ESAIM: Control, Optimisation and Calculus of Variations

www.edpsciences.org/cocv

Vol. 13, N° 2, 2007, pp. 413–417 DOI: 10.1051/cocv:2007019

ESAIM: COCV

REGULARITY AND VARIATIONALITY OF SOLUTIONS TO HAMILTON-JACOBI EQUATIONS. PART I: REGULARITY (ERRATA)

Andrea C. G. Mennucci¹

Abstract. This errata corrects one error in the 2004 version of this paper [Mennucci, *ESAIM: COCV* **10** (2004) 426–451].

Mathematics Subject Classification. 49L25, 53C22, 53C60.

Received October 24, 2006.

After the publication of [7] in 2004, it became clear that the regularity of the form α in Lemma 4.4 had to be related to the regularity of K and of u_0 ; this influences the minimal regularity of K, u_0 , as needed in hypotheses in Lemma 4.4, in Theorem 4.1, and in many following relevant discussions. This errata corrects that error; to keep the matter short, all material that is unaffected by the error is omitted; whereas care was taken so that results and discussions that are here corrected retain the original numbering as in [7].

4.1. Regularity of conjugate points

We will prove in this section results regarding the set of *focal points*; each following result extends to the set Γ of *conjugate points* that is a subset of the focal points.

Theorem 4.1. Assume (CC0,H1,H2). If u_0, K, H are regular enough, then, by Lemma 4.4, there is a (at most) countable number of n-1 dimensional submanifolds of $\mathbb{R} \times O$ that cover all the sets G^i ; these submanifolds are graphs of functions $\lambda_{i,h}: A_{i,h} \to \mathbb{R}$ (for $h=1\ldots$) where $A_{i,h} \subset O$ are open sets. The least regular case is i=n-1, and the regularity of the λ functions is related to the regularity of u_0, K, H , and to the dimension $\dim(M)=n$ as in the following table:

$$\frac{\dim(M)}{n=2} \begin{vmatrix} u_0, K & H & \lambda \\ C^{(R+2,\theta)} & C^{(R+2,\theta)} & C^{(R,\theta)} \\ n \ge 3 & C^{(R+2,\theta)} & C^{(R+n-1,\theta)} \cap C^n & C^{(R,\theta)} \end{vmatrix}$$
(4.1)

where $R \in \mathbb{N}, \theta \in [0, 1]$.

Keywords and phrases. Hamilton-Jacobi equations, cutlocus, conjugate points.

© EDP Sciences, SMAI 2007

¹ Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy; a.mennucci@sns.it

414 A.C.G. MENNUCCI

We now infer some explanatory results on the regularity of the focal points $X(\cup_i G^i)$ from the above theorem. At the lowest regularity, when $u_0, K \in C^2$, $H \in C^n$, we know that $X \in C^1$ and that the sets G^i are graphs; we conclude that the set of focal points has measure zero. When $u_0, K \in C^{(2,\theta)}$, $H \in C^n \cap C^{(2,\theta)}$, we know that the dimension of the sets G^i does not exceed $n - \theta$; so again we conclude that the set of focal points has dimension at most $n - \theta$. In the case $\theta = 1$, we can obtain the set of all focal points is rectifiable; that is, if $u_0, K \in C^{(2,1)}$, $H \in C^n \cap C^{(2,1)}$, then the sets G^i are covered by Lipshitz graphs, so (by known results in [2]) the set of focal points may be covered by (n-1)-dimensional C^1 regular submanifolds of M, but for a set of Hausdorff \mathcal{H}^{n-1} measure zero.

When we further raise the regularity, we may suppose that $u_0, K \in C^{s+3}$, $H \in C^{s+n}$ (with $s \in \mathbb{N}$)¹; then the sets G^i are covered by graphs $(\lambda(y), y)$ inside $\mathbb{R} \times O$ of regularity C^{1+s} ; while $X \in C^{2+s}$ (at least), and we restrict it to those graphs; we can then apply Theorem A.4 to state that the focal points are covered by C^{1+s} regular submanifolds of M but for a set of \mathcal{H}^{α} measure zero, where $\alpha = n - 2 + 1/(1 + s)$.

 $[\dots unchanged material deleted\dots]$

The main tool is this lemma; the complete proof of the lemma is in Section 6.

Lemma 4.4. We assume that the hypotheses (CC0,H1,H2) hold.

We set the regularity of the data u_0, K, H by defining parameters $R, R' \in \mathbb{N}$, $\theta, \theta' \in [0, 1]$, and assuming that

$$u_0 \in C^{(R'+2,\theta')}, \quad K \in C^{(R'+2,\theta')}, \quad H \in C^{(R+2,\theta)}$$

by Proposition 3.7, the flow $\Phi = (X, P)$ is $C^{(R+1,\theta)}$ regular; and O is a $C^{(R'+1,\theta')} \cup C^{(R+2,\theta)}$ manifold (that is, the least regular of the two).

Lets fix $i \ge 1$, $i \le n-1$, and fix a point $(s', y') \in \mathbb{R} \times O$, such that $(s', y') \in G^{(i)}$.

Let \mathcal{U} be a neighbourhood of 0 in \mathbb{R}^{n-1} and let $\phi: \mathcal{U} \to O$ be a local chart to the neighbourhood $\phi(\mathcal{U})$ of $y' = \phi(0)$. The map ϕ has regularity $C^{(R'+1,\theta')} \cup C^{(R+2,\theta)}$. In the following, y will be a point in $\phi(\mathcal{U})$.

To study $G^{(i)}$, we should study the rank of the Jacobian of the map $(t,x) \mapsto X(t,\phi(x))$; since the regularity of X is related only to the regularity of H, it will be useful to decouple this Jacobian in two parts. To this end, we define a n-form α on $\mathbb{R} \times O$, with requirement that $\alpha(t,y) = \alpha(y)$ (that is, α does not depend on t).

Writing $X^{(t,y)}$ for X(t,y), let

$$X^{(t,y)^*}\alpha$$

be the push-forward of α along X; $X^{(t,y)}^*\alpha$ is then a tangent form defined on $T_{X(t,y)}M$; it will be precisely defined in equation (6.2). We remark that $X^{(t,y)}^*\alpha = 0$ iff $(t,y) \in \bigcup_j G^j$. Note that the pushforward $X^{(t,y)}^*$ is $C^{(R,\theta)}$ regular, while the form α is as regular as TO, that is, α is $C^{(R',\theta')} \cup C^{(R+1,\theta)}$.

Note that, since X solves an O.D.E., then X and $\frac{\partial}{\partial t}X$ have the same regularity; note moreover that

$$\frac{\partial^{j}}{\partial t^{j}} \left(X^{(s',y')^{*}} \alpha \right) = \left(\frac{\partial^{j}}{\partial t^{j}} X \right)^{(s',y')^{*}} \alpha$$

since α does not depend on t. So, by hypotheses and by the definition (6.2) of $X^{(t,y)^*}\alpha$, the forms $X^{(t,y)^*}\alpha$ and $\frac{\partial}{\partial t}(X^{(t,y)^*}\alpha)$ have regularity $C^{(R,\theta)}\cap C^{(R',\theta')}$ (see also Eq. (6.3)); the derivates $\frac{\partial^j}{\partial t^j}X^{(s',y')^*}\alpha$ with $j\geq 1$ have regularity $C^{(R-j+1,\theta)}\cup C^{(R',\theta')}$.

Then, when $R+1 \geq i$, we prove (in Sect. 6) that

$$X^{(s',y')^*}\alpha = 0, \quad \frac{\partial}{\partial t}X^{(s',y')^*}\alpha = 0, \quad \cdots \frac{\partial^{i-1}}{\partial t^{i-1}}X^{(s',y')^*}\alpha = 0$$

¹A similar result may be obtained when $u_0, K \in C^{(s+3,\theta)}, H \in C^{(s+n,\theta)}$.

whereas

$$\frac{\partial^i}{\partial t^i} X^{(s',y')^*} \alpha \neq 0.$$

We define eventually the map $F: \mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R}$ given by

$$F(t,x) = \frac{\partial^{i-1}}{\partial t^{i-1}} X^{(t,\phi(x))^*} \alpha;$$

since

$$\frac{\partial}{\partial t} F(t, x) \stackrel{\text{def}}{=} \frac{\partial^i}{\partial t^i} X^{(t, \phi(x))^*} \alpha \neq 0$$

the above Dini lemma implies that the set $G^{(i)}$ is locally covered by the graph of a function λ_i defined on a open subset of O; λ has the same regularity of F, so, if i=1 then λ is in $C^{R,\theta} \cup C^{(R',\theta')}$ while for $i\geq 2$ it is $C^{(R-i+2,\theta)} \cup C^{(R',\theta')}$.

The above directly implies Theorem 4.1. [... all other results are unchanged ...]

5. Applications

5.1. The Cauchy problem

We show now how the above theorems may be used for the Cauchy problem (1.2)

$$\begin{cases} \frac{\partial}{\partial t}w(t,x') + H'(t,x',\frac{\partial}{\partial x'}w(t,x')) = 0 & \text{for } t > 0, x' \in M' \\ w(0,x') = w_0(x') & \forall x' \in M'. \end{cases}$$
(1.2)

[... the preliminary discussion is unchanged ...]

This improves the results of 4.10, 4.12 and 4.17 in [1]; to provide for an easy comparison, we summarize these results

- if $n' = \dim(M')$, n = n' + 1, if $H' \in C^s$ with $s = n \vee 3$ and $w_0 \in C^2$, then the set Γ has measure zero, so the set $\overline{\Sigma}_u = \Sigma \cup \Gamma$ has measure zero;
- if H, w₀ ∈ C^(2,1), then the set Γ is rectifiable, so the set Σ̄_u = Σ ∪ Γ is rectifiable;
 and when H' ∈ C^{R+1,θ}, w₀ ∈ C^{R+1,θ}, R ≥ 2, w is continuous, we prove that the Hausdorff dimension of $\Gamma \setminus \Sigma$ is at most β , and moreover $\mathcal{H}^{\beta}(\Gamma \setminus \Sigma) = 0$ if $\theta = 0$, where $\beta = n' - 1 + 2/(R + \theta)$.

In the counterexample in Section 4.4 in [1], w_0 is $C^{1,1}(M')$ and not $C^2(M')$; so our results close the gap between the counterexample, where w_0 is $C^{1,1}(M')$, and the theorem, where w_0 is $C^2(M')$; and actually, studying the counterexample, it is quite clear that, if w_0 is smoothed to become a $C^2(M')$ function, then the counterexample would not work.

5.2. Eikonal equation and cutlocus

As in Section 3.5, consider a smooth Riemannian manifold M, and a closed set $K \subset M$ and let $d_K(x) =$ d(x,K) be the distance to K. We set $u_0=0$: then O is the bundle of unit covectors that are normal to TK, and $d_K(x)$ coincides with the min solution u(x).

We define

$$\Sigma_{d_K} \stackrel{\text{def}}{=} \{ x \mid \nexists \nabla d_K(x) \}$$

If K is C^1 , then Σ_{d_K} coincides with Σ as defined in (4.1).

Since d_K is semiconcave in $M \setminus K$, Σ_{d_K} is always rectifiable.

This primal problem is a good test bed to discuss the differences and synergies of the results in this paper and the results in Itoh and Tanaka [4] and Li and Nirenberg [5].

• In the example in Section 3 in [6], there is a curve $K \subset \mathbb{R}^2$, $K \in C^{1,1}$ such that $\overline{\Sigma}_{d_K}$ has positive Lebesgue measure. Note that in this example $\overline{\Sigma}_{d_K} \neq \operatorname{Cut}(K) = \Sigma_{d_K}$, so the cutlocus $\operatorname{Cut}(K)$ is rectifiable (but not closed).

We do not know if there is a curve $K \in C^{1,1}$ such that Cut(K) is not rectifiable. (We recall that, by Prop. 14 in [3], Cut(K) has always measure zero).

- Theorem 4.1 states that if K is C^2 , then Γ has measure zero, so by (1.4) and 4.11.4, we obtain that $\overline{\Sigma}_{d_K} = \operatorname{Cut}(K)$ has measure zero; so Theorem 4.1 closes the gap between the counterexample in Section 3 [6] and the previous available results.
- In example in Remark 1.1 in [5], for all $\theta \in (0,1)$ there is a compact curve $K \in C^{2,\theta}$ such that the distance to the cutlocus is not locally Lipschitz; by Theorem 4.1, the cutlocus has dimension at most $n-\theta$

We do not know if there exists an example of a compact curve $K \in C^{2,\theta}$ such that $\mathcal{H}^{n-1}(\mathrm{Cut}(K)) = \infty$

• By the results in Itoh and Tanaka [4] and Li and Nirenberg [5], when $K \in \mathbb{C}^3$, the distance to the cutlocus is locally Lipschitz and the cutlocus is rectifiable, and moreover (by Cor 1.1 in [5]), for any B bounded $\mathcal{H}^{n-1}(\mathrm{Cut}(K)\cap B)<\infty$. By Theorem 4.1, the set of (non optimal) focal points is rectifiable as well.

5.2.1. Improvements

[... the discussion is unchanged ...]

Corollary 5.1. Consider a 2-dimensional smooth Riemannian manifold M; suppose that K is a compact C^{3+s} embedded submanifold.

Then, for any open bounded set $A \subset M$, the set $A \cap \Gamma$ is C^{s+1} - $M^{1/(s+1)}$ -rectifiable: that is, it can be covered by at most countably many C^{s+1} curves, but for a set E such that $\mathcal{M}^{1/(s+1)}(E) = 0$.

6. Proof of 4.4

[... the two lemma are unchanged...]

Now we prove Lemma 4.4.

We want to define the n form α so that α does not depend on t; and so that $\alpha = e_1 \wedge \cdots \wedge e_n$ where the vectors fields $e_{n-i+1} \dots e_n$ span the kernel of $\frac{\partial}{\partial \overline{x}} X$ at the point (s', y') (kernel that we will call V) while $\frac{\partial}{\partial \overline{x}} X$ is full rank on $e_1 \dots e_{n-i}$ (that generate the space W).

One possible way to this is to fix the local chart $\phi: \mathcal{U} \subset \mathbb{R}^{n-1} \to O$, define

$$\hat{e}_1 \stackrel{\text{def}}{=} \phi^* \frac{\partial}{\partial x_1}, \dots \hat{e}_{n-1} \stackrel{\text{def}}{=} \phi^* \frac{\partial}{\partial x_{n-1}}, \hat{e}_n \stackrel{\text{def}}{=} \frac{\partial}{\partial t}$$

and then choose a $n \times n$ constant matrix A, so that

$$e_h \stackrel{\text{def}}{=} \sum_k A_{h,k} \hat{e}_k$$

satisfy the requirements.

[... the rest of the proof is unchanged...]

Acknowledgements. The author thanks Prof. Graziano Crasta for spotting the error that is corrected in this errata.

References

- [1] P. Cannarsa, A. Mennucci and C. Sinestrari, Regularity results for solutions of a class of Hamilton-Jacobi equations. *Arch. Rat. Mech.* **140** (1997) 197–223 (or preprint 13-95, Dip. Mat., Univ. Tor Vergata, Roma).
- [2] H. Federer, Geometric measure theory. Springer-Verlag (1969).
- [3] G.J. Galloway, P.T. Chruściel, J.H.G. Fu and R. Howard, On fine differentiability properties of horizons and applications to Riemannian geometry. J. Geom. Phys. 41 (2002) 1–12.
- [4] J. Itoh and M. Tanaka, The Lipschitz continuity of the distance function to the cut locus. Trans. AMS 353 (2000) 21-40.
- [5] Y.Y. Li and L. Nirenberg, The distance function to the boundary, Finsler geometry and the singular set of viscosity solutions of some Hamilton-Jacobi equations. *Comm. Pure Appl. Math.* **58** (2005) 85–146 (first received as a personal communication in June 2003).
- [6] C. Mantegazza and A.C. Mennucci, Hamilton-Jacobi equations and distance functions on Riemannian manifolds. *Appl. Math. Optim.* 47 (2002) 1–25.
- [7] A.C.G. Mennucci, Regularity and variationality of solutions to Hamilton-Jacobi equations. Part I: regularity. *ESAIM: COCV* **10** (2004) 426–451.