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REGULARITY AND VARIATIONALITY OF SOLUTIONS
TO HAMILTON-JACOBI EQUATIONS.

PART I: REGULARITY
(ERRATA)

Andrea C. G. Mennucci1

Abstract. This errata corrects one error in the 2004 version of this paper [Mennucci, ESAIM: COCV
10 (2004) 426–451].
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After the publication of [7] in 2004, it became clear that the regularity of the form α in Lemma 4.4 had to be
related to the regularity of K and of u0; this influences the minimal regularity of K, u0, as needed in hypotheses
in Lemma 4.4, in Theorem 4.1, and in many following relevant discussions. This errata corrects that error; to
keep the matter short, all material that is unaffected by the error is omitted; whereas care was taken so that
results and discussions that are here corrected retain the original numbering as in [7].

4.1. Regularity of conjugate points

We will prove in this section results regarding the set of focal points ; each following result extends to the set
Γ of conjugate points that is a subset of the focal points.

Theorem 4.1. Assume (CC0,H1,H2). If u0, K, H are regular enough, then, by Lemma 4.4, there is a (at most)
countable number of n − 1 dimensional submanifolds of lR × O that cover all the sets Gi; these submanifolds
are graphs of functions λi,h : Ai,h → lR (for h = 1 . . .) where Ai,h ⊂ O are open sets. The least regular case is
i = n − 1, and the regularity of the λ functions is related to the regularity of u0, K, H, and to the dimension
dim(M) = n as in the following table:

dim(M) u0, K H λ

n = 2 C(R+2,θ) C(R+2,θ) C(R,θ)

n ≥ 3 C(R+2,θ) C(R+n−1,θ) ∩ Cn C(R,θ)

(4.1)

where R ∈ lN, θ ∈ [0, 1].

Keywords and phrases. Hamilton-Jacobi equations, cutlocus, conjugate points.

1 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; a.mennucci@sns.it

c© EDP Sciences, SMAI 2007

Article published by EDP Sciences and available at http://www.edpsciences.org/cocv or http://dx.doi.org/10.1051/cocv:2007019

http://www.edpsciences.org/cocv
http://dx.doi.org/10.1051/cocv:2007019


414 A.C.G. MENNUCCI

We now infer some explanatory results on the regularity of the focal points X(∪iG
i) from the above theorem.

At the lowest regularity, when u0, K ∈ C2, H ∈ Cn, we know that X ∈ C1 and that the sets Gi are graphs;
we conclude that the set of focal points has measure zero. When u0, K ∈ C(2,θ), H ∈ Cn ∩ C(2,θ), we know
that the dimension of the sets Gi does not exceed n − θ; so again we conclude that the set of focal points has
dimension at most n − θ. In the case θ = 1, we can obtain the set of all focal points is rectifiable; that is, if
u0, K ∈ C(2,1), H ∈ Cn ∩ C(2,1), then the sets Gi are covered by Lipshitz graphs, so (by known results in [2])
the set of focal points may be covered by (n − 1)-dimensional C1 regular submanifolds of M , but for a set of
Hausdorff Hn−1 measure zero.

When we further raise the regularity, we may suppose that u0, K ∈ Cs+3, H ∈ Cs+n (with s ∈ lN)1; then
the sets Gi are covered by graphs (λ(y), y) inside lR× O of regularity C1+s; while X ∈ C2+s (at least), and we
restrict it to those graphs; we can then apply Theorem A.4 to state that the focal points are covered by C1+s

regular submanifolds of M but for a set of Hα measure zero, where α
.= n − 2 + 1/(1 + s).

[. . . unchanged material deleted . . . ]

The main tool is this lemma; the complete proof of the lemma is in Section 6.

Lemma 4.4. We assume that the hypotheses (CC0,H1,H2) hold.
We set the regularity of the data u0, K, H by defining parameters R, R′ ∈ lN, θ, θ′ ∈ [0, 1], and assuming that

u0 ∈ C(R′+2,θ′), K ∈ C(R′+2,θ′), H ∈ C(R+2,θ);

by Proposition 3.7, the flow Φ = (X, P ) is C(R+1,θ) regular; and O is a C(R′+1,θ′) ∪C(R+2,θ) manifold (that is,
the least regular of the two).

Lets fix i ≥ 1, i ≤ n − 1, and fix a point (s′, y′) ∈ lR × O, such that (s′, y′) ∈ G(i).
Let U be a neighbourhood of 0 in lRn−1 and let φ : U → O be a local chart to the neighbourhood φ(U) of

y′ = φ(0). The map φ has regularity C(R′+1,θ′) ∪ C(R+2,θ). In the following, y will be a point in φ(U).
To study G(i), we should study the rank of the Jacobian of the map (t, x) �→ X(t, φ(x)); since the regularity

of X is related only to the regularity of H, it will be useful to decouple this Jacobian in two parts. To this end,
we define a n-form α on lR × O, with requirement that α(t, y) = α(y) (that is, α does not depend on t).

Writing X(t,y) for X(t, y), let

X(t,y)∗α

be the push-forward of α along X; X(t,y)∗α is then a tangent form defined on TX(t,y)M ; it will be precisely
defined in equation (6.2). We remark that X(t,y)∗α = 0 iff (t, y) ∈ ⋃

j Gj. Note that the pushforward X(t,y)∗ is
C(R,θ) regular, while the form α is as regular as TO, that is, α is C(R′,θ′) ∪ C(R+1,θ).

Note that, since X solves an O.D.E., then X and ∂
∂tX have the same regularity; note moreover that

∂j

∂tj

(
X(s′,y′)∗α

)
=

( ∂j

∂tj
X

)(s′,y′)∗
α

since α does not depend on t. So, by hypotheses and by the definition (6.2) of X(t,y)∗α, the forms X(t,y)∗α and
∂
∂t (X

(t,y)∗α) have regularity C(R,θ) ∩ C(R′,θ′) (see also Eq. (6.3)); the derivates ∂j

∂tj X(s′,y′)∗α with j ≥ 1 have
regularity C(R−j+1,θ) ∪ C(R′,θ′).

Then, when R + 1 ≥ i, we prove (in Sect. 6) that

X(s′,y′)∗α = 0,
∂

∂t
X(s′,y′)∗α = 0, · · · ∂i−1

∂ti−1
X(s′,y′)∗α = 0

1A similar result may be obtained when u0, K ∈ C(s+3,θ), H ∈ C(s+n,θ).
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whereas
∂i

∂ti
X(s′,y′)∗α 	= 0.

We define eventually the map F : lR × lRn−1 → lR given by

F (t, x) =
∂i−1

∂ti−1
X(t,φ(x))∗α;

since
∂

∂t
F (t, x)def=

∂i

∂ti
X(t,φ(x))∗α 	= 0

the above Dini lemma implies that the set G(i) is locally covered by the graph of a function λi defined on a
open subset of O; λ has the same regularity of F , so, if i = 1 then λ is in CR,θ ∪ C(R′,θ′) while for i ≥ 2 it is
C(R−i+2,θ) ∪ C(R′,θ′).

The above directly implies Theorem 4.1.
[. . . all other results are unchanged . . . ]

5. Applications

5.1. The Cauchy problem

We show now how the above theorems may be used for the Cauchy problem (1.2)
{

∂
∂tw(t, x′) + H ′(t, x′, ∂

∂x′ w(t, x′)) = 0 for t > 0, x′ ∈ M ′

w(0, x′) = w0(x′) ∀x′ ∈ M ′.
(1.2)

[. . . the preliminary discussion is unchanged . . . ]
This improves the results of 4.10, 4.12 and 4.17 in [1]; to provide for an easy comparison, we summarize these

results
• if n′ = dim(M ′), n = n′ + 1, if H ′ ∈ Cs with s = n ∨ 3 and w0 ∈ C2, then the set Γ has measure zero,

so the set Σu = Σ ∪ Γ has measure zero;
• if H, w0 ∈ C(2,1), then the set Γ is rectifiable, so the set Σu = Σ ∪ Γ is rectifiable;
• and when H ′ ∈ CR+1,θ, w0 ∈ CR+1,θ, R ≥ 2, w is continuous, we prove that the Hausdorff dimension

of Γ \ Σ is at most β, and moreover Hβ(Γ \ Σ) = 0 if θ = 0, where β = n′ − 1 + 2/(R + θ).
In the counterexample in Section 4.4 in [1], w0 is C1,1(M ′) and not C2(M ′); so our results close the gap between
the counterexample, where w0 is C1,1(M ′), and the theorem, where w0 is C2(M ′); and actually, studying the
counterexample, it is quite clear that, if w0 is smoothed to become a C2(M ′) function, then the counterexample
would not work.

5.2. Eikonal equation and cutlocus

As in Section 3.5, consider a smooth Riemannian manifold M , and a closed set K ⊂ M and let dK(x) =
d(x, K) be the distance to K. We set u0 = 0: then O is the bundle of unit covectors that are normal to TK,
and dK(x) coincides with the min solution u(x).

We define
ΣdK

def={x | �∇dK(x)}
If K is C1, then ΣdK coincides with Σ as defined in (4.1).
Since dK is semiconcave in M \ K, ΣdK is always rectifiable.
This primal problem is a good test bed to discuss the differences and synergies of the results in this paper

and the results in Itoh and Tanaka [4] and Li and Nirenberg [5].
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• In the example in Section 3 in [6], there is a curve K ⊂ lR2, K ∈ C1,1 such that ΣdK has positive
Lebesgue measure. Note that in this example ΣdK 	= Cut(K) = ΣdK , so the cutlocus Cut(K) is
rectifiable (but not closed).

We do not know if there is a curve K ∈ C1,1 such that Cut(K) is not rectifiable. (We recall that, by
Prop. 14 in [3], Cut(K) has always measure zero).

• Theorem 4.1 states that if K is C2, then Γ has measure zero, so by (1.4) and 4.11.4, we obtain that ΣdK =
Cut(K) has measure zero; so Theorem 4.1 closes the gap between the counterexample in Section 3 [6]
and the previous available results.

• In example in Remark 1.1 in [5], for all θ ∈ (0, 1) there is a compact curve K ∈ C2,θ such that the
distance to the cutlocus is not locally Lipschitz; by Theorem 4.1, the cutlocus has dimension at most
n − θ.

We do not know if there exists an example of a compact curve K ∈ C2,θ such that Hn−1(Cut(K)) = ∞
• By the results in Itoh and Tanaka [4] and Li and Nirenberg [5], when K ∈ C3, the distance to the

cutlocus is locally Lipschitz and the cutlocus is rectifiable, and moreover (by Cor 1.1 in [5]), for any B
bounded Hn−1(Cut(K) ∩ B) < ∞. By Theorem 4.1, the set of (non optimal) focal points is rectifiable
as well.

5.2.1. Improvements

[. . . the discussion is unchanged . . . ]

Corollary 5.1. Consider a 2-dimensional smooth Riemannian manifold M ; suppose that K is a compact C3+s

embedded submanifold.
Then, for any open bounded set A ⊂ M , the set A∩ Γ is Cs+1-M1/(s+1)-rectifiable: that is, it can be covered

by at most countably many Cs+1 curves, but for a set E such that M1/(s+1)(E) = 0.

6. Proof of 4.4

[. . . the two lemma are unchanged . . . ]
Now we prove Lemma 4.4.
We want to define the n form α so that α does not depend on t; and so that α = e1 ∧ · · · ∧ en where the

vectors fields en−i+1 . . . en span the kernel of ∂
∂xX at the point (s′, y′) (kernel that we will call V ) while ∂

∂xX
is full rank on e1 . . . en−i (that generate the space W ).

One possible way to this is to fix the local chart φ : U ⊂ lRn−1 → O, define

ê1
def= φ∗ ∂

∂x1
, . . . ên−1

def= φ∗ ∂

∂xn−1
, ên

def=
∂

∂t

and then choose a n × n constant matrix A, so that

eh
def=

∑
k

Ah,kêk

satisfy the requirements.
[. . . the rest of the proof is unchanged . . . ]

Acknowledgements. The author thanks Prof. Graziano Crasta for spotting the error that is corrected in this errata.
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