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We examine the features of electromagnetic bulk and surface modes in a 1D Photonic Crystal made
up of lossless gyroelectric and uniaxial layers. We find a configuration that supports the propagation
of a new type of surface mode which can have either positive or negative group velocity, depending
on the signs of the uniaxial permittivities. We also show how introducing gyrotropy alters certain
bulk bands and eliminates others. Exploiting an Otto configuration, we provide the analysis of a
finite system where near-zero reflectivity values correspond to large Goos–Hänchen Shifts. We also
explore low-symmetry configurations where waves exhibit non-reciprocal behaviors.

I. INTRODUCTION

In the field of modern photonics, the intricate inter-
play between light and matter has opened the way for
groundbreaking discoveries and technological advance-
ments. In the last few decades, considerable attention
has been focused on the properties of Photonic Crystals
(PhCs) [1, 2], which is primarily due to their application
in controlling the flow of light.

The optical properties of PhCs are profoundly influ-
enced by the characteristics of the media they are made
of. In isotropic materials, both wave polarization and
refractive index do not depend on the direction of wave
propagation. Conversely, in anisotropic materials such
quantities may depend on the propagation direction.
Such low symmetry configurations lead to odd electro-
magnetic phenomena, such as Faraday rotation in gy-
rotropic media [3, 4]. Consequently, PhCs crafted from
anisotropic materials exhibit markedly different charac-
teristics compared to their isotropic counterparts. No-
tably, anisotropic PhCs represent a rich resource due to
their controllable dispersion, offering avenues for the cre-
ation of tunable optical devices [5–8]. By harnessing ex-
ternal electric or magnetic fields, such as those facilitated
by liquid crystals, it becomes feasible to manipulate and
adjust the properties of these PhCs, including the open-
ing, closing, or shifting of band gaps [9].

Beyond bulk modes, PhCs harbor the potential to sup-
port the propagation of Electromagnetic Surface Waves
(ESWs). Such waves have garnered attention since
Jonathan Zenneck’s work in 1907 [10]. These modes
travel along interfaces separating two media while re-
maining localized in the transverse direction. Among the
most notable examples of ESWs are Surface Plasmon-
Polaritons (SPPs), characterized by a Transverse Mag-
netic (TM) nature, capable of propagating at the inter-
face between two isotropic media with permittivities of
opposite signs [11]. As for interfaces involving gyrotropic
media, ESWs show non reciprocal features such as the
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asymmetry between forward and backward propagations
[12–14]. In the context of periodic structures, prominent
types of ESWs include Tamm Waves and Bloch Surface
Waves [15–24].

In this work, we characterize bulk and surface waves
that can propagate in a one-dimensional PhC composed
of lossless gyroelectric and uniaxial layers. While
previous works have described light propagation in such
two media separately [23, 25], their combination has
never been analyzed before.

Our investigation reveals that, when the uniaxial
components behave as Hyperbolic Materials (HMs), a
new kind of ESWs can propagate through the struc-
ture. Such modes exhibit either forward or backward
propagation features, i.e. positive or negative group
velocity, depending on the specific type of HM involved.
This feature is pivotal for developing new photonic
devices with controllable propagation directions for
light. Moreover, we show that such waves have a much
greater penetration depth into the bulk compared to
Tamm waves and SPPs. It is well established that
photonic crystals act as frequency filters, typically
relying on bulk modes for this purpose. In our case, the
significantly different penetration depths of SWs would
allow the control of signal transmission through surface
modes rather than bulk modes.

We also show that the introduction of gyrotropy into
the system significantly deformes the photonic bands.
This suggests that the electromagnetic response of the
realistic system could be tuned just by varying the value
of the external magnetic field. In this way, one can freely
modify the allowed frequency ranges within the structure.

We subsequently conduct a brief analysis of a finite sys-
tem, composed of a few periods, where such effects can
be found by looking at the reflection spectra using an
Otto configuration. In this configuration, we show that
near-zero values of the reflection coefficient correspond
to non-trivial values of the Goos–Hänchen Shift (GHS).
Since the GHS is related to the excitation of SWs, it
can be either positive or negative depending on the sign
of the group velocity characterizing the relative surface
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mode. Finally, we propose lower-symmetry configura-
tions whose reflectivity is not symmetrical with respect
to the inversion of the incidence angle, highlighting their
non-reciprocal features due to gyrotropy.

II. ANISOTROPIC MULTILAYERED
STRUCTURES

Let us consider a multilayered system consisting of an
ordered succession of two lossless material slabs, whose
thicknesses and dielectric tensors are, respectively, d1, ϵ1
and d2, ϵ2, as depicted in fig. 1(a). Let the spatial peri-
odicity of the stratified medium be L = d1 + d2 and ẑ
be the growth direction, such that the overall dielectric
function on the structure can be written as follows

ϵ =

{
ϵ1 mL < z < mL+ d1,

ϵ2 mL+ d1 < z < (m+ 1)L,

where m is an integer number. We consider a multi-
layered structure composed of gyroelectric and uniaxial
layers, such that their dielectric tensors read

ϵ1 = ϵ0

 ϵg 0 0
0 ϵg ig
0 −ig ϵg

 , ϵ′2 = ϵ0

 ϵ⊥ 0 0
0 ϵ∥ 0
0 0 ϵ⊥

 , (1)

in their respective principal coordinate systems. As for
the uniaxial medium, let us initially consider the general

configuration wherein its optical axis is neither parallel
nor perpendicular to the interface between the two media.
Hence, we have to rotate its dielectric tensor by means
of the rotation matrix

Rx(α) =

 1 0 0
0 cosα sinα
0 − sinα cosα

 .

In our coordinate system, the uniaxial dielectric tensor
reads

ϵ2 = Rx(α) ϵ
′
u Rx(−α) = ϵ0

 ϵxx 0 0
0 ϵyy ϵyz
0 ϵzy ϵzz

 ,

where the matrix elements are

ϵxx = ϵ⊥,

ϵyy = ϵ⊥ sin2 α+ ϵ∥ cos
2 α,

ϵyz = ϵzy =
(
ϵ⊥ − ϵ∥

)
sinα cosα,

ϵzz = ϵ⊥ cos2 α+ ϵ∥ sin
2 α.

For analytical convenience, we focus on anisotropic
configurations where TE and TM modes can be decou-
pled, while low-symmetry configurations will be numer-
ically investigated in section V. Non-trivial results will
concern only the TM-polarization, thus it is appropri-
ate to consider the following form for the magnetic field,
accounting for both forward and backward modes:

Hm
x (y, z) =


[
ameiku(z−mL) + bme−iku(z−mL)

]
ei(kyy−ωt) mL < z < mL+ du,[

cmeikg(z−mL) + dme−ikg(z−mL)
]
ei(kyy−ωt) mL+ du < z < (m+ 1)L,

(2)

where u stands for uniaxial and g for gyrotropic, ku
and kg represent the z-components of the wave vectors,
whereas L ≡ du + dg, du and dg are, respectively, the pe-
riod of the structure and the thicknesses of the two slabs.
The coefficients am, bm, cm, dm are the amplitudes of for-
ward and backward modes relative to each medium, as
outlined in fig. 1(b).

Applying the continuity conditions for Hx and Ey on
the two boundaries marked by red arrows in fig. 1(b),
leads to a four-equations system relating the six vari-
ables am, bm, cm, dm, cm−1 and dm−1. As shown in
appendix A, the whole algebraic system can be recast in
order to express cm−1 and dm−1 as functions of cm and
dm:

(
cm−1

dm−1

)
=

(
A B
C D

)(
cm
dm

)
. (3)

where A, B, C and D are complex coefficients which will
be derived in the next section. We will use this formal-
ism in order to find the eigenmodes in a one dimensional
periodic structure.

III. ANISOTROPIC PHOTONIC CRYSTALS

If we let the number of layers become infinite, what
we obtain is a Photonic Crystal. In such a periodic sys-
tem, the Bloch theorem assures that the solution to the
Helmholtz equation is a Bloch wave, namely a wave func-
tion which can be written as the product of a plane wave
and a periodic term

H(z) = HB(z) e
iKBz, (4)
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FIG. 1. (a) Outline of the 1D-periodic multilayer structure. (b) Outline of the yz plane section of the periodic structure under
consideration. Here, y′ and z′ represent the principal axes of the hyperbolic slabs.

where HB(z) = HB(z + L) is a periodic function and
KB is the Bloch wave number [26]. Following the proce-
dure shown in [27], we must solve the following eigenvalue
problem

(
A B
C D

)(
cm
dm

)
= e−iKBL

(
cm
dm

)
, (5)

whose solutions are

(
cm
dm

)
=

(
B

e−iKBL −A

)
, (6)

where

KB = ± 1

L
cos−1

(
A+D

2

)
. (7)

As pointed out in appendix A, the eigenvalues are one
the reciprocal of each other because the matrix in eq. (5)
is unitary. If KB is a real number, the eigenvalues repre-
sent propagating waves, whereas complex values of KB

correspond to damped waves in the bulk. Due to the
properties of the cosine function, we can distinguish two
scenarios: if A+D ∈ R and A+D < 2, the Bloch wave
can propagate trough the PhC, otherwise it will decay
inside the bulk [26, 27]. The latter situation corresponds
to the band gap.
We can derive the coefficients A,B,C,D in the TM

case by means of eqs. (A1)-(A4). They turn out to be

ATM = eikudu

{
cos kgdg +

i

2
sin kgdg

[
ϵ∥ϵ⊥kg

ϵvϵzzku
+

ϵvϵzzku
ϵ∥ϵ⊥kg

−
ϵ∥ϵ⊥

ϵvϵzz

k2y
kukg

Z2

]}
, (8)

BTM =
i

2
e−ikudu sin kgdg

{
ϵ∥ϵ⊥kg

ϵvϵzzku
− ϵvϵzzku

ϵ∥ϵ⊥kg
−

ϵ∥ϵ⊥

ϵvϵzz

k2y
kukg

Z2 + 2Z
ky
kg

}
, (9)

CTM = − i

2
eikudu sin kgdg

{
ϵ∥ϵ⊥kg

ϵvϵzzku
− ϵvϵzzku

ϵ∥ϵ⊥kg
−

ϵ∥ϵ⊥

ϵvϵzz

k2y
kukg

Z2 − 2Z
ky
kg

}
, (10)

DTM = e−ikudu

{
cos kgdg −

i

2
sin kgdg

[
ϵ∥ϵ⊥kg

ϵvϵzzku
+

ϵvϵzzku
ϵ∥ϵ⊥kg

−
ϵ∥ϵ⊥

ϵvϵzz

k2y
kukg

Z2

]}
, (11)

where we defined

ϵv ≡
ϵ2g − g2

ϵg
,

Z ≡ ϵyzϵv
ϵ∥ϵ⊥

− i
g

ϵg
, (12)

Notice that Z reduces to zero if both media are isotropic
and, consequently, the matrix elements (8)-(11) reduce
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to the expressions commonly documented in literature
[1, 26, 27]. Furthermore, eq. (7) becomes

KB
TM =

1

L
cos−1

(
cos kgdg cos kudu−F sin kgdg sin kudu

)
,

(13)
where we defined

2F ≡
ϵ∥ϵ⊥kg

ϵvϵzzku
+

ϵvϵzzku
ϵ∥ϵ⊥kg

−
ϵ∥ϵ⊥

ϵvϵzz

k2y
kukg

Z2. (14)

As mentioned in the previous section, we only focus
on the TM polarization because TE modes obey the very
same equations of the isotropic case.

Before moving on, it is essential to make a significant
observation. As evident from eqs. (13) and (14), the pres-
ence of Z ensures that KB has an imaginary part if g ̸= 0
and ϵyz ̸= 0 simultaneously, for any real values of ω and
ky. This is surprising, especially considering that it holds
true even for lossless structures, such as the ones we aim
to analyze. In any case, the band diagram is almost
empty because, apart from normal incidence and a few
other cases, no mode can propagate into the bulk. This
last statement will be further examined during the dis-
cussion of the numerical results.

We aim to investigate non-trivial scenarios involving
gyrotropy, hence we are compelled to restrict our analysis
to the case α = kπ/2, where k ∈ Z.

In the upcoming section, we will employ eq. (13) to de-
rive band diagrams for TM modes within our anisotropic
PhC. Our objective is to identify surface states within the
band gaps, where bulk modes are not allowed to propa-
gate.

IV. MODES IN A SEMI-INFINITE PHOTONIC
CRYSTAL

Valuable insights can be gathered by exploring the sur-
face modes permitted to propagate in PhCs [17, 28], as
we will demonstrate below.

When a PhC is cut along one interface between two
consecutive slabs, two semi-infinite PhCs are created.
The dispersion relation for surface waves propagating on
a semi-infinite PhC bordering a dielectric half space is
[22, 29]

eiKBL −A− Bc

ωϵI

√
ϵI

(ω
c

)2
− k2y = 0, (15)

where ϵI is the dielectric constant of the isotropic di-
electric half space. Eq. (15) enables us to identify and
graphically represent the surface modes directly on the
reduced band diagrams that characterize the system.

Prior to presenting our numerical findings, it’s impor-
tant to introduce the frequency dependence of the di-
electric functions. We choose to consider the following

dispersion for the uniaxial medium permittivities

ϵ⊥,∥ = ϵ∞

(
1−

ω2
p⊥,∥

ω2

)
. (16)

Such response functions with anisotropic plasma fre-
quencies characterize the behavior of media that exist
in nature [30, 31] or can be artificially engineered using
multilayer or nanowire array geometries [32–34]. In such
engineered media, non-local effects may play a signifi-
cant role in shaping the dispersion of EWs, as discussed
in [35, 36]. We neglect such effects in the present work.
As ω varies, (16) may describe an anisotropic

metal (ω < min(ωp⊥ , ωp∥)), an anisotropic dielec-

tric (ω > max(ωp⊥ , ωp∥)) or a hyperbolic medium

(min(ωp⊥ , ωp∥) < ω < max(ωp⊥ , ωp∥)). The last regime
is of particular interest when it comes to surface
modes, as shown in fig. 2. Its rows correspond to the
three different scenarios ωp,∥ = ωp,⊥, ωp,∥ < ωp,⊥ and
ωp,∥ > ωp,⊥, respectively. Instead, columns correspond
to non-gyrotropy (left) and gyroelectric (right) cases.
It should be specified that the surface modes in fig. 2
only concern the configuration where the semi-infinite
crystal terminates with a gyrotropic slab. If this were
not the case, the dispersion of the surface waves would
be slightly different, but all their characteristic features
would remain the same.

• Fig. 2(a)-(b), ωp,∥ = ωp,⊥ ≡ ωp. Two distinct
types of surface waves are observed: a truncated
SPP below the threshold ω = ωp, and Tamm waves
in the domain ω > ωp, where the metallic con-
stituents demonstrate dielectric behavior (ϵ∥, ϵ⊥ >
0).
When gyrotropy is switched on within the dielec-
tric layers, the lower bands get modified such that
the SPP no longer exists. Conversely, Tamm waves
experience subtle modifications but do not undergo
significant alterations.

• Fig. 2(c)-(d), ωp,∥ < ωp,⊥. The horizontal bulk
plasmon line undergoes a significant division into
numerous bulk bands, situated within the range de-
lineated by the plasma frequencies ωp,∥ and ωp,⊥,
where the anisotropic metallic components behave
as Type 2 HMMs [37, 38]. Notably, an intermediate
surface mode emerges within each band gap sepa-
rating the bulk bands. These waves have a positive
group velocity, thus they propagate in the forward
direction.
Interestingly, the introduction of gyrotropy has
minimal impact on surface modes, despite some de-
generate bands undergoing division. For enhanced
clarity, fig. 3(a) illustrates two transversal sections
of the reduced band diagram.

• Fig. 2(e)-(f), ωp,∥ > ωp,⊥. Similar to the previ-
ous scenario, an infinite array of bulk bands oc-
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FIG. 2. Reduced band diagrams for TM waves in a metal-dielectric PhC, for different values of the structural parameters. The
red dotted lines correspond to surface modes, whereas the yellow line represents the light line of the dielectric half-space. The
considered structural parameters are ϵI = 4, ϵg = 3, ϵ∞ = 8, dg = 0.56 µm, du = 0.44 µm and α = π/2 . (a) ωp,∥ = ωp,⊥,
g = 0, (b) ωp,∥ = ωp,⊥, g = 1.5, (c) ωp,∥ < ωp,⊥, g = 0, (d) ωp,∥ < ωp,⊥, g = 1.5, (e) ωp,∥ > ωp,⊥, g = 0, (f) ωp,∥ > ωp,⊥,
g = 1.5.

cupies the domain delineated by the plasma fre-
quencies ωp,⊥ and ωp,∥. Within this domain, the
anisotropic metallic components behave as Type 1
HMMs [37, 38]. Notably, all the intermediate sur-
face waves demonstrate a negative group velocity,
implying their propagation in the backward direc-

tion. Furthermore, the SPP undergoes bifurcation
into two branches due to the convergence of lower
bands.
When gyrotropy is switched on, the lower bands get
modified such that the SPP no longer exists. For
enhanced clarity, fig. 3(b) illustrates two transver-
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FIG. 3. Transversal sections of the reduced band diagram
shown in fig. 2, for kyL/2π = 1. Panel (a) corresponds to
fig. 2(c)-(d), whereas panel (b) corresponds to fig. 2(e)-(f).
As gyrotropy is switched on, a large number of bulk bands
appear slightly above or below the ωp,∥L/2πc line.

sal sections of the reduced band diagram.

In summary, these intermediate waves [39] can propa-
gate either forward or backward, depending on the hyper-
bolic behavior of the uniaxial material constituting the
structure. Similar results were found in [40] for the non-
gyrotropic case. In such work, the intermediate surface
modes are referred to as Tamm-Langmuir surface waves.

As previously stated, the presence of gyrotropy in the
system modifies some bulk bands, as can be clearly seen
in fig. 3. This implies that by adjusting the external
magnetic field, the electromagnetic response of the sys-
tem can be fine-tuned, allowing for the modification of
the permissible frequency ranges within the structure.

Fig. 4 presents a comparison of the field distributions
between the Tamm wave and the intermediate mode.
Notably, the latter exhibits a significantly greater pen-
etration depth than the former. It is observed that the
electric field of the novel mode oscillates within the uni-
axial layers without any damping. This unique feature
facilitates deeper penetration of the mode into the bulk.
This property may allow the control of signal transmis-
sion through surface modes rather than bulk modes.

We conclude this section by numerically investigating
the observation made at the end of section III, concern-
ing the restriction to α = kπ/2, where k ∈ Z. As pointed
out before, if α ̸= kπ/2 then the Bloch wave number
is complex almost for every non-zero value of ky. As
a further confirmation, fig. 5 shows the behavior of the
imaginary part of KB as ky varies, for four different val-
ues of the working frequency. It is evident that KB ∈ C
almost everywhere. Notice that, depending on the work-
ing frequency, the imaginary part of KB may be huge or
approach zero at normal incidence. The first case cor-

FIG. 4. Typical space distributions of the y-component of
the electric field amplitude in a semi-infinite gyro-uniaxial
PhC confining with vacuum. The blue regions represent the
uniaxial components, whereas the orange ones represent the
gyrotropic components. (a) Tamm wave. (b) Intermediate
surface mode.

FIG. 5. Natural logarithm of the imaginary part of the Bloch
wave number as a function of the off-axis wave vector, for
four different values of the working frequency. The structural
parameters are the same of fig. 2(d), except for α = 1 rad.

responds to the band gap, where A +D is now real but
larger than 2. The second case corresponds to bulk prop-
agating modes, hence this demonstrates that the band
diagram is not empty at normal incidence. Moreover,
apart from the case ky → 0, there may exist further val-
ues of ky for which Im(KB) becomes very small. This is
due to the form of eq. (14): ku and kg are imaginary for
high values of the off-axis wave vector, hence the imag-
inary part of the coefficient F can actually become zero
for a limited number of values of ky.

V. FINITE MULTILAYER STRUCTURES

This final section contains a few numerical results
concerning finite structures, whose properties were
analyzed using the so called Otto configuration with a
coupling prism whose refractive index is 3. As for the
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numerical method, we used the 4 × 4 Transfer Matrix
Formalism for anisotropic media, proposed by Berreman
[41].

First, we conducted a brief analysis on the Goos-
Hänchen Shift (GHS) [42] for finite multilayer structures.
It is well-known that the GHS dramatically increases
when getting close to the Brewster angle [43], at which
light is totally transmitted through the system. We
calculated both the reflectivity and the GHS for two
structures consisting of ten periods each, in the frequency
domain delimited by the two plasma frequencies ωp,⊥
and ωp,∥. The results are shown in fig. 6. Consistent with
expectations, at angles where the reflectivity approaches
zero, the GHS is positive in the case of forward modes,
whereas it is negative for backward modes.

A final consideration worth making concerns bulk
bands. As can be seen from eqs. (13) and (14), the dis-
persion of bulk bands only depends on k2y, hence there is
no difference between positive and negative angles of in-
cidence. Indeed, the bulk modes are not affected by non-
reciprocity effects despite the presence of a gyrotropic
medium. In order to break the high level of symme-
try and be able to observe differences between positive
and negative angles of incidence, one way is to rotate
the gyroelectric components such that, in our coordinate
system, their dielectric tensor reads

ϵ1 = ϵ0

 ϵg 0 ig
0 ϵg 0

−ig 0 ϵg

 . (17)

Fig. 7 shows a comparison between the reflectivity of
two multilayer structures whose gyrotropic tensors are
described by eq. (1) and eq. (17). It appears evident
that the latter configuration introduces asymmetry be-
tween positive and negative angles of incidence. Such
configuration cannot be analyzed using the method of
section III because TE and TM modes cannot be decou-
pled. They should be studied at the same time.

VI. CONCLUSION

In conclusion, we employed an analytical method to
characterize the dispersion of bulk bands and surface
states in a one-dimensional PhC composed of lossless gy-
roelectric and uniaxial layers. This study reveals that the
structure not only can support SPPs and Tamm waves,
but also a new kind of ESWs. These surface waves ex-
hibit either positive or negative group velocity, which is
crucial for developing new photonic devices with control-
lable light propagation directions. Our analysis shows
that these surface waves have a much greater penetra-
tion depth into the bulk compared to Tamm waves and
SPPs. This significant difference in penetration depths
allows for controlling signal transmission through surface

FIG. 6. Reflectivity and Goos–Hänchen Shift (in units of the
incident wavelength) for two multilayer structures composed
of 10 periods, calculated using the Transfer Matrix method.
The structural parameters are the same as in fig. 2. (a) ωp,∥ <
ωp,⊥, corresponding to forward surface modes of fig. 2(d). (b)
ωp,∥ > ωp,⊥, corresponding to backward propagating surface
modes of fig. 2(f).

FIG. 7. Comparison between the reflectivity of gyro-uniaxial
multilayer structures whose gyrotropic components are de-
scribed by eq. (1) (red) and eq. (17) (blue).

modes rather than bulk modes, enhancing the function-
ality of photonic crystals as frequency filters. Further-
more, the introduction of gyrotropy into the system sig-
nificantly deforms the photonic bands, indicating that
the electromagnetic response can be finely tuned by vary-
ing the external magnetic field. This ability to modify the
allowed frequency ranges within the structure enhances
the versatility of PhCs. We also explored the reflectivity
spectra of finite structures arranged in an Otto configu-
ration. Near-zero reflectivity values correspond to high
values of the Goos–Hänchen Shift (GHS), which can be
either positive or negative depending on the sign of the
group velocity characterizing the relative surface mode.
Additionally, we examined configurations with asymmet-
rical reflectivity with respect to the inversion of the in-
cidence angle, highlighting their non-reciprocal features
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due to gyrotropy.

Overall, our findings underscore the potential for con-
trolling signal transmission through novel surface modes
in layered structures based on a combination of hyper-
bolic and gyroelectric media capitalizing on the proper-
ties of both material classes.

Appendix A: Interface Conditions

Given Hx in eq. (2), it is trivial to evaluate Ey and
Ez by means of Maxwell’s equations. Additionally, they
imply that Hx and Ey are continuous functions along
the boundaries, while Ez is not, due to the dielectric
function’s discontinuity. The continuity of both Hx and
Ey on the boundaries on the two boundaries marked by
red arrows in fig. 1(b) leads to

cm−1 + dm−1 = ameikgL + bme−ikgL, (A1)

cmeikudu + dme−ikudu = ameikgdu + bme−ikgdu , (A2)

iϵv
ϵ∥ϵ⊥

[
dm−1(ϵzzku + ϵzzky) + cm−1(ϵzzky − ϵzzku)

]
=

= am

(
ikg −

g

ϵg
ky

)
eikgL − bm

(
ikg +

g

ϵg
ky

)
e−ikgL, (A3)

iϵve
ikudu

ϵ∥ϵ⊥

[
cm(ϵzzku + ϵyzky) + dm(ϵyzky − ϵzzku)e

−2ikudu

]
=

= am

(
ikg −

g

ϵg
ky

)
eikgdu − bm

(
ikg +

g

ϵg
ky

)
e−ikgdu , (A4)

where we defined

ϵv ≡
ϵ2g − g2

ϵg
.

The components of the wave vectors obey the following
dispersion relations:

ϵyyk
2
y + ϵzzk

2
u + 2kykuϵyz =

ω2

c2
ϵ∥ϵ⊥.

k2g + k2y = ϵv
ω2

c2
.

Let us use am and bm as free variables and recast the
system (A1)-(A4) into the following form(

cm−1

dm−1

)
= P−1Q

(
am
bm

)
,

(
cm
dm

)
= R−1S

(
am
bm

)
,

where P,Q,R,S are 2 × 2 matrices [27]. The last two
equations imply

(
cm−1

dm−1

)
= P−1Q S−1R

(
cm
dm

)
. (A5)

The matrix

P−1Q S−1R ≡
(

A B
C D

)

is unimodular because it relates the field amplitudes of
equivalent layers of two consecutive cells [26, 27].
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