two non-negative measures µ1

n and µ2
n that

satisfy, for every n large enough, the following conditions

µ1
n + µ2

n ≤ µn,

sptµ1
n ⊂ QL(xn), sptµ2

n ⊂ RN \QL′(xn),∣∣µ1
n(RN )− λ

∣∣+ ∣∣µ2
n(RN )− (1− λ)

∣∣ < ε.

Theorem 3.2. Let p > 1 be fixed. Then there exists a maximizer of Wp in A.

Proof. Let us consider a maximizing sequence ρn ∈ A with Wp(ρn) → supρ∈A Wp(ρ). Notice that, thanks to
Corollary 2.7, we have that supρ∈A Wp(ρ) ≤ C < +∞ for some constant C = C(p,N). We are going to apply

the concentration compactness lemma to µn = ρnL N , and show that the vanishing and dichotomy phenomena
do not happen. Then exploiting the invariance of the energy under translations and Lemma 2.9 we establish
the existence of a maximizer.

We first exclude the vanishing case. Up to translations, we can suppose that the points xn appearing in
Lemma 3.1 all coincide with the origin. Suppose by contradiction that, for any ε > 0 and any L > 0 we can find
n̄ ∈ N such that µn(QL(x)) < (ε/3)N for every x ∈ RN . Then, we fix a partition F = {Qk}k∈N of RN made of
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cubes with side length ε. Since by hypothesis µn(Q
k) < |Qk|/3 for every n > n̄ and every k ∈ N, then for every

n > n̄ there exists ρ′n ∈ A such that ρn + ρ′n ≤ 1 and

∫
Qk

ρn dx =

∫
Qk

ρ′n dx ∀k ∈ N.

Using a transport plan similar to πn defined in (2.4), it is immediate to see that

Wp
p (ρn) ≤ W p

p (ρn, ρ
′
n) ≤ diam(Qk)p = CN,pε

p.

If we take ε sufficiently small, we clearly have that ρn is not a maximizing sequence for Wp, arriving to a
contradiction.

Now we treat the dichotomy case. Suppose for a contradiction that there exists λ ∈ (0, 1) such that, for any
ε > 0 there exist n̄ ∈ N, L > 0 and two sequences of non-negative densities ρ1n, ρ

2
n that satisfy

ρ1n + ρ2n ≤ ρn

sptρ1n ⊂ QL sptρ2n ⊂ RN \QL+3CN
,∣∣∣∣∫ ρ1n dx− λ

∣∣∣∣+ ∣∣∣∣∫ ρ2n dx− (1− λ)

∣∣∣∣ < ε,

(3.1)

where CN is the constant appearing in (2.3).
Since the distance between sptρ1n and sptρ2n is larger than 3CN , then applying Corollary 2.7 we obtain

that Wp
p (ρ

1
n + ρ2n) = Wp

p (ρ
1
n) + Wp

p (ρ
2
n). Combining the first and the third conditions in (3.1), we get that∥∥ρn − ρ1n − ρ2n

∥∥
1
< ε, and we define m1

n =
∥∥ρ1n∥∥1 and m2

n =
∥∥ρ2n∥∥1. Using this fact, and that ρ1n + ρ2n + ηρ1

n+ρ2
n
≤

1, we deduce that

∫
(ηρ1

n+ρ2
n
− (1− ρn))+ dx ≤ ε. (3.2)

We denote by Tn the optimal transport map to compute Wp(ρ
1
n + ρ2n), and we define

ζn = min{ηρ1
n+ρ2

n
, 1− ρn}, ρ̃n = (T−1

n )#ζn,

so that ρ̃n is an approximation of ρ1n + ρ2n, and it is smaller than that sum. We let F = {Qk}k∈N be a partition
of RN made of cubes with side length equal to 3, and we can find, as we did before, a density ζ ′n such that
ρn + ζn + ζ ′n ≤ 1 and

∫
Qk

ζ ′n dx =

∫
Qk

ρn − ρ̃n dx ∀k ∈ N.

Therefore, we estimate the energy of ρn with the plan

π̃n = (Id, Tn)#ρ̃n +
∑
k∈N

1∥∥∥ζ ′nχQk

∥∥∥
1

((ρn − ρ̃n)χ
Qk

L N )× (ζ ′nχQk
L N ).
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In fact, combining (3.2) and the fact that
∥∥ρn − ρ1n − ρ2n

∥∥
1
≤ ε, we have that ∥ρn − ρ̃n∥1 ≤ 2ε, and thus

Wp
p (ρn) ≤

∫
|x− y|p dπ̃n ≤

∫
|Tn(x)− x|pρ̃n(x) dx+ 2(diamQk)pε

≤ Wp
p (ρ

1
n + ρ2n) + CN,pε

= Wp
p (ρ

1
n) +Wp

p (ρ
2
n) + CN,pε

≤ sup
{
Wp

p (ρ) : ρ ∈ Am1
n

}
+ sup

{
Wp

p (ρ) : ρ ∈ Am2
n

}
+ CN,pε.

(3.3)

Using the rescaling exploited in Remark 2.8 we see that

sup
{
Wp

p (ρ) : ρ ∈ Am

}
= m1+ p

N sup
{
Wp

p (ρ) : ρ ∈ A
}
;

hence, (3.3) implies that

Wp
p (ρn) ≤ CN,pε+

(
(m1

n)
1+ p

N + (m2
n)

1+ p
N

)
sup

{
Wp

p (ρ) : ρ ∈ A
}
.

If ε is small enough, this is incompatible with the fact that limn Wp(ρn) = supρ∈A Wp(ρ). In fact, the function

t 7→ t1+
p
N is strictly convex, and if ε < 1

2 min{λ, 1− λ}, then m1
n and m2

n are far away from 0.

3.2. The only maximizer is the ball

In the second part of this section we will characterize the maximizers of Wp over A. In fact, we prove that the
only maximizer of Wp is the characteristic function of a ball (with the correct volume). The intuition behind
this result is that, if we have a set, and we create some holes in it (adding some mass somewhere else), we
are lowering the energy since the additional mass can be transported at shorter distance. We obtain the main
result in several steps: First we study the 1-dimensional case, possibly with a weight, where the structure of
the transport plan is known explicitly. Then, using a symmetrization argument we show that the optimal plan
associated to a maximizer has some geometric properties, and, in fact, it is radial. Next, using the 1-dimensional
case, we prove that a maximizer has to be a star-shaped set, and via an optimality argument we deduce that a
star-shaped maximizer must actually be a ball.

Proposition 3.3. Let m > 0 be a given parameter. Let w : (0,+∞) → (0,+∞) be a non-decreasing weight and
let I = [0, ℓ] be the unique segment such that

∫
I
w dx = m. For any density ρ : R+ → [0, 1] with

∫
R+ ρw dx = m,

we have that

Wp(χI
) ≥ Wp(ρ), (3.4)

where Wp is defined in the metric-measure setting with base space R+ endowed with the usual distance and
reference measure equal to wL 1. Equality holds if and only if ρ = χ

I
almost everywhere.

Proof. We note that, also in this weighted case, the transport distance is bounded (using again Lem. 2.6), and
thus for any density the infimum in the definition of Wp is achieved thanks to Theorem 2.3 and Theorem 2.5.
Therefore, there exists ηρ such that Wp(ρ) = Wp(ργ, ηργ), where we use the notation γ = wL 1. Moreover, since
the cost increases with the distance, we have that Wp(χI

) = Wp(χI
γ,χ

I′γ), where I ′ = [ℓ, ℓ′] for some ℓ′ > ℓ,

and the transport plan is induced by a monotone map T (see Thm. 2.4).
Now we introduce an auxiliary problem that produces a non-optimal candidate to estimate Wp(ρ). The

advantage of this modified problem is that it enforces a geometric constraint that clarifies some arguments. The
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auxiliary functional, which considers only plans which move mass to the right, is given by

AWp
p(ρ) := inf

{∫
|x− y|p dπ(x, y) : π ∈ APρ, π

(
{(x, y) : y < x}

)
= 0

}
.

We observe that the infimum is actually a minimum since the additional constraint is closed under weak∗
convergence. Moreover, applying the standard results for the one dimensional transport problem, we know
that the optimal plan is induced by a non-decreasing map. Since we have already observed that Wp(χI

) =
Wp(χI

γ,χ
I′γ), the monotonicity of the optimal map ensures that AWp(χI

) = Wp(χI
). For a general density

ρ, on the other hand, we have the inequality AWp(ρ) ≥ Wp(ρ) due to the introduction of the additional
constraint. With these observations, we reduce to proving the following (stronger) inequality:

Wp(χI
) ≥ AWp(ρ),

and (3.4) simply follows.
From now on we denote by T̃ρ the transport map appearing when we compute AWp(ρ). We define the

following “volume” functions on R+:

V (x) :=

∫ x

0

w(t) dt, Vρ(x) :=

∫ x

0

ρ(t)w(t) dt.

We also denote by d(v) (resp. dρ(v)) the transport distance of the point V
−1(v) (resp. V −1

ρ (v)) when we compute
Wp(χI

) (resp. Wp(ρ)), i.e.

d(v) := |T (V −1(v))− V −1(v)|, dρ(v) := |T̃ρ(V
−1
ρ (v))− V −1

ρ (v)|. (3.5)

Using the explicit expression of the optimal transport map in 1D (see for example [11], Rem. 2.19 (iv)), we have
that

γ([V −1(v), V −1(v) + d(v)]) = m ∀v ∈ [0,m].

One can easily adapt the proof of Lemma 2.6 to the auxiliary functional and see that, if x is a Lebesgue point
for T̃ρ and r = |T̃ρ(x) − x|, then (T̃ρ)#(ργ) = (1 − ρ)γ in [x, x + r]. Moreover, since T̃ρ is non-decreasing, we
also have that

(T̃ρ)# (ργ [0, x]) = (1− ρ)γ in [x, x+ r]. (3.6)

We claim that dρ ≤ d. In fact, suppose for contradiction that there exists v ∈ (0,m) such that dρ(v) > d(v).
Since ρ ≤ 1 we have V −1

ρ ≥ V −1 ≥ 0, and thus

∫ V −1
ρ (v)+dρ(v)

0

ρ(t)w(t) dt ≥
∫ V −1(v)+dρ(v)

V −1(v)

w(t) dt

>

∫ V −1(v)+d(v)

V −1(v)

w(t) dt = γ([V −1(v), V −1(v) + d(v)]) = m,

where we have used (3.6) with x = V −1
ρ (v) and r = dρ(v) to get the first inequality, and the monotonicity of

w to obtain the second one. This chain of inequalities of course leads to a contradiction since m =
∫∞
0

ρdγ.
Therefore dρ ≤ d.
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Since w and ρw are locally bounded in [0,+∞), then both V and Vρ are locally Lipschitz, and we can apply
the fundamental theorem of calculus: using v = Vρ(x) as variable in the computation of AWp(ρ) we obtain that

AWp
p(ρ) =

∫
R+

|T̃ρ(x)− x|pρ(x)w(x) dx =

∫ m

0

dρ(v)
p dv ≤

∫ m

0

d(v)p dv = Wp
p (χI

),

where the inequality follows from comparison between d and dρ, and this is the desired inequality. Finally, one
can notice that the only way to obtain an equality in the previous chain of inequalities is that ρ = χ

I′′ for some

segment I ′′ and w is constant in spt(ρ + T#ρ). However, if I ′′ ̸= I, then one can construct a better transport
plan that moves some mass to the left (this plan should belong to APρ, but it is not admissible for the auxiliary
problem). Therefore, the equality in (3.4) holds only for ρ = χ

I
.

Lemma 3.4. Let p > 1 be given, and let ρ ∈ A be a maximizer of Wp. If ν ∈ SN−1 is such that∫
{x : ⟨x,ν⟩>0}

ρdx =

∫
{x : ⟨x,ν⟩<0}

ρdx =
1

2
, (3.7)

then the optimal plan πρ satisfies

πρ({(x, y) : ⟨x, ν⟩ · ⟨y, ν⟩ < 0}) = 0. (3.8)

Proof. The idea is to consider an auxiliary functional, as in the proof of Proposition 3.3, and show that it
coincides with Wp when evaluated at ρ (due to the maximality of this density). This ensures that πρ has some
additional structure due to the uniqueness of the optimal plan.

We define the auxiliary functional

AWp
p(ρ, ν) := inf

{∫
|x− y|p dπ(x, y) : π ∈ APρ, π({(x, y) : ⟨x, ν⟩ · ⟨y, ν⟩ < 0}) = 0

}
.

Loosely speaking, this auxiliary functional uses only plans that do not transport mass across the hyperplane
{x : ⟨x, ν⟩ = 0}. As before, we are introducing an additional constraint that is closed under weak∗ convergence,
and thus there exists an optimal plan in the definition ofAWp(ρ, ν). Clearly, since we are introducing a constraint
in the minimization process, we have that Wp(ρ) ≤ AWp(ρ, ν).

Let F (x) = x− 2⟨x, ν⟩ν be the reflection map, and define the two symmetrizations of ρ with respect to ν:

ρ1 = ρ H1 + F#(ρ H1), ρ2 = ρ H2 + F#(ρ H2),

where H1 = {x : ⟨x, ν⟩ > 0} and H2 = F (H1) = {x : ⟨x, ν⟩ < 0}. We denote by π̄1 and π̄2 the two optimal plans
realizing AWp(ρ1, ν) and AWp(ρ2, ν), respectively. We claim that

π̄ = π̄1 (H1 ×H1) + π̄2 (H2 ×H2)

realizes AWp(ρ, ν). In fact, π̄ is admissible to compute AWp(ρ, ν), and if we find a better candidate π to compute
AWp(ρ, ν), then we can also construct the following plans that are good candidates to compute AWp(ρ1, ν)
and AWp(ρ2, ν) respectively:

π1 = π (H1 ×H1) + F̃#(π (H1 ×H1)), π2 = π (H2 ×H2) + F̃#(π (H2 ×H2)),
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where F̃ (x, y) = (F (x), F (y)). Then we observe that

AWp
p(ρ1, ν) =

∫
|x− y|p dπ̄1 = 2

∫
H1×H1

|x− y|p dπ̄1,

AWp
p(ρ2, ν) =

∫
|x− y|p dπ̄2 = 2

∫
H2×H2

|x− y|p dπ̄2,∫
|x− y|p dπ̄ =

1

2

(
AWp

p(ρ1, ν) +AWp
p(ρ2, ν)

)
,∫

|x− y|p dπ =
1

2

(∫
|x− y|p dπ1 +

∫
|x− y|p dπ2

)
.

If AWp
p(ρ, ν) <

∫
|x − y|p dπ̄, then at least one between π1 and π2 is a better competitor for AWp(ρ1, ν) or

AWp(ρ2, ν), contradicting the definition of π̄1 and π̄2. Therefore, the following conditions hold:

Wp
p (ρ) ≤ AWp

p(ρ, ν) =
1

2

(
AWp

p(ρ1, ν) +AWp
p(ρ2, ν)

)
=

1

2

(
Wp

p (ρ1) +Wp
p (ρ2)

)
, (3.9)

where we used the second part of Lemma 2.10 to obtain the last equality. Since ρ is a maximizer, then (3.9)
guarantees that ρ1 and ρ2 are also maximizers. This, however, implies that Wp(ρ) = AWp(ρ, ν). In other words,
π̄ realizes Wp(ρ) and satisfies (3.8). Therefore, necessarily, we have that πρ = π̄, concluding the proof.

Corollary 3.5. Let p > 1 be given, and let ρ ∈ A be a maximizer of Wp. Then there exists x0 ∈ RN such that
πρ has the following property:

πρ ({(x, y) : ⟨y − x0, x− x0⟩ ≠ |y − x0||x− x0|}) = 0. (3.10)

That is, πρ is radial with center x0.

Proof. By sliding each hyperplane {x : ⟨x, ei⟩ = 0} until it splits the mass of ρ in half, and by taking the
intersection of the N hyperplanes, we find a point x0 ∈ RN such that∫

{x : ⟨x−x0,ei⟩>0}
ρ dx =

∫
{x : ⟨x−x0,ei⟩<0}

ρdx =
1

2
∀i ∈ {1, . . . , N}.

Up to translations, we suppose that x0 = 0. By (3.9) we know that suitable symmetrizations of ρ with respect to
the coordinate axes are again maximizers. Iterating this procedure, we obtain a maximizer ρ̃ taking successive
reflections of the sector

ρ {x : ⟨x, ei⟩ > 0 ∀i = 1, . . . , N}, (3.11)

and the result is a density symmetric with respect to each coordinate direction. The symmetries of ρ̃ guarantee
that ∫

{x : ⟨x,ν⟩>0}
ρ̃dx =

∫
{x : ⟨x,ν⟩<0}

ρ̃dx =
1

2
∀ν ∈ SN−1.

Hence, applying Lemma 3.4 to ρ̃ we obtain that πρ̃ satisfies the splitting condition (3.8) for any vector ν. Thus,
the condition (3.10) holds for πρ̃. We finally conclude by uniqueness of the optimal plan, as we did in the last
part of Lemma 3.4: we can use the same strategy starting from a different sector in (3.11), defining a different
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symmetric density ρ̃. The same conclusion holds for the new optimal plan associated to that density, namely πρ̃.
By uniqueness of the optimal plan, we know that πρ can be obtained gluing together the plans of each sector,
and thus also πρ satisfies (3.10).

Now we can state and prove our main result.

Theorem 3.6. Let p > 1 be given. Then the only maximizer of Wp in the class A, up to translations, is the
characteristic function of B with |B| = 1.

Proof. We prove this result in two steps: we first show that any maximizer must be the characteristic function
of a star-shaped set, and then exploit the inner-ball condition exposed in Lemma 2.6 to see that the length of
the rays must be constant. Without loss of generality, we can suppose N ≥ 2 since the 1-dimensional case has
already been treated in Proposition 3.3.

Step 1. First we will apply Corollary 3.5 and decompose the transport along rays. Then, we exploit the one
dimensional result obtained in Proposition 3.3 to prove that the maximizer intersects each ray in a segment
emanating from the origin.

Let ρ be any maximizer of Wp in A. We apply Corollary 3.5 to ρ, and suppose, without loss of generality, that
the point x0 coincides with the origin. Therefore, the optimal plan πρ is induced by a radial map Tρ. Since in
this proof we do not need to stress the dependence of ηρ, πρ and Tρ on the density ρ, we simplify the notation,
and we denote those objects by η, π and T , respectively. We decompose every function in radial coordinates,
and let w(r) = rN−1 denote the coarea factor when we integrate in polar coordinates. For any ω ∈ SN−1 we
define the functions

ρω(r) = ρ(rω), ηω(r) = η(rω), Tω(r) = |T (rω)|

for every r ∈ [0,+∞). We consider them as functions defined (almost everywhere) on the metric-measure space
(X, d, γ), where X = R+, γ = wL 1 and d is the usual distance.

We claim that, since T (rω) = Tω(r)ω and T#ρ = η, we have

(Tω)# (ρωγ) = ηωγ for a.e. ω ∈ SN−1. (3.12)

For any s > 0 and any E ⊂ SN−1 we define the set F = {rω : 0 ≤ r ≤ s, ω ∈ E} and we have that

∫
E

dH N−1
ω

∫ s

0

ηω dγ =

∫
E

dH N−1
ω

∫ s

0

η(rω)rN−1 dr =

∫
F

η(x) dx

=

∫
F

(T#ρ)(x) dx =

∫
T−1(F )

ρ(x) dx

=

∫
E

dH N−1
ω

∫
(Tω)−1([0,s])

ρ(rω)rN−1 dr

=

∫
E

dH N−1
ω

∫
(Tω)−1([0,s])

ρω(r) dγ

=

∫
E

dH N−1
ω

∫ s

0

(Tω)#ρ
ω dγ.

Here we used that T is radial to pass from the second to the third line, in combination with the integration in
polar coordinates. Since E and s are arbitrary, this proves (3.12).
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We obtain the result of this first step by applying Proposition 3.3 separately for any ω ∈ SN−1. In fact, we
can integrate in polar coordinates the transport cost and obtain that

∫
|T (x)− x|pρ(x) dx =

∫
SN−1

∫ +∞

0

|T (rω)− rω|pρ(rω)rN−1 dr dω

=

∫
SN−1

(∫ +∞

0

|Tω(r)− r|pρω(r)w(r) dr
)

dω.

The inner integral in the last expression coincides with the transport cost of Tω between ρωγ and ηωγ, and
since T is the optimal transport map between ρ and η, then also Tω must be optimal between ρωγ and ηωγ for
every ω ∈ SN−1. This is properly justified by showing that gluing the optimizers ω-by-ω we obtain a measurable
density. We sketch the proof of this fact in Appendix A. Therefore, if we denote by m(ω) =

∫
R+ ρω dγ, then

Wp
p (ρ) =

∫
SN−1

Wp
p (ρ

ω) dω

≤
∫
SN−1

sup

{
Wp

p (θ) : θ : X → [0, 1],

∫
X

θ dγ = m(ω)

}
dω, (3.13)

where we use the metric-measure definition of Wp in those integrals (see Rem. 1.1). By Proposition 3.3, for
every ω ∈ SN−1, the supremum inside the last integral coincides with Wp

p (χIω
), where Iω ⊂ X is the unique

segment of the form [0, ℓω] with γ(Iω) = m(ω). Moreover, the inequality is strict whenever ρω is not equivalent
to χ

Iω
. Since the map ω 7→ m(ω) is measurable, we can glue the segments Iω together and obtain another

candidate to compute Wp. The density ρ is a maximizer; hence, for almost every ω ∈ SN−1 the density ρω must
be equivalent to χ

Iω
, concluding the proof of the first step.

Step 2. For any ω ∈ SN−1 we know that T (ℓωω) = (Tω(ℓω))ω, and Lemma 2.6 guarantees that η(x) = 1− ρ(x)
for every x ∈ RN such that |x− ℓωω| ≤ Tω(ℓω)− ℓω. Let ν ∈ SN−1 be another unit vector. Note that Tω(ℓω) =
21/N ℓω (see e.g. [9] where the transport map in the case of a ball is given explicitly). Thanks to the inner ball
condition, we obtain that T ν(ℓν) is larger than t for any t > 0 such that |tν − ℓωω| ≤ Tω(ℓω)− ℓω.

In order to simplify the notation we define c = 21/N , r = ℓω and s = ℓν . Taking the square of both sides of
the inner-ball inequality (see Fig. 1 for a geometric intuition of the inner ball condition in this situation), we
get that s ≥ t for every t > 0 satisfying

c2t2 − 2c⟨ν, ω⟩rt+ c(2− c)r2 = 0.

Solving the above equation in t one gets that

s ≥
⟨ν, ω⟩+

√
⟨ν, ω⟩2 − c(2− c)

c
r .

By the definition of c, the expression under the square root is non-negative whenever ⟨ν, ω⟩ is close enough to
1 since c > 1 and 1 − c(2 − c) = (c − 1)2 > 0. Swapping the roles of ν and ω we also arrive to the analogous
inequality

r ≥
⟨ν, ω⟩+

√
⟨ν, ω⟩2 − c(2− c)

c
s .
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Figure 1. In this figure we depict two points ℓωω and ℓνν that belong to the support of ρ, and
their images through the map T , which coincide with Tω(ℓω)ω and T ν(ℓν)ν respectively. The
inner ball condition implies that the two image points have to lie outside the circles centered at
these points with radii given by the transport distances Tω(ℓω)−ℓω and T ν(ℓν)−ℓν respectively.

Combining these two inequalities we can control the difference between s and r in terms of the distance
between ν and ω:

s− r ≥ r

c

(
⟨ν, ω⟩ − c+

√
⟨ν, ω⟩2 − c(2− c)

)
=

2r(1− ⟨ν, ω⟩)
⟨ν, ω⟩ − c−

√
⟨ν, ω⟩2 − c(2− c)

,

s− r ≤ s

c

(
c− ⟨ν, ω⟩ −

√
⟨ν, ω⟩2 − c(2− c)

)
=

2s(1− ⟨ν, ω⟩)
c− ⟨ν, ω⟩+

√
⟨ν, ω⟩2 + c(2− c)

.

By Corollary 2.7 we have that |T (x)−x| ≤ CN for a dimensional constant CN ; hence, r and s are also uniformly
bounded. Since 2(1− ⟨ν, ω⟩) = |ν − ω|2, we can combine the previous estimates and obtain that

|ℓν − ℓω| ≤ C̃N |ν − ω|2

for any ν and ω sufficiently close. This implies that the map ω 7→ ℓω is 2-Hölder continuous on the sphere,
hence it is constant. This is equivalent to showing that the only maximizer is the ball, and thus the proof is
concluded.

4. Quantitative inequality in one dimension

In this section we prove a quantitative inequality for Wp in one dimension, so we manage to strengthen
the result obtained in Section 3 adding a term that measures the displacement of a density ρ respect to
the characteristic function of a ball. In order to measure that distance, we consider a version of the Frankel
asymmetry that, loosely speaking, is the L1 distance between a density and a ball. This choice is by no means
new: for example, the asymmetry was used in the quantitative isoperimetric inequality (cfr. [14, 15]) and in the
quantitative Brunn-Minkowski inequality (cfr. [16]). See also [17, 18] for a quantitative inequality involving a
functional of Riesz type.
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Definition 4.1. We define the following quantity, that we will just call asymmetry in the sequel:

A(ρ) := inf
{∥∥∥ρ− χ

Br(x)

∥∥∥
1
: x ∈ RN , |Br(x)| = 1

}
∀ρ ∈ A.

With this notion, our quantitative inequality reads as the following.

Theorem 4.2. For N = 1 and p > 1 fixed, there exists a constant Cp > 0 such that

Wp
p (B)−Wp

p (ρ) ≥ CpA(ρ)2 for all ρ ∈ A.

Remark 4.3. We point out that the exponent 2 in our quantitative inequality is sharp, in the sense that the
inequality would be false with a smaller exponent for densities with small asymmetry. This can be seen by
taking ρ = χ

[−1/2−ε,−1/2]
+ χ

[−1/2+ε,1/2−ε]
+ χ

[1/2,1/2+ε]
for ε small. Notice that ρ is symmetric, and using

Lemma 3.4 we can restrict to work in R+. Moreover, Theorem 2.4 guarantees that the optimal transport map
is monotone, and this allows us to compute the transport map Tρ. In fact, we claim that the transport map to
compute Wp(ρ) has the following expression for every x ∈ R+:

Tρ(x) =


x+ 1

2 − ε for x ∈ (0, ε) ,

x+ 1
2 for x ∈

(
ε, 1

2 − ε
)
,

x+ 1
2 − ε for x ∈

(
1
2 ,

1
2 + ε

)
.

(4.1)

We prove that the optimal transport map coincides with the above expression just for x ∈ (0, ε), the other cases
being analogous. Suppose that Tρ(z) = y < z + 1

2 − ε for some z ∈ (0, ε). Since Tρ is monotone increasing in
that interval, Tρ (0, z) ≤ y. The L∞-constraint is already saturated in (0, 1

2 − ε), and thus we have that

1

2
− ε ≤ Tρ (0, z) ≤ y < z +

1

2
− ε.

But this is not possible since y − ( 12 − ε) < z =
∫ z

0
ρ = (Tρ)#(ρ (0, z)) ≤ y − ( 12 − ε). This proves that Tρ is

pointwise larger or equal than the expression in our claim. However, any map that is strictly larger than the
function in (4.1) has also strictly larger transport cost, and thus it is not optimal. With the explicit expression
of Tρ the conclusion follows from an easy computation:

Wp
p (ρ) = 2

∫
R+

|Tρ(x)− x|pρ(x) dx = 2

[(
1

2
− ε

)p

ε+
1

2p

(
1

2
− 2ε

)
+

(
1

2
− ε

)p

ε

]
=

1

2p
− 4ε

2p
+ 4ε

(
1

2
− ε

)p

= Wp
p

(
χ

B

)
− 4ε

[
1

2p
−
(
1

2
− ε

)p]
,

where we used the explicit value of the energy of the ball B = (−1/2, 1/2). We thus conclude, since the final
expression inside the square parentheses is O(ε).

Proof. By definition of asymmetry, A(ρ) ≤ 2 for every ρ ∈ A, and without loss of generality we can suppose
that A(ρ) > 0. Up to translations, we can suppose that∫ 0

−∞
ρdx =

∫ +∞

0

ρdx =
1

2
.

Notice that, using the construction in Proposition 3.3, with constant weight w ≡ 1, we can produce a transport
plan π̄ ∈ APρ with |x − y| ≤ 1/2 for any (x, y) ∈ sptπ̄. In fact, when the weight is constant, the function d
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Figure 2. An optimal transport plan in dimension N = 1 that moves some mass toward the
origin. In this example, ρ = χ

E
where E = [−a− 1/2,−a] ∪ [a, a+ 1/2] for some small a > 0

(shown in solid color). The optimal transport map sends the solid blue region to the shaded
blue region, and the solid red region to the shaded red region. This map realizes Wp(ρ) for
every p ≥ 1.

defined in (3.5) is constantly equal to m (corresponding to the parameter in the statement of the proposition).
Along our argument in Proposition 3.3 we show that dρ ≤ d, and in the present situation we have that the
function d is constantly equal to 1/2 since

∫
R+ ρ =

∫
R+ ρw = 1/2. This is actually equivalent to saying that

|x − y| ≤ 1/2 for any (x, y) ∈ sptπ̄, since that particular transport plan is induced by the map T̃ρ defined in
that proposition. Loosely speaking, π̄ moves mass “away from the origin”. Now we want to get a quantitative
inequality modifying π̄ and finding another plan π ∈ APρ for which the transport distance is again bounded
from above by 1/2 in a pointwise sense, and moreover

π ({(x, y) : |x− y| ≤ dA}) ≥
A(ρ)

100
, where dA :=

1

2
− A(ρ)

100
. (4.2)

With this competitor, if E =
{
(x, y) ∈ RN × RN : |x− y| ≤ dA

}
is the set considered in the previous inequality,

we have that

Wp
p (ρ) ≤

∫
|x− y|p dπ(x, y) ≤ (dA)

pπ(E) +
1

2p
(1− π(E))

=
1

2p
+

π(E)

2p

[(
1− A(ρ)

50

)p

− 1

]
≤ 1

2p
+

π(E)

2p
(−CpA(ρ))

= Wp
p (B)− CpA(ρ)2,

where Cp is a constant depending only on p. Therefore, we need to find such a plan π to complete the proof.
We denote by T̄ the map that induces π̄. Let us look at the set {x ≥ 0}, and we define xR as the smallest point
that is moved at distance dA, i.e. xR := inf{x > 0: T̄ (x) − x > dA}. Now we explore the different cases that
may appear.

Case 1 If we have that
∫ xR

0
ρdx ≥ A(ρ)

100 , then the plan π̄ already satisfies (4.2) and there is nothing to do.

Case 2 Let us suppose that both of the following conditions hold∫ xR

0

ρdx <
A(ρ)

100
,

∫ xR

0

(1− ρ) dx >
A(ρ)

100
.

In this case, we take a point x1
R > xR such that

∫ x1
R

0
ρdx = A(ρ)

100 , and we try to move mass in the opposite
direction in the segment [0, x1

R]. This is necessary in order to take into account densities similar to the charac-
teristic function of the union of two intervals: in that case, the optimal map actually moves mass toward the
origin (see Fig. 2).
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To do this, we consider a transport plan tailored to ρ and depending on x1
R that is obtained again through

a minimization process:

min

{∫
|x− y|p dπ(x, y) : π ∈ APρ, sptπ ⊂ D

}
, (4.3)

where D ⊂ R× R is the following domain:

D := {(x, y) : x ̸∈ (0, x1
R), x · (y − x) ≥ 0} ∪

(
[0, x1

R]× [0, x1
R]
)
.

Observe that, since
∫ x1

R

0
ρdx = A(ρ)

100 <
∫ x1

R

0
(1− ρ) dx, then it is possible to find a minimizer π of (4.3). Applying

again the structure theorem for optimal plans in one dimension, we find a map T that induces an optimal
plan. This transport problem is actually decoupled, considering independently ρ [0, x1

R] and ρ − (ρ [0, x1
R]).

Hence, it is possible to adapt [10], Lemma 5.1 separately to both pieces and see that |T (x)− x| ≤ dA for every
x ∈ [0, x1

R]. In fact, if this is not the case, then T#ρ = 1 − ρ in a segment I ⊂ [0, x1
R] longer than dA. This is

impossible since

dA ≤ |I| =
∫
I

(ρ+ (1− ρ)) dx =

∫
I

(ρ+ T#ρ) dx ≤ 2

∫ x1
R

0

ρdx = 2 · A(ρ)

100
≤ 1

25
,

and dA = 1
2 − A(ρ)

100 > 1
3 . Having this uniform bound on the transport length in [0, x1

R], then we see that π

satisfies (4.2) because
∫ x1

R

0
ρ dx = A(ρ)

100 .

Case 3 Finally, let us suppose that the following inequalities hold at the same time:∫ xR

0

ρdx <
A(ρ)

100
,

∫ xR

0

(1− ρ) dx ≤ A(ρ)

100
.

At this point, we can explore each of the previous cases on the left side of the real line, producing the analogous
xL = sup

{
x < 0: x− T̄ (x) > dA

}
. Since in the first two cases we managed to construct the desired π, we can

suppose without loss of generality that we are in Case 3 also on the left side. In other words, the following holds

max

{∫ xR

0

ρdx,

∫ xR

0

(1− ρ) dx,

∫ 0

xL

ρdx,

∫ 0

xL

(1− ρ) dx

}
≤ A(ρ)

100
.

Combining these information we obtain an estimate on |xR − xL|:

xR − xL =

∫ 0

xL

(ρ+ (1− ρ)) dx+

∫ xR

0

(ρ+ (1− ρ)) dx ≤ A(ρ)

25
,

and we will see that this is not possible because we can get an inequality for the asymmetry of ρ. We repeat here
the argument of Proposition 3.3: adapting [10], Lemma 5.1 we obtain that T̄#(ρ [xL, 0]) = 1−ρ in [xL−dA, xL]
and T̄#(ρ [0, xR]) = 1− ρ in [xR, xR + dA], and thus∫ xR+dA

xL−dA

ρdx =

∫ xL

xL−dA

ρdx+

∫ 0

xL

ρdx+

∫ xR

0

ρdx+

∫ xR+dA

xR

ρdx

≥
∫ xL

xL−dA

ρdx+

∫ xL

xL−dA

T̄#ρdx+

∫ xR+dA

xR

T̄#ρdx+

∫ xR+dA

xR

ρdx = 2dA.
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This means that
∫ xR+dA

xL−dA
ρ ≥ 1− A(ρ)

50 . If xR + dA − (xL − dA) ≤ 1, then by definition of asymmetry

A(ρ) ≤ 2

∫ xL−dA

−∞
ρ dx+ 2

∫ +∞

xR+dA

ρdx ≤ A(ρ)

25
,

that is impossible. Hence, we know that xL − dA + 1 < xR + dA. Since we proved that xR − xL ≤ A(ρ)
25 , we

obtain an inequality always valid in our case: xR + dA − (xL − dA) = 1− A(ρ)
50 + xR − xL ≤ 1+ A(ρ)

50 . Therefore,
we have that

A(ρ) ≤ 2

∫ xL−dA+1

xL−dA

(1− ρ) dx ≤ 2

∫ xR+dA

xL−dA

(1− ρ) dx ≤ 2(xR − xL + 2dA)− 2

(
1− A(ρ)

50

)
≤ 2 +

A(ρ)

25
− 2 +

A(ρ)

25
=

2

25
A(ρ),

and thus we reach a contradiction, concluding the last remaining case.

Appendix A. Sketch of the measurability of the construction
in Theorem 3.6

In Theorem 3.6 we needed to check that the density

(r, ω) 7→ ζ̄ω(r)

is measurable, where ζ̄ω satisfies Wp(ρ
ω) = Wp(ρ

ω, ζ̄ω). This is necessary to have the representation in (3.13).
To do that, we approximate ρ in L1 with densities ρk ∈ A that are piecewise constant along the sphere. In other
words, for every k there exists a partition of the sphere SN−1 =

⋃
j E

k
j with sets such that diam(Ek

j )+ |Ek
j | ≤ 1/k,

and such that for every j

ρk(rω) = ρk(rω
′) ∀ω, ω′ ∈ Ek

j .

We construct the following densities: for every k and every ω ∈ SN−1 we take ζ such that Wp(ρ
ω
k ) = Wp(ρ

ω
k , ζ)

(in the metric-measure sense), and we define

ζk(r, ω) = ζ(r).

In other words, ζωk is the optimal density to compute Wp(ρ
ω
k ). This density is measurable since it is piecewise

constant along the sphere. Since ρk → ρ in L1, then ρωk → ρω in L1 for a.e. ω ∈ SN−1. For this reason, we say
that ζωk → ζ̄ω in weak∗ sense for a.e. ω.

To see this, notice that ζωk converges to some density ϕω because the sequence ρωk is bounded in L∞, and the
transport distance is bounded when the mass of ρωk is finite, that happens for a.e. ω. By lower semicontinuity
of the transport distance we have that

Wp(ρ
ω) = Wp(ρ

ω, ζ̄ω) ≤ Wp(ρ
ω, ϕω) ≤ lim inf

k
Wp(ρ

ω
k , ζ

ω
k ) = Wp(ρ

ω),

where we used that ρω + ϕω ≤ 1 in the first inequality, and the continuity of Wp with respect the weak∗
convergence in the last equality. Since the optimal density to computeWp(ρ

ω) is unique, then ζ̄ω = ϕω = limk ζ
ω
k .

We finally conclude because ζk → ζ∞ for some ζ∞ in weak∗ sense, and ζ∞ is therefore measurable. Moreover,
a little argument shows that, whenever fk : X×Y → R converges in weak∗ sense to f (X and Y being reasonable
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spaces, in our case X = R+ and Y = SN−1), then for almost every y ∈ Y we have that

fk (X × {y}) ∗
⇀ f (X × {y}).

Hence, for almost every ω ∈ SN−1 we have that

ζωk
∗
⇀ ζω∞,

and our previous argument shows also that

ζωk
∗
⇀ ζ̄ω for a.e. ω ∈ SN−1.

Combining these facts, we get that ζ̄ = ζ∞ almost everywhere, and thus ζ̄ is measurable, as we wanted.
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is partially supported by the INdAM–GNAMPA 2023 Project Problemi variazionali per funzionali e operatori non-locali,
codice CUP E53C22001930001. D.C. wishes to thank Virginia Commonwealth University for the generous hospitality
provided during his visit, which marked the beginning of this project. I.T.’s research was partially supported by a Simons
Collaboration grant 851065 and an NSF grant DMS 2306962.

References

[1] L.A. Caffarelli and R.J. McCann, Free boundaries in optimal transport and Monge–Ampère obstacle problems.
Ann. Math. 171 (2010) 673–730.

[2] A. Figalli, The optimal partial transport problem. Arch. Ration. Mech. Anal. 195 (2010) 533–560.

[3] E. Indrei, Free boundary regularity in the optimal partial transport problem. J. Funct. Anal. 264 (2013) 2497–2528.

[4] G. Buttazzo, G. Carlier and M. Laborde, On the Wasserstein distance between mutually singular measures. Adv.
Calc. Var. 13 (2020) 141–154.
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