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1 Introduction

The S-matrix has played a central role in the development of quantum field theory [1–3]. It
is how we connect theories, such as the Standard Model Lagrangian, to phenomenological
predictions for observables, such as cross-sections. Since S-matrix elements are free from the
gauge and other redundancies that affect the Lagrangian or Hamiltonian, they are the natural
objects to compare with data or to compare when discriminating between different models.
Most effective field theories are built on the idea that their effective parameters can be fixed by
matching their low-energy S-matrix elements onto the S-matrix of the underlying high-energy
theory. Fundamental physical principles, such as causality and unitarity, are encoded in
the S-matrix as concrete mathematical properties, such as analyticity and positivity. These
properties underpin many modern amplitude techniques (see e.g. [4–6] and [7–9] for modern
reviews) and can be used to bound the space of consistent quantum field theories (see
e.g. [10–13] and [14, 15] for modern reviews).
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Historically, it was data from colliders that drove much of the early progress in establishing
S-matrix theory. Today, the cosmological collider programme aims to use the inflationary
expansion of the early Universe to probe the new degrees of freedom that become important
at very high energy / high spacetime curvature [16, 17]. Due to the strong gravitational
fields, quanta of these new fields can be excited from an initial vacuum state and this
particle production leaves a characteristic correlation in fluctuations of the Cosmic Microwave
Background and the large scale structure of galaxies — signals that could be within the reach
of upcoming sky surveys; for reviews see [18, 19], and for a recent analysis see [20]. By now
there are numerous studies of the cosmological correlators produced by inflation (see [21, 22]
for modern reviews). The earliest focus was on computing in-in correlation functions, which
are the field-theoretic objects most directly connected to what we observe in the CMB. More
recently, the wavefunction of the Universe has emerged as an economical way to capture
these observables, as it has many nice properties that are less manifest at the correlator level.
However, despite many interesting connections to flat-space scattering amplitudes [23–25],
the wavefunction leaves much to be desired. For instance, the cutting rules which encode
perturbative unitarity are more involved than on Minkowski [26–33], the spectral density
is not guaranteed to be positive [34], and there is no manifest double copy structure (but
see [35–37] for progress in this direction). In most formulations, the wavefunction coefficients
themselves are not invariant under field redefinitions and are sensitive to total derivative
(boundary) terms in the action.

Recently, in an effort to describe cosmological collider phenomenology in a language that
more closely parallels flat space amplitudes, we introduced an S-matrix for the inflationary
patch of de Sitter spacetime [38]. This object describes the time evolution from the past
cosmological horizon to future null infinity1 and is naturally insensitive to field redefinitions
and total derivatives, since it is defined using particle eigenstates rather than field eigenstates.
Once a particular field basis is specified, the wavefunction and cosmological correlators can
be constructed from this S-matrix, so it encodes all of the physically relevant information
about the dynamics.

One challenge, however, is to explicitly compute these S-matrix elements. Like its
wavefunction counterpart, the naive construction in terms of (τ,k) co-ordinates (conformal
time and spatial momentum) leads to nested integrals over products of Hankel functions:
frightening special functions whose analytic structure is often far from clear. Rather than
an inevitable feature of de Sitter, we would describe this as an inevitable feature of the co-
ordinates. A similar situation would be encountered on Minkowski spacetime if one attempted
to compute amplitudes in position space by performing time-integrals over products of
Feynman propagators (which are also Hankel functions). Of course, on Minkowski we
know the resolution — rather than work in position space, the propagator and corresponding
scattering amplitudes become remarkably simple once expressed in terms of covariant momenta
pµ. Crucially, the original position space correlator corresponds to an integral over all values

1In contrast, the S-matrix elements for global de Sitter that were constructed in [39] describe time evolution
from past null infinity to future null infinity. One advantage of working in the expanding Poincaré patch is that
the Bunch-Davies vacuum condition can be imposed directly on the asymptotic in-states, rather than on an
intermediate horizon, which connects our S-matrix elements more directly to the primordial non-Gaussianities
that characterise the early Universe.
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of the energy p0, despite the fact that on-shell particles propagate with p0 =
√
|p|2 +m2.

The extension to off-shell values of the energy is central to how we simplify and analyse
Minkowski amplitudes.

In this work, we extend the de Sitter S-matrix to off-shell kinematics and identify a
particularly convenient set of “energy” variables which mirror the 4-momenta of Minkowski
spacetime. This allows us to explicitly compute a much larger class of Feynman diagrams,
some of which enjoy a surprisingly simple analytic structure. Since all equal-time correlation
functions can be extracted from the de Sitter S-matrix, these technical advances provide
another tool with which to analyse inflationary correlation functions.

For example, suppose we have a simple interaction like (∇ϕ)2σ, where σ is a heavy scalar
field with mass m2

σ = µ2
σ + d2

4 , and we want to answer a question such as:

Find the S-matrix for 2 → 2 scattering mediated by σ, and show that its connected
part is sign-definite in the forward limit.

On Minkowski, the answer is straightforward: focussing on the s-channel contribution,2

iS12→34 = p1 · p2 p3 · p4
m2

σ − s− iϵ
(Minkowski) (1.1)

we see indeed that the discontinuity

S12→34 + S∗
34→12 = (p1 · p2 p3 · p4) 2π δ

(
m2

σ − s
)

(Minkowski) (1.2)

implies a positive real part in the forward limit (p4 = p2 and p3 = p1), as required by
unitarity.3 The goal of this paper is to develop the technology needed to write down the
analogous answers in de Sitter just as simply. In the above example, our results lead to

S12→34 =
∫

ν

[p̂1 · p̂2 Fj2 ] [p̂3 · p̂4 Fj2 ]
(µ2

σ − ν2)iϵ
, (de Sitter) (1.3)

where p̂a·p̂b is a known differential operator and Fj2 is the two-particle mode function analogous
to ei(p1+p2)·x (both of which are uniquely fixed by the de Sitter isometries).

∫
ν represents

an integral over all mass values in the principal series and the (µ2
σ − ν2)iϵ is a particular

combination of (µ2
σ − ν2 ± iϵ) that accounts for particle production. The discontinuity is then

S12→34 + S∗
34→12 = S12→µσ S∗

34→µσ
+ S12µσ→0 S∗

34µσ→0 , (1.4)

where S12→µσ = [p̂1 · p̂2 Fj2 ], and we find it is also positive in the forward limit. Since
derivative interactions like this one are expected to dominate the cosmological collider signal
from inflation, and since the S-matrix and its positivity have played such an important role
in how we analyse signals from terrestrial colliders, we see this machinery as an important
theoretical step towards understanding the early Universe.

2We omit the energy and momentum conserving δ functions and also split the S-matrix into discon-
nected/connected pieces using Stotal = Sdiscon − Scon so that with our conventions the real part of Scon

is positive.
3On Minkowski we often define the scattering amplitude A via −Scon = iA (2π)d+1δd+1(ptotal), in which

case unitarity implies that the imaginary part of A is positive.
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We end this introduction with a short summary of our main results and conventions.
In the following section 2, we review the S-matrix proposal in [38] and provide an LSZ
reduction formula from time-ordered correlators in both the time and the energy domains.
Then through sections 3 and 4 we systematically describe all tree-level contact and exchange
diagram contributions to this S-matrix. We conclude in section 5 with some discussion of
future directions and provide an appendix containing useful identities for our mode functions.

1.1 Executive summary

For perturbative interactions between quantum fields on a fixed Minkowski background, there
is a clear and well-established path: we compute in-out S-matrix elements (i.e. scattering
amplitudes) as a function of the energy and momenta of each particle (i.e. the covariant pµ).
These objects are phenomenologically useful because they are closely related to the observable
cross section, and yet mathematically tractable since the principles of causality/analyticity
and unitarity ensure that they are “simple” functions of the Mandelstam variables.

When describing interacting quantum fields on a curved spacetime background, the best
way forward is far less clear. Asymptotic scattering states are more difficult to define (as the
vacuum is no longer unique) and Mandelstam variables are no longer sufficient to capture the
complete kinematics (as energy is no longer conserved). One must therefore decide

(i) which object to consider?

(ii) which kinematic variables to use?

In the context of cosmological collider physics, possible answers to (i) include correlations
functions, wavefunction coefficients or other notions of scattering amplitudes on de Sitter.
Possible answers to (ii) include labelling each field by its bulk position (τ,x), or by its
conformal time and spatial momentum (τ,k), or by angular momentum quantum numbers
adapted to the de Sitter isometry group. Each option has advantages and disadvantages:
some properties which are manifest in one object with certain variables may appear very
non-trivial in another object or variables.4

In this work, we have chosen to

(i) focus on amputated time-ordered correlators, which become S-matrix elements once
we put the external particles on-shell. These are analogous to off-shell scattering
amplitudes on Minkowski, where the pµ are no longer constrained by the condition
p2 = −m2.

(ii) label each field by a conformal energy ω and spatial momentum k, which are the Fourier
conjugates to τ and x. In the flat-space limit, (ω,k) reduces to pµ.

This choice seems to occupy the same sweet spot between being observationally useful and
being mathematically tractable. The on-shell limit of these correlators, in which ω is fixed

4We see this already to some extent on Minkowski, where causality corresponds to branch cuts in position
space with a clear physical meaning (reflecting the ordering ambiguity of time-like separated operators), but
this translated into an analytic structure in momentum space which can be very subtle, particularly beyond
4-particle scattering.
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in a mass-dependent way, determines the in-in correlators that we ultimately measure in
primordial non-Gaussianity. And yet, they have a simple analytic structure, crossing and
perturbative Feynman rules that allow them to be computed and studied with relatively
few special functions.

Main results. We derive a number of interesting features enjoyed by the amputated
correlator (off-shell S-matrix) when written in terms of the energy and momenta (ω,k) of
each field, including:

• Contact seed solutions. A quartic λϕ4 interaction gives a simple contact-diagram
contribution to the 4-point amputated correlator,

ω1

ω2

ω3

ω4
ϕ4

= iλΓ(d)
(iω1 + iω2 + iω3 + iω4)d

≡ λ Gcon
4 (1.5)

This basic structure, Gcon
4 is the analogue of the energy conserving δ-function in flat

space. Since time translations have been replaced by dilation invariance, the isometries
now require that the total energy appears with a fixed power (to ensure the correlator
has the correct scaling dimension) instead of requiring energy conservation.

• Covariant momenta. Using the de Sitter isometry generators, we construct a differential
operator p̂µ which corresponds to the Fourier transform of the covariant derivative
∇µ. The Feynman rules for derivative interactions are then simple: for instance the
interaction ϕ1ϕ2∇µϕ3∇µϕ4 produces an amputated correlator of −p̂3 · p̂4 Gcon

4 . These
momenta obey the useful relations that p̂2 is fixed in terms of the particle’s mass when
on-shell, and the total momentum operator ∑4

b=1 p̂b annihilates Gcon
4 .

• All contact diagrams. From this seed solution and covariant momenta, we can express
any contact-diagram (i.e. the contribution of any quartic interaction with arbitrarily
many derivatives) as

ω1

ω2

ω3

ω4

=
∑

a,b=0
cab t̂

b ŝa Gcon
4 , (1.6)

up to terms that vanish on-shell and do not contribute to any S-matrix element.
ŝ = −(p̂1 + p̂2)2 and t̂ = −(p̂1 + p̂3)2 are differential operators that are given explicitly
in (3.31) and which reduce to the usual Mandelstam s and t in the flat-space limit. For
example, the interaction ϕ1ϕ2∇2ϕ3ϕ4 gives

ŝ Gcon
4 =

(
−ω12ω34 − k2

s

) iΓ(d+ 2)
(iωT )d+2 (1.7)

where ωij = ωi+ωj and ks = |k1+k2| = |k3+k4|. The total energy ωT = ω12+ω34 → 0
in the flat-space limit, which produces the usual s = ω2

s − k2
s multiplying a divergence

that plays the role of the 2πδ(ωT ) in the Minkowski S-matrix.
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• Multi-particle mode functions. ŝ and t̂ do not commute, so it is not possible to diagonalise
both simultaneously. However, interactions that depend only on ŝ can be expressed
very simply using the eigenfunctions of this operator,

ŝa Gcon
4 = 1

(iks)d

∫
ν

(
ν2 + d2

4

)a
Fj2

(
ω12
ks
, ν

)
Fj2

(
ω34
ks
, ν

)
(1.8)

where
∫

ν = 2i
π

∫∞
0 dν ν sinh(πν) is an integral over all mass values in the principal series

(weighted by the appropriate de Sitter density of states). Fj2 has the interpretation of a
two-particle mode function and is the analogue of ei(p1+p2)µxµ on Minkowski. It is given
explicitly in (A.2) in terms of Legendre functions. (1.8) also makes manifest the fact
that (p̂1 + p̂2)2 = (p̂3 + p̂4)2 when acting on Gcon

4 , since it is symmetric in 12 ↔ 34.

• Exchange seed solutions. A cubic gϕ3 interaction gives the following exchange-diagram
contribution to the 4-point amputated correlator,

ω1

ω2

µ

ϕ3ϕ3

ω3

ω4

= (ig)2

(iks)d

∫
ν

Fj2

(
ω12
ks
, ν
)
Fj2

(
ω34
ks
, ν
)

µ2 − ν2 ≡ g2 Gµ
4 (1.9)

where µ is related to the mass of the exchange field by m2 = µ2 + d2

4 and the relevant iϵ
prescription for the pole is given in (4.16). This exchange structure obeys the equation(

m2 − ŝ
)
Gµ

4 = −Gcon
4 , (1.10)

and is therefore the analogue of 1/(m2 − s) on Minkowski.

• Any exchange diagram. (1.9) is the unique kinematic structure allowed by local inter-
actions compatible with de Sitter isometries, such that any exchange diagram can be
written as

ω1

ω2

µ
ω3

ω4

= −g2 Gµ
4 +

∑
a,b=0

cab t̂
b ŝa Gcon

4 , (1.11)

where again g and the cab correspond to constant model-dependent couplings. The t and
u channels are related to this s-channel diagram by a simple relabelling of the energies.

• Going on-shell. We derive the LSZ projection of these amputated correlators onto
the on-shell S-matrix. On Minkowski this is a simple algebraic replacement of ±ω =√
|k|2 +m2 for outgoing/ingoing particles, but on de Sitter going on-shell requires

integrating over all ±ω > |k| for outgoing/ingoing particles in the following way:

out⟨k3k4|k1k2⟩in ∝
∫
d4ρ eiµ·ρ G4 (1.12)

with ω1 =−|k1|coshρ1 , ω2 =−|k2|coshρ2 , ω3 =+|k3|coshρ3 , ω4 =+|k4|coshρ4 .

Note that µ·ρ = µ1ρ1+µ2ρ2+µ3ρ3+µ4ρ4, where each µb is related to the mass of particle
b by m2

b = µ2
b + d2

4 . Remarkably, while going from the time-domain n-point correlator

– 6 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
1

to the n-particle S-matrix requires doing n integrals over Hankel mode functions,
this operation can be replaced by doing a pair of Fourier transforms (first n Fourier
transforms from τ to ω = ±|k| cosh ρ, and then a further n Fourier transforms from ρ to
µ). The first of these is straightforward, producing simple expressions like (1.5) for G4.
The second transform, for generic mass parameter µ, converts these simple expressions
into complicated multi-variate hypergeometric functions (for (1.5) specifically, the result
of (1.12) is a Lauricella function). All of the dynamical information is encoded in the
simpler G4 — the projection onto an S-matrix element is purely kinematics (since (1.12)
is the universal integral transform that would be applied to any model, regardless of its
detailed field content or interactions). This demonstrates that much of the complexity
of cosmological correlators stems from how we treat the asymptotic (free) propagation
of the fields!

• Conformally coupled scalars. For conformally coupled external masses, going on-
shell via (1.12) is simple and amounts to setting ω = ±|k| for outgoing/ingoing and
lowering the spacetime dimension by 2. An off-shell correlator in d dimensions therefore
corresponds to a conformally coupled S-matrix element in d+2 dimensions, at least for
4-particle scattering at tree-level. This immediately implies that all previous literature
that has computed such wavefunction coefficients or S-matrices for conformally coupled
scalars can be applied to the study of the underlying off-shell correlator. The slogan
would be: an off-shell S-matrix element (for fields of any mass) is as simple as an
on-shell object with conformally coupled masses5—typically simple rational functions
at tree level [40].

• Exchange bootstrap. One example of conformally coupled technology that can be readily
applied to amputated correlators is the bootstrap approach of [41–43], which solves an
exchange equation analogous to (1.10) by demanding only physical singularities. The
same approach can be applied to the off-shell correlators with two adjustments. First,
the two s-channel variables u and v are now functions of the off-shell energy

u = |k12|
ω1 + ω2

, v = |k34|
ω3 + ω4

. (1.13)

Solving (1.10) will produce functions of u and v with undetermined constants of integra-
tion: fixing these corresponds to deciding which object one is considering (wavefunction,
S-matrix or correlator). The relevant boundary conditions for the S-matrix (with all
particles outgoing) are that it is regular at u, v → +1 and that any singularity at
u, v → −1 must be regular as the other variable v, u → −1 (i.e. no singularities in
overlapping channels, a consequence of factorisation). For instance, for the exchange of
a conformally coupled scalar in d = 3, this procedure gives

k3
s Gµ=i/2

4 = − uv(u+ v + 2uv)
2(1 + u)(1 + v)(u+ v) , (1.14)

5The shift in the dimension typically also reduces complexity, for instance the exchange diagram with
all fields conformally coupled gives the dilogarithmic expression (2.15) for the on-shell S-matirx in d = 3
dimensions, but the underlying off-shell correlator is a simple rational function (see (1.14)) that coincides with
the S-matrix in d = 5 with each momentum magnitude kb → ωb.
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which agrees with the explicit bulk time integral. The on-shell S-matrix can then be
found by performing the LSZ integrals (2.11) to project from ωb = kb cosh ρb onto any
desired mass state. The same bootstrap approach can also be used to find the on-shell
S-matrix elements directly, in which case we set ωb = kb in u and v so they reduce
to the variables of [41], but retain the adjusted boundary conditions relevant for the
S-matrix. For four conformally coupled scalars exchanging a generic massive field,
solving the exchange equation with this factorisation condition gives (4.55).

• Unitarity cuts. The “discontinuity” of our exchange solution (4.55) is

S0→1234 + S∗
1234→0 = S0→12µ Sµ→34 + Sµ→12 S0→34µ . (1.15)

This reflects the simplicity of perturbative cutting rules for the S-matrix, which require
fewer terms than their wavefunction counterparts. In fact, the integral representa-
tion (1.9) is particularly well-suited for proving that (1.15) holds for any tree-level
diagram. Going beyond individual tree-level diagrams, we derive a simple optical
theorem for the on-shell S-matrix elements which closely parallels the usual Minkowski
result: the only conceptual difference is that terms which were forbidden in flat space
due to energy conservation (such as S0→12µ) can contribute to the de Sitter discontinuity.
In spite of these additional terms, we find that unitarity connects the discontinuity
S12→12 + S∗

12→12 to a sum of positive terms (S12→IS∗
12→I) in the forward limit. Posi-

tivity of the forward discontinuity is a crucial ingredient of the Minkowski S-matrix,
underpinning the S-matrix bootstrap and positivity bounds for effective field theories,
and we will explore its consequences further in future work.

• Higher-point interactions. Finally, all of the above generalises straightforwardly to
more than 4 particles, and we describe how to use n-point seed solutions and general
multi-particle mode functions to express any tree-level Feynman diagram for scalar fields
in terms of a small number of unique exchange structures (the analogues of 1/(m2 − p2)
on Minkowski) plus a derivative expansion in powers of Mandelstam operators.

Overall, we see these results as forming the basis of future investigations into the mathematical
structure of amputated correlators and their use as a well-defined QFT observable that can
be computed and constrained in inflationary field theories.

1.2 Notation and conventions

Throughout we consider the expanding Poincare patch of a fixed de Sitter spacetime with an
odd d spatial dimensions, ds2 = (−τ)−2 (−dτ2 + dx2), where −∞ < τ ≤ 0 and we work in
units where the Hubble rate H = 1. For a real scalar field ϕ(τ,x) of mass m2 = (d/2)2 + µ2,
we split the action S = Sfree + Sint, where the free quadratic action is

Sfree[ϕ] = −1
2

∫
dτddx

√
−g

(
gαβ∂αϕ∂βϕ+m2ϕ2

)
(1.16)

and Sint contains all the non-linear interactions. Fields in the so-called “principal series”
have sufficiently large masses that the parameter µ = +

√
m2 − d2/4 is real — our discussion

– 8 –
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will begin with these fields and treat light fields as an analytic continuation6 from real to
imaginary µ. The canonically normalised7 field is

φ(τ,x) = (−τ)−d/2ϕ(τ,x) , (1.17)

so that solutions to the free equations of motion for φ can be written as f±(kτ ) with Wronskian
f−iτ∂τf

+ − f+iτ∂τf
− = 1. Its spatial Fourier transform is φ(τ,k) =

∫
ddx e−ik·xφ(τ,x)

where k ·x =∑3
i=1 kix

i is τ -independent.8 Since both our background and interactions will be
invariant under spatial translations, we will often factor out the overall momentum-conserving
δ function which is guaranteed by this symmetry. This is denoted by a prime like so:

⟨O(k)⟩ = (2π)dδd (k) ⟨O(k)⟩′ . (1.18)

In [38], we showed how the time-ordered correlator of n canonically normalised scalar
fields could be projected onto a set of “S-matrix elements” by amputating the external
legs and going on-shell — analogous to the familiar LSZ procedure on Minkowski. This
work is an extension of those ideas, and we will use the following taxonomy to describe
the different kinds of correlator:

Correlator: out⟨0|T φ̂1 . . . φ̂n|0⟩in

Amputated correlator:
(∏n

j=1 iEj

)
out⟨0|T φ̂1 . . . φ̂n|0⟩in

On-shell amputated correlator:
(∏n

j=1
∫

τj
fj

) (∏n
j=1 iEj

)
out⟨0|T φ̂1 . . . φ̂n|0⟩in

where |0⟩in (|0⟩out) is the state that coincides with the free Bunch-Davies vacuum in the far
past (future), Ej is the free equation of motion for φj given in (2.3) and fj is the corresponding
mode function (f+ for outgoing particles and f− for ingoing particles). Each field will always
be labelled by a spatial momentum k, together with a single additional variable which can
be either τ or ω, and we collect these kinematic variables into a column argument like so:

Gn

(
τ1
k1
, · · · , τn

kn

)
= out⟨0|T φ̂(τ1,k1) . . . φ̂(τn,kn) |0⟩′in (1.19)

Gn

(
τ1
k1
, · · · , τn

kn

)
=

 n∏
j=1

iEµj [kjτj ]

 out⟨0|T φ̂(τ1,k1) . . . φ̂(τn,kn) |0⟩′in

where the subscript on Gn or Gn is implicitly a list of all other quantum numbers (e.g. the
masses of the fields) and T is time-ordering in τ . We use the same notation for (amputated)

6The S-matrix elements, like the wavefunction coefficients, can develop late-time divergences for particular
imaginary values of the mass parameter µ. We restrict our attention to IR finite interactions, for instance
between only heavy fields or between light fields with derivative interactions.

7This normalisation will ensure that the canonical commutation relation for creation operators of φ quanta
is time-independent. Another advantage of this rescaling is that — since the quadratic Casimir for ϕ contains
∆̂(d− ∆̂), where ∆̂ is the generator of dilations — the Casimir for φ becomes a complete square,

(
d
2 − ∆̂

)2
.

This plays an important role in section 3, where we interpret this as the on-shell condition m2 = −p̂2.
8We use the same symbol to denote functions in different representations: for instance φ(τ,x) and φ(τ,k)

are of course different functions (one is the field in position space, the other is the field in momentum space).
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correlators written in terms of ω, which are related to those in the time-domain by a Fourier
transform in conformal time,

Gn

(
ω1
k1
, · · · , ωn

kn

)
=

 n∏
j=1

∫ 0

−∞

dτj

−τj
eiωjτj

Gn

(
τ1
k1
, · · · , τn

kn

)
. (1.20)

We will adopt a condensed notation when the same integral/differential operator Ô
(which can depend on the mass, momentum, time, etc.) acts on every field of a correlation
function, writing such expressions as[

n∏
b=1

Ô (µb, kb, τb, . . .)
]
Gn

(
τ1
k1
, . . . ,

τn

kn

)
≡
[
Ô (µ, k, τ, . . .)

]
Gn

(
τ

k

)
. (1.21)

For instance the Fourier transform (1.20) is then

Gn

(
ω

k

)
=
[∫ 0

−∞

dτ

−τ
eiωτ

]
Gn

(
τ

k

)
. (1.22)

We use the following notation for sums of energies and momenta,

ωab...z = ωa + ωb + . . .+ ωz , kab...z = ka + kb + . . .+ kz . (1.23)

k (and kab...z) denotes the magnitude of k (and kab...z). When discussing 4-particle kinematics,
we will use ks, kt and ku for the total spatial momentum in each channel:

ks = k12 = k34, kt = k13 = k24, ku = k14 = k23 (1.24)

It will also be useful to introduce the following shorthand:

jn = d

2(n− 1) , Jn = d

2(n− 2) (1.25)

such that jn + jn′ = Jn+n′ and where d is the number of spatial dimensions.
Finally, we would like to make a comment regarding our choice of sign/phase conventions.

The reader may wonder why some later expressions seem to contain inconvenient factors
of −1, i and

√
π. We suspect that a sufficiently prescient normalisation for the states and

mode functions could remove these. We have chosen to work with the conventions detailed
in appendix A, which are fixed by having:

(a) out⟨k′|k⟩in = (2π)dδ(k − k′), which fixes the normalisation of the state (up to a phase),

(b) the simple LSZ formula (2.7), which together with f+ = (f−)∗ fixes the normalisation
of the mode function in the time-domain,

(c) the simple integral transform (3.61), which fixes the normalisation of the mode function
in the energy-domain.

2 Observables from amputated correlators

In this section, we describe how amputated correlators, in both (τ,k) and (ω,k) variables,
can be projected onto S-matrix elements, and how these in turn can be used to construct
any desired cosmological correlator (which encode the primordial non-Gaussianity produced
by inflation).
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2.1 S-matrix from time-dependent correlators

We begin with a brief description of the de Sitter S-matrix recently introduced in [38]. These
S-matrix elements are defined through the usual adiabatic hypothesis that interactions turn
off sufficiently quickly in the far past/future that asymptotic states can be defined by matching
onto states of the free theory (which can be quantised exactly). In particular, we define |n⟩in
(|n⟩out) to be the states which coincide in the far past (future) with the free theory state that
has n particles in the far past (i.e. definite energy excitations on top of the Bunch-Davies
vacuum). The overlap between these different asymptotic states,

Sn′→n = out⟨n|n′⟩′in , (2.1)

was dubbed the “Bunch-Davies” S-matrix in [38].

States in the free theory. To extract (2.1) from the field theory S[ϕ], we first define
the instantaneous vacua and n-particle states of the free theory defined by the quadratic
action (1.16). In the Heisenberg picture, the time evolution of the φ operator can be written as

φ̂(τ,k) = f−(kτ, µ)â−k + f+(kτ, µ)â†k , (2.2)

where the mode functions f±(kτ, µ) satisfy the free equation of motion,

Eµ[kτ ]f±(kτ, µ) ≡
(
(τ∂τ )2 + k2τ2 + µ2

)
f±(kτ, µ) = 0 , (2.3)

with the boundary condition f± ∼ e±ikτ imposed at τ → −∞, which ensures that âk
diagonalises the instantaneous Hamiltonian in the far past. Consequently, âk|0⟩ = 0 defines
the Bunch-Davies vacuum state: the state with the lowest energy at time τ → −∞. A
complete basis of states for the Hilbert space is then provided by

|n⟩ = â†n . . . â
†
1|0⟩ (2.4)

where here the general label on â†b denotes the momenta kb of each particle together with its
other quantum numbers (e.g. mass µb) and |n⟩ denotes the complete list of n-particle data.

States in the interacting theory. For the interacting theory, we use the adiabatic
hypothesis, assuming that interactions turn off sufficiently quickly in the far past/future.
This allows us to construct a corresponding basis of states in the interacting theory. Although
the operator φ̂ is no longer a linear function of â and â†, the hypothesis is that the states
|0⟩out and |k⟩out, defined by

0 = lim
τ→0

if+(kτ, µ)(
↔
τ∂τ )φ̂(τ,k)|0⟩out

|k⟩out = lim
τ→0

if−(kτ, µ)(
↔
τ∂τ )φ̂(τ,k)|0⟩out , (2.5)

coincide9 with the free theory state |0⟩ and |k⟩ in the τ → 0 limit. Similarly, the states
|0⟩in and |k⟩in, defined by

0 = lim
τ→−∞

if+(kτ, µ)(
↔
τ∂τ )φ̂(τ,k)|0⟩in

|k⟩in = lim
τ→−∞

if−(kτ, µ)(
↔
τ∂τ )φ̂(τ,k)|0⟩in , (2.6)

9When two states “coincide” at a particular time in the Heisenberg picture, it means that they produce
the same physical expectation values at that time: e.g. out⟨β|O(τ)|α⟩out matches the free theory ⟨β|O(τ)|α⟩
as τ → 0.
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coincide with the free theory state |0⟩ and |k⟩ in the τ → −∞ limit. This can be demonstrated
explicitly in perturbation theory for all fields with masses m2 > d2/4 (and for lighter fields
with IR finite interactions).

LSZ reduction. With this definition of asymptotic states, the in-out overlap (2.1) can
be obtained from the time-ordered correlators of the interacting theory via the following
LSZ reduction formula [38],

S0→n(k)=
[∫ 0

−∞

dτ

−τ
f+(kτ,µ) iEµ[kτ ]

]
Gn

(
τ

k

)
=
[∫ 0

−∞

dτ

−τ
f+(kτ,µ)

]
Gn

(
τ

k

)
(2.7)

where we have used the condensed notation (1.21). This corresponds to amputating each
external propagator (acting with iE) and putting each external particle “on-shell” (integrating
against the free mode function). The S-matrix elements with ingoing particles are given by
the analogous expression with an f− mode function used for each ingoing particle.

Crossing. As on Minkowski, the CPT properties of the field can be used to “cross” particles
from ingoing to outgoing. In particular, thanks to the reality of φ in position space (which
implies φ̂(τ,−k) = φ̂†(τ,k)) and the CPT relation (A.7), we see that crossing a particle
corresponds to sending its k → k̄, where k̄ denotes a suitable analytic continuation which gives
−k when appearing as vector and |k̄| = e−iπk when appearing as a magnitude. This procedure
first appeared in [26, 27] and has recently been discussed in various works [26–30, 32, 33].
In practice, this means that once one n-particle S-matrix is known as a function of the n
individual momenta, all other channels can be derived using this analytic continuation, e.g.

S0→n(k1, . . . ,kn)
∣∣
kn→k̄n

= S1→n−1 (kn;k1, . . . ,kn−1) . (2.8)

Going off-shell. To make crossing manifest, [38] defined an “off-shell” S-matrix,

S̃n

(
k̃

k

)
≡
[∫ 0

−∞

dτ

−τ
f+(k̃τ, µ)

]
Gn

(
τ

k

)
(2.9)

which is a function of d+1 variables per particle. This coincides with the all-outgoing channel
S0→n when every k̃b → +|kb|, and coincides with the other channels when k̃b → e−iπ|kb| for
each ingoing particle. At the level of this off-shell S-matrix, crossing corresponds to the simple
operation (k̃,k) → (−k̃,−k), and therefore the function S̃n efficiently encodes all Sn1→n2

matrix elements with n1 +n2 = n. Another advantage of the off-shell extension (2.9) is that it
is precisely analogous to the off-shell wavefunction defined in [34]—it is an analytic function of
each k̃b in the lower-half of the complex plane, satisfies interesting UV/IR dispersion relations
and has a discontinuity in complex k̃2 that is fixed by the cutting rules of [28, 29]. However,
in practice the bulk time integrals in (2.9) are difficult to perform explicitly and can lead to
complicated special functions. In this work, we will therefore explore a different way of making
crossing manifest: by studying the amputated correlator Gn itself. We will occasionally refer
to Gn as an “off-shell” S-matrix, since it is the integration over the mode function that sets
the particles on-shell (sets ω = ±

√
k2 +m2) on Minkowski. In either case, S̃n or Gn are

effectively introducing one additional variable for each field in order to conveniently unify all
n-particle channels into a single object with a simpler mathematical structure.

– 12 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
1

2.2 S-matrix from energy-dependent correlators

We will find below that the Fourier transform (1.20) from conformal time τ to a conformal
energy ω will simplify many perturbative computations. Before proceeding, it is worthwhile
to check how these energy-dependent correlators are related to the S-matrix.

LSZ reduction. The key observation is that the Hankel mode functions f±(kτ, µ) can
be written as10

f±(kτ, µ) =
[
−
√
π

∫ +∞

−∞

dρ

2π e
iµρ
]
e±ikτ cosh ρ (2.10)

and therefore a Fourier transform from conformal time to ω = ±k cosh ρ will replace the
f± mode functions with simple factors of eiµρ. Substituting (2.10) into the LSZ reduction
formula (1.12) immediately gives,

S0→n(k) =
[
−
√
π

∫ +∞

−∞

dρ

2π e
iµρ
]
Gn

(
ω

k

) ∣∣∣∣∣
ω=+k cosh ρ

≡ LSZ
[
Gn

(
ω

k

)]
. (2.11)

On Minkowski, going on-shell is a simple algebraic procedure (i.e. set ω equal to +
√
k2 +m2

for each outgoing particle). On de Sitter, this is replaced by the above integral over all
ω ≥ k. This reflects the fact that ω is not related to any conserved quantity on de Sitter. In
fact, ρ appears naturally as a Schwinger proper time for each particle, and integrating over
ω = k cosh ρ accounts for the redshifting of the particle energy as it propagates through this
expanding de Sitter spacetime. The ω variables are computationally useful but since eiωτ is
not a solution of the free equations of motion (not an eigenfunction of the de Sitter Casimir)
it does not represent a propagating particle. We will therefore refer to (2.11) as “projecting
onto mass eigenstates”, since this ρ integral effectively projects eiωτ onto f±(kτ, µ), which
does represent a freely propagating particle (is an eigenfunction of the de Sitter Casimir).

Crossing. To project a field onto an ingoing mass eigenstate, we must use f− in place of
f+ in the LSZ formula. Since they are related by complex conjugation, we see from (2.10)
that this amounts to setting ω = −k cosh ρ in (2.11). The same LSZ reduction applied to
Gn with (ωb,kb) replaced by (−ωb,−kb) would therefore produce the S-matrix with particle
b incoming. At the level of Gn, crossing is therefore very simple and does not require any
analytic continuation of |k|. For instance, the 3-particle S-matrix elements are given by
the following LSZ reductions,

⟨k1k2k3|0⟩=LSZ
[
G3

(
+ω1
+k1

,
+ω2
+k2

,
+ω3
+k3

)]
, ⟨k2k3|k1⟩=LSZ

[
G3

(
−ω1
−k1

,
+ω2
+k2

,
+ω3
+k3

)]
,

⟨k3|k1k2⟩=LSZ
[
G3

(
−ω1
−k1

,
−ω2
−k2

,
+ω3
+k3

)]
, ⟨0|k1k2k3⟩=LSZ

[
G3

(
−ω1
−k1

,
−ω2
−k2

,
−ω3
−k3

)]
.

(2.12)
10The −

√
π is an unfortunate consequence of how we have normalised the mode functions, see appendix A.
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Conformally coupled fields. When the external particles have the “conformally coupled”
mass µ = i/2 (e.g. m2 = 2H2 in d = 3 dimensions), then the LSZ integrals are very simple.
In fact, comparing the time-domain LSZ formula (1.12) with the definition of Gn in (1.20), we
see that the replacement f±(kτ, µ) → e±ikτ for the external mode functions would transform
an S-matrix element into an amputated correlator with ω = k. Since f± = e±ikτ/

√
∓2ikτ

for conformally coupled scalars, we see that the S-matrix for scattering such fields is very
nearly the amputated correlator with ω = ±k, but with some additional factors of τ . One
way to account for these factors is to shift the spacetime dimension. At a vertex with nV

legs, of which nE are external conformally coupled legs, the replacement

d→ d− nE

nV − 2 (2.13)

would account for the extra τ factors. For the 4-particle S-matrix, there are only two possible
diagram topologies at tree-level — the contact diagram (with nE = nV = 4) and the exchange
diagram (with nE = 2 and nV = 3 at each vertex)—and in both cases (2.13) yields d→ d− 2.
We therefore have the neat relation

G4

(
ω = k

k

) ∣∣∣∣∣
d−2

=
[ 4∏

b=1

√
2ikb

]
S0→4

∣∣
d

(conformally coupled at tree-level) (2.14)

For instance, the S-matrix for four conformally coupled scalars exchanging a conformally
coupled scalar is [38]:[ 4∏

b=1

√
2ikb

]
S0→4

∣∣
d=3 = −1

2ks

(
Li2

(
k1 + k2 − ks

kT

)
+ Li2

(
k3 + k4 − ks

kT

)
− π2

6

)
, (2.15)

[ 4∏
b=1

√
2ikb

]
S0→4

∣∣
d=5 = − kT + 2ks

2kskT (k1 + k2 + ks)(k3 + k4 + ks)
(2.16)

while the underlying off-shell correlator is

G4

(
ω

k

) ∣∣∣∣∣
d=3

= − ωT + 2ks

2ksωT (ω12 + ks)(ω34 + ks)
(2.17)

We immediately see that (2.17) and (2.16) indeed satisfy (2.14), and it can be shown that
the Fourier transform of (2.17) from ρ to µ = i/2 indeed produces (2.15).

Mass as an angular momentum. The simplicity of (2.11) comes about because the Fourier
transform from τ to ω transforms the equation-of-motion operator (2.3) into a simpler operator[∫ 0

−∞

dτ

−τ
eiωτ

]
Eµ [kτ ] =

(
p̂2 +m2

) [∫ 0

−∞

dτ

−τ
eiωτ

]
(2.18)

where11

p̂2 = (ω∂ω)2 − k2∂2
ω − d2

4 = ∂2
ρ − d2

4 when ω = ±k cosh ρ . (2.19)
11There is a choice to be made here about whether E → p̂2 +m2 or p̂2 + µ2. With the former choice, p̂

corresponds to the momentum of ϕ, and we will see below that this gives very simple Feynman rules for
interactions like (∇ϕ)4. With the latter choice, p̂ corresponds to the momentum of φ. This leads to some
simplifications, such as p̂2 = ∂2

ρ ≈ −µ2 when on-shell, however these come at the cost of more complicated
Feynman rules.
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Since the f± mode functions are eigenfunctions of E , in the energy domain they are eigen-
functions of p̂2, with eigenvalue −m2. The mass parameter µ2 = m2 − d2/4 corresponds to
an “angular momentum” of the de Sitter isometry group SO(d+ 1, 1). Physically, the change
of variables from τ to ω makes this manifest since now ρ is an angle (rapidity) conjugate to
this angular momentum. While (τ,k) is a conceptually convenient set of variables — since
we measure correlators imprinted in the CMB after the end of inflation (fixed time) as a
function of their wavenumber (fixed k)—they obscure much of the mathematical structure
because τ and k are on very different footing. Just as the simplicity of Minkowski correlators
only becomes manifest in terms of (ω,k), here too we find that transforming both τ and
x to conjugate variables can lead to simpler results.

Going on-shell. One important simplification is that, in terms of (ω,k), it is straightforward
to see whether a given correlator Gn will contribute to the S-matrix or whether it will vanish
when going on-shell. On Minkowski, this is simply the observation that p2 = −m2 when
on-shell, and so terms proportional to p2 +m2 in the amputated correlator will not contribute
to the S-matrix. On de Sitter, the analogous observation is that[∫ +∞

−∞

dρ

2π e
iµρ
] (
p̂2 +m2

)
F (ω,k) |ω=±k cosh ρ = 0 , (2.20)

upon integration by parts in ρ. In anticipation of this integral, which is required to project
Gn onto an S-matrix element, we will make use of the relation

p̂2 ≈ −m2 (2.21)

where ≈ should be understood as “equal up to terms which do not contribute to the on-shell
S-matrix”. In particular, a term in Gn that is proportional to (p̂2+m2) acting on any function
F will vanish when going on-shell.

Field redefinitions. A useful feature of the de Sitter S-matrix elements is that they are
invariant under perturbative field redefinitions, unlike the correlators Gn which are sensitive
to our choice of field basis. However, while the amputated correlators Gn are generally not
invariant under a field redefinition, they are guaranteed to shift by terms proportional to
p̂2 +m2 which vanish once we set p̂2 ≈ −m2. This lets us enjoy the best of both worlds:
an amputated correlator which is computationally simpler than the S-matrix, and which
retains the independence under field redefinitions. To see how this happens, note that the
free action for φ can be written as

Sfree =
1
2

∫
ddk
(2π)d

∫ 0

−∞

dτ

τ
φ(τ,−k) Eµ[kτ ]φ(τ,k) (2.22)

up to a boundary term that affects only the power spectrum. A perturbative redefinition
φ → φ + F [φ] will therefore shift the action by

S → S + δSint
δϕ

F + 1
2

∫
ddk
(2π)d

∫ 0

−∞

dτ

τ
FEµ φ+O

(
F 2
)
. (2.23)

Now, suppose F [φ] contains a term with n fields and Sint contains a term with n′ fields.
Since the contact contribution of FEφ to the (n+ 1)-point correlator Gn+1 is proportional to(
p̂2 +m2), this is trivial once we go on-shell using (2.11) because

(
∂2

ρ + µ2
)

becomes a total
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derivative. The δSint
δφ F term first contributes to the (n+ n′ − 1)-point correlator, but so does

an exchange diagram in which one vertex is the original Sint and the other is the FEφ term. In
this exchange diagram, the E will either act on an external line to give a trivial total derivative
as before, or it will act on the internal line: this collapses the propagator and produces a
contact contribution that exactly cancels with the δ

δφSintF term. This argument can be
generalised to any desired order in F , and shows that under perturbative field redefinitions
Gn is invariant up to terms ∝ (p̂2 +m2) that vanish on-shell.

Uniqueness. Another result presented in [38] is that invariance under field redefinitions
and total derivatives implies a unique 3-particle S-matrix (up to crossing). The perturbative
argument12 is that any cubic interaction can be integrated by parts into the form ϕ2□nϕ

(summed over different n), which contributes to S0→3 in the same way as m2nϕ3. This is
the analogue of the Minkowski result that the 3-point amplitude is uniquely fixed to be a
(possibly mass-dependent) constant. Since the amputated 3-point correlator is an off-shell
object, additional structures are possible (we describe them explicitly below), however these
all must vanish when p̂2 ≈ −m2 and we go on-shell. G3 is therefore unique up to terms
proportional to p̂2 + m2.

Furthermore, for the on-shell S-matrix there is a unique 4-point exchange structure
which describes the interaction of two ϕ’s via the exchange of a field σ (again up to crossing).
The argument is essentially the same: since the most general cubic vertex is equivalent to
ϕ2σ after integration by parts and a field redefinition, there can be only one independent
exchange contribution (from ϕ2σ × ϕ2σ) in each channel for the 4-particle S-matrix. For
the amputated correlator, we again find that any additional terms it may contain must
vanish when p̂2 ≈ −m2.

The conclusion is that invariance under field redefinitions (and the uniqueness of the
3-point and 4-point exchange structures) is a consequence of the on-shell relation (2.21),
which can be imposed without having to perform the LSZ integral (2.11) that projects onto
mass eigenstates. We shall therefore focus on amputated correlators G3 and G4 with the
condition that p̂2 ≈ −m2, as these are what determine the 3- and 4-particle S-matrix.

2.3 Cosmological correlators from the S-matrix

Our goal is to develop some machinery for computing the amputated correlators Gn(ω,k),
since these can then be taken on-shell using (2.21) and projected onto mass eigenstates
using (2.11). Before doing this, let us briefly recap how the resulting S-matrix elements are
related to the inflationary correlators that ultimately seed primordial non-Gaussianities in
the Cosmic Microwave Background and large-scale structure of galaxies.

Cosmological correlators. The late-time in-in correlation functions, often referred to as
simply “cosmological correlators”, are13,14

lim
τ→0 in⟨0| φ̂(τ,k1) . . . φ̂(τ,kn)|0⟩in =

∫
dφ φ(k1) . . . φ(kn) |Ψ[φ]|2 (2.24)

12The non-perturbative argument is that there are four possible solutions to the de Sitter Ward identities at
three points [44, 45], corresponding to the four scattering channels (2.12).

13If one used the original field ϕ in place of the canonical normalised field φ, then the correlator would
decay like τnd/2 at late times and require renormalisation to extract a meaningful prediction as τ → 0.

14Notice that we have assumed
∫
dφ |Ψ[φ]|2 = 1, otherwise this denominator should be explicitly included:

its role is to cancel vacuum bubble contributions.
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where Ψ is the late-time Bunch-Davies wavefunction and this integral is over all field
configurations on the τ = 0 spatial slice.15 The correlations between these small perturbations
produced during inflation can be related to those of the curvature perturbation ζ: these are
conserved on large-scales until they re-enter the horizon and imprint density perturbations
on the primordial plasma of the hot Big Bang cosmology (see e.g. [46]).

Wavefunction coefficients. The wavefunction is often parameterised in terms of “wave-
function coefficients” ψn,

Ψ[φ] = lim
τ→0

exp
[ ∞∑

n

[
n∏

b=1

∫
ddkb

(2π)d

φ(kb)
f+(kbτ)

]
ψk1...kn(τ)

n! (2π)dδd (kT )
]
, (2.25)

where our normalisation for ψn ensures they remain finite as τ → 0 (this is the “interaction
picture” of [27]). In [38], we showed that the coefficients of the late-time wavefunction are
related to the S-matrix elements by

lim
τ→0

ψn(τ) = lim
τ→0

∑
jB

j
n(τ) S0→j , (2.26)

where the Bj
n are known model-independent coefficients. For instance, the first two terms

that contribute to ψ4 are

lim
τ→0

ψk1k2k3k4(τ) = S0→k1k2k3k4 −
∫

q

f−

f+S0→k1k2k3k4q−q (2.27)

where f−/f+ is the late-time limit of f−(qτ)/f+(qτ) and captures the oscillatory behaviour
of ψ4 at late-times. The six-particle S-matrix contains both connected and disconnected
components: in perturbation theory its leading contribution is

S0→k1k2k3k4qq′ ⊃ S0→k1k2qS0→k3k4q′ + perm. (2.28)

At a fixed order in perturbation theory, it is straightforward to invert this relation to express
the S-matrix elements in terms of wavefunction coefficients. For instance, at leading order

S0→k1k2k3k4 = lim
τ→0

[
ψk1k2k3k4(τ) +

∫
q

f−(qτ)
f+(qτ) ψk1k2q(τ)ψk3k4−q(τ) + 2 perm.

]
(2.29)

where the ψ3 × ψ3 term arises from replacing (2.28) with wavefunction coefficients. This
means that previous results in the literature for the wavefunction coefficients can be translated
into properties of the S-matrix (at least in perturbation theory).

Born rule for correlators. On Minkowski, the magnitude-squared of the scattering ampli-
tude corresponds to an interaction probability, and the observable cross-section corresponds
to a phase space integral over this probability. On de Sitter, we have an analogous relation
between the in-in observable correlator and the square of the in-out scattering matrix,

lim
τ→0 in⟨0|φ̂(τ,k1) . . . φ̂(τ,kn)|0⟩′in = lim

τ→0

∑
j,j′ S∗

0→j C
jj′
n (τ) S0→j′ , (2.30)

15While inflation is not eternal and in reality this de Sitter expansion should terminate at some time before
the conformal boundary at τ = 0, since the correlator is dominated by the much earlier time at which the
modes cross the horizon using τ = 0 as our final time is a good approximation.
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where the Cjj′
n are known model-independent coefficients. For instance, separating each

S-matrix element into connected and disconnected parts, the primordial bispectrum is given
simply by,

lim
τ→0

⟨φ̂(τ,k1)φ̂(τ,k2)φ̂(τ,k3)⟩′∏3
b=1⟨φ̂(τ,kb)φ̂(τ,−kb)⟩′

= 2Re [S0→k1k2k3 ] . (2.31)

So once the amputated correlators Gn have been projected onto S-matrix elements, these
objects can be related to the cosmological correlators we would ultimately observe from
inflation. It is worth highlighting again the underlying philosophy behind this approach. We
know from explicit calculation that the observable in-in correlators are very complicated
functions of the spatial momenta. Motivated by the fact that observable cross-sections on
Minkowski become much more tractable when phrased in terms of the underlying scattering
amplitude as a function of pµ, here we are searching for an alternative to the in-in correlator
which could enjoy a simpler mathematical structure and be easier to compute, while still being
connected in a relatively straightforward way to observations. The amputated correlators
that we study here and their corresponding S-matrix elements are one promising candidate
for such an alternative.

3 Mandelstam operators for de Sitter

In this section, we define a “scattering amplitude” from the amputated correlator and show
that it can be written in terms of a basis of differential operators that are direct analogues of
the Mandelstam variables. For 4-particle scattering, these differential operators are similar in
spirit to the ones appearing in cosmological scattering equations [35, 47, 48], though they
act on the {ω,k} of the off-shell Gn rather than the {k} of the on-shell wavefunction or
S-matrix. In the on-shell limit, the Mandelstam ŝ and t̂ defined below should coincide with
those of the cosmological scattering equations.

3.1 Scattering amplitudes

On Minkowski, the scattering amplitude is extracted from the amputated correlator via16

Gn

(
ω1
k1
, . . . ,

ωn

kn

)
= A(p1, . . . , pn) 2πi δ (ωT ) (Minkowski) (3.1)

where pµ
b = (ω,k) is the energy and momentum of each particle, and δ functions impose

conservation of the total ωT =∑n
b=1 ωb and kT =∑n

b=1 kb. On de Sitter, we can analogously
extract an amplitude from the amputated correlator,

Gn

(
ω1
k1
, . . . ,

ωn

kn

)
= A(p1, . . . , pn) Gcon

n (ωT ) (de Sitter) (3.2)

where pb = (ωb,kb) denotes the conformal energy and spatial momenta of each field, and
Gcon

n is the simplest invariant allowed by the de Sitter symmetries.
16When ω2 = k2 +m2 for each particle, the amputated correlator becomes the Minkowski S-matrix and A

becomes the usual on-shell scattering amplitude. Here we are considering the off-shell amplitude for which p2

is independent of m2.
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A first example. Let us first consider the simplest polynomial interaction, λϕn. In terms
of the canonically normalised φ, the action is explicitly

Sint =
∫
ddx

∫ 0

−∞

dτ

−τ
(−τ)Jn

λ

n!φ
n , (3.3)

where Jn ≡ d
2 (n−2) depends on the number of fields and will correspond to the dilation weight.

At first order in small λ, the time-ordered correlation function ⟨T φ̂(τ1,k1) . . . φ̂(τn,kn)⟩′ is

Gn

(
τ1
k1
, . . . ,

τn

kn

)
= iλ

∫ 0

−∞

dτ

−τ
(−τ)Jn

n∏
b=1

Gµ
2 (kbτb, kbτ) , (3.4)

where Gµ
2 (kτ, kτ ′) = ⟨T φ̂(τ,k)φ̂(τ ′,−k)⟩′ is the Feynman propagator for a field of mass

m2 = µ2 + d2

4 . Since this propagator is a Green function for the equation of motion,17

iEµ[kτ ]Gµ
2
(
kτ, kτ ′

)
= −τδ

(
τ − τ ′

)
, (3.5)

amputating the external legs and transforming to the energy-domain gives

Gn

(
ω1
k1
, . . . ,

ωn

kn

)
= iλ

∫ 0

−∞

dτ

−τ
(−τ)Jn

n∏
b=1

eiωbτ = iλ
Γ(Jn)

(iω1 + . . .+ iωn + ϵ)Jn
, (3.6)

where the +iϵ is a small imaginary deformation that arises from making the τ → −∞
limit convergent.18 Comparing this with the Minkowski answer, iλ2πδ(ω1 + . . . + ωn), we
see that the energy-conserving δ-function has been replaced by a total-energy singularity
(which may be a pole or branch cut since Jn can be either integer or half-integer). Just as
δd (k1 + . . .+ kn) is required by translation invariance, the power of 1/(ω1 + . . .+ ωn)Jn is
fixed by dilation invariance, and so overall (3.6) is uniquely fixed by the de Sitter isometries.19

Seed solution. Regardless of whether a theory contains a particular ϕn interaction, it
will be useful to make reference to this de Sitter invariant combination, and so we shall
denote it by Gcon

n (to distinguish it from Gn, which is the actual correlator in whatever
theory is under consideration). Since it depends only on the total energy, we shall write
it with a single argument

Gcon
n (ωT ) =

iΓ (Jn)
(iωT + ϵ)Jn

. (3.7)

It is by factoring out this simple invariant that we can extract a scale-invariant amplitude
from Gn (see (3.2)). In the example of λϕn, this gives simply A = λ (which coincides with
the Minkowski result). These “seed correlators” will be the main building blocks of our
more general results for arbitrary derivative interactions in this section and for exchange
diagrams in the next section.

17The overall normalisation can be found by setting out⟨0|0⟩in = 1 and writing the free action as iSfree =
− 1

2

∫
dτ
iτ
ddx φEµφ in a Gaussian path integral.

18A nice way to keep track of the iϵ’s is to notice that since the time integral runs over negative values of τ
only, the result must be an analytic function of ω in the lower-half of the complex plane.

19Since both this interaction and diagram topology are invariant under the exchange of any two fields, the
resulting Gn must be a symmetric function of its arguments. Note that while in principal other symmetric
polynomials, e.g. ω1ω2 + perm. may have appeared in Gn, once the k dependence is fixed then the only
symmetric function of the ωb compatible with de Sitter boosts is (3.6).
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de Sitter symmetries. Since the underlying scalar field ϕ must transform in a particular way
under the de Sitter isometries, the correlators Gn satisfy various Ward identities (assuming
de Sitter invariant interactions). The most familiar of these follows from spatial translations,
which requires that the total spatial momentum is conserved — we have already factored out
the resulting δd(kT ). Another follows from dilations, which fixes the overall scaling dimension
of each Gn to be Jn = d

2(n− 2), which is one factor of d/2 for each canonically normalised
field plus the dimension of the δd(kT ). Since the equation-of-motion operator E represents
the quadratic Casimir of the de Sitter algebra, it commutes with dilations and therefore the
amputated Gn has the same scaling dimension. The amplitude A is therefore constrained to
have scaling weight zero: it must be a dimensionless function of the (ω,k). The final Ward
identity is from de Sitter boosts — these place an additional constraint on Gn and hence
on the amplitude. Both the dilation and boost constraint take a simple form when written
in terms of k and ρ (which determine the energy via ω = k cosh ρ),

0 =
(

n∑
b=1

D̂[kb]
)
An , 0 =

n∑
b=1

(
K̂[kb] +

kb

k2
b

∂2
ρb

)
An , (3.8)

where D̂[k] and K̂[k] are the symmetry generators of the d-dimensional conformal symmetries,

D̂[k] = k · ∂k , K̂[k] = 2k · ∂k ∂k − k ∂k · ∂k . (3.9)

These Ward identities provide a useful consistency check of the examples we provide below,
and it would be interesting to explore whether our results for the Mandelstam operators
could be bootstrapped directly from (3.8).

3.2 Covariant momenta

Now we turn to interactions that contain derivatives. In this case, it will be useful to
write the amplitude in terms of a time-dependent object, Âτ , that acts directly20 on the
eiωT τ within Gcon

n :

A(p1, . . . , pn) Gcon
n (ωT ) δd (kT ) =

∫ 0

−∞

dτ

−τ
(−τ)Jn Âτ [p1, . . . , pn] eiωT τ δd (kT ) . (3.10)

A second example. To build some intuition for how derivative interactions are expressed
in this way, consider the simple covariant interaction,

∫
ddxdτ

√
−g ϕn−2(∇ϕ)2. Writing

ϕ = (−τ)d/2φ and using the same identity (3.5) for amputating the external propagators,
this interaction gives the following contribution to the amputated n-point correlator21

Gn

(
ω1
k1
, . . . ,

ωn

kn

)

= i

∫ 0

−∞

dτ

−τ
(−τ)Jnei(ω3+...+ωn)τ τ2

(
τ−d∂τ

(
τd/2eiω1τ

)
∂τ

(
τd/2eiω2τ

)
− k1 · k2e

iω12τ
)

(3.11)
20We also include the δd (kT ) since below we express Âτ in terms of derivatives with respect to k, and since the

total momentum is conserved one must be wary of mistakenly replacing ∂k1f(k1) with ∂k1f(−k2−. . .−kn) = 0.
21Note that here we treat the fields as distinguishable for the sake of shorter expressions: for indistinguishable

fields one should sum over all permutations of the momenta.
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which can be written in the form (3.10) with

Âτ [p1, . . . , pn] = (ω1ω2 − k1 · k2) τ2 − d

2 iω12τ −
d2

4 ,

A(p1, . . . , pn) = Jn(Jn + 1)ω1ω2 − k1 · k2
ω2

T

− Jnd

2
ω12
ωT

− d2

4 . (3.12)

Note that this amplitude contains the Minkowski result as the leading term in the limit
of large τ / small ωT , i.e.

gαβ∇αϕ1∇βϕ2 ⇒ Âτ [p1, . . . , pn] = −τ2 p1 · p2

(
1 +O

( 1
pτ

))
, (3.13)

where p1 · p2 = −ω1ω2 + k1 · k2. This turns out to be the general structure of all contact
amplitudes: an arbitrary contraction of covariant derivatives in the action will produce the
corresponding contraction of p’s in Âτ , plus corrections which have fewer powers of the
momenta/conformal time and which account for the background curvature.

Momentum operators. We now describe a systematic way to determine the curvature
corrections to Âτ and A directly in the energy-domain, without explicitly expanding out the
∇µ derivatives as in the example above. The central idea is to find a differential operator p̂µ(τ)
in terms of ω and k that produces the same correlator as ∇µ in the time-domain. For instance

[−τ∇µ] (−τ)d/2eiωτ−ik·x = (−τ)d/2e−ik·x [ip̂µ(τ)] eiωτ , (3.14)

where the factor of (−τ)d/2 is from our normalisation of φ. Concretely, we seek a p̂µ(τ) that
produces pµ = (−ωτ + id

2 ,kτ) when acting directly on eiωτ , and which also respects the same
commutation relation as the covariant derivatives, which is

[[∇µ,∇ν ],∇α] = gµα∇ν − gνα∇µ (3.15)

since Rµναβ = gµαgνβ − gµβgνα on a maximally symmetric spacetime.
One convenient solution with these properties is

p̂µ(τ) =
(

iD̂[p]
τ
2 ki + 1

2τ K̂i[p]

)
, (3.16)

where the operators22

D̂[p] = ω∂ω + ki∂ki
+ d

2
K̂i[p] = ki(−∂2

ω + ∂kj
∂kj )− 2D̂ [p] ∂ki (3.17)

are related to the generators of the dilation/boost isometries of the de Sitter spacetime, which
makes it straightforward to verify that they satisfy the commutation relation (3.15).

22Note that all spatial indices are raised/lowered using δij .
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The amplitude in the preceding example can then be written very succinctly as23

gαβ∇αϕ1∇βϕ2 ⇒ Âτ [p1, . . . , pn] = −ηµν p̂
µ
1 (τ)p̂ν

2(τ) (3.18)

where it is the commutation relations between D̂ and K̂ that fully account for the subleading
terms in (3.13).

A third example. These p̂µ(τ) operators lead to even greater simplifications as the number
of derivatives grows. For example, consider the covariant

∫
ddxdτ

√
−g ϕn−2(∇α∇βϕ)2.

Following the above discussion, we can immediately write down the energy-domain amplitude

Âτ [p1, . . . , pn] = (ηµν p̂
µ
1 (τ)p̂ν

2(τ))
2
. (3.19)

Expanding out the D̂ and K̂ operators leads to the explicit expression24

e−iω12τ Âτ [p1, . . . , pn]e+iω12τ = (p1 · p2)2τ4 +
[
(d+ 2)ω12p1 · p2 − ω1k

2
2 − ω2k

2
1 + ω12ω1ω2

]
iτ3

+
[

d
2s12 + d2+6d+4

2 p1 · p2 − d(d+2)
4 ω2

12 + ω1ω2
]
τ2

+ d2(d+ 3)
4 ω12iτ +

1
16d

3(d+ 4) , (3.20)

where p1 ·p2 = −ω1ω2+k1 ·k2, s12 = ω2
12−k2

s and ω12 = ω1+ω2. Again we see that the leading
term in the large τ limit is the expected Minkowski result, and this is corrected by terms which
are generated by the non-zero commutator between p̂0(τ) and p̂i(τ). The final amplitude
A(p1, . . . , pn) is found by performing the time integral in (3.10): this is straightforward since
its only effect is to replace each (−τ)n with Γ(Jn + n)/(iωT )Jn+n in (3.20).

3.3 A basis of kinematic invariants

Armed with the covariant p̂µ(τ) operators, we can now build a complete basis for the time-
dependent Âτ (and therefore also for the final amplitude A). To ensure that the basis is
not overcomplete, we must account for two redundancies:

(i) total τ derivatives in Âτ that do not affect A,

(ii) total ρ derivatives in Gn = AGcon
n that do not affect the on-shell S-matrix.

Total spacetime derivatives. In addition to simplifying perturbative calculations, the
representation (3.16) of covariant derivatives makes the vanishing of total derivatives trans-
parent, namely that any interaction

∫
dd+1x

√
−g∇αOα in the action does not contribute

to the amputated Green function. This is because the spacetime isometries effectively set
23To be explicit, p̂µ

1 is the operator (3.16) acting on the arguments pµ
1 = (ω1,k1), i.e.

p̂µ
1 (τ) =

(
−iD̂[p1]

τ
2 ki

1 + 1
2τ

K̂i[p1]

)
.

24One can verify that (3.19) is the same result as expanding ∇µ∇νϕ = (∂µ∂ν + Γα
µν∂α)(−τ)d/2φ and then

transforming to the energy-domain like in (3.11).
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the total ∑n
a=1 p̂a(τ) = 0 within Âτ . In more detail, total time derivatives give a vanishing

contribution to the amputated correlator thanks to the dilation Ward identity,

0 =
n∑

a=1
D̂[pa]Gn(p1, . . . , pn)δd (kT )

=
∫ 0

−∞

dτ

−τ
(−τ)Jn

(
n∑

a=1
ip̂0

a(τ)
)
Âτ [p1, . . . , pn]eiωT τδd (kT ) . (3.21)

Total spatial derivatives, ∑n
a=1 p̂

i
a(τ) vanish thanks to the translation Ward identity (i.e.

kT = 0) and also the fact that contact invariants satisfy,(
n∑

a=1
K̂i[pa]

)
Âτ [p1, . . . , pn]eiωT τδd (kT ) = 0 (3.22)

for any τ , which implies the boost Ward identity.

Total ρ derivatives. In the previous section, we showed that p̂2 ≈ −m2 under the integral
transform which puts the external particles on-shell. However, note that the time-dependent
operator p̂(τ) · p̂(τ) = ηαβ p̂α(τ)p̂β(τ) does not commute with p̂α(τ), which reflects the fact
that a contact interaction containing □∇µϕ∇µϕ is not equivalent to m2∇µϕ∇µϕ (since
[□,∇µ] ̸= 0). Accounting for this non-zero commutator, the general on-shell condition for
covariant derivatives can be written as

p̂(τ) · p̂(τ) = p̂2 − Ĵ 2(τ) ≈ −m2 − Ĵ 2(τ) , (3.23)

where25

Ĵ 2(τ) = 1
2
(
Ĵij [p]

)2
+
(
τ

2ki −
1
2τ K̂i[p]

)2
(3.24)

obeys Ĵ 2(τ)eiωτ = 0 and
[
Ĵ 2(τ), p̂µ(τ)

]
reproduces [□, τ∇µ]. We stress that although

Ĵ 2(τ) cannot be written in terms of p̂µ(τ), its commutator with any momentum can be,
and so when (3.23) is substituted into Âτe

iωτ it always produces terms that are functions
of the p̂µ(τ) only.

A fourth example. For example, consider the covariant interaction
∫
dd+1x

√
−g ϕn−2□2ϕ2,

where □ = gµν∇µ∇ν . The corresponding amplitude is

Âτ [p1, . . . , pn] = (p̂1(τ) + p̂2(τ))4 , (3.25)

where the four indices are contracted using ηαβ . On Minkowski, it would be straightforward
to argue that the on-shell amplitude from this operator is not independent of the two previous
examples ϕn−2(∇ϕ)2 and ϕn−2(∇∇ϕ)2, since (p1 + p2)4 can be written purely in terms of

25Note that Ĵij [p] = ki∂kj − kj∂ki is the generator of spatial rotations, while τ
2 ki − 1

2τ
K̂i[p] generates a

rotation in embedding space.
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p1 · p2 and (p1 · p2)2 once p2
1 = −m2

1 and p2
2 = −m2

2 are fixed to their on-shell values. On
de Sitter, we can make this same argument by writing

(p̂1(τ) + p̂2(τ))4 =
(
p̂2

1(τ) + p̂2
2(τ)

)2
+ 4 (p̂1(τ) · p̂2(τ))2

+ 2{p̂1(τ) · p̂1(τ) + p̂2(τ) · p̂2(τ), p̂1(τ) · p̂2(τ)} (3.26)

and then use (3.23) to go on-shell, which gives

(p̂1(τ) + p̂2(τ))4 eiω12τ ≈
{(

m2
1 +m2

2

)2
− 4p̂1(τ) · p̂2(τ)

(
m2

1 +m2
2

)
+ 4 (p̂1(τ) · p̂2(τ))2

−
[
Ĵ 2

1 (τ) + Ĵ 2
2 (τ), 2p̂1(τ) · p̂2(τ)

]}
eiω12τ . (3.27)

The first line is the Minkowski result, and the commutator on the second line captures the
effect of the de Sitter spacetime curvature. It is straightforwardly evaluated using[

Ĵ 2
1 (τ), 2p̂1(τ) · p̂2(τ)

]
eiω12τ = −2d p̂1(τ) · p̂2(τ)eiω12τ , (3.28)

which establishes that the contribution of □2ϕ2 is not independent from (∇∇ϕ)2 and (∇ϕ)2

once we go on-shell.

Kinematic basis. Thanks to the above results, we can now enumerate the independent
kinematic operators on which Âτ can depend in essentially the same way that we count
kinematic invariants on Minkowski. In particular, a local interaction of ϕ and its covariant
derivatives in the action will produce a Âτ built from the p̂α(τ) operators subject to the
conditions:

• The p̂α(τ) must come in pairs with spacetime indices contracted using ηαβ ,

• The total p̂α(τ) of all external lines gives a vanishing contribution to the correlator,

• All contractions of the form p̂b(τ) · p̂b(τ) are redundant, since they can be replaced by
−m2

b plus lower order invariants using (3.23).

We will explicitly describe the resulting kinematics for both 3- and 4-point correlators in
sections 3.4 and 3.5 below.

Mandelstam operators. Before focussing on a particular n, let us give a general charac-
terisation of the allowed kinematic invariants on which any de Sitter amplitude can depend.
By analogy with Minkowski scattering, we define the differential operators ŝ12...n(τ) as the
invariant associated with particles {1, 2, . . . , n},

ŝ12...n(τ) = −ηαβ

(
n∑

b=1
p̂α

b (τ)
)(

n∑
c=1

p̂β
c (τ)

)
. (3.29)

We can again separate this operator into a time-independent part, which we denote as ŝ12...n

with no τ argument, and a remainder

ŝ12...n(τ) = ŝ12...n − Ĵ 2
12...n(τ) (3.30)
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which is given in terms of the isometry generators by

ŝ12...n =
(

n∑
a=1

D̂[pa]
)2

+1
2

(
n∑

a=1
ki

a

)(
n∑

a=1
K̂i[pa]

)
+1
2

(
n∑

a=1
K̂i[pa]

)(
n∑

a=1
k̂i

a

)
+1
2

(
n∑

a=1
Ĵij [pa]

)2

(3.31)

and represents the Casimir associated with transforming the points 1, . . . , n. The remain-
der is then

Ĵ 2
12...n(τ) =

1
2

(
n∑

a=1
Ĵij [pa]

)2

+
(
τ

2

n∑
a=1

ki
a − 1

2τ

n∑
a=1

K̂i[pa]
)2

(3.32)

and by analogy with (3.24) accounts for the non-commutativity of the different Mandelstam
operators.

In the large τ (or small ωT ) limit, these Mandelstam operators reduce to the usual
Mandelstam variables on Minkowski. At finite τ (or finite ωT ), the main effect of the
background curvature is to introduce non-commutativity between the different Mandelstam
operators. In general, the commutator

[ŝA(τ), ŝB(τ)] = R̂AB(τ) (3.33)

is non-zero whenever the lists A and B have a particle in common, and is equal to a d-
dependent operator which contains strictly fewer powers of the p̂α than ŝAŝB. Finally, since
the total p̂α vanishes, we also have identities such as

(ŝ12...b − ŝb+1...n)A(p1, . . . , pn)Gcon
n (ωT ) = 0 (3.34)

which are familiar from Minkowksi.

3.4 The unique 3-point correlator

It was previously argued in [38] that the 3-particle S-matrix is unique (up to crossing) because
it is completely fixed by the de Sitter Ward identities. The off-shell picture of momenta
operators developed above makes this uniqueness manifest, and also clarifies which further
structures may appear in the off-shell correlator (and how they vanish when going on-shell).

Uniqueness. The argument for uniqueness is straightforward: any bilinear combination of
p̂1, p̂2, p̂3 subject to the constraint that ∑3

a=1 p̂a = 0 (total derivatives vanish) can be written
in terms of the p̂2

a only. Once these are fixed by the on-shell relation (3.23), the resulting
three-point amplitude A will always reduce to a constant (function of the masses). Therefore
an arbitrary cubic interaction will give rise to a correlator of the form

G3

(
ω1
k1
,
ω2
k2
,
ω3
k3

)
≈ f(µ1, µ2, µ3)Gcon

3 (ωT ) (3.35)

for some function f of the masses and with Gcon
3 given in (3.7).
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Three-particle S-matrix. Given (3.35), the 3-particle S-matrix is therefore unique, up to
crossing and a dependence on the fixed masses (and other quantum numbers) of the three
particles. In particular, the LSZ reduction of Gcon

3 produces an S-matrix element

out⟨k1k2k3|0⟩in = ig

[
−
√
π

∫ +∞

−∞

dρ

2π e
iµρ
]
δd (k1 + k2 + k3)
(∑3

b=1 ikb cosh ρb)
d
2

(3.36)

and its crossing images (2.12). This integral can be written as a combination of Appell
F4 functions, given explicitly in [38]. This particular F4 function can also be derived from
the Ward identities as the unique structure compatible with all of the de Sitter isome-
tries [44, 45]. However, the preceding kinematic argument for uniqueness makes it clear
what role is being played by the on-shell condition. If we relax this condition, we find that
δd (k1 + k2 + k3) /(ω1 +ω2 +ω3)d/2 is not the only function of the ω and k which is invariant
under the de Sitter Ward identities. A general amputated correlator may additionally depend
on an arbitrary function of p̂2

1, p̂
2
2, p̂

2
3. A local interaction Lagrangian may therefore produce

contributions of the form

∂2n1
ρ1 ∂2n2

ρ2 ∂2n3
ρ3 Gcon

3 (ωT ) (3.37)

in the amputated correlator, which would indeed reduce to (3.35) once all three external
particles are put on-shell. For instance, the following combination

(
p̂2

1 +m2
1

)
Gcon

3 =
(
−ω2

1 + k2
1 + 2ω1ωT

d+ 2 − µ2
1

4ω2
T

d(d+ 2)

) Γ
(

d
2 + 2

)
(iωT )

d
2 +2

(3.38)

is consistent with the de Sitter isometries and will generically appear in G3 when the action
contains derivative interactions, however since it does not contribute to the on-shell S-matrix
it may be discarded without affecting any physical observable.

Two-particle mode function. The 3-particle case highlights how taking each particle
on-shell increases the complexity of special functions required. Starting from the off-shell
correlator Gcon

3 (ωT ), which is simply a power of ωT , we take just one of the particles on-shell:

[
−
√
π

∫ +∞

−∞

dρ

2πe
iµρ
]
Gcon

3 (ωT )
∣∣
ω3=ks cosh ρ

=
Fj2

(
ω12
ks
, µ
)

(iks)
d
2

. (3.39)

Such integrals can be performed by considering the differential equations they must satisfy.
For instance, since p̂2

3 = (p̂1 + p̂2)2 = −ŝ12 when acting on Gcon
3 , the function Fj2 must solve(

m2 − ŝ12
)
Fj2

(
ω12
ks
, µ
)
= 0 . (3.40)

Fj2 is therefore an eigenfunction of ŝ12 with eigenvalue m2 = µ2 + d2

4 . Together with the
Bunch-Davies vacuum condition (A.12) inherited from f+, this uniquely fixes Fj2 — we give
this function explicitly in (A.2) in terms of a Legendre function. These eigenfunctions of the
Mandelstam operators will play a central role when we construct spectral representations26

26There is a nice parallel between the Fjn — an off-correlator in which one leg is put on-shell — and the
Berends-Giele current [49]—an on-shell amplitude with one leg taken off-shell. Both can be used to recursively
construct higher-point exchange diagrams.
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in section 4 and we will explore this differential equation approach to determining correlators
further in section 4.4.

Physically, Fj2 has the interpretation of a two-particle mode function, since it describes
the projection of two fields (with energy ω1 and ω2) onto the mass eigenstate µ,

µ

ω1

ω2
ϕ3

=
Fj2

(
ω12
ks
, µ
)

(iks)
d
2

(3.41)

This is analogous to ei(p1+p2)·x on Minkowski, which describes two particles with an effective
total mass of s = −(p1 + p2)2. Just as Gcon

3 has a branch cut at ωT = 0, this mode function
has a branch cut at ω12 + ks → 0. The physical interpretation is that ks > 0 corresponds
to the “energy” of the outgoing on-shell third particle, while ω1 + ω2 < 0 would correspond
to particles 1 and 2 incoming: there is therefore a singularity whenever ω12 < −ks since the
total ingoing energy is enough to create the on-shell outgoing particle.

3.5 All contact 4-point correlators

Next we focus on the 4-point function. Our main observation here is that the on-shell 4-point
correlator can be written in terms of ŝ = ŝ12 and t̂ = ŝ13 only, and in the flat-space limit
these become the usual Mandelstam s and t variables. The argument goes as follows:

• The spacetime symmetries require that interactions are built from covariant contractions
of ∇µ, and hence Âτ is a function of ŝab(τ) and p̂2

a(τ) only.

• The Ward identities (3.21) and (3.22) (namely ∑n
j=1 p̂

µ
j (τ) = 0) further require that

ŝ34(τ) = ŝ12(τ) , ŝ24(τ) = ŝ13(τ) , ŝ14(τ) = ŝ23(τ) , (3.42)

once commuted to the outermost operation, and also that,27

ŝ12(τ) + ŝ13(τ) + ŝ23(τ) = −
4∑

a=1
p̂2

a , (3.43)

which ensures that only {ŝ12(τ), ŝ13(τ), p̂2
1(τ), p̂2

2(τ), p̂2
3(τ), p̂2

4(τ)} are independent.

• The on-shell relation (3.23) can then be used to replace the four p̂2
a(τ) with the particle

masses and (after commuting the Ĵ 2
a (τ) until they annihilate the mode functions)

powers of ŝ12(τ) and ŝ13(τ).

The most general contact contribution to the 4-point S-matrix can therefore be written as

G4(p1, . . . , p4) =
∑

a,b=0
cab t̂

bŝa Gcon
n (ωT ) , (3.44)

since any ŝb
13(τ)ŝa

12(τ) term in Âτ becomes ŝb
13ŝ

a
12 in A, plus lower-order invariants (generated

by the commutations of Ĵ 2
12 and Ĵ 2

13) which can be absorbed into a shift of the other ca′b′

coefficients.
27(3.43) is the usual relation s+ t+ u = 4m2 on Minkowski.
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Evaluating the Mandelstams. To explicitly evaluate the terms in (3.44), recall that the
operator p̂2 for a single particle takes a particularly simple form when expressed in terms of
the angular variable ω = k cosh ρ. There is an analogous simplification that occurs for the
n-particle Mandelstam operators. Choosing a subset of n energies and parametrising their
total as ∑n

a=1 ωa = |
∑n

a=1 ka| cosh ρ, we can write a simple expression for (3.31),

−ŝ12...ne
−iωT τ =

(
1

sinh2jnρ
∂ρ sinh2jnρ ∂ρ + j2

n − d2

4

)
e−iωT τ , (3.45)

where jn = d
2(n − 1) and ∂ρ acts on everything to its right.

Using (3.45) to represent ŝ12 as an angular derivative makes the evaluation of all ŝn
12

invariants particularly straightforward. In fact, starting from the expression,

ŝn
12Gcon

4 =
(
−∂2

ρ12 − d coth ρ12 ∂ρ12

)n
Gcon

4 (3.46)

it is possible to derive a simple closed-form expression for these invariants in terms of the angles,

cosh ρ12 = ω12
ks

and cosh ρ34 = ω34
ks

. (3.47)

To do this, we first note that (as is often the case when dealing with rotational Casimirs)
it is more convenient to replace ŝn

12 with the shifted product,

Ŝn
12 =

n−1∏
j=0

(−ŝ12 − j(j + d)) . (3.48)

These invariants are particularly simple when written in terms of 2ρ+ = ρ12 + ρ34 and
2ρ− = ρ12 − ρ34, and take the form of an (d + n)th order polynomial in 1/ cosh2 ρ+ and
1/ cosh2 ρ−. In fact, this polynomial can be written for general n in terms of a hypergeometric
function,

Ŝn
12Gcon

4 = iΓ(d+2n)
(2ks coshρ+ coshρ−)d

1(
−4cosh2 ρ+

)n 2F1

(
−n, d2 ;1−n−

d

2 ;
cosh2 ρ+

cosh2 ρ−

)
(3.49)

Since ŝ12Gcon
4 = ŝ34Gcon

4 (thanks to momentum conservation), we expect that ŝn
12Gcon

4
should be a symmetric function of ω12 and ω34. This symmetry is not manifest in (3.49). To
make it manifest, note that any symmetric polynomial of 1/ cosh2 ρ+ and 1/ cosh2 ρ− can
be written as a polynomial in the two symmetric variables,

−4X = 1
cosh2 ρ+

+ 1
cosh2 ρ−

, 4Y 2 = 1
cosh2 ρ+ cosh2 ρ−

. (3.50)

Using these, we can re-write (3.49) as,

Ŝn
12Gcon

4 = iΓ (d+ 2n)
kd

s

Y dXn
2F1

(
−n2 ,

1− n

2 ; 1− n− d

2 ;
Y 2

X2

)
(3.51)

which is now manifestly invariant under ω12 ↔ ω34. Analogous expressions for the ŝn
13Gcon

4
terms follow immediately from relabelling p2 ↔ p3.

The change of variables (3.47) requires ω12 ≥ ks and ω34 ≥ ks. In this kinematic region,
we have found a simple expression for any ŝn

12Gcon
4 . This would be enough to find the S0→4

matrix element, since if ω1 ≥ k1 and ω2 ≥ k2 then ω12 ≥ k12 by the triangle inequality. Other
kinematic regions can be reached by crossing, i.e. replacing ρ± with ω12 and ω34 and then
analytically continuing past the branch points at ω12 = ks and ω34 = ks.
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Mandelstam eigenbasis. Constructing closed form expressions for the mixed terms involv-
ing both ŝ12 and ŝ13 is more involved. The reason is essentially that, since ŝ12 and ŝ13 do not
commute, it is not possible to find simultaneous eigenfunctions of both operators. Focussing
on the ŝn

12Gcon
4 terms, (3.49) can be reproduced very efficiently using the ŝ12 eigenfunction

found in (3.39). The trick is to recognise that these eigenfunctions form a complete basis
for the ω12 dependence of Gcon

4 , which can therefore be written as28

Gcon
4 (ωT ) =

i

(iks)d

∫ ∞

0
dνNν Fj2

(
ω12
ks
, ν

)
Fj2

(
ω34
ks
, ν

)
(3.52)

for some density Nν . Physically, this decomposition corresponds to inserting a complete
set of mass eigenstates like so:

ω1

ω2

ω3

ω4
ϕ4

=
∫

ν

 ν

ω1

ω2
ϕ3


 ν

ω3

ω4
ϕ3

 (3.53)

The model-independent Nν is given explicitly by Nν = 2
πν sinh(πν) and is notionally a density

of states for the de Sitter group. In this basis of two-particle mode functions, the action of
ŝ12 then becomes multiplication by the effective mass parameter ν2 + d2

4 ,

ŝn
12Gcon

4 (ωT ) =
i

(iks)d

∫ ∞

0
dνNν Fj2

(
ω12
ks
, ν

)
Fj2

(
ω34
ks
, ν

)(
ν2 + d2

4

)n
. (3.54)

Evaluating this integral produces (3.49). The symmetry ŝ12Gcon
4 = ŝ34Gcon

4 is also now
manifest.

Separating kinematics and dynamics. Finally, this two-particle basis has the advantage
that, when we perform the LSZ integral to project this G4 onto mass eigenstates, there
is a clear split between the dynamical information (the interaction) and the kinematical
propagation of the asymptotic states. In particular, one may write:

LSZ [χ(ŝ12)Gcon
4 (ωT )] =

i

(iks)d

∫ ∞

0
dνNν

(
µ1
k1

µ2
k2

ν

k34

)(
µ3
k3

µ4
k4

ν

k12

)
χ
(
ν2+ d2

4

)
(3.55)

where we have defined a bracket analogous to the 3j symbol from angular momentum
addition, which captures how two one-particle mass eigenstates combine to form a single
two-particle mass eigenstate,(

µ1
k1

µ2
k2

ν

k34

)
=
[
π

∫ +∞

−∞

d2ρ

(2π)2 e
iµ1ρ1eiµ2ρ2

]
Fj2

(
ω12
ks
,ν

)∣∣∣∣∣
ω12=k1 coshρ1+k2 coshρ2

. (3.56)

Crucially, this is a model-independent structure constant, uniquely fixed by the de Sit-
ter symmetries. Once these factors are stripped from the S-matrix element, the residual

28The overall i is included so that Nν is positive, given our normalisation of Fj2 — see appendix A. This
can also be viewed as

∫
d∆ over the principal series ∆ = d

2 + iν with ν ≥ 0.
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density χ
(
ν2 + d2

4

)
captures the derivative interaction vertex that mediates the scattering.

In pictures:

µ1

µ2

µ3

µ4

=
∫

ν

 ν

µ1

µ2
ϕ3

χ (ν2 + d2

4

) ν
µ3

µ4
ϕ3

 (3.57)

where now the labels denote the mass of each leg. For example, from the effective Lagrangian

Lint = ϕ2
(
λ0 + λ1

□
Λ2 + □2

Λ4 + . . .

)
ϕ2 (3.58)

we can immediately read off:

χ(m2) = λ0 + λ1
m2

Λ2 + λ2
m4

Λ4 + . . . (3.59)

The on-shell S-matrix and corresponding cosmological correlators in this theory will be
complicated functions of {k1, . . .k4}, but (3.57) makes it clear that these complications
stem entirely from how we treat the kinematical combination and propagation of free fields
on de Sitter.

Beyond 4-particle scattering. The above generalises straightforwardly to contact diagrams
with any number of particles. In particular, we can find the “n-particle mode function” by
considering Gn+1 with a single leg put on-shell,

[
−
√
π

∫ +∞

−∞

dρ

2πe
iµρ
]
Gcon

n+1(ωT + ω)
∣∣
ω=|kT | cosh ρ

=
Fjn

(
ωT
|kT | , µ

)
(i|kT |)jn

(3.60)

where ωT = ∑n
b=1 ωn and kT = ∑n

b=1 kb. This is the eigenfunction of ŝ12...n, since when
acting on Gcon

n+1 we have ŝ12...n = −p̂2
n+1 ≈ µ2 + d2

4 when on-shell. A useful corollary is that,

Fjn

(
ω
k , µ

)
(ik)jn

=
[∫ 0

−∞

dτ

−τ
eiωτ

]
(−τ)jnif+(kτ, µ) (3.61)

which illustrates how the n-particle mode function is related to the time-domain mode
function. These n-particle mode functions can be used to decompose any correlator and are
particularly useful for correlators that depend on only a single Mandelstam operator. Suppose
we split the n particles into a subset of size n1 and its complement (of size n2 = n − n1),
with partial energies ωL and ωR respectively (so ωL + ωR = ωT ) and a partial momentum
k (i.e. |kL| = |kR| = k). Then,

Gcon
n (ωT ) =

i

(ik)Jn

∫ ∞

0
dνNν Fjn1

(
ωL

k
, ν

)
Fjn2

(
ωR

k
, ν

)
. (3.62)

This representation makes it straightforward to treat any interaction that contains only a
single Mandelstam operator, for instance:

ŝa
1...n1G

con
n (ωT ) =

i

(ik)Jn

∫ ∞

0
dνNν Fjn1

(
ωL

k
, ν

)
Fjn2

(
ωR

k
, ν

)
(ν2 + d2

4 )a . (3.63)
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To sum up, we have defined a differential operator p̂µ that captures the insertion of ∇µ

into any contact interaction vertex, and found a complete basis of invariant Mandelstam
operators in which to expand Gn. These operators do not commute (because ∇µ do not
commute), but for interactions that depend on only a single Mandelstam invariant we can
expand the resulting correlator in a basis of the corresponding eigenfunction and this leads to
very simple integral expressions and a natural way to separate the dynamical and kinematical
information contained within the S-matrix elements.

4 New representations of exchange diagrams

Now we turn our addition to exchange diagram contributions to the amputated correlator /
off-shell S-matrix. We will start by considering the simplest diagram from two cubic vertices
with no derivatives, which is given in time-ordered perturbation theory by[∫ 0

−∞

dτL e
iω12τL

(−τL)1−j2

] [∫ 0

−∞

dτR e
iω34τR

(−τR)1−j2

]
Gµσ

2 (ksτL, ksτR) ≡ Gµσ
4 (ω12, ω34, ks) (4.1)

where G2 is the propagator of the internal field which has mass m2
σ = µ2

σ + d2/4. As argued
above, the tree-level exchange contribution to G4 from any pair of cubic interactions can
be written in terms of this exchange structure, plus a remainder that is indistinguishable
from a contact interaction. It can already be anticipated, from the results of the previous
section, that this exchange structure ought to correspond to

χ(m2
σ) ∼

1
ν2 − µ2

σ

(4.2)

in (3.55). We will now derive this result, show how it relates to previous results in the literature
for the exchange diagram, and for the first time determine a consistent +iϵ prescription
which encodes the causal time-ordering of the S-matrix.

4.1 Exchange differential equation

Equation (4.1) can be viewed as a Fourier transform of the propagator, replacing the
conformal time of each vertex with the total conformal energy flowing into that vertex from
the boundary. Since the propagator obeys the simple differential equation (3.5), one might
ask what differential equation is satisfied by this Fourier transform? Using the relation[∫ 0

−∞

dτL

(−τL)1−j2
eiω12τL

]
Eµσ [ksτL] =

(
m2

σ − ŝ12
) [∫ 0

−∞

dτL

(−τL)1−j2
eiω12τL

]
, (4.3)

we see that the action of (m2
σ − ŝ12) is to replace the internal G2 with a δ function, effectively

collapsing the internal line. The 4-particle exchange structure, Gµσ
4 , therefore satisfies the

defining relation: (
m2

σ − ŝ12
)
Gµσ

4 = −Gcon
4 (ωT ) (4.4)

which we refer to as “the exchange equation”.
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Conformally coupled example. As usual, the simplest example is the exchange of a
scalar with conformally coupled mass, m2

σ = 2 in d = 3 (so µσ = i/2). In that case the
propagator is simple,

G
µσ=i/2
2 (kτ, kτ ′) = e−ik|τ−τ ′|

2k
√
ττ ′

(4.5)

and the time integrals in (4.1) can be performed explicitly, giving the correlator:

Gµσ=i/2
4 = − ωT + 2ks

2ksωT (ω12 + ks)(ω34 + ks)
. (4.6)

This indeed satisfies the exchange equation (4.4). Notice that it has so-called “partial energy”
singularities at ω12 = −ks and ω34 = −ks, as well as a total energy singularity at ωT = 0.
The residue of the total energy pole is the Minkowski 4-point amplitude,

lim
ωT →0

ωT Gµσ=i/2
4 = 1

s
with s = ω2

12 − k2
s (4.7)

and the correlator factorises on the partial energy poles into a product of Minkowski and
de Sitter 3-point amplitudes

lim
ω12→−ks

(ω12 + ks)Gµσ=i/2
4 = 1

2ks(ks − ω34)
. (4.8)

This turns out to be a general feature: as ω12 + ks → 0, the corresponding vertex becomes
long-lived and persists to very early times where the spacetime curvature is unimportant and
thus it produces the Minkowski 3-point amplitude (which in this case is just a constant). See
the cartoon in figure 1. Notice that in terms of the 2-partlce mode function (3.39)

Fj2

(
ω

k
, µσ = i

2

)
= k√

2(ω + k)
(4.9)

the limiting behaviour (4.8) can be written as

lim
ω12→−ks

iGµσ
4 = 1

(iks)3Fj2

(
ω12
ks
, µσ

)
F ∗

j2

(
−ω34

ks
, µσ

)
. (4.10)

This factorisation provides the required boundary condition for solving the exchange equa-
tion (4.4), leading to the exchange bootstrap we develop in section 4.4 along the lines of [41].
Ultimately, this boundary condition is equivalent to choosing a particular iϵ prescription
when inverting the (m2

σ − ŝ12) operator, much like Feynman’s 1/(m2 − s − iϵ) from the
causal propagator on Minkowski.

Large mass expansion. One approach to solving the exchange equation (4.4) for general
masses is to expand in large mσ, giving a power series solution,

Gµσ
4 = −

∞∑
n=0

ŝn
12

m2+2n
σ

Gcon
4 (ωT ) (4.11)

which is analogous to the usual Minkowski expansion. This has the advantage that no +iϵ
prescription is required, i.e. any choice of propagator will produce the same expansion since
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the large mσ limit is dominated by space-like momenta (so there is no operator-ordering
ambiguity to resolve). The propagator +iϵ only becomes necessary when one resums the
series (4.11) (i.e. analytically continues beyond the radius of convergence at |ŝ12| ∼ m2

σ).
As discussed above, the invariant ŝn

12 is can be simplified by introducing the shifted
products Ŝn

12 defined in (3.48). In terms of these, the exchange invariant can be expanded as,

Gµσ
4 = −

∞∑
n=0

Ŝn
12Gcon

4

m2
σ

(
1 + d

2 + iµσ

)
n

(
1 + d

2 − iµσ

)
n

. (4.12)

Using (3.49) or (3.51), this is an infinite sum over hypergeometric 2F1’s, which can be
written in terms of a generalised hypergeometric function of two variables (a Kampé de
Fériet function) if so desired.

4.2 Propagator and the iϵ prescription

To determine the correct +iϵ prescription and prove that the factorisation observed above for
conformally coupled fields is indeed a general phenomenon, we now turn our attention to the
propagator G2 appearing in (4.1). Inspired by our previous integral representation of the
contact correlators (3.55), notice that the defining differential equation for the propagator (3.5)
is formally solved by

iGµ
2 (kτ1, kτ2) =

∫ ∞

0
dνNν

f+(kτ1, ν)f+(kτ2, ν)
ν2 − µ2 (de Sitter) (4.13)

where Nν = 2
π ν sinh(πν) is the de Sitter density of states and the f± mode functions are

given in (A.1). This is the straightforward analogue of the familiar Minkowski result

iGk(t1, t2) =
∫ +∞

−∞

dω

2π
eiω(t1−t2)

ω2 − k2 −m2 (Minkowski) . (4.14)

Boundary conditions. However, (4.13) and (4.14) are not well-defined as written because
we must specify how to integrate past the poles on the real axis. On Minkowski, whether we
deform the integration contour above or below these poles corresponds to specifying Feynman,
retarded or advanced boundary conditions for the propagator. For the Bunch-Davies S-matrix
on de Sitter, we need a prescription that selects the time-ordered boundary condition:

Gµ
2 (kτ1, kτ2) = out⟨0|T φ̂(τ1,k)φ̂(τ2,−k)|0⟩′in (4.15)

= f−(kτ1, µ)f+(kτ2, µ)Θ(τ1 − τ2) + f+(kτ1, µ)f−(kτ2, µ)Θ(τ2 − τ1)

in the free theory. The iϵ prescription that implements this Bunch-Davies boundary con-
dition is

1
(ν2 − µ2)iϵ

= lim
ϵ→0+

1
2 sinh(µπ)

(
e+µπ

ν2 − µ2 + iϵ
− e−µπ

ν2 − µ2 − iϵ

)
. (4.16)
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Derivation. Let’s consider τ1 to be to the future of τ2, so that the desired Gµ
2 (kτ1, kτ2) =

f−(kτ1, µ)f+(kτ2, µ). To show that (4.13) indeed produces this, we first use the identity (A.10)
to write the integral as

iGµ
2 (kτ1, kτ2) = lim

ϵ→0+

1
2

∫ +∞

−∞
dν
νJiν(−kτ1)H(2)

iν (−kτ2)
(ν2 − µ2)iϵ

. (4.17)

The numerator νJiν(−kτ1)H(2)
iν (−kτ2) is analytic in the complex ν plane. It was shown

in [50, 51] that such integrals can be closed in the lower half of the complex ν plane when
−kτ2 > −kτ1, since

νJiν(z1)H(2)
iν (z2) ∼

i e+iν log(z1/z2)

π
. (4.18)

By Cauchy’s residue theorem, the closed contour integral of the 2ν/(ν2 − µ2 ± iϵ) term then
contributes a pole residue at ν = ±µ. This gives

iGµ
2 (kτ1, kτ2) =

2πi
8 sinh(µπ)

(
e+µπJiµ(−kτ1)H(2)

iµ (−kτ2)− e−µπJ−iµ(−kτ1)H(2)
−iµ(−kτ2)

)
= if−(kτ1, µ)f+(kτ2, µ) (4.19)

as desired, since H(2)
−iµ(z) = e+µπH

(2)
+iµ(z). The other case, τ1 < τ2, can be tackled in the same

way (by replacing f+(kτ2, ν) with a Bessel Jiν and then closing the contour).

Particle production. At first sight, (4.16) may seem surprising. Since the Bunch-Davies
S-matrix reduces to the usual Minkowski S-matrix in the flat space limit, one may have
expected simply the usual Feynman prescription 1/(ν2 − µ2 + iϵ). However, note that since
µ ∼ m/H → ∞ in the Minkowski limit H → 0, (4.16) does reduce to the usual prescription.
The appearance of the additional term at finite H is physically related to particle production.
In fact, we show in appendix A that using the naive prescription 1/(ν2 − µ2 + iϵ) produces
the propagator of the Unruh-de Witt S-matrix: this is the basis of asymptotic states in
which particle production appears explicitly as off-diagonal S-matrix elements in the free
theory [38]. By contrast, the Bunch-Davies S-matrix is simply the identity in the free theory,
in which case particle production is accounted for in the definition of the asymptotic states.
We see in (4.16) that this choice of asymptotic states introduces an additional −iϵ term into
the propagator, which is accounting for particle production effects.

Crossing. Another feature of our split representation (4.13) which is perhaps unexpected
(and seems to differ from the Minkowski result) is that we use f+f+ rather than say f+f−.
This is surprising because the S-matrix for 2-particle scattering in the free theory is

⟨0|k1k⟩ = ⟨k1k2|0⟩ = 0 ⟨k2|k1⟩ = (2π)dδ (k1 − k2) , (4.20)

and so we might expect that G2 should contain an f+ for one outgoing particle and an f−

for one ingoing particle. The resolution of this confusion is the following identity:∫ ∞

0
dνNν

f+(kτ, ν)
(ν2 − µ2)iϵ

= if−(kτ, ν) (4.21)
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which shows that the iϵ prescription in (4.16) secretly implements a crossing transformation
from outgoing to ingoing — we derive this in appendix A. As a result, once one of the two
fields is projected onto an outgoing mass eigenstate via LSZ29

−if−(kτ, µ)(
↔
τ∂τ )Gµ

2 (kτ, kτ ′) = −f−(kτ ′, µ) (4.22)

we see that projecting the remaining field (which now corresponds to an ingoing particle)
onto a mass eigenstate indeed gives (4.20). In fact, this means that the continuation k → −k
in (2.8) may be implemented by instead integrating over all mass values:

S0→n|kb→k̄b
=
[∫ ∞

0
dν Nν

−i
(ν2 − µ2

b)iϵ

]
S0→n|kb →−kb

µb → ν
(4.23)

We note in passing the similarity with the so-called shadow transformation that interchanges
d
2 ± iµ irreps in the principal series. This can also be expressed as an integral over the
propagator (see e.g. [52] for a pedagogical introduction). Here we are effectively describing a
shadow transform for the Hankel mode functions, which interchanges ingoing and outgoing
particles.

Energy-domain. Upon Fourier transforming each τ to ω, we arrive at an analogous split
representation for the propagator:

iGµ
2

(
ω1
k
,
ω2
k

)
= −

∫ ∞

0
dν Nν

Fj1

(ω1
k , ν

)
Fj1

(ω2
k , ν

)
(ν2 − µ2)iϵ

(4.24)

Notice that in the factorisation limit,

lim
ω1→−k

iGµ
2

(
ω1
k
,
ω2
k

)
∝ −

∫ ∞

0
dνNν

F1
(ω2

k , ν
)

(µ2 − ν2)ϵ
= F ∗

1

(
−ω2
k
, µ

)
, (4.25)

which is the analogue of the LSZ reduction (4.22), since F1 is the mode function for an
ingoing mass eigenstate. Furthermore, the only branch point of F1

(
−ω2

k , µ
)

is at ω2 = +k
— this is in contrast to other propagators (e.g. the bulk-to-bulk propagator or Schwinger-
Keldysh propagators for wavefunction or in-in correlator) which also have branch points at
ω2 = −k. We will see below that this is in fact a general property: the S-matrix (amputated
correlator) may not have any ωR → −k singularity in the ωL → −k limit for any pair of
partial energies ωL and ωR.

Position-domain. It turns out that (4.16) is the unique30 way of shifting the poles at
ν = ±µ infinitesimally into the complex ν-plane which satisfies the following two conditions:

(i) in the flat space limit (which sends µ→ ∞), it recovers the usual Feynman prescription,
29Notice that the derivation of (2.7) neglects contributions proportional to δ(kb−kb′) from collinear particles:

these correspond to disconnected diagrams except in the case of the two-point function, where they give rise
to the non-zero contribution responsible for (4.20).

30More precisely, (4.16) is the unique replacement of 1/(ν2 − µ2) which involves only µ. Other prescriptions
involving ν are possible, but these can change the analytic structure of G2.
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(ii) when continued from the expanding Poincaré patch to the whole of global de Sitter,
it leads to a singularity only at coincident spacetime points (and those connected by
null geodesics). In contrast, the naive prescription 1/(µ2 − ν2 + iϵ) is also singular at
antipodal points (and any point connected to its antipode by a null geodesic).

These are analogous to the two conditions used to select the Bunch-Davies vacuum from
the general α-vacuum of de Sitter [53]. To see this, transform the propagator for ϕ to
(τ,x) variables,

G2(cosh σ) =
[∫

ddk
(2π)d

eik·(x1−x2)
]
(−τ1)d/2(−τ2)d/2G2(kτ1, kτ2) (4.26)

Thanks to the de Sitter symmetries, the result is a function of the invariant chordal distance,

cosh σ ≡ 1 + (τ1 − τ2)2 − |x1 − x2|2

2τ1τ2
. (4.27)

The desired Bunch-Davies propagator is,

G2 (cosh σ) =
1

2 d+3
2 π

d−1
2 cosh(πµ)

P
d
2−

1
2

iµ− 1
2
(− cosh σ)

(
√
sinh σ) d

2−
1
2
. (4.28)

The only singularity in G2 is at coincident points xµ
1 = xµ

2 or at null separations, and the
corresponding branch cut from cosh σ = 1 to ∞ encodes the ordering ambiguity when x1 and
x2 are time-like separated. The Feynman prescription for a time-ordered product corresponds
to approaching this cut from below. Using the crossing identity (4.25) for the Legendre
functions, we find that,

iG2 (cosh σ) =
∫ ∞

0
dνN (ν)G2(− cosh σ)

(ν2 − µ2)iϵ

(4.29)

where cosh σ → − cosh σ sends x2 to its antipode, τ2 → −τ2. If we now invert the spatial
Fourier transform and return to (τ,k),

iG2
(
kτ,kτ ′

)
=
∫ ∞

0
dνN (ν)f

−(kτ,ν)f−(kτ ′,ν)Θ(−τ−τ ′)+f+(kτ,ν)f+(kτ ′,ν)Θ(τ+τ ′)
(ν2−µ2)iϵ

.

(4.30)

When restricted to the expanding Poincaré patch, this coincides with (4.13). This calculation
highlights how our split representation (4.13) is related to the usual propagator in position
space, and could be used as a starting point for future work that studies the extension to the
whole of de Sitter, e.g. to connect with the earlier proposal of [39] in global co-ordinates.

4.3 Spectral representation

Inserting the split representation for the propagator (4.13) into the exchange integral (4.1)
allows us to immediately perform the time integrals,

Gµσ
4 = i

(iks)d

∫ ∞

0
dν Nν

Fj2

(
ω12
ks
, ν
)
Fj2

(
ω34
ks
, ν
)

(ν2 − µ2
σ)iϵ

. (4.31)
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It is clear that this satisfies the exchange equation (4.4), since Fj2 is an eigenstate of ŝ12
and therefore the effect of

(
m2

σ − ŝ12
)

is to remove the pole and collapse the internal line
(producing the integral representation (3.52) of Gcon

4 ). Physically, we can recognise this as
inserting two complete sets of states in the s-channel diagram:

ω1

ω2

µσ

ω3

ω4

=
∫

νL

∫
νR

 νL

ω1

ω2

( νRνL
µσ

) νR

ω3

ω4


(4.32)

which makes it clear that the internal line is off-shell and may take any mass value. Here
we use

∫
νL

=
∫∞

0 dνL NνL for the integral over de Sitter principal series states, and the
following diagram for the free propagator

ν ′ν
µ = i δ(ν − ν ′)

Nν (ν2 − µ2)iϵ
. (4.33)

Rather pleasingly, we see that free propagation preserves the angular momentum ν. One way
to think of the spectral representation (4.31) is that two integrals in the time domain have
been reduced to one integral in the ν-domain since ν is conserved between the vertices. On
Minkowski, there is also a conservation law at each vertex (which reduces the number of inte-
grals to −1, i.e. an energy-conserving δ(ωT ) function)—on de Sitter, even once we project the
external particles onto ν eigenstates as in (3.55) there is no strict conservation at the vertices
since angular momentum addition allows for multiple possibilities (i.e. the symbols (3.56) are
effectively the Clebsch-Gordan coefficients for this angular momentum addition).

Factorisation. One of the most important features of the representation (4.31) is that
it makes factorisation manifest. In the limit ω12 → −ks, the exchange integral becomes
proportional to

lim
ω12→−ks

iGµσ
4

(
ω12
ks
,
ω34
ks

)
∝ −

∫ ∞

0
dν Nν

Fj2

(
ω34
ks
, ν
)

(ν2 − µ2
σ)iϵ

= Fj2

(
−ω34
ks
, µσ

)
. (4.34)

This confirms the factorisation observed in the conformally coupled example above (4.10).
Physically, taking the partial energy ω12 + ks → 0 corresponds to this interaction taking
place at early times (since there is no longer any ei(ω12+ks)τ suppression), which produces the
Minkowski 3-point amplitude (a constant). The remaining vertex is now a 3-point interaction
between one incoming particle, of mass µσ and two outgoing fields with energies ω3 and ω4.
This is depicted in figure 1, and can be written as the condition

lim
ω12→−ks

G4

(
ω1
k1
,
ω2
k2
,
ω3
k3
,
ω4
k4

)
∝ LSZ

ωs→µσ

[
G3

(
ω1
k1
,
ω2
k2
,
ωs

ks

)]
× LSZ

ωs→µσ

[
G3

(
−ωs

−ks
,
ω3
k3
,
ω4
k4

)]
.

(4.35)

In the next section, we will use this factorisation as a boundary condition for solving the
exchange equation (4.4), allowing us to efficiently bootstrap exchange diagrams.
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Large mass expansion. As a consistency check of our results so far, we can evaluate the
spectral representation as an expansion in large µσ. Focussing on d = 1, we can massage
the integral into,

Gµσ
4 = πΓ(d)

2 cosh(µπ)

∫ ∞

1
dz

Piν− 1
2
(−z)√

(z + cosh(2ρ−))(z + cosh(2ρ+)

= πΓ(d)
2 cosh(µπ)

∫ ∞

1
dy

2F1
(

1
2 − iµ, 1

2 + iµ, 1; y
)

√
(y + sinh2(ρ−))(y + sinh2(ρ+))

(4.36)

where 2ρ± = ρ12 ± ρ34, and ωij = ks cosh ρij . Note that expanding in powers of 1/ cosh2(ρ±),
gives the series expression,

Gµσ
4

= 1
2πks

∞∑
a,b=0

Γ(a+ b+ 1)2

m2
σ

(
3
2 + iµ

)
a+b

(
3
2 − iµ

)
a+b

Γ
(
a+ 1

2

)
Γ
(
b+ 1

2

)
a!b!

1
cosh1+2a(ρ+) cosh1+2b(ρ−)

(4.37)

Doing the summation over b at fixed a + b gives,

Gµσ
4 =

∞∑
n=0

1
m2

σ

(
3
2+iµ

)
n

(
3
2−iµ

)
n

×
(

Γ(1+2n)
2ks coshρ+ coshρ−

1
(−4cosh2 ρ+)n 2F1

(
−n, 12;

1
2−n;

cosh2 ρ+

cosh2 ρ−

))
(4.38)

which precisely reproduces the large-µ expansion given in (4.12).

Derivative interactions We have thus far considered polynomial interactions with no
derivatives. Including derivatives is straightforward, thanks to the p̂µ operators of section 3.
For instance, suppose we had (∇ϕ)2σ in the interaction Lagrangian. Since the 3-point
correlator is

G3

(
ω1
k1
,
ω2
k2
,
ω3
k3

)
= p̂1 · p̂2 Gcon

3 (ωT ) (4.39)

the 4-point exchange diagram from (∇ϕ)2σ × ϕ2σ is,

G4

(
ω1
k1
,
ω2
k2
,
ω3
k3
,
ω4
k4

)
= i

∫ ∞

0
dν Nν

[
p̂1 · p̂2 Fj2

(
ω12
ks
, ν
)] [

Fj2

(
ω34
ks
, ν
)]

(ν2 − µ2
σ)iϵ

. (4.40)

This obeys the exchange equation (4.4) with an updated source that contains the derivatives.
It has the right factorisation behaviour as ω12 → −ks or ω34 → −ks. And finally, since we
can write 2p̂1 · p̂2 = p̂2

3 − p̂2
1 − p̂2

2, we have

G4 ≈ m2
1 +m2

2 −m2
σ

2 Gµσ
4 + 1

2G
con
4 (4.41)

and therefore this exchange diagram is equivalent, when on-shell, to the exchange structure
above plus contact correlators from the previous section.
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Figure 1. In the factorisation limit ω12 → ks, the left-vertex is pushed to early times and decouples
from the right-vertex.

4.4 Exchange bootstrap

We will now show how exchange correlators can be efficiently “bootstrapped”, following the
approach of [41]. As shown above, the unique exchange contribution is given by solving
the differential equation: (

m2
σ − ŝ12

)
Gµσ

4 = −Gcon
4 (ωT ) (4.42)

subject to an appropriate boundary condition. Our explicit integral solution contains an iϵ

prescription which implements the Bunch-Davies boundary conditions relevant for Sn→n′ At
general kinematics this integral is difficult to evaluate analytically, but it is clear that the
only singularities in this function are at ω12 = −ks and ω34 = −ks.

In this subsection, we show that the iϵ prescription for the exchange integral can be
replaced by the conditions,

• The correlator (for all outgoing energies) contains singularities only when the total
energy at any vertex vanishes, and not in other “folded” configurations,

• at these singular points, the residue may only contain non-overlapping singularities,
since when any vertex is pulled to early times (partial energy → 0) the correlator must
factorises as in (4.46),

which are sufficient to uniquely fix the solution to the exchange equation.
This is in the same spirit as the “cosmological bootstrap” of [41], in which a particular

analytic structure was used to bootstrap solutions to the exchange equation for in-in correlators
of conformally coupled fields. To parallel the notation in that paper, for the remainder of
this section we will introduce the ratios,31

u = ks

ω12
, v = ks

ω34
. (4.43)

Somewhat remarkably, in terms of these variables the ŝ12 operator (3.46) in d dimensions
coincides with the ∆u operator of [41] in d + 2 dimensions,

−ŝ12|d = u2(1− u2)∂2
u − 2u

(
u2 + d− 1

2

)
∂u = ∆u|d+2 . (4.44)

31Note that our u and v are not the same variables as in [41]: although they do coincide upon setting
ωb = |kb| (i.e. cosh ρb = 1) for each particle.
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Many of the earlier cosmological bootstrap results can therefore be carried over to the de
Sitter S-matrix — the only differences are (i) the relevant boundary condition is now given by
the factorisation property (4.46), and (ii) when computing correlators in which the external
legs no longer have a definite mass value, the dimension is effectively two lower than for
conformally coupled external scalars.

To be explicit, we can write the exchange structure (4.1) in terms of a scale-invariant
function F ,

iGµ
4 = F (u, v)

(iks)d
, (4.45)

which is forbidden from having singularities as u→ 1 or v → 1, and in the factorisation limit

lim
u→−1

F (u, v) = lim
u→−1

Fj2

(
1
u , µσ

)
F ∗

j2

(
− 1

v , µσ

)
. (4.46)

In the limit ω12 → −ks, the correlator Fj2(ω12
ks
, µσ) reduces to a Minkowski scattering

amplitude (multiplied by a singular factor of (ω12 − ks)j , where j is fixed by dilation
invariance). This factorisation of the dS correlator Gµ

4 into a product of a Minkowski
amplitude and a dS correlator is shown pictorially in figure 1. Notice that the residue of
the ω12 = −ks singularity may only have singularities at ω34 = ks (but not at ω34 = −ks).
That certain overlapping singularities are forbidden in the S-matrix is analogous to the
Steinman relations on Minkowski.

Exchange of a conformally coupled field. For example, consider the exchange of a
conformally coupled scalar in d = 3. The source for the exchange equation is

(
m2

σ − ŝ12|d=3
)
F (u, v) = 2(uv)3

(u+ v)3 (4.47)

which is nothing but the Γ(3)/(iωT )3 from above. Solving both (4.47) and the analogous ŝ34
equation and imposing the absence of folded singularities at u = 1 and v = 1 determines
Gµσ

4 up to a single constant of integration,

F (u, v) = uv((u+ v)C − uv)
(u+ 1)(v + 1)(u+ v) . (4.48)

In the factorisation limit ω12 → −ks,

lim
u→−1

F (u, v) = − 1
2(u+ 1)

[
2 + 2C + 1

v − 1 − 1 + 2C
v + 1

]
. (4.49)

To implement the in-out boundary conditions of the S-matrix, we must set C = −1/2 to
remove the overlapping singularity at v = −1. This uniquely determines G4, and indeed
this value matches a brute-force computation using bulk time integrals. In contrast, the
wavefunction coefficient32 corresponds to setting C = 0. Since the coefficient C captures the

32Recall that ψ4 ∝ 1/ [ωT (ω12 + k)(ω34 + k)] for the exchange of a conformally coupled scalar in d =
3 dimensions.
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freedom to add any disconnected product G3 × G3 to the exchange solution, (4.48) can be
read as the exchange Feynman diagram in which the internal line represents the propagator,

Θ(τ1 − τ2)f−1 f+
2 +Θ(τ2 − τ1)f−1 f+

2 − (1 + 2C) f+
1 f

+
2 (4.50)

where f±j = f±(ksτj , µσ). The choices above (C = −1/2 and C = 0) correspond to the
Feynman and bulk-to-bulk propagators respectively.

Shifting the spacetime dimension. In other spacetime dimensions, we could bootstrap
solutions in the same way. But given a solution in d = 3, an efficient method of generating
solutions in d = 3 + 2n is to repeatedly use the identity

ŝ12|d+2u
2∂u = u2∂u(d+ 1 + ŝ12|d) . (4.51)

This means that if there is a Green’s function in d dimensions that solves ŝ12|dG = ŝ34|dG
then (uv)2∂u∂vG will be a kinematically allowed Green’s function in d+ 2 dimensions.33 For
instance, the contact invariants G(n)

4 = (d+1− ŝ12)nGcon
4 in d = 3 dimensions can be written as

G(n)
4 |d=3 = (uv)2∂u∂v (−ŝ12)nG(0)

4 |d=1 = (uv)2∂u∂v∆n
u

(
uv

u+ v

)
, (4.52)

where ∆n
u

(
uv

u+v

)
are precisely the contact invariants previously computed in [41]. However,

notice that now u and v correspond to functions of the energy variables ω which label the
off-shell external lines, so these are qualitatively different physical objects. Applying this
same trick to the exchange equation, we have that any solution Gµσ

4 to (4.42) in d dimensions
will also be a solution of:

(m2
σ+d+1−ŝ12|d+2)(uv)2∂u∂vGµσ

4 =(iks)d+2Gcon
4 |d+2 =Γ(d+2)

(
uv

u+v

)d+2
. (4.53)

(uv)2∂u∂vGµσ
4 therefore corresponds to the exchange of a particle with mass (m2

σ + d + 1)
in d + 2 dimensions.34

Exchange of a general massive field. To connect with previous literature on the cosmolog-
ical collider signal from the exchange of heavy scalar, let us now consider solving the exchange
equation (4.42) in d = 1 dimensions for a general mass. This can be written in u, v variables as,(

µ2 + 1
4 − ŝ12|d=1

)
F (u, v) = uv

u+ v
. (4.54)

Demanding no folded singularities (regularity at u, v → +1) produces a general solution for
F (u, v) that depends on a single undetermined constant, which we denote by β. Noting
that −ŝ12|d=1 = ∆u|d=3, an explicit series representation for this function when |u| < |v|
was found in [41]

F (u, v) =
∞∑

m,n=0
cmn(µ)u2m+1

(
u

v

)n

+ π

2 cosh(πµσ)
g(u, v) (4.55)

33(uv)2∂u∂v is the “spin-raising” operator of [41].
34Note that the spin-raising operator does not affect the singularity structure and therefore preserves the

required boundary conditions of Gµσ
4 .
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where the coefficients cmn are

cmn(µ) =
(−1)n(n+ 1)(n+ 2) . . . (n+ 2m)((

n+ 1
2

)2
+ µ2

)((
n+ 5

2

)2
+ µ2

)
. . .

((
n+ 1

2 + 2m
)2

+ µ2
) (4.56)

and g(u, v) is a solution to the homogeneous equation,35

g(u, v) = π

cosh(πµ)P+(v)P−(u)− βP+(u)P+ (v) (4.57)

where P±(u) = Piµ− 1
2

(
± 1

u

)
. The complementary region |v| > |u| then follows from the

symmetry F (u, v) = F (v, u).
The coefficient β again captures which propagator should be used for the internal line.36

Different choices correspond to different physical objects: correlator, wavefunction, S-matrix,
etc. We can fix the value of β by matching to the so-called “factorisation limit” in which
u → −1 and v → −1, for instance:

⟨ϕ4⟩ ∼ 1
2× log (1 + u) log (1 + v) ⇒ β = π

cosh(πµ) ,

ψ4 ∼ −
f−µ

2f+
µ
× log (1 + u) log (1 + v) ⇒ β = − π

cosh(πµ)
f−µ

f+
µ
, (4.58)

S0→4 ∼ 0× log (1 + u) log (1 + v) ⇒ β = 0,

where f±µ = f±(ksτ0, µ) with τ0 → 0 a regulator for the late-time behaviour oscillatory
behaviour of the mode function. This is the same method described in [41], where our
simpler factorisation condition for the S-matrix means that β can be fixed straightforwardly
without any bulk calculation.

Particle production. The effects of particle production are most clearly visible in the
collapsed limit ks → 0, which can be implemented by taking v → 0 with ξ = u/v held fixed.
The general solution to the exchange equation F (u, v) in this limit takes the form,

F (u, v) = v
(
FEFT(ξ) + Fcollider(ξ) + 2Re

[
v2iµFOPE(ξ)

])
+O(v2) (4.59)

35The first term is fixed by the requirement that it cancels the singularity at u→ 1 from the infinite sum,

lim
u→1

[∑
m,n

cm,nu
2m+1

(
u

v

)n

]
= π

2 cosh(πµ)P+(v) log(1− u) = lim
u→1

[
−π2

2 cosh2(πµ)
P−(u)P+(v)

]
.

36Note that the Legendre function in the second term of (4.57) has a branch cut for the physical region
0 < u < 1. We evaluate this function by summing its value just above and just below this cut, which preserves
the identity P ∗

n(z) = Pn∗(z∗) on the real axis. Since the branch cut discontinuity of Pn(−z) is proportional
to Pn(+z), a different convention would correspond to a shift in β. For instance, [29] defines the Legendre
functions on the real axis as being approached from one side only, and as a result their β+ has an additional
contribution. Explicitly, our β = β+ − iπ in the notation of [29], and β = −β0π sinh(πµ)/ cosh(πµ) in the
notation of [41].
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where Fcollider are the first non-analyticities in ξ, and FOPE are the first non-analytic terms
in ks. Explicitly, expanding the Legendre functions gives,

FEFT(ξ) =
∑

n

c0n(µ)ξn

Fcollider(ξ) =
iπ + β coth(πµ)
4µ cosh(πµ) ξ

1
2 +iµσ + c.c. (4.60)

FOPE(ξ) =
sinh(πµσ)

2π2

(
ξ

4

) 1
2 +iµ

(iπ + β coth(πµ)) Γ
(

1
2 + iµ

)2
Γ (−iµ)2

The Fcollider signal dominates in the squeezed limit and produces characteristic oscillations
with a periodicity set by the mass of the heavy field. Beyond the EFT series, both Fcollider
and FOPE depend on β and will differ for different physical observables (e.g. wavefunction,
correlator, S-matrix). However, in the large mass limit this changes the overall amplitude of
the signal by a simple numerical factor and does not affect the Boltzmann ∼ e−πµσ suppression.

Beyond 4-particle scattering. One of the virtues of our off-shell formalism is that it can
accommodate any number of external particles. To illustrate this, let us now consider the
tree-level exchange diagram for n1 → n2 scattering in d dimensions. If we denote the total
energy and momentum of the n1 ingoing particles as −ω1 and −k, and the total energy
and momentum of the n2 outgoing particles as ω2 and k, then we can express this diagram
in terms of the two dimensionless ratios

u = k

ω1
, v = k

ω2
, (4.61)

which are the straightforward generalisation of (4.43) to multiple particles. The relevant
exchange equation to be solved is:(

µ2 + d2

4 − ŝ12...n1

)
F (u, v) = Γ (jn1 + jn2)

(
uv

u+ v

)jn1 +jn2
(4.62)

where the n-particle Mandelstam operator (3.31) can be written as

−ŝ12...n = u2(1− u2)∂2
u − u

(
2u2 − 1 + 2jn

)
∂u + j2

n − d2

4 . (4.63)

Proceeding as before, we can express the general solution to the exchange equation in the
region |u| < |v| as

F (u, v) =
∞∑

m,n=0
cmnu

jn1 +jn2 +2m
(
u

v

)n

+
∑

σ1,σ2=±
βσ1σ2F

σ1
n1 (u)F

σ2
n2 (v) (4.64)

where the β coefficients reflect the freedom to add any homogeneous solution of both (4.62)
and the complementary equation in v, which we have written in terms of the mode func-
tions (A.2) as37

F+
n (u) = Fjn

(1
u

)
, F−

n (u) = F ∗
jn

(
−1
u

)
. (4.65)

37Note that F±
n

(
k
ω

)
corresponds to the overlap of n particles with total energy ω with an on-shell particle of

mass µ which is either outgoing (F+
n ) or ingoing (F−

n ). In particular, if the ω energies are then also projected
onto outgoing mass eigenstates using (2.11), we would have LSZ

[
F+

n

]
= S0→n+1 and LSZ

[
F−

n

]
= S1→n.
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The cmn are fixed by matching to the analogous expansion of the source

Γ(J)
(

uv

u+ v

)J

=
∞∑

n=0

(−1)n

n! Γ(J + n)uJ
(
u

v

)n

(4.66)

which gives

cmn = (−1)nΓ(n+ Jn1+n2)
Γ(n+ 1)

(n+ Jn1+n2)(n+ Jn1+n2 + 1) . . . (n+ Jn1+n2 + 2m− 1)
[µ2 + (n+ jn2)2] [µ2 + (n+ jn2 + 2)2] . . . [µ2 + (n+ jn2 + 2m)2]

where Jn1+n2 = jn1 + jn2 = d
2(n1 + n2 − 2). To fix the β coefficients, we must specify which

object we would like to compute (wavefunction, in-in correlator, S-matrix, etc)—this is
equivalent to providing the iϵ prescription for the bulk propagator in (4.1). Thhe relevant
conditions for the S-matrix or amputated correlator is

(i) No singularity as v → 1. Since the cmn series is regular as v → 1 for generic values of
u, this condition requires β+− = β−− = 0 in order to remove the singularity in F−

n2(v).

(ii) No singularity as u→ 1. The cmn series diverges as u→ 1

lim
u→1

∞∑
m,n=0

cmnu
2m+Jn1+n2

(
u

v

)n

= −
Γ
(
jn1 − 1

2

)
i
√
2(1− u)jn1−

1
2
F+

n2(v) (4.67)

and so comparing with the singularity in F−
n1(u) — see (A.37)—we see that β−+ = 1 is

needed to remove this singularity.

(iii) No overlapping singularity as u → −1 and v → −1. The preceeding conditions leave
β++ as the only undetermined coefficient, just as in the simpler example of n1 = n2 = 2
and d = 1 we considered above. However, the corresponding F+

n1(u)F
+
n2(v) contains an

overlapping singularity that ∼ (1 + u) 1
2−jn1 (1 + v) 1

2−jn2 as both u and v approach −1.
Such singularities are forbidden by the factorisation condition that

lim
u→−1

F (u, v) = F+
n1 (u)F

−
n2 (v) (4.68)

and therefore we must set β++ = 0.

Altogether, the amputated correlator for this n1 → n2 scattering via the s-channel exchange
of a heavy scalar is given by (4.64) with

β++ = β−− = β+− = 0 , β−+ = 1 . (4.69)

For the complementary region |v| > |u|, one can proceed in the same fashion and would arrive
at the analogous series solution with both u↔ v and n1 ↔ n2. The spectral representation
that unifies both regions is

F (u, v) =
∫ ∞

0
dν Nν

Fjn1

(
1
u

)
Fjn2

(
1
v

)
(ν2 − µ2)iϵ

(4.70)

where Nν = 2
πν sinh(πν) and Fjn is given in (A.2). This manifestly satisfies both the exchange

equation (thanks to (3.62)) and the required factorisation (thanks to (4.25)).
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4.5 Unitarity and positivity

Another way to fix the coefficient C in (4.48) and β in (4.57), first described in [29], is to use
the cutting rules which follow from perturbative unitarity. In that approach, one considers
the so-called “discontinuity”, which for the exchange of a conformally coupled scalar is

F (u, v) + F ∗(−u∗,−v∗)
= g3(u)g3(−v) + g3(−u)g3(v) + (1 + 2C) (g3(u)g3(v) + g3(−u)g3(−v)) (4.71)

where g3(u) = 1√
2u/(u + 1), and for the exchange of a general massive scalar,

F (u,v)+F ∗(−u∗,−v∗)

= π

2cosh(πµσ)

[
πP−(u)P+(v)
cosh(πµσ)

+πP+(u)P−(v)
cosh(πµσ)

−βP+(u)P+(v)−β∗P−(u)P−(v)
]

(4.72)

=F−
2 (u)F+

2 (v)+F+
2 (u)F−

2 (v)+ 1
π cosh(πµ)

(
βF+

2 (u)F+
2 (v)+β∗F−

2 (u)F−
2 (v)

)
where we have given the result in both our F±

2 mode function (4.65) and in the notation
P±(u) = Piµ− 1

2

(
± 1

u

)
of [29] for easy comparison. The different C and β for wavefunction

versus S-matrix reflects their different unitarity cutting rules: the usual Cutkosky rules for
the S-matrix imply that C = −1

2 and β = 0, while the Cosmological Cutting Rules of [28, 29]
imply that C = 0 and β is given by (4.58). In this subsection, we describe unitarity and
the associated cutting rules in more detail.

Optical theorem. As on Minkowski, the de Sitter S-matrix can be written as

Sn1→n2 = ⟨n2|Û |n1⟩ (4.73)

where |n⟩ are the free theory particle eigenstates and Û is a unitary operator related to
time translations.38 Splitting the S-matrix elements into a free disconnected part and an
interacting part corresponds at the operator level to writing Û = 1 + iT̂ . Unitarity of Û
then implies the usual relation T̂ − T̂ † = iT̂ †T̂ . Inserting a complete set of states (e.g. the
free particle eigenstates (2.4)) between the T̂ †T̂ then implies the usual optical theorem for
the connected part of the de Sitter S-matrix,

Sn1→n2 + S∗
n2→n1 =

∑
I

Sn1→IS∗
n2→I . (4.74)

This result is non-perturbative and immediately implies many important properties. The
two we will highlight here are:

(i) the discontinuity in the forward limit is positive, namely 2ReSn→n =∑
I |Sn→I |2 > 0,

(ii) in perturbation theory, individual diagrams for both S and G can be cut into simpler
diagrams by taking a suitable discontinuity.

38If U(τ1, τ2) and Ufree(τ1, τ2) implement time evolution in the interacting and free theories respectively,
then Û = U†

free(−∞, 0)U(−∞, 0).

– 45 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
1

Cutting rules. Let us start with the perturbative cutting rules (ii). These can be derived
from the fact that the propagator obeys

G2(kτ, kτ) +G∗
2(kτ, kτ ′) = f+(kτ)f−(kτ ′) + f−(kτ)f+(kτ ′) (4.75)

i.e. that the real part does not contain any Θ functions, and therefore each term factorises
into a product of two mode functions. Since the spectral representation for the exchange
diagram has the same form as the propagator, we immediately have that

Gµσ
4

(
−ω12
ks
,+ω34

ks

)
+ Gµσ∗

4

(
+ω12
ks
,−ω34

ks

)
= F+

2 (u)F+
2 (v) + F−

2 (u)F−
2 (v) . (4.76)

This extends (4.73) to any odd spatial dimension and can also be applied to the n1 → n2
example above, for which:

F (u, v) + F ∗(−u∗,−v∗) = F+
n1(u)F

−
n2(v) + F−

n1(u)F
+
n2(v) (4.77)

In fact, performing the LSZ integral (2.11) to project onto mass eigenstates, we have that

S12→34 + S∗
34→12 = S12→µσS∗

34→µσ
+ S12µσ→0S∗

34µσ→0 (4.78)

Diagrammatically, this cutting rule is

ω1

ω2

µ
ω3

ω4

+


ω3

ω4

µ
ω1

ω2


∗

=
ω1

ω2

µ µ
ω3

ω4

+
ω1

ω2 ω3

ω4
(4.79)

Notice that, on Minkowski, the final term would vanish due to energy conservation — it
is present on de Sitter because there is no longer any requirement for the total energy at
a vertex to vanish. A systematic description of these cutting rules and their uses will be
developed elsewhere.

Positivity and beyond. Notice that since the mode functions F±
n are real, the disc in (4.76)

is positive in the forward limit. This is the perturbative avatar of the optical theorem (4.74).
This positivity follows from the unitarity time evolution of quantum mechanics: it is therefore
potentially distinct from [54] (positivity of Fisher information) and [55–57] (positivity of
inner product on Hilbert space). Interestingly, this disc is also bounded from above: to
proceed as on Minkowski would require a partial wave expansion. We leave this interesting
direction for future work.

5 Discussion

In this work, we have put forward an extension of the de Sitter S-matrix of [38] which
allows for the scattering of off-shell states in which the particles are not confined to physical
mass eigenstates. Going off-shell has allowed us to connect with amputated correlators
in the energy-domain, which share many useful properties of the off-shell amplitudes in
Minkowski. In particular, the unique 3-particle S-matrix takes the particularly simple form
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of a total-energy pole, and the most general 4-particle S-matrix at tree-level can be written
as a power series expansion in ŝ and t̂ (which exactly captures the EFT derivative expansion)
plus exchange contributions which have a simple spectral representation. Altogether, these
results determine the off-shell correlators for a wide range of different theories. The on-shell
S-matrix that determines cosmological observables can then be obtained by projecting onto
particular mass eigenstates.

To sum up in a single equation: from the tree-level exchange of a scalar field, the most
general amputated correlator (up to terms that vanish on-shell) is given by:

G4

(
ω1
k1
, . . . ,

ω4
k4

)
=
∑
a,b

cab t̂
b ŝa Gcon

4 (ωT )−
∑

σ

(
λ12σλ34σ

kd
s

Gµσ
4

(
ω12

ks
,
ω34

ks

)
+ λ13σλ24σ

kd
t

Gµσ
4

(
ω13

kt
,
ω24

kt

)

+ λ14σλ23σ

kd
u

Gµσ
4

(
ω14

ku
,
ω23

ku

))
(5.1)

where {cab, λabc} are constant model-dependent couplings, {Gcon
4 ,Gµ

4 } are model-independent
kinematic structures fixed by the de Sitter symmetries, and the kinematic variables are
ωab = ωa + ωb, ks = |k1 + k2|, kt = |k1 + k3| and ku = |k1 + k4|.

There are a number of interesting directions to be pursued further:

• Loops. While our examples have been at tree-level, many of our results are true at
any loop order — for instance the optical theorem and consequent positivity, the
Mandelstam operators (built from de Sitter generators) and the integral representations
for correlators in terms of Mandelstam eigenstates. It would therefore be interesting
to explicitly compute loop diagrams using this technology, to compare with the recent
computations in the wavefunction and in-in formalisms [34, 58–61].

• IR divergences. For fields with particular mass values, the time integrals may diverge
as τ → 0. The divergences can be renormalised [45, 62] using the framework of
holographic renormalisation [63]. They are known to give anomalous contributions
to the Ward identities [27, 45, 64] and their resummation leads to the semiclassical
stochastic description of inflation [65–69]. Here we have focussed on scalar fields with
masses and interactions for which there are no such divergences (this includes all
principal series fields and also light fields with derivative interactions, such as those in
the EFT of inflation [70]).

• Including spin. We have focussed on scalar fields largely for simplicity. In subsequent
work, we hope to include also spinning fields for the external and internal lines. There
is no conceptual obstacle to doing this, since the analogous problem has been solved for
the wavefunction: for instance the non-Gaussianity for gravitons is well-defined and
has been recently bootstrapped [71–73].

• Going on-shell. We have focussed on the amputated correlator because it cleanly
separates the dynamical part of the problem from the kinematic complications of the
external asymptotic states. Ultimately, we would also like a way to take these amputated
objects on-shell in order to construct S-matrices and observable in-in correlators. This
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produces various generalisations of the hypergeometric function, and there has been a
lot of recent progress in understanding their structure [74–79] particularly in momentum
space [44, 80–82].

• Canonical forms. It was recently shown that the same differential equation technology
from Minkowski amplitudes can be applied to cosmological correlators and the wave-
function [83, 84]. Since the S-matrix elements we have discussed here belong to the
same class of integrals (we have seen they solve the same exchange equation but with
different boundary conditions), the “kinematic flow” approach could also be used to
efficiently determine their system of differential equations. This would likely come at
the cost of the de Sitter isometries, but could allow for an object similar to the S-matrix
to be defined and computed for other power law cosmologies.

• Fewer symmetries. We have focussed on de Sitter invariant interactions, although the
standard S-matrix construction that we presented could equally be applied on other
time-dependent backgrounds (albeit with more complicated mode functions). Following
the same boostless bootstrap procedure developed for the wavefunction [85–92] should
lead to analogous results for the S-matrix elements (which, after all, are convenient
combinations of wavefunction coefficients).

• Other variables. As highlighted in the Introduction, there is now a variety of options
for what kinematic variables to use and which object to compute when analysing
cosmological correlators. We would argue that the {ω,k} variables used here have a
transparent flat-space limit and a simple spectral representation, though other properties
may be more manifest with a different set of kinematic variables. For instance, AdS
correlators correspond to remarkably simple amplitudes in Mellin space [93–96] and
much of this simplification can be directly imported to de Sitter [97–100]. Previous
spectral representations that integrate over the principal series with fields labelled by
spatial position [101, 102], spatial momentum [99], or spatial angular momentum [39]
also enjoy a simple analytic structure in ν in which the poles have concrete physical
meaning. Ultimately, on Minkowski there are a number of desirable properties that
coincide in the covariant momenta pµ — including a simple LSZ reduction, simple
analytic structure and simple linearisation formula — but on de Sitter we have yet to
find variables that can enjoy all of these properties simultaneously.

• Subhorizon limit. Many previous applications of S-matrix techniques to cosmology have
considered subhorizon modes that do not feel the time-dependence of the background and
therefore within a WKB approximation scattering via approximately energy conserving
amplitudes. This has led to a variety of constraints on field theories of inflation [103–
108] and dark energy [109–113]. We have shown only that the S-matrix considered
here reduces to the Minkowski S-matrix when the Hubble rate H → 0, but it would
be interesting to instead perform a subhorizon expansion in ω, k ≫ H to see how
these S-matrix elements are related to the subhorizon amplitudes (and whether their
positivity can impose any further constraints in the subhorizon regime, where analyticity
is better understood).
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• Dispersion relation. Finally, perhaps the most pressing question raised by this work is:
what is the analogue of deforming the amplitude into the complex s plane at fixed t?
Since the Mandelstam operators no longer commute on de Sitter, it is not possible to
simultaneously fix t and s. It could be that another set of variables is better suited for
exploiting analyticity, for instance complex angular momenta adapted to the full de
Sitter group. We have referred to the combination appearing in the optical theorem as
a “discontinuity”, but we have not specified what this is a discontinuity with respect to.
That remains an open question.
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Note added. During preparation of this manuscript, [114] introduced matrix elements of the
time evolution operator U(+∞,−∞) on an extension of de Sitter spacetime to −∞ < τ < +∞.
This replaces the identity (2.30) with a straightforward identification between in-out and
in-in objects (where “in-out” now refers to states at τ → ±∞). Here we are studying matrix
elements of the time evolution U(0,−∞) in the physical region −∞ < τ ≤ 0. Since both
constructions use the same integrand (built from Feynman propagators), we expect them
to share some similarities — for instance the diagrammatic cutting rules from unitarity
should coincide (since it was shown in [33] that the time integration domain does not affect
the diagrammatic form of the cutting rules). Our underlying philosophy is to define a new
object which, much like the scattering amplitude of Minkowski, is linear in the physical
time evolution operator: the modulus-squared of this object is then related to observable
correlators just as the mod-square of the amplitude is related to cross sections. However it
would certainly be interesting to repeat the above discussion within the construction of [114],
using

∫+∞
−∞ dτ in place of

∫ 0
−∞ dτ , since in that case the Fourier transform from τ to ω would

be trivially invertible (although analyticity in the ω half-plane would be lost).

A Mode function details

In this appendix we collect various mathematical identities that are useful when manipulating
the mode functions for a massive scalar field on de Sitter. In particular, we use

f−(kτ, µ) = i
√
π

2 e−
π
2 µH

(1)
iµ (−kτ) , f+(kτ, µ) =

√
π

2i e
+ π

2 µH
(2)
iµ (−kτ) , (A.1)

for the Bunch-Davies mode functions in the time-domain, and

Fjn(z, ν) =
1√
2

|Γ (jn + iν) |2
P

1
2−jn

iν− 1
2
(z)(√

z2 − 1
)jn− 1

2
(A.2)
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for the n-particle mode functions in the energy domain, where jn = d
2(n − 1) in the main

text but for this appendix jn may take any positive real value.

Time-domain. The mode functions (A.1) satisfy the free equations of motion (2.3) with
the Bunch-Davies vacuum condition f± ∼ e±ikτ in the far past. Notice that f+ should only
be analytically continued to Im(−kτ ) < 0 and f− should only be continued to Im(kτ) > 0 to
ensure convergence of time integrals as τ → −∞. They are related by complex conjugation,[

H
(1)
iµ (z)

]∗
= eµπH

(2)
iµ (z∗) ⇒

[
f−(kτ, µ)

]∗ = f+(kτ, µ) . (A.3)

Since the Wronskian of two Hankel functions is

H
(2)
iµ (−kτ)

↔
(τ∂τ )H(1)

iµ (−kτ) = 4i
π
, (A.4)

we have normalised f± so that

f−(kτ, µ)
↔

(iτ∂τ )f+(kτ, µ) = 1 (A.5)

which ensures a canonical commutation relation [âk, â
†
k′ ] = (2π)3δ3(k − k′). Upon time

reversal,

H
(1)
−iµ(eiπz) = −H(2)

iµ (z) H
(2)
−iµ(e−iπz) = −H(1)

iµ (z) (A.6)

and the chosen phase of f± corresponds to a trivial CPT phase,

f∓(z, µ) = f±(e∓iπz,−µ) (A.7)

in addition to the useful relation f±(kτ,−µ) = f±(kτ,+µ). Note also that our normalisation
corresponds to f±(kτ, µ) → e±ikτ/

√
∓2ikτ in the far past.

Energy-domain. The mode functions (A.2) satisfy the free equations of motion p̂2+m2 = 0,
with boundary conditions such that they are related to f± by a Fourier transform. Explicitly,
our conventions for the Legendre functions are39

P
1
2−j

iν− 1
2
(z)(√

z2 − 1
)j− 1

2
= 1

Γ
(
j + 1

2

) (1 + z)
1
2−j

2F1

(1
2 − iν,

1
2 + iν; j + 1

2;
1− z

2

)
(A.8)

e−iπ(j− 1
2 )Q

j− 1
2

ν− 1
2
(z)(√

z2 − 1
)j− 1

2
=
√
π

2
Γ (ν + j)
Γ(ν + 1)

1
2νzν+j 2F1

(
ν + j + 1

2 ,
ν + j

2 ; ν + 1; 1
z2

)
.

For z > 1, the Legendre P is a real function and therefore

F ∗
j (z, µ) = Fj(z, µ) . (A.9)

39These corresponds to Pµ
ν (z) = LegendreP[ν, µ, 3, z] and Qµ

ν (z) = LegendreQ[ν, µ, 3, z] in Mathematica.
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Connection formula. The Hankel mode functions can be expanded in terms of Bessel
functions using

e−µπ/2

2 H
(1)
iµ (z) = e+µπ/2J+iµ(z)− e−µπ/2J−iµ(z)

e+µπ − e−µπ
,

e+µπ/2

2 H
(2)
iµ (z) = e+µπ/2J−iµ(z)− e−µπ/2J+iµ(z)

e+µπ − e−µπ
. (A.10)

The inverse is simply Jiν(z) = 1
2

(
H

(1)
iν (z) +H

(2)
iν (z)

)
. The Legendre mode functions can

be similarly related:

−|Γ (j + iν) |2P
1
2−j

iν− 1
2
(x) = e−iπj

sinh(πν)

(
Q

j− 1
2

+iν− 1
2
(x)−Q

j− 1
2

−iν− 1
2
(x)
)
. (A.11)

These relations are useful because it is the J (P ) function that has a simple scaling behaviour
at z ≈ 0 (≈ 1), while it is the H and Q functions that have a simple behaviour at large
z. Explicitly:

Jiν(z)∼
(
z

2

)+iν 1
Γ(1+iν) ,

e+νπ/2

2 H
(2)
iν (z)∼

√
i

2πz e
−iz

e−iπ(j− 1
2 )Q

j− 1
2

iν− 1
2
(z)∼

√
π

2z

( 1
2z

)+iν Γ(j+iν)
Γ(1+iν) , P

1
2−j

iν− 1
2
(z)∼

(√
z2−1

)j− 1
2

2j− 1
2 Γ
(
j+ 1

2

) (A.12)

Fourier transform. The mode functions in the two domains are related by a Fourier
transform [115, p394],

[∫ 0

−∞

dτ

−τ
eiωτ

]
(−τ)j e−νπ/2Jiν(−kτ) =

1
(ik)j

√
2
π

e−iπjQ
j− 1

2
iν− 1

2
(z)(√

z2 − 1
)j− 1

2
(A.13)

where z = ω/k, Re(j + iν) > 0 and ω must have a small Imω < 0 for the integral to
converge in the far past. Given the above connection formula (A.11), the corresponding
Fourier transform of a Hankel function is:40

[∫ 0

−∞

dτ

−τ
e+iωτ

]
(−τ)j e+νπ/2H

(2)
iν (−kτ)= 1

(ik)j

√
2
π

|Γ(j+iν) |2
P

1
2−j

iν− 1
2
(z)(√

z2−1
)j− 1

2
. (A.14)

The integrals satisfy the same differential equation, and we can fix their overall normalisation
by comparing their behaviour at low and large z, namely (A.12).41 In terms of the mode

40Notice that |Γ(j + iν)|2 = Γ(j + iν)Γ(j − iν) since we assume here that ν is real.
41(A.14) can also be performed by rotating the contour into the complex plane and using the identity [115,

p398]

∫ ∞

0

dy

y
yj e−y cosh ρKiν(y) =

√
π

2 Γ(j − iν)Γ(j + iν)
P

1
2 −j

iν− 1
2
(cosh ρ)

sinhj− 1
2 ρ

for Re(j) > |Im(ν)| and Re(cosh ρ) > −1, where Kiν(y) = − iπ
2 e

νπ/2H
(2)
iν (ye−iπ/2) in upper-half of complex

y-plane.
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functions, (A.14) implies[∫ 0

−∞

dτ

−τ
e+iωτ

]
(−τ)j if+(kτ, ν) = 1

(ik)j
Fj

(
ω

k
, µ

)
. (A.15)

Using the conjugation property (A.3), we also have[∫ 0

−∞

dτ

−τ
e+iωτ

]
(−τ)j if−(kτ, ν) = −1

(−ik)j
F ∗

j

(
−ω
k
, µ

)
. (A.16)

We also have the inverse transformation,

e+νπ/2H
(2)
iν (−kτ) = −i

∫ +∞

−∞

dρ

π
eiνρ e+ikτ cosh ρ (A.17)

e−νπ/2H
(1)
iν (−kτ) = +i

∫ +∞

−∞

dρ

π
eiνρ e−ikτ cosh ρ (A.18)

where we implicitly assume −kτ has a small positive (negative) imaginary part in f− (f+)
to ensure converge in the far past.

Analytic continuation in z. The Legendre P function has a branch point at z = −1 and
we take the branch cut along the negative real axis. This Q functions has branch points at
both z = +1 and −1, and we take the branch cuts along the positive and negative real axis
respectively. Approaching the cut from above or below corresponds to:

−|Γ (j + iν) |2 P j− 1
2

iν− 1
2
(eiπnx) = eiπ(j−n/2)

sinh(νπ)

(
enνπQ

j− 1
2

+iν− 1
2
(x)− e−nνπQ

j− 1
2

−iν− 1
2
(x)
)

(A.19)

since if we continue along an elliptical arc with x > 1 we get,

Q
j− 1

2
iν− 1

2
(eiπnx) = e−iπn/2e+nνπQ

j− 1
2

iν− 1
2
(z) . (A.20)

The analogous result for the Hankel function is

e+νπ/2

2 H
(2)
iν (e−iπnz) = e−νπ/2(1−2n)J+iν(z)− e+νπ/2(1−2n)J−iν(z)

eνπ − e−νπ
(A.21)

since,

Jiν(eiπnz) = e−nνπJiν(z) . (A.22)

LSZ reduction. Using (A.19), the branch cut discontinuity of the mode function can
therefore be written as,

Fj

(
e+iπ cosh ρ, µ

)
− Fj

(
e−iπ cosh ρ, µ

)
=

√
2πi eiπj

P
j− 1

2
iν− 1

2
(cosh ρ)

(sinh ρ)j− 1
2

. (A.23)

One interesting special case is when j = 1,

F1
(
e+iπ cosh ρ, µ

)
− F1

(
e−iπ cosh ρ, µ

)
= −2i

√
π
cos(νρ)
sinh ρ . (A.24)
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This gives an alternative way to derive the LSZ formula (2.11), since[∫ 0

−∞

dτ

−τ
f+(kτ, µ)

]
Gn

(
τ

k

)
=
∫ +∞

−∞

dω

2π

[∫ 0

−∞
dτ f+(kτ, µ) e−iωτ

]
Gn

(
ω

k

)

=
∫ +∞

−∞

dω

2πik F1

(
−ω
k
, µ

)
Gn

(
ω

k

)

=
∫ ∞

k

dω

2πik Disc
[
F1

(
−ω
k
, µ

)]
Gn

(
ω

k

)
(A.25)

where we have used analyticity of Gn(ω,k) in the lower-half of the complex ω plane to close
the integration contour around the branch cut discontinuity of F1. The identity (A.24) for
this discontinuity then immediately implies (2.11) upon changing integration variables to
ω = k cosh ρ. For an ingoing particle, repeating these steps produces a 1

−ikF1(+ω
k , µ) and

we instead close the contour around the branch cut along ω < −k: this produces (2.11)
with ω = −k cosh ρ.

Analytic continuation in ν. At fixed z, the Bessel, Hankel and Legendre functions are
all analytic functions of ν. Integrals over ν can therefore usually be done by closing the
contour in the complex plane. For this, the following asymptotic behaviours are useful.
For the Bessel/Hankel functions,

e−
π
2 νJ+iν(z) ∼

e+iν−iν log( 2ν
z )

√
2πν

e+ π
2 νH

(2)
iν (z) ∼ 2i e−iν+iν log( 2ν

z )
√
2πν

(A.26)

for |ν| much greater than 1 or |z| and with a small negative imaginary part [50, 51]. Similarly,
for ν → ∞ at fixed j and ρ ≥ 0,

P
j− 1

2
iν− 1

2
(cosh ρ) ∼

(
ρ

sinh ρ

)1/2
ν

1
2−jei π

2 (j− 1
2 )Jj− 1

2
(νρ)

e−iπ(j− 1
2 )Q

j− 1
2

iν− 1
2
(cosh ρ) ∼ π

2i

(
ρ

sinh ρ

)1/2
νj− 1

2 e−i π
2 (j− 1

2 )H
(2)
j− 1

2
(νρ) (A.27)

which can be simplified using (A.12), namely

e+i π
2 (j− 1

2 )Jj− 1
2
(νρ) ∼ 1√

2πiνρ
(
eiνρ + e−iνρeiπj

)
, e−i π

2 (j− 1
2 )H

(2)
j− 1

2
(νρ) ∼

√
2i
πνρ

e−iνρ.

(A.28)

In practice, this often means that Qj− 1
2

iν− 1
2

(Qj− 1
2

−iν− 1
2
) can be closed in the lower-half (upper-half)

of the complex ν plane.

Crossing. An interesting way to implement crossing is to combine the analytic continuation
in z (A.19) and the analytic continuation in ν (A.27). If we define the combination42

1
(ν2 − µ2)iϵ,n

= 1
2 sinh(πµ)

(
enµπ

ν2 − µ2 + iϵ
− e−nµπ

ν2 − µ2 − iϵ

)
, (A.29)

42As usual, 2ν/(ν2 − µ2 ∓ iϵ) contains poles at ν = +µ± iϵ and −µ∓ iϵ with residue +1, where ϵ→ 0+.
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this implements a rotation of n half-turns counter-clockwise in the complex z-plane when
integrated over ν,

∫ ∞

0

dν

iπ
2ν sinh(πν)

|Γ(j + iν)|2 P j− 1
2

iν− 1
2
(x)

(ν2 − µ2)iϵ,n
= e−iπn/2|Γ(j + iµ)|2P j− 1

2
iµ− 1

2
(eiπnx) (A.30)

since we can replace P with Q using (A.11) and then close the contour in complex ν plane,
which picks up a single residue from each term in (A.29). Transforming a mode function
from outgoing to ingoing uses n = +1,∫ ∞

0
dν Nν

Fj2(z, ν)
(ν2 − µ2)iϵ,+1

= −Fj2(eiπz, ν) . (A.31)

The inverse transformation from ingoing to outgoing would use n = −1. The same is true
in the time-domain, where 1/(ν2 − µ2)iϵ,n implements a rotation of n half-turns clockwise
in the complex −kτ plane:∫ ∞

0
dν Nν

f+(kτ, ν)
(ν2 − µ2)iϵ,+1

= if+(e−iπkτ, ν) = if−(kτ, ν) . (A.32)

Spectral representation. The key identity on which our spectral representations are
based is:

∫ ∞

0

dν

π
ν sinh(πν)

|Γ(j−iν)|2P
1
2−j

iν− 1
2
(z)(√

z2−1
)j− 1

2

|Γ(j′−iν)|2P
1
2−j′

iν− 1
2
(z′)(√

z′2−1
)j′− 1

2
= Γ(j+j′)

(z+z′)j+j′
(A.33)

which holds for j, j′ > 0. In terms of the mode functions (A.2),∫ ∞

0
dν Nν Fj1(z1) Fj2(z2) =

Γ (j1 + j2)
(z1 + z2)j1+j2

(A.34)

where we have introduced the shorthand

Nν = 2
π
ν sinh(πν) . (A.35)

Useful limits. Whenever j takes an integer or half-integer value > 1/2, as we approach
the branch point at z = −1 the Legendre function diverges as

P
1
2−j

iν− 1
2
(z)(√

z2 − 1
)j− 1

2
∼

Γ
(
j − 1

2

)
|Γ(j + iν)|2

1
(z + 1)j− 1

2
(A.36)

or in terms of the mode function (A.2) and the u variable of section 4.4,

lim
u→1−

Fj

(
−1
u

)
=

Γ
(
j − 1

2

)
i
√
2

(1− u)
1
2−j . (A.37)

– 54 –



J
H
E
P
0
8
(
2
0
2
4
)
2
1
1

At the value j = 1/2, the divergence becomes logarithmic:

lim
u→1−

Fj

(
−1
u

)
= i√

2
log (1− u) . (A.38)

Conversely, near the origin the Legendre function approaches a constant value

lim
z→0

P
1
2−j

iν− 1
2
(z)(√

z2 − 1
)j− 1

2
= 2−j

√
2π∣∣∣Γ (1+j−iν

2

)∣∣∣2 (A.39)

and so thanks to an identity for the Γ function we can write

Fj(0) =
2j−2

i
√
π

∣∣∣∣Γ(j − iν

2

)∣∣∣∣2 . (A.40)

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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medium, provided the original author(s) and source are credited.
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