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REGULARITY AND VARIATIONALITY OF SOLUTIONS
TO HAMILTON-JACOBI EQUATIONS.
PART I: REGULARITY
(ERRATA)

ANDREA C. G. MENNUCCI!

Abstract. This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV
10 (2004) 426-451].
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After the publication of [T] in 2004, it became clear that the regqularity of the form o in Lemma 4.4 had to be
related to the reqularity of K and of ug; this influences the minimal regularity of K, uqg, as needed in hypotheses
in Lemma 4.4, in Theorem 4.1, and in many following relevant discussions. This errata corrects that error; to
keep the matter short, all material that is unaffected by the error is omitted; whereas care was taken so that
results and discussions that are here corrected retain the original numbering as in [7].

4.1. Regularity of conjugate points

We will prove in this section results regarding the set of focal points; each following result extends to the set
I" of conjugate points that is a subset of the focal points.

Theorem 4.1. Assume (CCO,H1,H2). If ug, K, H are reqular enough, then, by Lemma 4.4, there is a (at most)
countable number of n — 1 dimensional submanifolds of R x O that cover all the sets G*; these submanifolds
are graphs of functions \ip, : Aip — R (for h=1...) where A;, C O are open sets. The least reqular case is
i =n —1, and the regularity of the X functions is related to the reqularity of ug, K, H, and to the dimension
dim(M) = n as in the following table:

dim(M) | uo, K | H | A
n—=2 C(R+2’0) C(R+2,9) C(R,G) (41)
n>3 C(R+2’9) C(R-‘,—n—l,e) Yol C(R,G)

where R € IN, 0 € [0, 1].
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We now infer some explanatory results on the regularity of the focal points X (U;G?) from the above theorem.

At the lowest regularity, when ug, K € C?, H € C™, we know that X € C' and that the sets G* are graphs;
we conclude that the set of focal points has measure zero. When ug, K € C?9 H e ¢" N C3? we know
that the dimension of the sets G* does not exceed n — 6; so again we conclude that the set of focal points has
dimension at most n — #. In the case 8 = 1, we can obtain the set of all focal points is rectifiable; that is, if
ug, K € C?Y, H ¢ ™ N C3Y, then the sets G are covered by Lipshitz graphs, so (by known results in [2])
the set of focal points may be covered by (n — 1)-dimensional C! regular submanifolds of M, but for a set of
Hausdorff H"~! measure zero.

When we further raise the regularity, we may suppose that ug, K € C**3, H € C*t" (with s € IN)!; then
the sets G* are covered by graphs (\(y),y) inside IR x O of regularity C1+¢; while X € C?*¢ (at least), and we
restrict it to those graphs; we can then apply Theorem A.4 to state that the focal points are covered by C1*s
regular submanifolds of M but for a set of H® measure zero, where o =n — 2+ 1/(1 + s).

[. .. unchanged material deleted. . .|
The main tool is this lemma; the complete proof of the lemma is in Section 6.

Lemma 4.4. We assume that the hypotheses (CCO,H1,H2) hold.
We set the regularity of the data uo, K, H by defining parameters R, R' € N, 0,0’ € [0,1], and assuming that

up € C(R'+2,0’)’ K e C(R’+2,0’)’ H e C(’+2.0),

by Proposition 3.7, the flow ® = (X, P) is CB+1L0) regular; and O is o CF+100 4 CB+20) manifold (that is,
the least regular of the two).

Lets firi > 1, i <n—1, and fir a point (s',y') € R x O, such that (s',y') € G¥).

Let U be a neighbourhood of 0 in R and let ¢ : U — O be a local chart to the neighbourhood oU) of
y' = ¢(0). The map ¢ has regularity CE 100 U CB+20) - Iy the following, y will be a point in ¢U).

To study G, we should study the rank of the Jacobian of the map (t,z) — X (t, ¢(x)); since the regularity
of X 1is related only to the reqularity of H, it will be useful to decouple this Jacobian in two parts. To this end,
we define a n-form a on R x O, with requirement that o(t,y) = a(y) (that is, o does not depend on t).

Writing XY for X (t,y), let

xE0*,
be the push-forward of a along X; X9 s then a tangent form defined on Tx (., M; it will be precisely
defined in equation (6.2). We remark that X &9 o = 0 iff (t,y) € U, G’ Note that the pushforward X"

C B0 reqular, while the form o is as reqular as TO, that is, o is CR8) y OR+1L0),
Note that, since X solves an O.D.E., then X and %X have the same regularity; note moreover that

o7 Ly G NCEON
= (xGwy) i
ot (X O‘) - (atj X) “
since o does not depend on t. So, by hypotheses and by the definition (6.2) of X(t’y?*a, the forms X and
%(X(t’y)*a) hape regularity Q(R"g) NCWE0) (see also Eq. (6.3)); the derivates %X(S/’y/)*a with j > 1 have
reqularity CF—i+10) y (1.0,

Then, when R+ 1 > i, we prove (in Sect. 6) that

ai—l
, e pye

X(S',y')*a =0, %X(S',y')*a -0 X(s,’y,)*a -0

LA similar result may be obtained when wug, K € C(s+3.0) [ e ols+n,0),
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whereas 4
81 n 7y *
@X(é ) g £ 0.
We define eventually the map F: R x R"™' — R given by
071 (@)
F(t,z) = 8ti*1X )
since .
0 def 0" *
ZF(t. ¥ x (te(x))

the above Dini lemma implies that the set G is locally covered by the graph of a function \; defined on a
open subset of O; \ has the same reqularity of F, so, if i = 1 then X is in CT% U CE-0) while fori>2 it is
C(R=i+2,0) ) /(R",07)

The above directly implies Theorem 4.1.
[...all other results are unchanged .. .|

5. APPLICATIONS

5.1. The Cauchy problem

We show now how the above theorems may be used for the Cauchy problem (1.2)

Sw(t,a')+ H'(t,2', Zw(t,2') =0 fort >0, 2" € M’ 19
AN !/ / U ( : )
w(0,z") = wo(z') Vo' e M'.

[. .. the preliminary discussion is unchanged . ..]
This improves the results of 4.10, 4.12 and 4.17 in [1]; to provide for an easy comparison, we summarize these
results
o if n/ =dim(M’), n=n'+1,if H € C* with s =n V3 and wg € C?, then the set I' has measure zero,
so the set ¥, = X UT has measure zero;
o if H wy e CZV then the set I is rectifiable, so the set &, = ¥ UT is rectifiable;
e and when H' € CF+LO e CRHLY R > 2 1w is continuous, we prove that the Hausdorff dimension
of I'\ ¥ is at most 3, and moreover H?(T'\ ¥) = 0 if § = 0, where 3 =n' — 1+ 2/(R +0).
In the counterexample in Section 4.4 in [1], wq is CY1(M’) and not C?(M’); so our results close the gap between
the counterexample, where wq is C**(M'), and the theorem, where wq is C?(M’); and actually, studying the
counterexample, it is quite clear that, if wg is smoothed to become a C?(M’) function, then the counterexample
would not work.

5.2. Eikonal equation and cutlocus

As in Section 3.5, consider a smooth Riemannian manifold M, and a closed set K C M and let di(z) =
d(x, K) be the distance to K. We set ug = 0: then O is the bundle of unit covectors that are normal to TK,
and dg (x) coincides with the min solution u(x).

We define

Sa, E{x | #Vdk ()}

If K is C', then X4, coincides with ¥ as defined in (4.1).

Since d is semiconcave in M \ K, 3q4, is always rectifiable.

This primal problem is a good test bed to discuss the differences and synergies of the results in this paper
and the results in Itoh and Tanaka [4] and Li and Nirenberg [5].
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e In the example in Section 3 in [6], there is a curve K C R?, K € C%! such that Y4, has positive
Lebesgue measure. Note that in this example %4, # Cut(K) = 34, so the cutlocus Cut(K) is
rectifiable (but not closed).

We do not know if there is a curve K € C'! such that Cut(K) is not rectifiable. (We recall that, by
Prop. 14 in [3], Cut(K) has always measure zero).

e Theorem 4.1 states that if K is C?, then I has measure zero, so by (1.4) and 4.11.4, we obtain that ¥4, =
Cut(K) has measure zero; so Theorem 4.1 closes the gap between the counterexample in Section 3 [6]
and the previous available results.

e In example in Remark 1.1 in [5], for all # € (0,1) there is a compact curve K € C%? such that the
distance to the cutlocus is not locally Lipschitz; by Theorem 4.1, the cutlocus has dimension at most
n—0.

We do not know if there exists an example of a compact curve K € C?? such that H"~!(Cut(K)) = oo

e By the results in Itoh and Tanaka [4] and Li and Nirenberg [5], when K € C®, the distance to the
cutlocus is locally Lipschitz and the cutlocus is rectifiable, and moreover (by Cor 1.1 in [5]), for any B
bounded H" 1 (Cut(K) N B) < co. By Theorem 4.1, the set of (non optimal) focal points is rectifiable
as well.

5.2.1. Improvements

... the discussion is unchanged ...]

Corollary 5.1. Consider a 2-dimensional smooth Riemannian manifold M ; suppose that K is a compact C3F*
embedded submanifold.

Then, for any open bounded set A C M, the set ANT is C*H-MY 5+ pectifiable: that is, it can be covered
by at most countably many C*T1 curves, but for a set E such that Ml/(SH)(E) =0.

6. PrROOF OF 4.4

... the two lemma are unchanged. . .]

Now we prove Lemma 4.4.

We want to define the n form « so that a does not depend on ¢; and so that & = ey A --- A e, where the
vectors fields e,_;41 ... e, span the kernel of =X at the point (s',y’) (kernel that we will call V) while X
is full rank on e; ...e,_; (that generate the space W).

One possible way to this is to fix the local chart ¢ : & ¢ R"™! — O, define

A def *8 ~ def *8 N defa
A= g = T
o

[«

and then choose a n X n constant matrix A, so that
def ~
en= E Ap ier
k

satisfy the requirements.
... the rest of the proof is unchanged. . .]

Acknowledgements. The author thanks Prof. Graziano Crasta for spotting the error that is corrected in this errata.
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