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Abstract

We elaborate on integrable dynamical systems from scalar–gravity Lagrangians that include the leading 
dilaton tadpole potentials of broken supersymmetry. In the static Dudas–Mourad compactifications from ten 
to nine dimensions, which rest on these leading potentials, the string coupling and the space–time curvature 
become unbounded in some regions of the internal space. On the other hand, the string coupling remains 
bounded in several corresponding solutions of these integrable models. One can thus identify corrected 
potential shapes that could grant these features generically when supersymmetry is absent or non–linearly 
realized. On the other hand, large scalar curvatures remain present in all our examples. However, as in other 
contexts, the combined effects of the higher–derivative corrections of String Theory could tame them.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Despite decades of intensive effort, the key principles of String Theory [1] remain largely elu-
sive. With unbroken supersymmetry [2], convincing arguments link all different ten–dimensional 
string models to one another and, strikingly, also to the eleven–dimensional supergravity [3] of 
Cremmer, Julia and Scherk [4], within a intriguing picture that is usually dubbed M–theory [5]. 
The comparison with low–energy physics, and ultimately with the Standard Model, demands 
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however that supersymmetry be broken, but the response of String Theory to this inevitable feat 
remains largely mysterious. Typically the breaking of supersymmetry brings along tachyon in-
stabilities, but three distinct string models exist in ten dimensions with no tachyonic modes in 
their spectra and with supersymmetry absent or non–linearly realized [6–8]. However, super-
symmetry breaking is accompanied by the emergence, in the low–energy effective field theory 
of these models, of an exponential “tadpole potential” for the dilaton field φ. This occurs at 
the (projective) disk level in the non–supersymmetric U(32) 0’B orientifold [11] model of [6]
and in the USp(32) orientifold model of [7] with “brane supersymmetry breaking” [12], where 
supersymmetry is present but non–linearly realized [9,10], and at the torus level in the non–
supersymmetric SO(16) × SO(16) heterotic model of [8]. The emergent tadpole potentials lack 
critical points, and therefore ten–dimensional Minkowski space ceases to be a vacuum when they 
are taken into account.

In sharp contrast with the original Kaluza–Klein setting, where the internal space can be a 
circle of arbitrary size, the emergent exponential potentials can yield internal intervals of sizes de-
termined by their strengths. These key solutions, which we shall call Dudas–Mourad vacua [13], 
include however regions where gs = e〈φ〉 and/or the space–time curvature grow unbounded, but 
are perturbatively stable [14] and lead, strikingly, to finite values for the reduced Planck mass 
and gauge coupling [13]. Consequently, these interactions are still present in the resulting nine–
dimensional flat spacetimes: even in the presence of tadpole potentials, the desirable breaking of 
supersymmetry can thus result in desirable lower–dimensional dynamics. It is well known that 
string effective actions receive two series of perturbative string corrections, sized by the curva-
ture in string units and by the string coupling gs , and a host of non–perturbative ones. All these 
corrections, however, are not known in general, and even the first few terms appear unwieldy.

The authors of [13] relied on the leading tadpole potentials, which makes it interesting to 
explore, even in indirect ways, the possible role of these types of corrections. To this end, we 
shall study attentively nine classes of integrable dynamical systems emerging from scalar–gravity 
models that were examined in [15] in connection with the “climbing–scalar” [13,16,17] Cosmol-
ogy. The analytic continuation of those results will help us to address a few detailed questions 
on corresponding spontaneous compactifications. We shall be particularly interested in potential 
shapes that can grant one or more of the following desirable features:

• an internal space of finite size;
• a string coupling gs that is bounded everywhere in it;
• finite values for the lower–dimensional Planck mass and gauge coupling.

Our analysis will rest on the low–energy effective field theory, and thus ultimately on General 
Relativity. Within the limitations of this framework, some typical potential shapes will surface 
nonetheless that can grant one or more of these properties. However, our analysis will also unveil 
a tension between these demands and the existence of a bounded spacetime curvature.

These types of non–symmetric vacua, where non–trivial profiles are only present in one inter-
nal dimension, are admittedly rather simple and special, but are very instructive toy models. The 
rationale behind the present investigation is precisely that examples of this type, where string 
corrections would be naturally bounded, may help one build some intuition on corrected string 
vacua and on the ultimate lesson of [13] for them. Aside from this, the solutions that we shall 
discuss are an interesting set of dynamical options in the presence of gravity, but we do feel that 
they have a lesson in store. More symmetric vacua resting on the leading tadpole potentials, as 
in [19], do exist, but they are typically unstable [14,18], and actually their instability in the pres-
2
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ence of broken supersymmetry has become a general tenet within the swampland picture [20]. 
The encouraging results of [14], where the Dudas–Mourad vacuum was shown to evade this 
problem, should perhaps be taken as favoring less symmetric configurations leaving behind a flat 
space, and the present investigation reinforces somehow this feeling, which has been surfacing 
time and over again in the past. In this respect, one should keep in mind that the lack of inter-
nal symmetries and Ricci flatness are also key features of Calabi–Yau spaces [21], which play a 
central role in connection with the partial breaking of supersymmetry.

The plan of this paper is the following. In Section 2 we explain our conventions and elaborate 
on the desired features of nine–dimensional scalar-gravity vacua. In Section 3 we present the 
basic equations arising from string–inspired scalar–gravity models, along the lines of [13], and 
discuss in detail the behavior of spatial profiles when the dynamics is dominated by an exponen-
tial potential. In the following sections we rely heavily on the results of [15], which provides a 
catalogue of scalar–gravity models including a palatable family of exact cosmological solutions 
for a variety of potential shapes. Interestingly, these potential shapes have generically the look 
of corrected forms of the leading tadpole potential of the orientifold models of [6,7,12]. In Sec-
tion 4 we present the different classes of integrable models drawn from [15], together with some 
additional variants, and describe how to solve the resulting equations in the current setting. As 
in [13] and [15], proper gauge choices will be instrumental to this end. In Section 5 we present 
the solutions of the corresponding models and elaborate on the conditions that identify classes of 
potential shapes complying to one or more of the requests spelled out above. Section 6 contains 
some concluding remarks and elaborates on possible future developments along these lines.

2. Scalar–gravity models and string theory

We use a “mostly–plus” signature and work to a large extent in the Einstein–frame, within the 
class of metrics

ds2 = e
2
9 A(r) ημν dxμ dxν + e2B(r) dr2 . (2.1)

We denote by xμ, μ = 0, . . . , 8 the spacetime coordinates and by r the tenth, internal, coordinate. 
The metric (2.1) contains warp factors that depend on r , and the equations of motion determine 
the dependence of A on this coordinate. On the other hand B is a gauge function, which we 
shall choose on a case–by–case basis, thus selecting r coordinates that simplify the resulting 
dynamical systems. As in [13], the dilaton φ will be here the only bosonic field, aside from 
the metric, with a non-vanishing vacuum profile. One is clearly demanding a residual Poincaré 
symmetry in the nine–dimensional subspace, but the dilaton and the string coupling

gs = eφ(r) (2.2)

will be free to depend on r . Moreover, in all the cases that we shall explore the potential will 
include an exponential term of the form

V (φ) = Ce
3
2 γ φ . (2.3)

The constant γ takes two specific values in the leading contributions that present themselves in 
the non–tachyonic ten–dimensional strings. In detail, γ = 1 for the USp(32) orientifold of [12]
and for the U(32) orientifold of [6], where the contributions arise at the disk/crosscap level, while 
γ = 5

3 for the SO(16) × SO(16) heterotic model [8], where the contribution emerges from the 
torus amplitude.
3
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The Einstein–frame action considered in [13], inspired by String Theory, was of the form

S = 1

2κ2
10

∫
d10x

√−g

[
R − 1

2
(∂φ)2 − C eγ φ + . . .

]
. (2.4)

Only the first terms displayed above, together with a handful of others, are under control from 
first principles. However, as we have anticipated, the solutions found in [13] include regions 
where the string coupling gs is large, and also regions where the curvature is large in string units, 
so that string corrections to the low–energy field theory (2.4) are expected to play an important 
role, and could affect considerably the resulting picture.

The present work can be regarded as an attempt to build some intuition on scenarios that 
string corrections might unveil in the models of interest, relying on the elegant mathematics 
of integrable dynamical systems. We are actually addressing the simplest conceivable option: 
our targets are corrections to the tadpole potentials in eq. (2.4) that can grant solutions with a 
bounded gs . A benign setting of this type would make at least part of the higher–order corrections 
subdominant, and therefore, in our opinion, even this admittedly blind exercise can have some 
potential lessons in store.

In general, one expects perturbative corrections to Einstein–frame potentials of the form

V (φ) =
∑
b,c,h

cb,c,h e

(
b+c+2h+ 1

2

)
φ

, (2.5)

with arbitrary integer values of b and h, which count boundaries and handles, and with c =
0, 1, 2, which counts crosscaps, together with a host of additional non–perturbative contribu-
tions. As we have stressed, even extracting the next-to-leading terms from String Theory is a 
difficult task, and for all these reasons we are particularly interested in potentials where the lead-
ing tadpole of (2.3) is accompanied by terms of this type.

Our starting point will be generalizations of eq. (2.4) including more general potentials V (φ),

S = 1

2κ2
10

∫
d10x

√−g

[
R − 1

2
gμν ∂μφ ∂νφ − V (φ)

]
. (2.6)

For the class of metrics (2.1), these translate into dynamical systems with the reduced action 
principles

S =
∫

dr eA−B
[
Ȧ2 − ϕ̇2 − 2 e2B V(ϕ)

]
, (2.7)

after performing, as in [17], the convenient redefinitions

φ = 4

3
ϕ , V (φ) = 16

9
V(ϕ) , (2.8)

which cast them in their simplest form. The Euler–Lagrange equations of motion for A and ϕ
are then

2 Ä + Ȧ2 − 2 Ȧ Ḃ + ϕ̇2 + 2 e2B V(ϕ) = 0 ,

ϕ̈ + (Ȧ− Ḃ) ϕ̇ − e2B V ′(ϕ) = 0 , (2.9)

while the equation for B, which we shall often call “Hamiltonian constraint”, becomes

ϕ̇2 − 2 e2B V(ϕ) = Ȧ2 , (2.10)
4
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and leads to the reduced system

Ä − Ȧ Ḃ + ϕ̇2 = 0 ,

ϕ̈ + (Ȧ− Ḃ) ϕ̇ − e2B V ′(ϕ) = 0 . (2.11)

Notice that, with these redefinitions,

V(ϕ) = V0 e2ϕ (2.12)

for the two orientifold models of [6] and [12], for which γ = 1, while

V(ϕ) = V0 e
10
3 ϕ (2.13)

for the heterotic model of [8], for which γ = 5
3 : all our examples will contain contributions of 

the first type, and some will also contain contributions of the second type.
Notice that eqs. (2.11) are simply solved whenever the scalar ϕ takes a constant value ϕ0 that 

corresponds to a negative extremum of the potential. Indeed, the dilaton equation is identically 
satisfied by such a constant value ϕ = ϕ0, while the other equations reduce to

Ä = 0 , Ȧ2 = −2V(ϕ0) . (2.14)

Their solution exists only if V (ϕ0) < 0, and is simply

A = √
2 |V(ϕ0)| r + α, B = 0 , (2.15)

with α an integration constant. However, these types of solutions describe AdS10, and are not of 
interest to us here since they do not describe compactifications to lower dimensions.

We shall be particularly interested in solutions with one or more of the following features:

• an r–direction with a finite string–frame length

L =
∫

dr eB+ φ
4 =

∫
dr eB+ ϕ

3 ; (2.16)

• a bounded string coupling gs = eφ = e
4
3 ϕ ;

• finite values for the reduced nine–dimensional Planck mass and the typical gauge coupling

M7
P ∝

∞∫
0

dr e
7
9A+B ,

1

g2
YM

∝
∞∫

0

dr e
5
9A+B+ 2

3 ϕ , (2.17)

which would grant the corresponding interactions a non–trivial role in the resulting nine–
dimensional spacetime;

• a bounded string–frame scalar curvature, which takes the form

R(s) = −2 e− 2
3 ϕ−2B

[
32

9
Ȧ2 + 3 e2B (V ′(ϕ) + 2V(ϕ)

)]
(2.18)

after using the equations of motion (2.10) and (2.11).
5
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Eqs. (2.11) are a system of coupled non–linear differential equations, and solving them ana-
lytically is not an easy task in general. However, [15] identified, among other more complicated 
examples, nine classes of potentials for which the cosmological counterpart of the system of 
eqs. (2.9) is solvable, more or less explicitly, in closed form. This exemplified a wide number of 
contexts where the climbing phenomenon of [15,17], the inevitable emergence of cosmological 
counterparts of eq. (2.1) at weak coupling from the initial singularity, occurs. One can also ex-
tract from the underlying Mathematics information on static vacua, along the lines stated above. 
This is the purpose of the present work, and we can now proceed combining, as in [15], different 
forms of V(ϕ) with special choices for the gauge function B.

3. Dilaton dynamics, compactness and scalar curvature

Identifying potential shapes that can grant an upper bound for the dilaton, and thus for the 
string coupling, together with a compact internal space, would provide some clues on how String 
Theory could overcome the limitations of the Dudas–Mourad setup. At the same time, one would 
be interested in the behavior of the scalar curvature. These features may seem unrelated, but 
they are actually tightly connected, and depend crucially on the potential V(ϕ) that drives the 
dynamics and on the boundary conditions of the corresponding solutions.

For the class of metrics of eq. (2.1), familiar notions drawn from Newtonian mechanics can 
shed some light on the presence or absence of strong–coupling regions. The Hamiltonian con-
straint of eq. (2.11) can indeed be cast in the form

1

2
ϕ̇2 − e2B V(ϕ) = 1

2
Ȧ2 , (3.1)

which is reminiscent of the energy conservation condition for a Newtonian particle. Here 
1

2
Ȧ2

plays somehow the role of an r–dependent “total energy”: although it is not known beforehand, 

it is manifestly non negative, just like the “kinetic energy” 
1

2
ϕ̇2. The remaining contribution is 

the “inverted potential” − e2B V(ϕ): the sign reversal is a standard fact in systems depending on 
a spatial coordinate, as in this case, or on Euclidean time, but has nonetheless notable conse-
quences. In fact, if V(ϕ) is defined for all ϕ ∈R and is always positive, one expects the solutions 
to explore the whole potential, which points to the presence of strong–coupling regions. One 
can thus anticipate that solutions where gs has an upper bound ought therefore to emerge in two 
cases: if the very form of the potential V(ϕ) places an upper bound ϕ̃ on ϕ, or if there are regions 
where V(ϕ) is negative, which can give rise to potential hills for −V(ϕ) capable of “reflecting 
the particle”.

In our examples the potential is typically dominated, in interesting regions, by a single expo-
nential, which can be parametrized in the form

V(ϕ) = V0 e2γ ϕ , (3.2)

and here it will be important to allow both signs for γ and for the constant V0. The exact solutions 
with this class of potentials are relatively simple in the gauges

2e2BV (ϕ) = ±1 , (3.3)

and allow one to build some intuition on the types of behavior that can emerge in more general 
cases. We shall be particularly interested in settings that drive the dilaton toward large negative 
6
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values. The cosmological counterpart of this behavior in an expanding Universe was addressed, 
for the critical case, in [13], and for arbitrary positive values of V0 and γ , in [16]. The peculiar 
climbing phenomenon was then identified in this dynamics in [17]: with γ ≥ 1, the scalar can 
only emerge from ϕ = −∞ after the initial singularity, to then “climb up” the potential before 
inverting its motion at a turning point. Consequently, all these cosmologies entail upper bounds 
for the string coupling. On the other hand, two distinct options exist for γ < 1, since the scalar 
can also emerge from ϕ = +∞, and climb down the potential. In this respect γ = 1, which 
corresponds to e

3
2 φ in ten dimensions, and thus to the leading tadpole term for orientifolds, is the 

“critical” value that separates these two types of behavior.
We can now translate the analysis of [17] into the present context, where however more in-

teresting options exist for Ȧ, which denotes here the derivative with respect to r . Let us first 
consider the case in which the potential is dominated by a single exponential, as in eq. (3.2), 
with V0 negative, while allowing for different values of γ , which we assume initially to be posi-
tive. It is natural to begin with this case, since spatial profiles involve potentials that, as we have 
stressed, are inverted with respect to the cosmological setting. As a result, spatial profiles induced 
by negative exponential potentials satisfy equations that are formally identical to the cosmolog-
ical solutions with the usual positive potentials if the spatial derivative of A is also positive, up 
to the replacement of a temporal variable with a spatial one. Therefore, in this case one should 
recover, verbatim, the results of [17]. A convenient gauge choice for a potential dominated by a 
single negative exponential is

2 e2B V(ϕ) = −1 . (3.4)

Allowing for both signs of Ȧ and ϕ̇, the Hamiltonian constraint would then be solved letting

Ȧ = εA cosh(v) , ϕ̇ = sinh(v) , (3.5)

where εA = ±1, while the corresponding freedom for ϕ̇ is already encoded in the sign of v. 
However, one can always work in the region r > 0, while also restricting the attention to the 
case εA = 1, since the behavior for decreasing A can be recovered from the mirrored evolution 
toward smaller values of r . The equation for ϕ then becomes

v̇ + sinh(v) + γ cosh(v) = 0 , (3.6)

and for 0 < γ < 1 one thus finds

ϕ̇ = 1

2

[√
1 − γ

1 + γ
coth

(√
1 − γ 2

2
r

)
−
√

1 + γ

1 − γ
tanh

(√
1 − γ 2

2
r

)]
,

Ȧ = 1

2

[√
1 − γ

1 + γ
coth

(√
1 − γ 2

2
r

)
+
√

1 + γ

1 − γ
tanh

(√
1 − γ 2

2
r

)]
, (3.7)

or

ϕ̇ = 1

2

[√
1 − γ

1 + γ
tanh

(√
1 − γ 2

2
r

)
−
√

1 + γ

1 − γ
coth

(√
1 − γ 2

2
r

)]
,

Ȧ = 1

2

[√
1 − γ

1 + γ
tanh

(√
1 − γ 2

2
r

)
+
√

1 + γ

1 − γ
coth

(√
1 − γ 2

2
r

)]
, (3.8)
7
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Table 1
The available options in the exponential potential of eq. (3.2) with V0 < 0. The second column identifies the two types of 
behavior (descending or climbing), which correspond to eq. (3.8) and to eqs. (3.7), (3.9) and (3.10). The other columns 
collect information on the behavior at the two ends of the interval (L and R). The highlighted features are the limiting 
behaviors of the string coupling, the ranges of γ that grant finite contributions to the length of the internal space (n–cp 
when there are none) and the limiting behavior of the scalar curvature (ub when it is always unbounded).

V0 < 0 Type e
ϕ
L cpL R(s)L e

ϕ
R cpR R(s)R

0 < γ < 1 c |r|
1

1+γ 0 < γ < 1 ub exp

(
− γ r√

1−γ 2

)
0 < γ < 1

3
1
3 ≤ γ < 1

0 < γ < 1 d |r|−
1

1−γ 0 < γ < 1 ub exp

(
− γ r√

1−γ 2

)
0 < γ < 1

3
1
3 ≤ γ < 1

γ = 1 c |r| 1
2 γ = 1 ub exp

(
− r2

4

)
n–cp γ = 1

γ > 1 c |r|
1

γ+1 γ > 1 ub |rmax − r|
1

γ−1 n–cp γ > 1

which are identical to the cosmological solutions in [16,17], up to the replacement of a temporal 
variable with a spatial one. As in the cosmological context, eqs. (3.7) describe a climbing solu-
tion, which starts here at weak coupling for r = 0+ and returns to weak coupling as r → +∞
after attaining an upper bound. On the other hand, eqs. (3.8) describe a descending solution, 
which starts here at strong coupling for r = 0+ and approaches weak coupling as r → +∞. 
Moreover, the limiting behavior of both solutions is the well–known Lucchin–Matarrese attrac-
tor [22]. The corresponding solutions for negative values of γ can be obtained letting ϕ → −ϕ.

As γ → 1 only the climbing solution is well behaved and approaches

ϕ̇ = 1

2 r
− r

2
,

Ȧ = 1

2 r
+ r

2
, (3.9)

and finally for γ > 1 there is again only a climbing solution, which reads

ϕ̇ = 1

2

[√
γ − 1

γ + 1
cot

(√
γ 2 − 1

2
r

)
−
√

γ + 1

γ − 1
tan

(√
γ 2 − 1

2
r

)]
,

Ȧ = 1

2

[√
γ − 1

γ + 1
cot

(√
γ 2 − 1

2
r

)
+
√

γ + 1

γ − 1
tan

(√
γ 2 − 1

2
r

)]
, (3.10)

where now 0 < r < π√
γ 2−1

. As before, the corresponding solutions for γ negative can be obtained 

changing the sign of ϕ.
Even for spatial profiles this dynamics has an important consequence: if V is dominated be-

yond a certain value of ϕ by a negative exponential potential with γ ≥ 1, the string coupling has 
a finite upper bound. On the other hand, for γ ≤ −1 the string coupling would have a finite lower 
bound, while in the complementary range −1 < γ < 1 two different options exist, only of which 
guarantees an upper (or lower) bounds for gs .

The length of the internal interval in the string–frame metric is another feature of interest. One 
can explore the available options following steps similar to what we did for the string coupling, 
and the interested reader is invited to verify the entries of Table 1.

On the other hand, if V0 > 0 the gauge condition becomes

2 e2B V(ϕ) = 1 , (3.11)
8
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Table 2
The available options in the exponential potential of eq. (3.2) with V0 > 0. The various columns collect information 
on the behavior at the two ends of the interval (L and R), corresponding to the solutions of eqs. (3.14), (3.15), (3.16)
and (3.17). The highlighted features are the limiting behaviors of the string coupling, the ranges of γ that grant finite 
contributions to the length of the internal space (n–cp when there are none) and the limiting behavior of the scalar 
curvature (ub when it is always unbounded).

V0 > 0 e
ϕ
L cL R(s)L e

ϕ
R cR R(s)R

0 < γ < 1 |r|
1

1+γ 0 < γ < 1 ub |rmax − r|−
1

1−γ 0 < γ < 1 ub

γ = 1 |r| 1
2 γ = 1 ub exp

(
r2

4

)
γ = 1 ub

γ > 1 |r|
1

γ+1 γ > 1 ub exp

(
γ r√
γ 2−1

)
γ > 1 ub

γ > 1 |r|
1

γ−1 n–cp γ > 1 exp

(
γ r√
γ 2−1

)
γ > 1 ub

and the Hamiltonian constraint implies that ϕ and A trade their roles, since it is solved by

Ȧ = sinh(v) , ϕ̇ = cosh(v) . (3.12)

One can bypass again all sign ambiguities proceeding as before, which in this case amounts to 
focusing on solutions that move inevitably from weak to strong coupling as r increases. In terms 
of the variable v the equation of motion for ϕ is now

v̇ + cosh(v) + γ sinh(v) = 0 . (3.13)

For 0 < γ < 1 eq. (3.13) there is now only one type of solution,

ϕ̇ = 1

2

[√
1 − γ

1 + γ
cot

(√
1 − γ 2

2
r

)
+
√

1 + γ

1 − γ
tan

(√
1 − γ 2

2
r

)]
,

Ȧ = 1

2

[√
1 − γ

1 + γ
cot

(√
1 − γ 2

2
r

)
−
√

1 + γ

1 − γ
tan

(√
1 − γ 2

2
r

)]
, (3.14)

which can be considered again in the range 0 < r < π√
1−γ 2

.

For γ = 1 there is also one type of solution,

ϕ̇ = 1

2r
+ r

2
,

Ȧ = 1

2r
− r

2
, (3.15)

and finally for γ > 1 there are two different solutions

ϕ̇ = 1

2

[√
γ − 1

γ + 1
coth

(√
γ 2 − 1

2
r

)
+
√

γ + 1

γ − 1
tanh

(√
γ 2 − 1

2
r

)]
,

Ȧ = 1

2

[√
γ − 1

γ + 1
coth

(√
γ 2 − 1

2
r

)
−
√

γ + 1

γ − 1
tanh

(√
γ 2 − 1

2
r

)]
, (3.16)

and
9
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ϕ̇ = 1

2

[√
γ − 1

γ + 1
tanh

(√
γ 2 − 1

2
r

)
+
√

γ + 1

γ − 1
coth

(√
γ 2 − 1

2
r

)]
,

Ȧ = 1

2

[√
γ − 1

γ + 1
tanh

(√
γ 2 − 1

2
r

)
−
√

γ + 1

γ − 1
coth

(√
γ 2 − 1

2
r

)]
, (3.17)

which differ mostly in the behavior of A. Summarizing, with a positive exponential potential ϕ
is bound to reach strong coupling as r → ∞.

This analysis will prove very valuable in Section 5, where it will provide a rationale for the 
qualitative behavior of most solutions.

4. Scalar–gravity integrable models

In this section we explore the basic setup to build the static counterparts of the simplest cos-
mological models discussed in [15].

4.1. Triangular systems

1). The first integrable potential that we consider is

V(ϕ) = C ϕ e2ϕ . (4.1)

One can expand in a power series its string–frame counterpart, and expressing it in terms of the 
conventional dilaton field φ gives

VS(φ) = C e−φ
∞∑

n=1

(1 − e− 3
4 φ)n

n
. (4.2)

From a string perspective, the infinitely many contributions have the flavor of corrections to 
the “critical” exponential potential of the orientifold models of [6] and [12] that lie beyond the 
perturbative series. A plot of this potential can be found in Fig. 1, where we have chosen C > 0, 
which makes it bounded from below, but as we have seen in Section 3 inverted potentials will be 
of interest in the following.

Eqs. (2.11) simplify after performing the redefinitions

A = 1

4
log |x| + v , ϕ = 1

4
log |x| − v , (4.3)

and choosing the gauge

B = −A− 2ϕ = −3

4
log |x| + v , (4.4)

the resulting system can be simply solved analytically. Using these new variables the Lagrangian 
becomes indeed

L = 1

2
sign(x) ẋ v̇ + C

(
− 1

4
log |x| + v

)
, (4.5)

and the equations of motion are, for x = 0,

ẍ = 2 sign(x) C , v̈ = − sign(x)
C

. (4.6)

2x

10
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Fig. 1. The potential of eq. (4.1) with C = 1. The dashed potential is the one considered in [13].

Systems of this kind are called “triangular”: one can clearly solve the first of eqs. (4.6), and the 
second then becomes a simple equation with a source term. Moreover, the Hamiltonian constraint 
reads

ẋv̇ = − sign(x) C

(
1

2
log |x| − 2v

)
, (4.7)

and working with absolute values is convenient, since it eliminates the need to restrict the range 
of validity of the solutions. A closer look, however, reveals that this procedure alters the signs 
of some constants entering the potentials. For instance, working in the region where x < 0 is 
equivalent, insofar as the classical equations of motion are concerned, to flipping the sign of C, 
and thus to considering an inverted potential. Subtleties of this type emerge, in principle, in all 
cases where redefinitions similar to those in eqs. (4.3) are performed. In order not to be overly 
pedantic, however, in the following we shall confine ourselves to pointing out when relevant 
effects of this type emerge.

2). The second integrable potential that we consider is (Fig. 2)

V(ϕ) = C1 e2ϕ + C2 , (4.8)

which yields another triangular system. One can also consider its string–frame counterpart, and 
expressing it in terms of the conventional dilaton field φ gives

VS(φ) = C1 e−φ + C2 e− 5
2 φ . (4.9)

The term e−φ could be again the leading contribution to the potential in the orientifold models 
analyzed in [13], where C1 would be positive. Here, however, we are also free to elaborate on the 
behavior of the solutions for negative values of C1. Notice also that a contribution proportional 
to C2 would lie beyond string perturbation theory.

For this potential it is convenient to choose the gauge

B = −ϕ , (4.10)

and performing the redefinitions

A = 1
log(x) + v , ϕ = 1

log(x) − v , B = v − 1
log(x) , (4.11)
2 2 2

11
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Fig. 2. The potential of eq. (4.8) with C1 = 1 and C2 = −1. The dashed potential is the one considered in [13].

the Lagrangian takes the form

L = 2 ẋ v̇ − 2C1 x − 2C2 e2v . (4.12)

The corresponding equations (2.11) read

v̈ = −C1 , ẍ = −2C2 e2v , ẋv̇ = −C2 e2v − C1 x . (4.13)

The first two form again a triangular system, while the third is the Hamiltonian constraint. The 
solutions can be considered conveniently also for x < 0, working with absolute values for the 
arguments of the logarithm. Proceeding as for the preceding case, a closer look would reveal that 
the constant C2 in the potential flips sign in regions where x < 0.

3). The third integrable potential that we consider is

V(ϕ) = C1 e2γϕ + C2 e(γ+1)ϕ , (4.14)

whose string–frame counterpart is

VS(φ) = C1 e
1
2 (3γ−5)φ + C2 e

1
4 (3γ−7)φ , (4.15)

in terms of the conventional dilaton field φ. This is actually a whole family of potentials, which 
reduce to the standard one for the orientifold models if γ = 1, and to the preceding one if γ = −1, 
up to a ϕ → −ϕ redefinition. Notice also that the choices γ = 5

3 and γ = 7
3 include the low–lying 

potential of the SO(16) × SO(16) heterotic model of [8].
For γ = ±1, combining the gauge choice

B = −γ ϕ , (4.16)

with the redefinitions

A = log
(
x

1
1+γ y

1
1−γ

)
, ϕ = log

(
x

1
1+γ y

− 1
1−γ

)
, B = log

(
x

− γ
1+γ y

γ
1−γ

)
,

(4.17)

reduces the Lagrangian to the convenient form

L = 4 ẋ ẏ − 2 (1 − γ 2)
[
C1 x y + C2 x

2
1+γ

]
. (4.18)
12
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Fig. 3. The potential of eq. (4.22) for γ = 1
2 , λ = 7, ε1 = −1 and ε2 = 1. The dashed potential is the one considered 

in [13].

Its equations of motion are

ẍ + 1 − γ 2

2
C1 x = 0 , ÿ + 1 − γ 2

2
C1 y = −C2 (1 − γ )x

1−γ
1+γ ,

ẋ ẏ = − 1 − γ 2

2

[
C1 x y + C2 x

2
1+γ

]
, (4.19)

and the first two form again a triangular system, while the last is the Hamiltonian constraint.

4.2. Systems integrable via quadratures

We can now turn to a class of systems that can be solved via quadratures.
4). The fourth integrable potential that we consider is

V(ϕ) = C1 e2γϕ + C2 e
2
γ

ϕ
, (4.20)

whose string–frame counterpart is

VS(φ) = C1 e
3γ−5

2 φ + C2 e
3−5γ

2γ
φ

, (4.21)

in terms of the conventional dilaton field φ. This is again a whole class of potentials: they com-
prise two terms that, for general γ , do not involve integer powers of gs , and can describe the 
leading contributions of the three tachyon–free models of [6–8]. As will become clear in Sec-
tion 5, the solutions that are more interesting for our current purposes result from two exponential 
terms of opposite signs. For this reason, up to a shift in ϕ, we write these potentials in the form 
(see Fig. 3)

V(ϕ) = λ
(
ε1 e2γϕ + ε2 e

2
γ

ϕ
)

, (4.22)

where ε1 = ±1 and ε2 = ±1, which encompasses a wider range of options than those examined 

in [15]. Notice that the redefinition γ −→ 1
connects pairs of potentials in this family, and for 
γ

13
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Fig. 4. The potential of eq. (4.29) for C = 1 and D = −1. This potential has the peculiarity that it is defined only for 
ϕ < 0. The dashed potential is the one considered in [13].

this reason one can restrict the attention to the range 0 < |γ | < 1, or even to 0 < γ < 1, up to a 
redefinition ϕ → −ϕ. With the gauge choice

B = A , (4.23)

the Lagrangian takes the form

L = ( Ȧ2 − ϕ̇2 ) − 2λe2A ( e
2
γ

ϕ − e2γϕ ) . (4.24)

The peculiar structure of kinetic terms and exponents clearly bring to one’s mind the Lorentzian 
boosts of Special Relativity. Hence, if 0 < γ < 1, one is led to define the new variables

Â = 1√
1 − γ 2

(A+ γ ϕ) , ϕ̂ = 1√
1 − γ 2

(ϕ + γA) , (4.25)

which bring the Lagrangian into the separable form

L = ˙̂A2 − ˙̂ϕ2 + 2λe2
√

1−γ 2 Â − 2λe
2
γ

√
1−γ 2 ϕ̂

. (4.26)

As usual, its two apparently independent equations of motion,

¨̂A − 2λ

√
1 − γ 2 e2

√
1−γ 2 Â = 0 ,

¨̂ϕ − 2λ

γ

√
1 − γ 2 e

2
γ

√
1−γ 2 ϕ̂ = 0 , (4.27)

are to be supplemented by the Hamiltonian constraint

˙̂A2 − ˙̂ϕ2 = 2λe2
√

1−γ 2 Â − 2λe
2
γ

√
1−γ 2 ϕ̂

, (4.28)

which links their integration constants.
5). The fifth integrable potential that we consider,

V(ϕ) = C log (− coth(ϕ)) + D , (4.29)

is displayed in Fig. 4. In this case it is convenient to let
14
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eA = √
xy , eϕ =

√
y

x
, eB =

√
1

xy
, (4.30)

so that the gauge choice is

B = −A . (4.31)

This potential exhibits a novel feature: it is real only for ϕ < 0, which sets an upper bound on 
gs . Interestingly, it includes infinitely many perturbative contributions together with additional 
terms, all of which conspire to enforce this restriction. Indeed, in terms of the conventional 
dilaton field φ, the string–frame counterpart of eq. (4.29) reads

VS(φ) = C

∞∑
s,k=0

(−1)s

s + 1
2s+1

(
k + s

s

)
e

(
3
2 (k+s)−1

)
φ + D e− 5

2 φ , (4.32)

and we see that it includes the leading orientifold contribution considered in [13]. The variables 
of eq. (4.30) turn the Lagrangian into

L = −4 ẋ ẏ − 8C log

(
x + y

x − y

)
− 8D , (4.33)

and letting

x = ξ + η

2
, y = ξ − η

2
, (4.34)

leads finally to

L = η̇2 − ξ̇2 − 8C log

(
ξ

η

)
− 8D , (4.35)

whose equations of motion

ξ̈ = − 4C

ξ
, η̈ = − 4C

η
, η̇2 − ξ̇2 = 8C log

(
ξ

η

)
+ 8D (4.36)

can be solved by quadratures. As usual, the last equation is the Hamiltonian constraint.
6). The sixth integrable potential that we consider is (Fig. 5)

V(ϕ) = C cosh(ϕ) + � . (4.37)

Its string–frame counterpart, in terms of the conventional dilaton field φ, is

VS(φ) = C

2

(
e− 7

4 φ + e− 13
4 φ
)

+ �e− 5
2 φ . (4.38)

It is now convenient to let

A = log( x y ) , ϕ = log

(
x

y

)
, (4.39)

and to work in the gauge

B = 0 . (4.40)

In terms of the new coordinates x and y the Lagrangian becomes
15
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Fig. 5. The potential of eq. (4.37) for C = 1 and � = 0. The dashed potential is the one considered in [13].

L = 2 ẋ ẏ − C
x2 + y2

2
− �x y , (4.41)

whose equations of motion are

ẍ = − �

2
x − C

2
y , ÿ = − C

2
x − �

2
y , −2 ẋ ẏ = �x y + C

2
( x2 + y2 ) ,

(4.42)

where the last is the Hamiltonian constraint. One can now decouple the system, letting

ξ = x + y , η = x − y, (4.43)

so that the equations of motion become

ξ̈ = −
(

� + C

2

)
ξ , η̈ = −

(
� − C

2

)
η . (4.44)

The first two are again solvable by quadratures, while the last is the Hamiltonian constraint.
7). The seventh integrable potential that we consider is

V(ϕ) = C1 cosh4
(ϕ

3

)
+ C2 sinh4

(ϕ

3

)
, (4.45)

and a particularly interesting option, with C1 < 0, C2 > 0, and C2 ≥ |C1| is displayed in Fig. 6. 
Its string–frame counterpart in terms of the conventional dilaton field φ is

VS(φ) = C1

16

(
e− 3

8 φ + e− 7
8 φ
)4 + C2

16

(
e− 3

8 φ − e− 7
8 φ
)4

. (4.46)

In this case a convenient gauge choice is

B = 1

3
A , (4.47)

and the Lagrangian

L = e
2
3A
{
Ȧ2 − ϕ̇2 − 2 e

2
3A
[
C1 cosh4

(ϕ

3

)
+ C2 sinh4

(ϕ

3

)]}
, (4.48)

is simplified by the redefinitions
16



P. Pelliconi and A. Sagnotti Nuclear Physics B 965 (2021) 115363
Fig. 6. The potential of eq. (4.45) for C2 = 1 and C1 = − 7
10 . The dashed potential is the one considered in [13].

eA = (x y)
3
2 , eϕ =

(
x

y

) 3
2

, eB = (x y)
3
2 , (4.49)

which turn it into

L = 9 ẋ ẏ − 2C1

(
x + y

2

)4

− 2C2

(
x − y

2

)4

. (4.50)

Finally, letting

ξ = x + y

2
, η = x − y

2
, (4.51)

leads to the simplest form,

L = 9
(
ξ̇2 − η̇2

)
− 2C1 ξ4 − 2C2 η4 , (4.52)

whose equations of motion are

ξ̈ + 4

9
C1 ξ3 = 0 , η̈ − 4

9
C2 η3 = 0 , η̇2 − ξ̇2 = 2

9

[
C1 ξ4 + C2 η4

]
. (4.53)

The first two are again solvable by quadratures, while the last is the Hamiltonian constraint.
8). The eighth integrable potential that we consider is

V(ϕ) = Im

[
C log

(
e−2ϕ + i

e−2ϕ − i

)
+ i �

]
. (4.54)

In principle, the coefficient C could be a complex parameter, but the logarithm is purely imag-
inary, and one can restrict the attention to real values of C. This potential is equivalent to the 
step–like function

V(ϕ) = 2C arctan
(
e2ϕ
)

+ � , (4.55)

which is displayed in Fig. 7. One can now expand in a power series its string–frame counterpart, 
and expressing it in terms of the conventional dilaton field φ gives
17
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Fig. 7. The potential eq. (4.54), with C = 1 and � = 1
2 . The dashed potential is the one considered in [13]. Notice that, 

even if the dashed contribution is contained also in (4.54), the higher–order terms make the two potentials qualitatively 
very different.

VS(φ) = 2C

∞∑
n=0

(−1)n

2n + 1
e(3n−1)φ + �e− 5

2 φ . (4.56)

Aside from the � term, which is of non–perturbative flavor, this potential rests on an infinite 
number of perturbative contributions, starting from the leading one for the orientifolds of [6,7].

The change of variables

eA = √
xy , eϕ =

√
y

x
, eB =

√
1

xy
, (4.57)

which also embodies the gauge choice

B = −A , (4.58)

turns the Lagrangian into

L = 4 ẋ ẏ − 8 Im

[
C log

(
x + iy

x − iy

)
+ i �

]
. (4.59)

Working with the complex variable

z = x + i y (4.60)

in this case one can express the Lagrangian in terms of a complex coordinate and the correspond-
ing velocity, as

L = 2 Im
[
ż2 − 8C log(z) − 4 i �

]
, (4.61)

whose equations of motion are

z̈ = − 4C

z
, Im

[
ż2 + 8C log(z) + 4 i �

]
= 0 . (4.62)

The first can be integrated by quadratures in the complex plane, while the second is the usual 
Hamiltonian constraint.
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Fig. 8. The potential of eq. (4.63) for γ = 1
3 and C = i. The dashed potential is the one considered in [13].

9). The ninth integrable potential that we consider is (Fig. 8)

V(ϕ) = Im

[
C
(
i + sinh(2γ ϕ)

) 1
γ

−1
]

, (4.63)

so that the Lagrangian becomes

L = eA−B
{

1

2
Ȧ2 − 1

2
ϕ̇2 − e2B Im

[
C
(

i + sinh(2γ ϕ)
) 1

γ
−1
]}

. (4.64)

This is actually a class of potentials and, resorting to the gauge choice

B = (1 − 2γ )A , (4.65)

one can introduce the convenient (x, y) variables

eA = (x y)
1

2γ , eϕ =
(

x

y

) 1
2γ

, eB = (x y)
1−2γ

2γ , (4.66)

in terms of which

L = 1

2γ 2 ẋ ẏ − Im

[
C

2
1
γ

−1
(x + iy)

2
γ

−2

]
. (4.67)

This system can be recast in a more compact form introducing the complex variable

z = x + i y , (4.68)

so that, up to an overall factor and a redefinition C̃ = C

2
1
γ −2

,

L = 1

2
Im

(
1

γ 2 ż2 − C̃ z
2
γ

−2
)

. (4.69)

In this fashion, the equations of motion are

z̈ = −γ (1 − γ ) C̃ z
2
γ

−3
, Im

(
1
2 ż2 + C̃ z

2
γ

−2
)

= 0 . (4.70)

γ

19



P. Pelliconi and A. Sagnotti Nuclear Physics B 965 (2021) 115363
The first can be integrated once more by quadratures in the complex plane, while the second is 
the Hamiltonian constraint.

5. Vacuum profiles and bounded string coupling

In this section we analyze the models that we have introduced, paying special attention to 
cases that grant a bounded string coupling gs , an r–direction that has a finite length in the string 
frame and, in addition, finite values of the nine–dimensional Planck mass and gauge coupling. 
We follow the same order as in Section 4, so that we begin from the examples that result in 
triangular systems.

5.1. Triangular systems

1). THE POTENTIAL OF EQ. (4.1)
For the potential

V(ϕ) = C ϕ e2ϕ , (5.1)

up to shifts in the coordinate r , the general solution for x(r) in eqs. (4.6) is

x = C (r2 + D) , (5.2)

where D ∈ R is an integration constant. To begin with, let us choose a positive value for the 
integration constant, letting D = a2. For v(r) one then needs to solve

v̈ = − 1

2

1

r2 + a2 , (5.3)

so that

v = α r − r

2a
arctan

(
r

a

)
+ 1

4
log

(
r2

a2 + 1

)
+ β , (5.4)

where α and β are integration constants. The Hamiltonian constraint now sets β = 0, so that the 
complete solution reads

x = C(r2 + a2) , v = α r − 1

2

r

a
arctan

(
r

a

)
+ 1

4
log

(
r2

a2 + 1

)
, (5.5)

and consequently

eA = 4

√ |C|
a2

√
r2 + a2 exp

[
α r − r

2a
arctan

( r

a

)]
,

eϕ = 4
√

|C|a2 exp
[
−α r + r

2a
arctan

( r

a

)]
,

eB = 4

√
1

|C|3a2

1√
r2 + a2

exp
[
α r − r

2a
arctan

( r

a

)]
. (5.6)

Notice that the arguments of the exponential functions behave as
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Fig. 9. The left panel displays typical solutions for the potential of eq. (5.1) corresponding to positive values of D, with 
C = 1, a = 1 and α = 0, so that |α a| < π

4 . As implied by eq. (5.7), gs is unbounded as r → ±∞ while eB is bounded 
in both limits. The situation is different in the right panel, where D is again positive and C = 1, a = 1 and α = 3, so that 
|α a| > π

4 . In this case gs diverges as r → −∞, while eB diverges as r → +∞.

−α r + r

2a
arctan

( r

a

)
−→ −

(
α a − π

4

) r

a
for r −→ +∞ ,

−α r + r

2a
arctan

( r

a

)
−→ −

(
α a + π

4

) r

a
for r −→ −∞ , (5.7)

and therefore for any choice of α a there are strong–coupling regions (see Fig. 9).
However, one can also allow D to be negative, and letting D = −a2 leads to

x = C (r2 − a2) , v = α r − r

4a
log

∣∣∣∣ r − a

r + a

∣∣∣∣ + 1

4
log |r2 − a2| + β . (5.8)

The Hamiltonian constraint now fixes β = 1
4 log(|C|), and finally

eA = √|C|
√

|r2 − a2| exp

[
α r − r

4a
log

∣∣∣∣ r − a

r + a

∣∣∣∣
]

,

eϕ = exp

[
−α r + r

4a
log

∣∣∣∣ r − a

r + a

∣∣∣∣
]

,

eB = 1√|C|
1√|r2 − a2| exp

[
α r − r

4a
log

∣∣∣∣ r − a

r + a

∣∣∣∣
]

. (5.9)

These solutions are displayed in Fig. 10, but some care is needed to grant them a proper inter-
pretation. To begin with, the dilaton profile exhibits three different regions, which are actually 
separated by curvature singularities. This indicates that they describe different dynamics, to be 
considered independently. The inner and right–most regions appear particularly interesting, since 
the string coupling is bounded there.

However, a closer inspection and the discussion in Section 4 reveal that the inner portion of the 
solution actually concerns the inverted potential in the lower–left panel of Fig. 10, with C < 0, 
since x is negative there. The Newtonian analogy is quite useful to guide one’s intuition here, 
provided one takes properly into account that the variable r plays the role of a Euclidean New-
tonian time, as we have stressed. As a result, the analogy ought to rely on the inverted potential, 
as is the case in the physics of instantons. One can thus understand qualitatively the inner region 
referring to the upper–left panel of Fig. 10 (the “inversion of the inverted potential”), since in this 
case the sign of the constant C in eq. (5.1) flips effectively in regions where x < 0: the dilaton 
emerges from large negative values and overcomes the small potential well close to the origin 
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Fig. 10. The upper–left panel displays the potential of eq. (5.1) for C > 0, while the lower–left one displays the cor-
responding inverted potential, which drives the dynamics. The right panel displays eB and eϕ for negative D, for the 
special case C = 1, a = 1 and α = 1. The solution comprises three distinct sectors, and the intermediate one results in a 
bounded string coupling within an internal interval of finite length.

before being reflected by the exponential wall. Alternatively, and equivalently, drawing some 
parlance from Quantum Mechanics, one might capture this behavior directly looking for “tun-
neling regions” in the actual potential displayed in the lower–left panel. For the outer solutions, 
the potential is the usual one, and therefore the particle moves in allowed regions of the inverted 
potential in the lower–left panel, to the left of the hill for the region r > a, where the coupling 
is bounded, or above the hill for r < −a, exploring all possible values of the string coupling. 
Finally, the interval has a finite length in the first two cases and an infinite length in the last one, 
and the Planck mass and gauge coupling are finite in the first two cases and infinite in the third. 
Because of all this, the central region is very interesting, since

• the internal r–direction is compact;
• string coupling gs is bounded, and vanishes at the ends of the interval;
• the 9D Planck mass and gauge coupling are finite.

Notice that these results are precisely as expected from the discussion in Section 3, summarized 
in Tables 1 and 2: the inner region in Fig. 10 refers to the inverted potential, which is dominated 
by a critical exponential for ϕ > 0, and an upper bound for the string coupling is thus inevitable. 
In other regions, which refer to the positive potential, weak coupling is possible but is not guar-
anteed. Similar considerations apply to the length of the internal interval and to the curvature 
scalar.

2). THE POTENTIAL OF EQ. (4.8)
Other interesting solutions originate from the class of potentials

V(ϕ) = C1 e2ϕ + C2 . (5.10)

Positive values of C1 yield a potential V(ϕ) that is bounded from below, but a negative value of 
C1 provides an interesting illustration of what we said in Section 3. Eqs. (4.13) define again a 
triangular system, and the general solution for v reads
22



P. Pelliconi and A. Sagnotti Nuclear Physics B 965 (2021) 115363
v = − C1

2
r2 + a r + b , (5.11)

where a and b are two real integration constants. Up to a shift of r one can set a = 0, and up to 
rescalings and a constant shift of the dilaton one can also set b = 0. Therefore, for the sake of 
brevity we shall work with the simpler expression

v = − C1

2
r2 . (5.12)

We can now recall the definition of the error function,

erf(s) = 2√
π

s∫
0

dt e−t2
, (5.13)

which will recur in the following, and actually its extension to the complex plane will also play 
a role. The solution found for v leads indeed to

ẍ = − 2C2 e−C1 r2
(5.14)

and, taking into account the definition of erf(x), two integrations lead to

x = α r + β − C2

√
π

C1
r erf

(√
C1r

)
− C2

C1
e−C1 r2

, (5.15)

where α and β are integration constants. The Hamiltonian constraint demands that β = 0, so that 
finally

v = − C1

2
r2 , x = α r − C2

√
π

C1
r erf

(√
C1r

)
− C2

C1
e−C1 r2

. (5.16)

Consequently

eA = x
1
2 ev =

(
α r e−C1r

2 − C2

√
π

C1
r erf

(√
C1r

)
e−C1r

2 − C2

C1
e−2C1 r2

) 1
2

,

eϕ = x
1
2 e−v =

(
α r eC1r

2 − C2

√
π

C1
r erf

(√
C1r

)
eC1r

2 − C2

C1

) 1
2

,

eB = x− 1
2 ev =

(
α r eC1r

2 − C2

√
π

C1
r erf

(√
C1r

)
eC1r

2 − C2

C1

)− 1
2

. (5.17)

If C1 is positive, the potential is the one analyzed in [13], with the addition of a constant term that 
would have a non–perturbative origin in String Theory. In this case one can see that the string 
coupling becomes unbounded for all possible values of C2. In fact, if C2 = 0 one can assume 
without loss of generality that α > 0, and eϕ becomes unbounded for large positive values of r : 
this is what happens in [13], up to our different choice of normalization for A and ϕ. On the other 
hand, if C2 is positive the square root in the solution attains positive values for some r only if 
|α| > C2

√
π
C1

. One can consider again α positive, without any loss of generality, since negative 

values can be compensated by a reversal of r , and then eϕ diverges for large positive values of r . 
The analysis for C2 negative is very similar, and in this case one is allowed to choose any value of 
α, but the end result is still an unbounded string coupling. In all these cases the nine–dimensional 
Planck mass and the gauge coupling are finite (see Fig. 11).
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Fig. 11. The upper–left panel displays the potential of eq. (5.10) for C1 > 0 and C2 < 0, while the upper–right one 
displays the corresponding inverted potential. The lower left panel displays the solution for C1 = 1, C2 = 1

2 and α = 1, 
so that |α| > C2

√
π
C1

. As expected gs is unbounded, and the same is true for eB . The situation is similar in the lower 

right panel, where C2 = − 1
2 . In both cases, the dashed lines are the solutions for the low–lying orientifold potential 

considered in [13].

However, if we allow C1 to be negative, differently from [13] (and from the actual starting 
point in String Theory), the resulting solution can be cast in the form

eA = x
1
2 ev =

(
α r e|C1|r2 + i C2

√
π

|C1| r erf
(
i
√|C1| r

)
e|C1|r2 + C2

|C1| e2|C1|r2
) 1

2

,

eϕ = x
1
2 e−v =

(
α r e−|C1|r2 + i C2

√
π

|C1| r erf
(
i
√|C1| r

)
e−|C1|r2 + C2

|C1|
) 1

2

,

eB = x− 1
2 ev =

(
α r e−|C1|r2 + i C2

√
π

|C1| r erf
(
i
√|C1| r

)
e−|C1|r2 + C2

|C1|
)− 1

2

,

(5.18)

and has some peculiar features, which were anticipated in Section 5. For C2 > 0, indeed:

• the internal r–direction has a finite length;
• the string coupling gs is bounded;
• the 9D Planck mass and gauge coupling are finite.

However, the string–frame curvature (2.18) is unbounded. One can show that this is the case 
noting that, for large values of x

−i erf(ix) = 2√
π

x∫
ds es2 � ex2

√
π x

+ ex2

2
√

π x3
+ O

(
ex2

x5

)
, (5.19)
0
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Fig. 12. The upper–left panel displays the potential of eq. (5.10) for C1 < 0 and C2 > 0, while the upper–right one 
displays the corresponding inverted potential. The lower left panel shows the behavior of the solution for C1 = −1, 
C2 = 1

2 and α = 0. As expected, gs is bounded and eB diverges. In the lower right panel the situation is similar, but the 
non–vanishing α = 1 deforms slightly the solution.

so that the argument of the square roots in (5.17) in this limit approaches

α r e−|C1|r2 + i C2

√
π

|C1| r erf
(
i
√|C1| r

)
e−|C1|r2 + C2

|C1|
� α r e−|C1| r2 − C2

|C1|2r2 + O
(

1

r4

)
. (5.20)

For this reason, if C2 is positive, this argument will eventually become negative for large values 
of r . When this happens, the string coupling, which was previously bounded, vanishes and the 
very range of r ends. Moreover, the gauge choice B = − ϕ implies that eB diverges, but only as 
an inverse square root. Therefore, the behavior of eB+ ϕ

3 results in a compact internal direction. 
Fig. 12 displays a solution of this type. It is also straightforward to show that the reduced Planck 
mass and gauge coupling are finite. On the other hand, the behavior of the curvature is slightly 
more subtle, since it is potentially singular at the two ends of the allowed range of r . It will 
suffice to consider the left end r = r∗, where

eϕ ∼ √
r − r∗ , eA ∼ √

r − r∗ , eB ∼ 1√
r − r∗ . (5.21)

Consequently

e− 2
3 ϕ−2B ∼ (r − r∗)

2
3 (5.22)

and

Ȧ ∼ 1
∗ , Ä ∼ 1

∗ 2 , Ḃ ∼ 1
∗ , (5.23)
r − r (r − r ) r − r
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Fig. 13. The left panel displays a potential V(ϕ) of eq. (5.25), with 0 < γ < 1 and ε1 = ε2 = 1, and in particular here 
γ = 1

2 . The right panel displays instead a typical potential V(ϕ) with −1 < γ < 0, and in particular here γ = − 1
2 . In 

both cases, the dashed potentials are the low–lying orientifold contributions considered in [13].

and the string–frame curvature (2.18) is not bounded. We refrain from discussing explicitly the 
additional option for the potential, corresponding to negative values for both C1 and C2, since 
it leads to a non–compact internal space. Once more, the potential is dominated by a critical 
exponential for ϕ > 0, and consequently these results are precisely along the lines of what we 
discussed in Section 3.

3). THE POTENTIAL OF EQ. (4.14)
Up to a shift in ϕ and a rescaling of the coordinate r , the potential of eq. (4.14),

V(ϕ) = C1 e2γϕ + C2 e(γ+1)ϕ , (5.24)

can be cast in the form

V(ϕ) = ε1e
2γϕ + ε2e

(γ+1)ϕ , (5.25)

with ε1, ε2 = ±1. One can find solutions for all values of γ , but for brevity we shall content 
ourselves with the region γ > −1, and thus with cases where at least one exponential is raised 
to a positive power. These are more directly connected to perturbative String Theory, but cases 
with two negative powers are also interesting and could be discussed performing a ϕ → −ϕ

redefinition. In this fashion, peculiar behaviors that set upper bounds on gs are mapped into 
others that set lower bounds on it.

|γ | < 1 , ε1 = 1 , ε2 = 1

With these choices the potential is always positive, and consequently the solutions contain 
strong–coupling regions (see Fig. 13). Letting

�2 = 1 − γ 2

2
, (5.26)

the equations of motion reduce to

ẍ + �2 x = 0 , ÿ + �2 y = − (1 − γ )x
1−γ
1+γ , ẋ ẏ = −�2

[
x y + x

2
1+γ

]
.

(5.27)

Up to the usual shift in r , and up to some prefactors in eA and eϕ , the solution for x can be 
brought to the form
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x(r) = sin(�r) , (5.28)

so that the equation one needs to solve for y(r) is

ÿ + �2 y = − (1 − γ ) [sin(�r)]
1−γ
1+γ . (5.29)

The solution is

y(r) =
{

b + 2�

1 + γ

r∫
0

ds sin
2

1+γ (�s)

}
cos(�r) − sin(�r)

3+γ
1+γ , (5.30)

where we have eliminated one integration constant imposing the Hamiltonian constraint, and this 
result translates into

eA = sin(�r)
1

1+γ

{[
b + 2�

1 + γ

r∫
0

ds sin
2

1+γ (�s)

]
cos(�r) − [sin(�r)]

3+γ
1+γ

} 1
1−γ

,

eϕ = sin(�r)
1

1+γ

{[
b + 2�

1 + γ

r∫
0

ds sin
2

1+γ (�s)

]
cos(�r) − [sin(�r)]

3+γ
1+γ

}− 1
1−γ

,

eB = sin(�r)
−γ
1+γ

{[
b + 2�

1 + γ

r∫
0

ds sin
2

1+γ (�s)

]
cos(�r) − [sin(�r)]

3+γ
1+γ

} γ
1−γ

.

(5.31)

Since sin(�r) is raised to a real power, we take r ∈ (0, π
�

)
, and b > 0 since y(0) = b, but the 

actual range depends on b and is smaller. Indeed y
(

π
2�

)= −1 < 0, and therefore there is a point 
r̃ ∈ [0, π

2�

]
where y(r) vanishes, so that r ∈ (0, ̃r). At r̃ , eϕ diverges, as one would have expected 

from the discussion devoted to the Hamiltonian constraint in Section 3. These solutions have both 
strong–coupling and weak–coupling regions.

|γ | < 1 , ε1 = −1 , ε2 = 1

This potential is rather interesting because for ϕ < 0 it is negative, and therefore it is expected to 
yield a bounded string coupling gs . As before, �2 is still defined by eq. (5.26), and therefore one 
needs to solve

ẍ − �2 x = 0 , ÿ − �2 y = − (1 − γ )x
1−γ
1+γ , ẋ ẏ = −�2

[
−x y + x

2
1+γ

]
.

(5.32)

For x(r) we choose the solution

x(r) = sinh(�r) , (5.33)

so that the equation for y(r) is

ÿ − �2 y = − (1 − γ ) [sinh(�r)]
1−γ
1+γ . (5.34)

The solution is
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y(r) =
{

b + 2�

γ + 1

r∫
0

ds sinh(�s)
2

1+γ

}
cosh(�r) − [sinh(�r)]

3+γ
1+γ , (5.35)

where we have eliminated one constant of integration imposing the Hamiltonian constraint.
Returning to the original variables,

eA = sinh(�r)
1

1+γ

⎧⎨
⎩
[
b + 2�

γ + 1

r∫
0

ds sinh(�s)
2

1+γ

]
cosh(�r) − [sinh(�r)]

3+γ
1+γ

⎫⎬
⎭

1
1−γ

,

eϕ = sinh(�r)
1

1+γ

⎧⎨
⎩
[
b + 2�

γ + 1

r∫
0

ds sinh(�s)
2

1+γ

]
cosh(�r) − [sinh(�r)]

3+γ
1+γ

⎫⎬
⎭

− 1
1−γ

,

eB = sinh(�r)
−γ
1+γ

⎧⎨
⎩
[
b + 2�

γ + 1

r∫
0

ds sinh(�s)
2

1+γ

]
cosh(�r) − [sinh(�r)]

3+γ
1+γ

⎫⎬
⎭

γ
1−γ

,

(5.36)

where now 0 < r < +∞. As r approaches zero, y is continuous and y(0) = b. On the other hand 
for r large and γ = 0,

y(r) ∼ 1

2

(
b − γ 2 + γ + 2

γ (γ + 1)
2− 2

1+γ

)
e�r + 1

γ (γ + 1)

e
1−γ
1+γ

�r

2
2

1+γ

, (5.37)

while for γ = 0

y(r) ∼ 1

2

(
b − �r

)
e�r . (5.38)

Notice that for 0 < γ < 1 the first term dominates, while the opposite is true in the complemen-
tary range −1 < γ < 0. In the first case, if

b >
γ 2 + γ + 2

γ (γ + 1)
2− 2

1+γ , (5.39)

the solution is defined in the whole semi–axis. The string coupling approaches zero for both small 
and large values of r , while eB diverges in both cases. Consequently, the dominant behaviors of 
the volume form eB+ ϕ

3 for r small and large are

eB+ ϕ
3 ∼ r

1−3γ
1+γ r small , eB+ ϕ

3 ∼ e
2
3

3γ 2−γ

1−γ 2 �r
r large , (5.40)

so that a bounded r–direction obtains if the two conditions

1 − 3γ

1 + γ
> −1 ,

2

3

3γ 2 − γ

1 − γ 2 < 0 (5.41)

hold in the range 0 < γ < 1. These inequalities are satisfied if 0 < γ < 1
3 , and for this range 

the internal direction is bounded. However, the reduced Planck mass and gauge coupling (2.17)
are both infinite, so that these models do not provide interesting compactifications, since the 
corresponding interactions disappear in nine dimensions. Moreover, in the range 0 < γ < 1 , the 
3
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Fig. 14. Two potentials of eq. (5.25) for ε1 = −1, ε2 = 1 and −1 < γ < 1. In particular, the left panel corresponds to 
γ = 1

8 , while the right one corresponds to γ = − 1
8 . The dashed potential is the one considered in [13].

Fig. 15. Solutions for the potential of eq. (5.25) for 0 < γ < 1, ε1 = −1 and ε2 = 1. The upper–left panel displays the 
potential for γ = 1

8 , while the lower–left panel displays the inverted potential. The right panel shows the solution for 
b = 137

18 , so that the inequality of eq. (5.39) holds. The string coupling is always perturbative, and while eB diverges, in 
the limit of large r the volume form eB+ ϕ

3 is an exponential with negative exponent. This solution results in a compact 
space where the coupling is always perturbative.

string–frame scalar curvature (2.18) is not bounded both near r = 0 and for r large. These results 
are precisely along the lines of what we said in Section 3.

This solution is displayed in Fig. 15. Notice that in the Einstein frame the internal space would 
be non compact, since eB diverges for large values of r .

In the complementary range −1 < γ < 0, the solution includes a region of strong coupling. 
We can see this from the fact that, for this range of γ , the behavior of y(r) for large r is dominated 
by the second term of eq. (5.37), whose coefficient is negative, which drives y(r) to zero. Where 
this occurs, the string coupling diverges. In more physical terms, if one inverts the potential in 
Fig. 14, one can see that the dilaton is naturally driven toward large values. The discussion in 
Section 3 indicates that and additional type of behavior is possible, where the string coupling has 
a lower bound. In practice, one would obtain it starting from a cosh–function.

|γ | < 1 , ε1 = 1 , ε2 = −1
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Fig. 16. The potential of eq. (5.25) for −1 < γ < 1, ε1 = 1 and ε2 = −1. In particular, the left panel displays γ = 1
8 , 

while the right panel displays γ = − 1
8 . The dashed potential is the one considered in [13].

We can now explore the case ε1 = 1 and ε2 = −1, an example of which is displayed in Fig. 16. 
Notice that the resulting potentials are unbounded from below. The solution of eqs. (4.19) is, up 
to shifts in the coordinate r and up to an overall factor in x(r), which would reverberate in the 
other solution,

x(r) = sin(�r) ,

y(r) = a sin(�r) +
⎡
⎣b − 1 − γ

�

r∫
0

sin(�s)
2

1+γ ds

⎤
⎦ cos(�r) + sin(�r)

3+γ
1+γ . (5.42)

a and b are two integration constants, and the Hamiltonian constraint demands that a = 0.
Using (5.42), one then obtains

eA = sin(�r)
1

1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sin(�s)
2

1+γ ds

⎤
⎦ cos(�r) + sin(�r)

3+γ
1+γ

⎫⎬
⎭

1
1−γ

,

eϕ = sin(�r)
1

1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sin(�s)
2

1+γ ds

⎤
⎦ cos(�r) + sin(�r)

3+γ
1+γ

⎫⎬
⎭

− 1
1−γ

,

eB = sin(�r)
−γ
1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sin(�s)
2

1+γ ds

⎤
⎦ cos(�r) + sin(�r)

3+γ
1+γ

⎫⎬
⎭

γ
1−γ

.

(5.43)

The periodicity of these functions, and the condition that sin(�r) be positive definite, restrict 
the range of r to the interval 

(
0, π

�

)
. In order to define the function at r = 0, however, b must be 

positive, otherwise a negative b would restrict the interval further, to r > r∗ > 0. Moreover, if

b >
1 − γ

�

π
�∫

0

sin(�s)
2

1+γ ds , (5.44)

at some point within the interval 
[
0, π

]
, y vanishes, and gs diverges there. If instead
�
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Fig. 17. The upper–left panel displays the potential of eq. (5.25) for ε1 = 1, ε2 = −1 and 0 < γ < 1, in particular with 
γ = 1

2 , while the lower–left panel displays the inverted potential. The right panel displays the behavior of eB and eϕ for 
b = 1. This choice of b respects (5.45), and gs is bounded as expected.

Fig. 18. The upper–left panel displays the potential of eq. (5.25) for ε1 = 1, ε2 = −1 and −1 < γ < 0, in particular 
γ = − 1

8 , while the lower–left panel the inverted potential. The right panel displays the behavior of eB and eϕ for b = 1. 
This choice of b respects (5.45), and gs is bounded as expected.

0 < b <
1 − γ

�

π
�∫

0

sin(�s)
2

1+γ ds , (5.45)

y(r) is always positive and gs is bounded. This type of solution is displayed in Figs. 17 and 18. 
When (5.45) holds, the solutions are very interesting, and one can verify that:

• the internal r–direction is compact;
• string coupling gs is bounded;
• the 9D Planck mass and gauge coupling are finite.
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Fig. 19. The potential of eq. (5.25) for |γ | < 1, ε1 = −1, and ε2 = −1. In particular, in the left panel γ = 1
2 , while in the 

right one γ = − 1
2 . The dashed potential is the one considered by [13].

Even in these examples, the potential is dominated by an exponential for ϕ > 0, and the consid-
erations of Section 3 apply. The potential has γ < 1, but the chosen range for the parameter b
selects the climbing behavior. However, the scalar curvature in string frame (2.18) is not bounded 
at both ends of the interval.

|γ | < 1 , ε1 = −1 , ε2 = −1

Finally, we consider the case |γ | < 1, ε1 = −1 and ε2 = −1, so that these potentials are again 
unbounded from below (see Fig. 19). As usual, �2 is defined in eq. (5.26), and a solution of the 
equations of motion is in this case

x = sinh(�r) ,

y =
⎡
⎣b − 1 − γ

�

r∫
0

sinh(�s)
2

1+γ ds

⎤
⎦ cosh(�r) + sinh(�r)

3+γ
1+γ . (5.46)

The original variables then read

eA = sinh(�r)
1

1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sinh(�s)
2

1+γ ds

⎤
⎦ cosh(�r) + sinh(�r)

3+γ
1+γ

⎫⎬
⎭

1
1−γ

,

eϕ = sinh(�r)
1

1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sinh(�s)
2

1+γ ds

⎤
⎦ cosh(�r) + sinh(�r)

3+γ
1+γ

⎫⎬
⎭

− 1
1−γ

,

eB = sinh(�r)
−γ
1+γ

⎧⎨
⎩
⎡
⎣b − 1 − γ

�

r∫
0

sinh(�s)
2

1+γ ds

⎤
⎦ cosh(�r) + sinh(�r)

3+γ
1+γ

⎫⎬
⎭

γ
1−γ

.

(5.47)

For both positive and negative values of γ , the solution is defined for r > 0, and gs vanishes 
at the origin. However, some differences arise in the large–r behavior. For γ > 0

y(r) ∼ 1
(

b + γ 2 + γ + 2
2− 2

γ+1

)
e�r − 1

2− 2
1+γ e

1−γ
1+γ

�r
, (5.48)
2 γ (γ + 1) γ (γ + 1)
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Fig. 20. The upper–left panel displays the potential of eq. (5.25) for 0 < γ < 1, ε1 = ε2 = −1, in particular γ = 1
4 , while 

the lower–left panel displays the inverted potential. The right panel displays the corresponding solution of eB and eϕ for 
b = 1. Notice that for this value of γ the r–direction is compact.

and therefore, if

b < − γ 2 + γ + 2

γ (γ + 1)
2− 2

γ+1 (5.49)

the solution does not exist, since y(r) is always negative. On the other hand, if

b > − γ 2 + γ + 2

γ (γ + 1)
2− 2

γ+1 (5.50)

the solution does exist, but in order to have a bounded string coupling one has to demand that 
b > 0. In this range gs tends to zero both near the origin and for large values of r . For b negative 
this solution exhibits a descending behavior, while for b positive it exhibits a climbing one.

Moreover, the space is compact if 0 < γ < 1
3 , but the reduced nine–dimensional Planck mass 

and gauge coupling are infinite, and the scalar curvature of eq. (2.18) is unbounded. On the other 
hand, for negative γ gs is bounded at the origin when b is positive, while for large r

y(r) ∼ − 1

γ (γ + 1)
2− 2

1+γ e
1−γ
1+γ

�r + 1

2

(
b + γ 2 + γ + 2

γ (γ + 1)
2− 2

γ+1

)
e�r . (5.51)

This behavior implies that for large r both eϕ and eB approach constant values. Therefore, the 
string coupling is bounded, but the r–direction is again non–compact. A solution of this type is 
displayed in Figs. 20 and 21. In the first case (Fig. 20) a single exponential dominates, and the 
results are consistent with the discussion in Section 3. On the other hand, in the second case the 
dilaton settles eventually at the negative critical point of the potential (Fig. 21).

γ > 1 , ε1 = 1 , ε2 = ±1

We can now explore another class of potentials with γ > 1. In this case, letting

ω2 = γ 2 − 1
, (5.52)
2
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Fig. 21. The upper–left panel displays the potential of eq. (5.25) for −1 < γ < 0, ε1 = ε2 = −1, in particular γ = − 1
2 , 

while the lower–left panel displays the inverted potential. The right panel displays the corresponding solutions for eB
and eϕ for b = 1. This case is very peculiar, since both fields become constant for large values of r . This behavior makes 
the string coupling bounded, since the dilaton approaches the negative critical point, but the r–direction in not compact.

the equations of motion read

ẍ − ω2 x = 0 , ÿ − ω2 y = ε2 (γ − 1) x
1−γ
1+γ , ẋ ẏ = ω2

[
x y + ε2 x

2
1+γ

]
.

(5.53)

For the first, we choose the solution

x = cosh(ωr) , (5.54)

for the purpose of illustration, although it is not the most general one. With this proviso, the 
y–equation reads

ÿ − ω2 y = ε2 (γ − 1) cosh(ωr)
1−γ
1+γ , (5.55)

and, once the Hamiltonian constraint is enforced, its solution

y(r) =
{

a + 2 ε2 ω

γ + 1

r∫
0

ds cosh(ωs)
2

γ+1

}
sinh(ωr) − ε2 [cosh(ωr)]

3+γ
1+γ (5.56)

is similar to previous ones. Returning to the original variables, one finds

eA = cosh(ωr)
1

1+γ

×
⎧⎨
⎩
[
a + 2 ε2 ω

γ + 1

r∫
0

ds cosh(ωs)
2

γ+1

]
sinh(ωr) − ε2 [cosh(ωr)]

3+γ
1+γ

⎫⎬
⎭

− 1
γ−1

,

eϕ = cosh(ωr)
1

1+γ

×
⎧⎨
⎩
[
a + 2 ε2 ω

γ + 1

r∫
ds cosh(ωs)

2
γ+1

]
sinh(ωr) − ε2 [cosh(ωr)]

3+γ
1+γ

⎫⎬
⎭

1
γ−1

,

0
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Fig. 22. The left panel displays the potential of eq. (5.25) for γ = 4, ε1 = 1 and ε2 = 1. The right one displays the 
potential for ε2 = −1 and the same value of γ . The dashed potential is the one considered by [13].

eB = cosh(ωr)
− γ

1+γ

×
⎧⎨
⎩
[
a + 2 ε2 ω

γ + 1

r∫
0

ds cosh(ωs)
2

γ+1

]
sinh(ωr) − ε2 [cosh(ωr)]

3+γ
1+γ

⎫⎬
⎭

− γ
γ−1

. (5.57)

These solutions can be analyzed along the lines of previous cases, and the most interesting fea-
tures emerge at large r . Without loss of generality, one can assume that a be positive, since the 
solution is invariant for a → −a and r → −r . For large positive values of r y behaves as

y(r) ∼ 1

2

(
a − ε2

γ 2 + γ − 2

γ (γ + 1)
2− 2

1+γ

)
eωr − ε2

γ (γ + 1)
2− 2

γ+1 e
1−γ
1+γ

ωr
, (5.58)

and a close inspection reveals that regions of strong coupling are always present. This is a conse-
quence of our choice of a cosh–function to begin with. For ε2 < 0, starting from a sinh–function 
one could exhibit solutions without strong–coupling regions, consistently with the presence of a 
dip in the right panel of Fig. 22.

γ > 1 , ε1 = −1 , ε2 = ±1

The potentials with ε1 = −1 and γ > 1 are not bounded from below (see Fig. 23). However, in 
view of the discussion in Section 3, one can anticipate that these examples have some interesting 
features. Defining ω2 as in (5.52), the solutions read

x(r) = sin(ωr) ,

y(r) =
⎡
⎣b − ε2(γ − 1)

ω

r∫
0

sin(ωs)
2

1+γ ds

⎤
⎦ cos(ωr) + ε2 sin(ωr)

3+γ
1+γ , (5.59)

where we have already imposed the Hamiltonian constraint. Returning to the original variables,

eA = sin(ωr)
1

1+γ

⎧⎨
⎩
⎡
⎣b − ε2(γ − 1)

ω

r∫
sin(ωs)

2
1+γ ds

⎤
⎦ cos(ωr) + ε2 sin(ωr)

3+γ
1+γ

⎫⎬
⎭

− 1
γ−1

,

0
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Fig. 23. The left panel displays the potential of eq. (5.25) for γ = 5, ε1 = −1 and ε2 = 1. The right one displays the 
potential for ε2 = −1 and the same value of γ . The dashed potential is the one considered by [13].

eϕ = sin(ωr)
1

1+γ

⎧⎨
⎩
⎡
⎣b − ε2(γ − 1)

ω

r∫
0

sin(ωs)
2

1+γ ds

⎤
⎦ cos(ωr) + ε2 sin(ωr)

3+γ
1+γ

⎫⎬
⎭

1
γ−1

,

eB = sin(ωr)
− γ

1+γ

×
⎧⎨
⎩
⎡
⎣b − ε2(γ − 1)

ω

r∫
0

sin(ωs)
2

1+γ ds

⎤
⎦ cos(ωr) + ε2 sin(ωr)

3+γ
1+γ

⎫⎬
⎭

− γ
γ−1

. (5.60)

Let us first consider the case ε2 = 1. If the inequality

b >
γ − 1

ω

π
ω∫

0

sin(ωs)
2

1+γ ds , (5.61)

holds, the solution is defined in the interval r ∈ (0, r∗), where y(r∗) = 0, and the string coupling 
vanishes at both ends. However, the internal space is not compact, since the volume form eB+ ϕ

3

is too singular at r = r∗. The behavior is different for

0 < b <
γ − 1

ω

π
ω∫

0

sin(ωs)
2

1+γ ds , (5.62)

since r ∈ (0, π
ω

)
and y(r) in eq. (5.59) never vanishes. This case is very interesting, since one 

can verify that (see Fig. 24):

• the string coupling gs is bounded, and vanishes at the ends of the interval;
• the internal r–direction is compact;
• the 9D Planck mass and gauge coupling are finite.

However, the scalar curvature in string frame (2.18) is not bounded at the ends of the interval. On 
the other hand, if ε2 = −1 the domain of definition is again restricted to r ∈ (0, r∗), with r∗ < π

ω
. 

In this case gs is always bounded, but the r–direction is not compact. In this case the potential is 
dominated for ϕ > 0 by a single exponential with γ > 1, and consequently an upper bound for 
the string coupling is inevitable, consistently with the discussion in Section 3.
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Fig. 24. The upper–left panel displays the potential of eq. (5.25) for γ = 4, ε1 = −1 and ε2 = 1, while the lower–left one 
displays the inverted potential. The right panel shows the solution of eB and eϕ for b = 2

10 , so that the condition (5.62)
is respected. This solution has several desirable properties, such as a bounded gs , a compact r–direction, but yet an 
unbounded scalar curvature.

5.2. Systems integrable via quadratures

4). THE POTENTIAL OF EQ. (4.20)
The equations of motion obtained with

V(ϕ) = λ
(
e

2
γ

ϕ − e2γϕ
)

(5.63)

can be replaced by their first integrals

˙̂A2 = 2λ
(
e2Â

√
1−γ 2 + C

)
, ˙̂ϕ2 = 2λ

(
e

2
γ

ϕ̂
√

1−γ 2 + D

)
, (5.64)

where C and D are two integration constants. The Hamiltonian constraint demands that C = D, 
and one can consider a small number of different cases.

If C = D = 0 the preceding equations reduce to

˙̂A2 = 2λ
(
e2Â

√
1−γ 2

)
, ˙̂ϕ2 = 2λ

(
e

2
γ

ϕ̂
√

1−γ 2
)

, (5.65)

where for consistency λ must be positive, and the solutions read

eA =
√

2λ(1 − γ 2)

γ
γ 2

1−γ 2

|r − rϕ̂ |
γ 2

1−γ 2

|r − rÂ|
1

1−γ 2

, eϕ = 1√
2λ(1 − γ 2)

∣∣∣∣ r − rÂ
r − rϕ̂

∣∣∣∣
γ

1−γ 2

. (5.66)

Notice that in the limit of large |r| the string coupling approaches a constant value. Consequently, 
the argument presented in Section 3 leads one to expect that the internal space be of infinite 
length. Recalling that in this case the gauge choice is B = A, one can indeed conclude that

eB ∼ r−1 , (5.67)

and the r–direction is indeed not compact. Moreover, the string coupling diverges at r = rϕ̂ .
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If, on the other hand C , D = 0, one can conveniently write the first integrals as

˙̂A2 = 2λ
(
e2Â

√
1−γ 2 + η e2Â0

√
1−γ 2

)
, ˙̂ϕ2 = 2λ

(
e

2
γ

ϕ̂
√

1−γ 2 + η e
2
γ

ϕ̂0
√

1−γ 2
)

,

(5.68)

where η = ±1, while the constants Â0 and ϕ̂0 are not independent, but must satisfy

Â0 = ϕ̂0

γ
(5.69)

in order to respect the Hamiltonian constraint. In the following, we shall explore the possible 
values of η and λ, and to this end it is convenient to let

X = (Â− Â0)

√
1 − γ 2 , Y = (ϕ̂ − ϕ̂0)

√
1 − γ 2

γ
,

ω2 = 2 |λ| e2Â0
√

1−γ 2 1 − γ 2

γ 2 , (5.70)

before pausing on various options.

λ > 0 , η = 1

The preceding definitions of eq. (5.70) turn eqs. (5.68) into

Ẋ2 = ω2 γ 2 (1 + e2X) , Ẏ 2 = ω2 (1 + e2Y ) , (5.71)

whose solutions are

eX = 1

sinh(ωγ |r − rÂ|) , eY = 1

sinh(ω|r − rϕ̂ |) , (5.72)

and returning to the original variables

eA = eA0

[
sinh(ω|r − rϕ̂ |)] γ 2

1−γ 2

[
sinh(γω|r − rÂ|)] 1

1−γ 2

= eB , eϕ = eϕ0

[
sinh(γω|r − rÂ|)] γ

1−γ 2

[
sinh(ω|r − rϕ̂ |)] γ

1−γ 2
.

(5.73)

As we explained in Section 4.2, the range 0 < γ < 1 suffices to explore the available options 
for this family of potentials. The string coupling then vanishes at r = rÂ but diverges at r = rϕ̂ . 

Here it will suffice to choose rÂ > rϕ̂ , and then eB ∼ eϕ ∼ e
− γ

γ+1 ω r for large values of |r|. All 
in all, the infinite excursion of ϕ translates into a finite contribution to the length of the internal 
interval from the large–r region. Something different happens, however, at r = rÂ, where the 

string coupling vanishes but the volume form eB+ ϕ
3 ∼ |r − rÂ|

γ−3
3(1−γ 2) , which results in a finite

contribution to the internal length only if 0 < γ < 1
3 and in an infinite one in the complementary 

range 1
3 ≤ γ < 1.

The scalar curvature has the opposite behavior: it is infinite in the first case and finite in the 
second. Moreover, it is also unbounded for large values of r . Finally, the reduced Planck mass 
and gauge coupling (2.17) are always infinite for this class of models, due to the behavior at r ˆ . 
A
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Fig. 25. The upper–left panel displays the potential of eq. (5.63) for γ = 1
4 and λ = 1, while the lower–left panel displays 

the inverted potential. The right panel displays eB and eϕ for η = 1, rÂ = 0.1, rϕ̂ = 0 and A0 = ϕ0 = 0.

This type of solution is displayed in Fig. 25. Curvature singularities have an important effect: the 
different regions that they separate describe once more distinct vacua! This type of pattern had 
already emerged with the first example, but here the different regions do not bring along inverted 
potentials. Here the region r > rÂ is particularly interesting since it yields finite values for the 
string coupling and a finite interval length for the whole range 0 < γ < 1

3 .

λ > 0 , η = −1

In this case the change of variables of eq. (5.70) turns the equations of motion into

Ẋ2 = ω2 γ 2 (e2X − 1) , Ẏ 2 = ω2 (e2Y − 1) , (5.74)

whose solutions are

eA = eA0

[
cos(ω(r − rϕ̂))

] γ 2

1−γ 2

[
cos(γω(r − rÂ))

] 1
1−γ 2

, eϕ = eϕ0

[
cos(γω(r − rÂ))

] γ

1−γ 2

[
cos(ω(r − rϕ̂))

] γ

1−γ 2
. (5.75)

This solution has a non-trivial domain of validity if the regions where cos(ω(r − rϕ̂)) and 
cos(γω(r − rÂ)) are both positive is not empty. Notice that the interval where this is the case 
for cos(γω(r − rÂ)) is longer than the corresponding one for cos(ω(r − rϕ̂)). As a result, for 
all choices of integration constants, this class of solutions has a region of strong coupling. In the 
mechanical analogy, “the particle overcomes the hill”.

λ < 0 , η = −1

In this case the change of variables of eq. (5.70) turns the equations of motion into

Ẋ2 = ω2 γ 2 (1 − e2X) , Ẏ 2 = ω2 (1 − e2Y ) , (5.76)

whose solutions are
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Fig. 26. The upper–left panel displays the potential of eq. (5.63) for γ = 1
2 and λ = − 1

2 , while the lower–left panel 
displays the inverted potential. The right panel shows eB and eϕ for η = −1, rÂ = 1, rϕ̂ = 0 and A0 = ϕ0 = 0.

eA = eA0

[
cosh(ω(r − rϕ̂))

] γ 2

1−γ 2

[
cosh(γω(r − rÂ))

] 1
1−γ 2

, eϕ = eϕ0

[
cosh(γω(r − rÂ))

] γ

1−γ 2

[
cosh(ω(r − rϕ̂))

] γ

1−γ 2
. (5.77)

This case is very interesting. The solution is defined for all values of r , and for large |r|
eϕ ∼ eA ∼ e

− γ
γ+1 ω|r|

. (5.78)

Taking into account the gauge choice B = A, one can conclude that

• the internal r–direction has finite length;
• the string coupling gs is bounded;
• the 9D Planck mass and gauge coupling are finite.

Once more, the string–frame scalar curvature (2.18) is unbounded for large values of r . This is a 
typical case in which the analysis of Section 3 guarantees directly an upper bound on the string 
coupling, via the Euclidean counterpart of the climbing mechanism identified in [17], since for 
ϕ ≥ 0 the potential is readily dominated by a negative term with γ > 1. One the other hand, for 
ϕ < 0, the potential is readily dominated by a positive term with γ < 1. Consequently, Table 2
guarantees the compactness of the internal space.

λ < 0 , η = 1

In this case the change of variables of eq. (5.70) turns the equations of motion into

Ẋ2 = −ω2 γ 2 (1 + e2X) , Ẏ 2 = −ω2 (1 + e2Y ) , (5.79)

which cannot be solved over the real numbers, and therefore this choice of the integration con-
stants is unphysical.
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5). THE POTENTIAL OF EQ. (4.29)
The potential

V(ϕ) = C log(− coth(ϕ)) + D (5.80)

is another interesting case. One can solve the equations of motion (4.36) for ξ and η, since each 
entails a “conserved energy”. This can be shown multiplying the first by ξ̇ and the second by η̇, 
thus obtaining

ξ̇2 = −8C log(ξ) + εξ , η̇2 = −8C log(η) + εη , (5.81)

where εξ and εη are integration constants. After the rescaling ρ = √
8Cr , one thus arrives at the 

simplified set of equations

ξ̇2 = − log

(
ξ

ξ0

)
, η̇2 = − log

(
η

η0

)
, (5.82)

where log(ξ0) = εξ /8C and log(η0) = εη/8C. The Hamiltonian constraint links ξ0 and η0 ac-
cording to

log

(
η0

ξ0

)
= D

C
−→ η0 = ξ0 e

D
C , (5.83)

so that eq. (5.82) becomes

ρ = ±2ξ0

√
− log(

ξ
ξ0

)∫
u0

e−u2
du (5.84)

for ξ , and one obtains a similar expression for η. Notice that eq. (5.84) should be inverted, an 
issue that we shall soon return to. However, in terms of the original variables,

ρ = ± 2ξ0

√
−A−log( 2

ξ0
cosh(ϕ))∫

u0

e−u2
du ,

ρ = ± 2η0

√
−A− log(− 2

η0
sinh(ϕ))∫

v0

e−v2
dv . (5.85)

It is useful to define

f = η0

ξ0
= e

D
C . (5.86)

Moreover, for this system we shall often refer to erf−1(x), the inverse of erf(x), whose domain 
is restricted to x ∈ (−1, 1). In this fashion, with the additional rescaling

ρ −→ √
π ξ0 ρ , (5.87)

the complete solution reads
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eA = ξ0

2

√√√√1 − f 2 exp

{
2

[
erf−1(ρ − α)

]2

− 2

[
erf−1

(
ρ

f

)]2
}

×

exp

{
−
[
erf−1(ρ − α)

]2
}

,

eϕ =

√√√√√√√√√
1 − f exp

{[
erf−1(ρ − α)

]2

−
[

erf−1
(

ρ

f

)]2
}

1 + f exp

{[
erf−1(ρ − α)

]2

−
[

erf−1
(

ρ

f

)]2
} ,

B = −A . (5.88)

Notice that, as expected, in this class of examples gs is manifestly not singular and less than 
one. The integration constant α originates from the integrals of eqs. (5.85). More precisely, two 
integration constants arise from the two integrals, but one can always absorb one of them shifting 
the coordinate ρ. In order to analyze the solution (5.88), it is useful to define the function

h(ρ,α) = 1 − f 2 exp

{
2

[
erf−1(ρ − α)

]2

− 2

[
erf−1

(
ρ

f

)]2
}

. (5.89)

Moreover, since an upper bound on gs is guaranteed by the potential, which restricts the dynamics 
to the region ϕ ≤ 0, we can move on to ascertain whether or not the r–direction can be compact, 
for some values of f and α. The function erf−1(x) has a limited domain, and consequently, in the 

preceding expressions, the function erf−1
(

ρ

f

)
is defined for ρ ∈ (−f, f ), so that erf−1(ρ − α)

is defined for ρ ∈ (−1 + α, 1 + α). Consequently, if (−1 + α, 1 + α) ∩ (−f, f ) = ∅, the solution 
does not exist. We can now analyze different cases of interest.

f < 1, α = 0

The interval of definition is ρ ∈ (−f, f ), and one has to check whether there are regions where 
the condition

h(ρ,0) = 1 − f 2 exp

{
2

[
erf−1(ρ)

]2

− 2

[
erf−1

(
ρ

f

)]2
}

> 0 (5.90)

is satisfied, since this is the argument of the square roots of (5.88). A close inspection reveals 
that (5.90) is always satisfied for ρ ∈ (−f, f ), and therefore the square root determining eB is 
always well defined. Something similar applies to eϕ , whose square root is a fraction of two 
factors that never vanish. Therefore, gs never vanishes as well, and since f > 0, gs < 1, as we 
anticipated (see Fig. 27). The r–direction is also compact, since eB+ ϕ

3 is finite and has to be 
integrated over a finite domain. Similar considerations apply to the reduced Planck mass and 
gauge coupling. However, one can verify that the scalar curvature in string frame of eq. (2.18)
diverges at the boundaries.

f < 1, α = 0
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Fig. 27. The upper–left panel displays the potential of eq. (5.80) for C = 1 and D = − log(2), so that f = 1
2 , while the 

lower–left panel displays the inverted potential. The right panel displays eB and eϕ for α = 0 and ξ0 = 2.

Fig. 28. The upper–left panel displays the potential of eq. (5.80) for C = 1 and D = − log(2), so that f = 1
2 , while the 

upper–right panel displays the inverted potential. The lower panels display eB and eϕ for α = 1
4 and ξ0 = 2, so that 

α < 1 − f and f < 1, and for α = 3
4 and ξ0 = 2, so that 1 − f < α < 1 + f and f < 1.

Here it will suffice to confine the attention to the range α > 0. A closer look at the function

h(ρ,α) = 1 − f 2 exp

{
2

[
erf−1(ρ − α)

]2

− 2

[
erf−1

(
ρ

f

)]2
}

, (5.91)

indicates that one must distinguish the two cases α < 1 −f and 1 −f < α < 1 +f . The former is 
similar to the previous one: eB is always bounded and the string coupling is always perturbative. 
Fig. 28 displays an example of this type, which closely resembles the case α = 0 but is somewhat 
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Fig. 29. The upper–left panel displays the potential of eq. (5.80) for C = 1 and D = 0, so that f = 1, while the lower–left 
panel displays the inverted potential. The right panel displays eB and eϕ for α = 1 and ξ0 = 2. As expected, there is a 
divergence in ρ = ρ̃, and in this particular case ρ̃ � 1

2 .

deformed. For the same reason, the r–direction is compact, since eB+ ϕ
3 is integrable, and the 

reduced Planck mass and gauge coupling are finite. Once more, however, the scalar curvature 
in string frame diverges at the boundaries. If 1 − f < α < 1 + f , the functions are defined for 
ρ ∈ (ρ̄, f ), where h(ρ̄, α) = 0, since for ρ −→ (−1 + α)+ the argument of the square root 
becomes negative. The r–direction is again compact, with finite reduced Planck mass and gauge 
coupling, while the scalar curvature is singular at ρ = f , for the same reason as in previous cases, 
and at ρ = ρ̄ where h(ρ, α) changes sign.

The other cases, f = 1, α = 0 and f > 1, f − 1 < |α| < f + 1 , can be treated in a similar 

fashion, and the reader can verify that they also result in a bounded string coupling, an internal 
interval of finite length and finite values for the reduced Planck mass and gauge coupling. Once 
more, however, the scalar curvature is singular at the ends of the range of r . Figs. 29 and 30
display examples of these types.

It is also interesting to analyze the case C < 0, so that the potential of eq. (4.29) is unbounded 
from below. The equations of motion (5.82) become

ξ̇2 = log

(
ξ

ξ0

)
, η̇2 = log

(
η

η0

)
, (5.92)

and the Hamiltonian constraint demands again that

f ≡ e
D
C = η0

ξ0
. (5.93)

In this case then, solving eq. (5.92) and returning to the original variables,

eA = ξ0

2

√√√√1 − f 2 exp

{
2

[
− i erf−1

(
i

ρ

f

)]2

− 2

[
− i erf−1 (i(ρ − α)

)]2
}

×

exp

{[
−i erf−1 (i(ρ − α)

)]2
}

,
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Fig. 30. The upper–left panel displays the potential of eq. (5.80) for C = 1 and D = log(3), so that f = 3, while the 
lower–left panel displays the inverted potential. The right panel displays eB and eϕ for α = 5

2 and ξ0 = 2, so that 
f − 1 < α < f + 1 and f > 1.

eϕ =

√√√√√√√√√
1 − f exp

{[
− i erf−1

(
i

ρ

f

)]2

−
[

− i erf−1 (i(ρ − α)
)]2
}

1 + f exp

{[
− i erf−1

(
i

ρ

f

)]2

−
[

− i erf−1 (i(ρ − α)
)]2
} ,

B = −A . (5.94)

In general, the error function erf(z) has no single–valued inverse in the complex plane, but here 
we are confined to the imaginary axis and erf(iy), with y ∈ R, is invertible. Moreover, one can 
show that, in the large–x limit, the behavior of the inverse error function is well captured by the 
simple expression

−i erf−1( i x ) ∼
√

log(
√

π x) + 1

4

log(log(
√

π x))√
log(

√
π x)

. (5.95)

Consequently, for large values of ρ,

eϕ ∼

√√√√1 −
√

1 − log(f )

log (
√

πρ)

2
(5.96)

and

eA ∼ √
π ρ

√
log(f )

log (
√

πρ)
. (5.97)

From these behaviors one can deduce the following results.

• For f > 1 eϕ vanishes for large values of ρ, but rather slowly, since

eϕ ∼ 1

2

√
log(f )

log(
√

πρ)
. (5.98)
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Moreover eA has essentially a linear behavior, so that for large values of ρ

eB ∼ 1

ρ
. (5.99)

These results imply that the internal r–direction is not compact.
• For f < 1 the argument of the square root in eϕ becomes negative for large–enough val-

ues of ρ, and therefore eϕ is defined only on an interval, in which it is always bounded. 
At the boundaries of this interval both eϕ and eA vanish with a square–root behavior. Con-
sequently, eB has merely an inverse square–root divergence. As a result, this solution also 
combines a bonded string coupling, a compact r–direction, finite reduced 9D Planck mass 
and gauge coupling, but the string–frame scalar curvature (2.18) is again unbounded, accord-
ing to eq. (2.18).

• For f = 1, the nature of the solution depends crucially on α. For α > 0, the solution is 
defined for ρ < ρ∗, where the arguments of the square roots change sign, but the solutions in 
this class also combine a bounded string coupling, a compact r–direction and finite reduced 
9D Planck mass and gauge coupling, while the string–frame scalar curvature is once more 
unbounded.

6). THE POTENTIAL OF EQ. (4.37)
The next potential is

V(ϕ) = C cosh(ϕ) + � . (5.100)

The equations of motion (4.44) can be directly integrated, but the nature of the resulting solutions 
depends strongly on the values of � and C. Therefore, it is now convenient to let

λ1 =
√∣∣∣∣� + C

2

∣∣∣∣ , λ2 =
√∣∣∣∣� − C

2

∣∣∣∣ , (5.101)

while also considering separately the following ranges:

1. � > |C|,
2. � = C,
3. |C| > � > −|C|,
4. � = −|C|,
5. � < −|C|.

As an illustration, we discuss explicitly the first two, which are more interesting.

1. � > |C|

When both eigenvalues in eq. (4.44) are positive, the solution is

ξ = α cos(λ1(r − rξ )) , η = β cos(λ2(r − rη)) , (5.102)

where α, β , rξ and rη are integration constants. The Hamiltonian constraint demands that λ2
1 α2 =

λ2 β2, and for simplicity we shall let α = λ2 and β = λ1. In this case the solution is
2
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Fig. 31. The upper–left panel displays the potential of eq. (4.37) for C = −3 and � = 5, while the lower–left panel 
displays the inverted potential. In this case λ1 = 1 and λ2 = 2, so that λ2 > λ1. The right panel displays eA and eϕ

(B = 0 for the gauge choice) for rξ = 1 and rη = 0, in an example where the string coupling is bounded and the space is 
compact.

eA = 1

4

(
λ2

2 cos2(λ1(r − rξ )) − λ2
1 cos2(λ2(r − rη))

)
,

eϕ = λ2 cos(λ1(r − rξ )) + λ1 cos(λ2(r − rη))

λ2 cos(λ1(r − rξ )) − λ1 cos(λ2(r − rη))
. (5.103)

If C > 0, λ1 > λ2 and the solutions always have a strong coupling phase, since the potential 
is always positive. On the other hand, if C < 0 and thus λ2 > λ1, the considerations presented 
in Section 3 imply the existence of solutions with a bounded string coupling, which are the 
counterparts of the cosmological climbing scalar for γ < 1. Fig. 31 displays an example of this 
type, in which λ2 = 2 and λ1 = 1. However, solutions with an unbounded string coupling also 
exist: they are the counterparts of the cosmological descending scalar present for γ < 1.

2. � = C

In this case λ2 = 0, and if C > 0 the solution, up to a rescaling and a shift of r , can be cast in the 
form

ξ = α cos(λ1(r − rξ )) , η = λ1r . (5.104)

The Hamiltonian constraint demands that α2 = 1, and setting for simplicity α = 1,

eA = 1

4

(
cos2(λ1(r − rξ ) − λ2

1r
2
)

, eϕ = cos(λ1(r − rξ )) + λ1r

cos(λ1(r − rξ )) − λ1r
. (5.105)

However, there is surely a point where the denominator of eϕ vanishes and the string coupling 
diverges. On the other hand, if C < 0 the solution is

ξ = α sinh(λ1 r) + β cosh(λ1 r) , η = λ1r , (5.106)

again up to a rescaling and a shift of r . The Hamiltonian constraint now demands that α2 −β2 =
1, which can be conveniently solved in terms of a rapidity ζ
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α = cosh(ζ ) , β = sinh(ζ ) , (5.107)

so that

ξ = sinh(λ1 r + ζ ) . (5.108)

The complete solution in this case is therefore

eA = 1

4

(
sinh2(λ1 r + ζ ) − λ2

1r
2
)

, eϕ = sinh(λ1r + ζ ) + λ1r

sinh(λ1r + ζ ) − λ1r
. (5.109)

For any choice of ζ , the denominator of eϕ has a zero, where string coupling diverges. Sim-
ilar considerations apply to all the other cases, so that this class of models is not particularly 
interesting for our purposes.

7). THE POTENTIAL OF EQ. (4.45)
The next potential,

V(ϕ) = C1 cosh4
(ϕ

3

)
+ C2 sinh4

(ϕ

3

)
, (5.110)

is more interesting, and the solutions are particularly rich if C1 < 0 and C2 > 0 and |C1| <
C2. The solution of eqs. (4.53) can be expressed in terms of Jacobi elliptic functions, but the 
qualitative behavior is well captured recasting the system in the form

ξ̇2 = ±1 + ε ξ4 , η̇2 = ±1 + η4 , (5.111)

up to a rescaling of the radial variable, where 0 < ε < 1. In the Newtonian analogy, the upper 
signs correspond to particles whose positive total energy exceeds the peak value of the inverted 
quartic potentials, while the negative signs correspond to particles with negative total energy, 
which are reflected by them. The solutions ξ(r) and η(r) determine the original variables ac-
cording to

eA =
[
ξ2 − η2

] 3
2

, eϕ =
[
ξ + η

ξ − η

] 3
2

, eB =
[
ξ2 − η2

] 1
2

, (5.112)

and ξ and η have simple poles. Three types of qualitative behavior can emerge at the ends of the 
range of r , which manifest themselves in the panels of Fig. 32:

• both eϕ and eB vanish, and this happens when ξ + η = 0;
• eB diverges and eϕ approaches a constant value, but eB+ ϕ

3 has a simple pole there and thus 
the space is not compact;

• eB vanishes and eϕ goes to strong coupling, when ξ − η = 0.

These behaviors can also be understood from the Newtonian “inverse potential” picture, be-
cause different scenarios are possible:

• the dilaton manages to climb the inverse potential barrier and attains arbitrarily large positive 
values, which translates into the presence of a strong coupling phase for gs;
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Fig. 32. The upper panels display the potential of eq. (5.110) for C1 = − 7
10 and C2 = 1 and the corresponding inverted 

potential. The two middle panels display solutions of eq. (5.111) with ε = 0.5 and positive energy, but with different 
integration constants. In the first case the dilaton is “trapped” in the well of the inverted potential, while in the second 
case it overcomes the inverted potential. The two lower panels refer to a dilaton that does not overcome the inverted 
potential, but is confined to the left of it. In this case ξ > η, which is particularly interesting since the string coupling is 
then inevitably bounded. Moreover, the internal space has a finite length.

• the dilaton is trapped in the inner well of the inverted potential, and actually approaches its 
bottom, so that the space is asymptotically AdS10;

• the dilaton does not manage to climb the inverse potential barrier, which reflects it. This, 
however, can occur in two different ways: if the dilaton lives to the left of the inverted barrier 
one finds a compact internal space and a bounded string coupling. On the other hand, if it 
lives to the right of the inverted barrier one finds again a compact internal space, but an 
unbounded string coupling.

For brevity, we have not considered a negative potential, but the corresponding behavior can 
be anticipated by the analysis of Section 3, which implies the existence of two classes of solutions 
with bounded and unbounded string coupling, since the dominant contribution to the potential 
for ϕ → ∞ is an exponential term with γ < 1.
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8). THE POTENTIAL OF EQ. (4.54)
The following potential is

V(ϕ) = Im

[
C log

(
e−2ϕ + i

e−2ϕ − i

)
+ i�

]
, (5.113)

and since the log is purely imaginary C can be assumed to be real. The corresponding equation 
of motion can be turned into

ż2 = −8C log(z) + E + i F , (5.114)

where z was defined in eq. (4.60) and E and F are two real integration constants. The Hamilto-
nian constraint demands that

Im
[
E + iF + 4i�

]
= 0 , (5.115)

and therefore F = −4�. Consequently, one must solve

ż2 = −8C log(z) + E − 4 i � (5.116)

in the complex plane, which leads, along the lines of previous examples, to
√−8C log(z)+E−4i�∫

w0

e− 1
8C

w2
dw = 4C e

i�
2C e− E

8C r . (5.117)

As a result, the solution can be expressed in terms of the error function in the complex plane,

erf

[√
− log(z) + E − 4i�

8C

]
= 2√

π
e− E

8C e
i�
2C (4C r + iR) , (5.118)

where iR is an imaginary integration constant, up to a shift of r that can absorb the corresponding 
real part. z is obtained inverting this relation, and the result can be cast in the form

z = e
E−4i�

8C exp

{
−
[

erf−1
(

2√
π

e− E−4i�
4C (4C r + iR)

)]2
}

. (5.119)

This solution would require some discussion, since the function erf−1 is not single–valued 
in the complex plane. However, this example concerns a potential that is essentially piece-wise 
constant, since

V(ϕ) � � + C θ(ϕ) , (5.120)

where θ is a Heaviside step function, and one can obtain simple approximate solutions that apply 
in regions where the dilaton has a given sign.

Let us therefore consider a constant potential equal to a generic value V0. In this case, the 
equation of motion for ϕ of eq. (2.11) leads to

ϕ̇ = κ e−2A , (5.121)

where κ is an integration constant, which we shall take to be non negative. In the gauge B = −A, 
the Hamiltonian constraint then leads to

κ2 e−4A − 2 e−2A V0 = Ȧ2 . (5.122)
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The solution of this equation is

eA =
√

κ2

2V0
− 2V0 r2 (5.123)

if V0 = 0, and then

eϕ =
√√√√∣∣∣∣∣

r + κ
2V0

r − κ
2V0

∣∣∣∣∣ . (5.124)

If V0 > 0 this type of solution applies in the region 
(
− κ

2V0
,0
)

, or in the region 
(

0, κ
2V0

)
, where ϕ

has a given sign. In this case there is a strong–coupling region and the contribution to the internal 

length is finite. Alternatively, if V0 < 0 this type of solution applies in the region 
(

κ
2|V0| ,+∞

)
, 

or in the region 
(
−∞,− κ

2|V0|
)

, where ϕ has a given sign. In this case there is a strong–coupling 
region and the contribution to the internal length is infinite. The two simple approximate solutions 
are to be smoothly connected in the middle, but the singularities are already manifest. Finally, if 
V0 = 0,

eA = √
2κ r (5.125)

where r > 0, and then

eϕ =
√∣∣∣∣ r

r0

∣∣∣∣ , (5.126)

so that there is a region of strong coupling and the contribution to the internal length is infinite. 
Finally, if V0 = 0 and κ = 0, both eϕ and eA are constant, one recovers flat space with a constant 
string coupling.

9). THE POTENTIAL OF EQ. (4.63)
Finally, let us consider the potential

V(ϕ) = Im

[
C
(
i + sinh(2γ ϕ)

) 1
γ

−1
]

, (5.127)

Multiplying both sides by ż, the equations of motion are equivalent to

ż2 = −γ 2C̃z
2
γ

−2 + E + iF , (5.128)

where E, F ∈ R are two integration constants. The Hamiltonian constraint imposes F = 0, so 
that one has to solve

ż2 = −γ 2 C̃z
2
γ

−2 + E . (5.129)

Equations of this type can be solved by quadratures in the complex plane, considering paths 
compatible with the reality of r . In general, an equation of the form

dx + i dy

A + iB
= dr , (5.130)

where in our case
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Fig. 33. The potential of eq. (5.127) with C = 1. The upper–left panel shows γ = − 1
10 , the upper–right panel shows 

γ = 1
6 and the lower panel shows γ = 1

8 . These potentials were also considered in [15].

A(x,y) = �
√

−γ 2 C̃z
2
γ

−2 + E , B(x, y) = Im

√
−γ 2 C̃z

2
γ

−2 + E , (5.131)

is equivalent to

dy

dx
= B(x, y)

A(x, y)
,

dx

A(x, y(x))
= dr . (5.132)

The first determines the paths in the complex plane that are compatible with the reality of r , while 
the second defines x implicitly as function of r . The solutions can be investigated numerically, in 
particular for this class of potentials. However, we shall refrain from adding further details, since 
the intuition fostered by the preceding examples should allow an attentive reader to anticipate the 
key features of the resulting dynamics, in particular for the three interesting examples displayed 
in Fig. 33.

6. Conclusions

In this paper we have elaborated on the behavior of scalar–gravity systems in backgrounds of 
the type

ds2 = e
2
9 A(r) ημν dxμ dxν + e2B(r) dr2 , (6.1)

which are meant to describe compactifications from ten to nine dimensions. We were inspired 
by the original result of Dudas and Mourad [13], who showed how the leading tadpole poten-
tials arising in non–tachyonic non–supersymmetric ten–dimensional strings [6–8] can induce 
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the spontaneous compactification of an internal dimension down to a scale determined by their 
strength. Their solutions lead to the emergence of nine–dimensional Minkowski spaces where 
finite values for the Planck mass and the gauge coupling are inherited, so that the gravitational 
and gauge interactions are effective there. These striking results, however, are accompanied by 
the presence of regions where the string coupling and/or the spacetime curvature in string units 
become large, which raises legitimate questions on what String Theory ought to add to this pic-
ture.

Here we have relied on a detailed analysis of scalar–gravity models with exponential po-
tentials and on an elegant set of additional potentials that in several cases combine the leading 
perturbative contribution of orientifold models, which in the present notation takes the form in 
eq. (2.12), and in some cases the leading contribution (2.13) for the heterotic model of [8], with 
additional terms that can mimic possible perturbative or non–perturbative corrections. The re-
sulting models are integrable, and mostly in an elementary fashion. The Hamiltonian constraint 
is particularly helpful, since it suggests a “particle analogy” that links the problem to intuitions 
that were widely developed for instanton methods. In brief, the inverted potential −V(ϕ), rather 
the potential V(ϕ) itself, drives the “dynamical” evolution in the internal coordinate, with some 
additional subtleties brought along by gravity. Relying on different techniques, we have explored 
under what circumstances solutions with a compact internal space, as in [13], but devoid of 
strong–coupling regions, can exist.

We have thus collected a few general lessons:

• Obtaining a bounded string coupling is generally possible when the potential V(ϕ) has a 
local well, which translates into a local bump in the inverted potential that the “particle” 
cannot overcome for a certain range of integration constants. Remarks of this type apply to 
the potentials n. 1, 3, and 4, and also to the step–like potential n. 8 and to special cases within 
the family of potentials n. 9. An interesting issue, which we have not touched upon, is the 
possibly metastable nature of these types of vacua.

• Infinite wells provide additional types of interesting scenarios. If the dilaton cannot over-
come the corresponding bump of the inverted potential, it will be confined to one of its sides, 
and in one of them it is bounded from above. This type of situation presents itself in the 
potentials n. 6 and 7 and in cases belonging to the family of potentials n. 9.

• Potentials that become unbounded from below can naturally place upper bounds on ϕ. Ac-
tually, our potentials are often dominated in some regions by a single exponential, and the 
corresponding exact solutions, discussed in detail in Section 3, provide detailed indications 
on the corresponding dynamics. The main mechanism at work is the Euclidean counterpart 
of the “climbing scalar”: it grants, for instance, that an inverted exponential −e2γϕ with 
γ ≥ 1 places inevitably upper bounds on the string coupling. This setting and the presence 
of dips are both favored by corrections involving exponential terms of negative sign.

• Potentials that are not defined beyond a certain value of ϕ provide another very interesting 
option to place upper bounds on the string coupling. This situation presents itself in the 
potential n. 5, and more generally is favored by series of corrections involving exponential 
terms with identical signs.

• There is generally a tension between upper bounds on the scalar curvature and finite sizes 
for the internal space. This can be foreseen comparing eq. (2.16), which defines the internal 
length in the string frame, and eq (2.18), which defines the scalar curvature in the string 
frame. Our examples suggest that this be true in general, and in Section 3 we saw clearly 
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Table 3
A brief summary of most of our results.

n Potential Parameters Int. const. M7
P

1
g2
YM

1. Cϕe2ϕ C < 0 D = −a2 finite finite

2. C1e2ϕ + C2 C1 < 0, C2 > 0 all finite finite

3. ε1e2γ ϕ + ε2e(γ+1)ϕ 0 < γ < 1
3 , (5.39) infinite infinite

ε1 = −1, ε2 = 1

−1 < γ < 1 (5.45) finite finite
ε1 = 1, ε2 = −1

0 < γ < 1
3 (5.50) infinite infinite

ε1 = −1, ε2 = −1

γ > 1 (5.62) finite finite
ε1 = −1, ε2 = 1

4. λ

(
e

2
γ ϕ − e2γϕ

)
0 < γ < 1

3 η = 1 infinite infinite

λ > 0

0 < γ < 1 η = −1 finite finite
λ < 0

5. C log(− coth(ϕ)) + D C > 0 finite finite
C < 0, D ≥ 0 finite finite

6. C cosh(ϕ) + λ C < 0, � > 0 finite finite

7. C1 cosh4 ( ϕ
3

)+ C2 sinh4 ( ϕ
3

)
C1 < 0, |C1| < C2 finite finite

that the two options are incompatible whenever the potential is dominated by an exponential 
term.

• We have not found a simple way to anticipate whether or not the internal space is compact. 
This is simple, however, if the dilaton stops at a finite value ϕ0, which can occur if the 
potential has a negative critical point there. The resulting space is then non–compact and is 
asymptotically AdS10. If the potential is dominated by an exponential term, the discussion 
in Section 3, summarized in the Tables 1 and 2, indicates that a number of windows exist 
that can grant a finite length for the r–direction, but these depend in a complicated way on 
the nature of the potential.

Consistently with the preceding considerations, we have not found any example that combines 
an interval of finite length with bounded values for both string coupling and curvature. Higher–
derivative corrections to the low–energy effective theory might prove crucial to bypass this 
limitation, as was the case in other contexts [23]. However, the analysis of [24] indicates that 
quadratic curvature corrections do not suffice: one would need higher–order terms, and presum-
ably resummations thereof. Table 3 collects some properties of the most interesting models that 
we have analyzed.

As we have stressed, several interesting examples, albeit not of all of them, rest on poten-
tials that are not bounded from below. Moreover, around the turning point for the “particle” they 
look like inverted harmonic potentials. This raises some legitimate concerns about the possi-
ble emergence of tachyonic modes in nine dimensions. On the other hand, the Breitenlohner–
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Fig. 34. The potential of eq. (6.2) for the solution of Fig. 26 is always positive. Consequently, the eigenvalues of the 
corresponding Schrödinger problem, which lie above its minimum, are also positive, and the scalar perturbations contain 
no tachyonic modes.

Freedman [25] bounds in AdS spaces raise some hope that these systems be stable. Before 
concluding, we would like to elaborate briefly on this point. According to [14], the squared 
masses of scalar perturbations within the class of metrics of eq. (2.1) are determined by the 
eigenvalues of Schrödinger–like operators involving the potentials

V (r) = e
−
(
B− 1

9A
)
ȧ(r)

2
+ a(r)2

4
+ b(r) , (6.2)

where, in our conventions,

a(r) = 8

3
Ȧ(r) e

−
(
B− 1

9A
)

− 2

ϕ̇(r)
eB+ 1

9A V ′(ϕ) ,

b(r) = 28

9
e

2A
9

[
V(ϕ) + 1

2

Ȧ
ϕ̇

V ′(ϕ)

]
. (6.3)

A positive b would imply perturbative stability, since the remaining terms combine with the 
“kinetic operator” into manifestly non–negative contributions, and this is precisely what happens 
for the Dudas–Mourad vacua of [13]. This condition, however, is sufficient but not necessary, 
and in fact is not fulfilled in the cases of interest. Therefore, in principle one should study the 
ground state of the Schrödinger–like systems[

−
(

e
−
(
B− 1

9 A
)

d

dr

)2

+ V (r)

]
� = m2 � , (6.4)

in order to ascertain whether or not the lowest possible value of m2 is positive in the different toy 
models. Actually, a closer look reveals that matters seem to conspire in interesting ways. This is 
true, in particular, for the example of eq. (5.77), which belongs to the family n. 4 of Sections 4
and 5. As shown in Fig. 26, the string coupling has a desired upper bound, and its potential V , 
displayed in Fig. 34, is indeed everywhere positive, despite a negative b(r)! This clearly suffices 
to conclude that m2 > 0 in this case, so that, surprisingly, no tachyons would emerge in nine 
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dimensions. It is natural to suspect that similar results hold for all cases in Table 3, but we do 
not have a general argument to this effect. We shall stop here for the moment, leaving a detailed 
stability analysis for the future.
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Appendix A. Some useful results

In this Appendix we collect some useful formulas for the Einstein–frame curvatures corre-
sponding to the class of metrics in eq. (2.1), and for their string–frame counterparts.

The Einstein–frame scalar curvature is

R = 4

[
2

9
e−2B Ȧ2 + V (ϕ)

]
, (A.1)

while the independent components of the Einstein–frame Riemann tensor are

Rr
rrr = 0 ,

Rr
μνr = e

2
9 A−2B

[
Ä
9

+ Ȧ
9

(
Ȧ
9

− Ḃ
)]

ημν ,

Rμ
rνr = −

[
Ä
9

+ Ȧ
9

(
Ȧ
9

− Ḃ
)]

δμ
ν ,

Rμ
νρσ = Ȧ2

81
e

2
9 A−2B(δμ

σ ηνρ − δμ
ρ ηνσ ) . (A.2)

Consequently the Einstein–frame Ricci tensor has, in the cases of interest, the non–vanishing 
components

Rμν = − e
2
9 A−2B

[
Ä
9

+ Ȧ
9

(
Ȧ − Ḃ

)]
ημν ,

Rrr = −
[
Ä + Ȧ

(
Ȧ
9

− Ḃ
)]

. (A.3)
56



P. Pelliconi and A. Sagnotti Nuclear Physics B 965 (2021) 115363
The counterparts of these expressions in the string frame read

R(s)
r
rrr = 0 ,

R(s)
r
μνr = e

2
9 A−2B

[
Ä
9

+ ϕ̈

3
+
(
Ȧ
9

+ ϕ̇

3

) (
Ȧ
9

− Ḃ
)]

ημν ,

R(s)
μ

rνr = −
[
Ä
9

+ ϕ̈

3
+
(
Ȧ
9

+ ϕ̇

3

) (
Ȧ
9

− Ḃ
)]

δμ
ν ,

R(s)
μ

νρσ =
(
Ȧ
9

+ ϕ̇

3

)2

e
2
9 A−2B

(
δμ
σ ηνρ − δμ

ρ ηνσ

)
, (A.4)

and therefore

R(s)μν = − e
2
9 A−2B

[
Ä
9

+ ϕ̈

3
+
(
Ȧ
9

+ ϕ̇

3

)(
Ȧ − Ḃ + 8

3
ϕ̇

)]
ημν ,

R(s)rr = −
[
Ä + 3 ϕ̈ + (

Ȧ + 3 ϕ̇
)( Ȧ

9
− Ḃ

)]
. (A.5)
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