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ABSTRACT: A general strategy for the accurate computation of
structural and spectroscopic properties of biomolecule building
blocks in the gas phase is proposed and validated for tautomeric
equilibria. The main features of the new model are the inclusion of
core-valence correlation in geometry optimizations by a double
hybrid functional and the systematic use of wave-function
composite methods in conjunction with cc-pVnZ-F12 basis sets
with separate extrapolation of MP2 and post-MP2 contributions.
The resulting Pisa composite scheme employing conventional
(PCS) or explicitly correlated (PCS-F12) approaches is applied to
the challenging problem of guanine tautomers in the gas phase.
The results are in remarkable agreement with the experimental
structures, relative stabilities, and spectroscopic signatures of
different tautomers. The accuracy of the results obtained at reasonable cost by means of black-box parameter-free approaches
paves the way toward systematic investigations of other molecular bricks of life also by non-specialists.

1. INTRODUCTION
Most molecular bricks of life (amino acids, nucleobases, sugars,
etc.) undergo either conformational or tautomeric equilibria,
which are tuned by both intrinsic stereo-electronic and
environmental effects. An unbiased analysis of the role played
by the different contributions on the overall experimental
outcome calls for a preliminary investigation of gas phase
processes. We have recently devised and validated a general
computational strategy able to disentangle the complex
conformational landscapes of amino acids.1,2 Here, we tackle
the problem of tautomeric equilibria, which involve bond
pattern changes and are, therefore, more challenging for
quantum chemical (QC) computations.
Among all possible tautomeric forms of the nucleobases, the

so called “canonical” (keto and amino) forms predominate
over their “minor” enol and imino counterparts under
physiological conditions. In the case of uracil, thymine, and
adenine, the “canonical” tautomer is significantly more stable
than all the “minor” ones also in the gas phase, whereas the
situation is more involved for cytosine and guanine.3 The
tautomeric equilibrium of cytosine has been recently
investigated by state-of-the-art QC methods.4,5 Therefore,
the focus of the present work is on guanine.
From the theoretical point of view, most QC calculations

predict that there are small energy differences between the
lowest energy tautomers of guanine, with the quantitative
values being extremely sensitive to the level of theory.6−8

However, even the most refined computations performed until
now employed geometrical structures and force fields of
limited accuracy, thus compromising any unbiased comparison
with the results of high-resolution spectroscopy. Furthermore,
zero-point energies (ZPEs) have been computed within the
rigid-rotor harmonic-oscillator (RRHO) model with low-level
quantum chemical methods.
In our opinion, the most effective computational strategy for

this kind of problems is obtained by combining different QC
methods for a preliminary exploration of potential energy
surfaces (PESs) and the successive refinement of the most
significant stationary points.9−11 In this framework, once a
suitable panel of low-energy minima has been identified,
accurate structures12,13 and relative energies must be
computed.14−19 Finally, ZPEs and spectroscopic parameters
of the energy minima, with non-negligible populations under
the experimental conditions of interest, are obtained.20

In this connection, for systems not showing strong multi-
reference character, the coupled cluster (CC) ansatz including
single, double, and a perturbative estimation of triple-
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excitations [CCSD(T)]21 is considered the gold standard of
contemporary computational chemistry, provided that com-
plete basis set (CBS) extrapolation and core-valence (CV)
correlation are taken into account.22 Based on this premise, we
have developed in the last years an effective composite method,
referred to as the cheap scheme (ChS), which delivers accurate
energies at a reasonable cost thanks to the evaluation of CBS
extrapolation and CV correlation using second-order Møller−
Plesset perturbation theory (MP223), starting from CCSD(T)
computations in conjunction with a triple-zeta basis set.
Several benchmarks have shown that, without the need for any
empirical parameter, the ChS model closely approaches the
accuracy of the corresponding (much more costly) scheme in
which CBS and CV contributions are evaluated at the
CCSD(T) level.14,24,25 More recently, improved versions
employing the june partially augmented basis sets26

(junChS)10,15 and replacing the conventional post-Hartree-
Hock contributions by explicitly correlated27 (F12) approaches
(junChS-F12)16,28,29 have been developed. Thanks to these
improvements, the junChS and junChS-F12 models provide
accurate results for a large panel of properties including
geometrical structures, thermochemical and kinetic parameters,
vibrational frequencies and non-covalent interactions.1,30 Here,
we take a step further, employing the conventional and
explicitly correlated versions of the new, more accurate, Pisa
composite scheme (PCS and PCS-F12, respectively) described
in the next section.
The present work is devoted to the study of the relative

stabilities and high-resolution spectra of the four species of
guanine detected in the gas phase by microwave (MW)
spectroscopy.7 As already mentioned, previous computational
studies of this molecule employed QC methods of limited
accuracy or payed marginal attention to the geometrical and
vibrational parameters. However, an a priori prediction of the
spectroscopic outcome requires the simultaneous calculation of
accurate structures, relative stabilities, and spectroscopic
parameters. In the following sections, it will be shown that
the integrated computational strategy sketched above paves the
way toward the systematic achievement of this task for the
main molecular bricks of life by a fully unsupervised tool,
which can be routinely employed also by non-specialists.

2. METHODS
On the basis of previous experience, a first characterization of
PESs is performed at the B3LYP/6-31+G* level,31,32 also
including Grimme’s D3BJ dispersion corrections.33 This
combination of functional and basis set, which is also used
for the computation of anharmonic contributions, will be
referred to in the following as B3/SVP. Next, the geometries of
the most stable species are refined at levels of theory
sufficiently accurate to allow a direct comparison with the
leading terms of MW spectra, namely, rotational constants of
the vibrational ground state (Bτ

0, where τ refers to the inertial
axes a, b, c). In the framework of second-order vibrational
perturbation theory (VPT2),34−38 each Bτ

0 can be split into an
equilibrium contribution (Bτ

eq) and a vibrational correction
(ΔBτ

vib), with the latter term including contributions from
harmonic force constants, Coriolis couplings and, above all,
semi-diagonal cubic force constants.39,40 The ΔBτ

vib terms are
typically smaller than 1% of the corresponding Bτ

eq rotational
constants,41 so that errors of the order of 10% (well within the
typical accuracy of B3/SVP computations) are acceptable.40,42

However, the needed accuracy for equilibrium rotational

constants (0.1−0.2%) can be reached only employing state-of-
the-art QC methods.43,44

In previous works, we employed the rev-DSD-PBEP86-D3BJ
functional45 (hereafter rDSD) in conjunction with a partially
augmented triple-zeta basis set (jun-cc-pVTZ,26 hereafter j3).
The systematic nature of the errors of this model permits to
improve significantly the rDSD/j3 geometrical parameters by a
linear regression (LR) approach.13 Even better results can be
obtained resorting, when possible, to templating molecules
(TMs) sharing structural similarities with the species under
study and whose accurate equilibrium structures are already
available.13 The resulting model (referred to as nano-LEGO13

or LEGO-Bricks46) has met with considerable success, but
suffers from some limitations, mainly related to the presence of
several empirical parameters in the LR approach and the
limited number of available accurate structures for the
fragments to be employed as TMs.
Systematic investigations47 showed that the use of empirical

parameters can be avoided by combining CV correlation
computed at the MP2 level in conjunction with the cc-
pwCVTZ basis set (hereafter wC3)48 and valence contribu-
tions computed at the rDSD level in conjunction with the cc-
pVTZ-F12 basis set (hereafter 3F12).49 These choices lead to
the first component of the new Pisa composite schemes (PCS),
in which each geometrical parameter r is obtained combining
the corresponding parameters optimized at different levels

= +r r r ae

r fc

(PCS) (rDSD/3F12) ( MP2/wC3)

( MP2/wC3) (1)

where ae and fc stand for all-electron and frozen-core,
respectively. The accuracy of PCS geometrical parameters
will be compared to that of several other approaches with
reference to the tautomers of guanine detected in the gas
phase.
In addition to structural parameters, accurate electronic

energies are needed to determine the relative abundance of
low-energy species. For this purpose, in the last few years, we
have systematically employed the junChS and junChS-F12
models.1,30 However, some aspects of these approaches can be
further improved, enhancing the accuracy of the final results
without any excessive increase of computational resources. The
starting point of the new conventional PCS model is a fc-
CCSD(T) calculation in conjunction with the 3F12 basis set,
already employed for geometry optimizations. Next, the CV
correlation is obtained at the MP2 level exactly in the same
way as for geometrical parameters. Finally, the CBS
extrapolation is performed employing the 3F12 and cc-
pVQZ-F12 (hereafter 4F12)49 basis sets for the MP2
contribution, whereas the cc-pVDZ-F12 (hereafter 2F12)49

and 3F12 basis sets are employed for the difference between
CCSD(T) and MP2 energies. Both CBS extrapolations are
performed by the standard n−3 two-point formula.50 The final
PCS energy can be written as follows

= + +E E E E(PCS) V2 V CV2 (2)

where

=E
E E4 (MP2/4F12) 3 (MP2/3F12)

4 3V2

3 3

3 3 (3)

and
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=E
E E3 (3F12) 2 (2F12)

3 2V

3 3

3 3 (4)

with

=E n E n E n( F12) (CCSD(T)/ F12) (MP2/ F12) (5)

Finally

=E E ae E( MP2/wC3) (MP2/wC3)CV2 (6)

In the equations mentioned above, all the energies have been
obtained employing the fc approximation, unless the label ae is
explicitly employed. The availability of the reduced cost FNO-
CCSD(T) implementation17 (not used in the present context)
paves the way toward the systematic study of large-sized
molecules at this level. It is to be noted that the junChS
model10,15 is recovered when the jun-cc-pVnZ basis sets26

(hereafter jn) are used in place of their nF12 counterparts and
ΔEV = E(CCSD(T)/jun-cc-pVTZ) − E(MP2/jun-cc-pVTZ).
Replacement of the conventional methods in the evaluation

of the EV2 and ΔEV contributions by their explicitly-correlated
counterparts in conjunction with the same basis sets leads to
the PCS-F12 version. The advantage of this model is that the
role (hence the incertitude) of the CBS extrapolation is
strongly reduced without any excessive increase of the
computational resources. In particular, use of the accurate
and size-consistent CCSD(F12*)(T+) model18 increases the
robustness of the approach29 and the availability of the reduced
cost FNO-CCSD(F12*)(T+) version51 (not used in the
present context) allows the study of large systems. Scalar
relativistic contributions and diagonal Born-Oppenheimer
corrections (DBOC) can be added when needed,10,30 but
previous computations showed that they play a negligible role
on the relative stability of different tautomers.8 ZPEs are
usually obtained within the RRHO approximation, possibly
employing empirical scale factors.52 In the present context, the
use of empirical factors is avoided by resorting to a resonance-
free VPT2 expression53−56 and employing rDSD/3F12
harmonic frequencies combined with B3/SVP anharmonic
contributions. All the density functional theory (DFT) and
conventional wave-function computations have been per-
formed with the Gaussian package,57 whereas all the explicitly

correlated ones have been performed with the aid of the
MRCC58,59 software.

3. RESULTS AND DISCUSSION
The number of possible tautomers (NT) of a given species is
NT = NS!/[NH!(NS − NH)!], where NS is the number of
tautomeric sites and NH the number of labile protons. Guanine
has 4 endo (N1, N3, N7, N9) and 2 exo (O�C and NH2)
tautomeric sites and 3 labile protons, so that NS = 6, NH = 3,
and NT = 20. Among those tautomers, there are 10 amino and
10 imino species. All the amino species are shown in Figure 1
in order of decreasing stability (according to junChS-F12
electronic energies, vide infra) and their numbering follows
that of ref 8. Two keto-amino (KA) and one enol-amino (EA)
tautomers are possible for each of the two non-equivalent
structures of the imidazole ring (N7H and N9H), namely, the
KA structures 1 and 5 together with the EA structure 4 in the
former case and the KA structures 2 and 7 together with the
EA structure 3 in the latter case. Furthermore, both N7 and N8
can be protonated or deprotonated at the same time. In the
first case, only the KA form 9 is possible, whereas in the latter
case, one KA (10) and two EA (6, 8) forms are possible.
Finally, two rotamers are possible for each EA tautomer (3, 3’;
4, 4’; 6, 6’; and 8, 8’). When needed, the different species will
be indicated by two letters (KA and EA for keto and enol
tautomers, respectively), followed by one (for EA forms) or
two (for the KA forms) numbers indicating the positions of the
other two acidic hydrogens.
For instance, the species 1, 2, 3, and 4 will be labeled KA17,

KA19, EA9, and EA7, respectively. Finally, the cis arrangement
of the enol hydrogen with respect to N7 will be indicated by a
c subscript (e.g., species 3’ is EAc9). For imino species, the cis
arrangement of the imino hydrogen with respect to N1 will be
indicated by another c subscript and up to three numbers are
used to define the positions of acidic hydrogens for KI
tautomers. In analogy with the case of cytosine,5 the
equilibrium structures of imino tautomers are planar (Cs
symmetry), whereas the amino tautomers are slightly non-
planar (C1 symmetry), in agreement with the negative values of
the inertial defects (Δ = Ic − Ia − Ib) derived for some of them
from the experimental microwave spectra.7

Figure 1. Structure of the amine tautomers and rotamers of guanine.
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As already mentioned in the methods section, preliminary
B3/SVP optimized geometries are refined at the rDSD/j3
level. On top of these latter geometries, improved energies are
obtained by single-point computations at the MP2-F12/j3,
CCSD(F12*)(T+)/j3 and junChS-F12 levels. The relative
stability of all the amino rotamers and tautomers of guanine
computed by these methods are collected in Table 1.
Taking the junChS-F12 results as references, the only

inversion in the stability order provided by the other methods
concerns species 8’ and 9 (rDSD and MP2-F12) and 7 (B3/
SVP). Furthermore, both rDSD and MP2-F12 models perform
quite a good job, with a maximum error of 4 and 5 kJ mol−1,
respectively. However, the rDSD model underestimates
systematically the stability of the enol tautomers by more
than 3 kJ mol−1, with this value corresponding to a relative
error close to 50% for the species 3 and 3’. The errors are more
evenly distributed in the case of the MP2-F12 model, which
can be, therefore, used for qualitative analyses. Exploratory
computations showed that, contrary to the case of cytosine,5 all
the imino species are considerably less stable than the
corresponding amino forms. Just to give an example, the
EIc19 form lies about 100 kJ mol−1 above the most stable
tautomer (KA17 (1)) according to all the employed methods.
As a consequence, imino tautomers will not be considered
anymore. Furthermore, all the methods confirm that only four
species [KA17 (1), KA19 (2), EA9 (3), and EAc9 (3’)] should
have non-negligible populations in the gas phase. Therefore, in
the following, the attention will be focused on these species
together with EA7 (4), which has not been detected in the
most recent microwave study,7 but should be not much less
stable.
The PCS equilibrium geometries of all the guanine

tautomers and rotamers are given in the Electronic Supporting
Information, whereas the equilibrium rotational constants of
the five most stable forms computed at different levels are
collected in Table 3. In the same table are also given the semi-
experimental (SE)60,61 rotational constants obtained from the
experimental ground state values reported in ref 7 and the B3/
SVP vibrational corrections given in Table 2. It is quite
apparent that the B3LYP and MP2 computations routinely
employed in the interpretation of MW spectra can provide at
most qualitative trends and that at these levels, the

computation of vibrational corrections is not warranted.
Already rDSD/j3 computations perform a better job, and
correction of bond lengths by the LR approach further
improves the accuracy. However, thanks to both extension of
the basis set and inclusion of CV correlation (which play
comparable roles), the PCS results are even more accurate,
without the need of any empirical parameter in addition to
those possibly present in the underlying electronic structure
method.
As a matter of fact, the PCS relative mean unsigned error

(MUE %) is always close to 0.02% and the corresponding
relative maximum unsigned error (MAX %) never exceeds
0.05%, with these values being on par with the results delivered
by the most sophisticated (and much more expensive) wave-
function composite methods for small semi-rigid mole-
cules.41,43 All these trends can be better appreciated by the
normalized error statistics drawn in Figure 2.
The contribution of CV correlation, whose main effect is to

shorten bond lengths (hence to augment rotational constants),
increases with the atomic number of the involved atoms: as a
consequence, its effect is smaller for X−H than for X−Y bonds
(with X, Y being second- or third-row atoms). Also, the role of
vibrational corrections is especially important for bond lengths,
but the leading term (related to cubic force constants)
produces ground state bonds that are longer than their
equilibrium counterparts, with the X−H distances being
especially affected due to their strong anharmonicity. There-
fore, the inclusion of vibrational corrections would further
decrease the already underestimated B3LYP rotational
constants and the inclusion of CV correlation would further

Table 1. Relative Electronic Energies of All the Tautomers and Rotamers of Guanine Computed by Different Methods and
Relative Harmonic B3/SVP Zero-Point Energies (ΔZPE)a

tautomer B3/SVP rDSD/j3 MP2-F12/j3 CC-F12/j3b junChS-F12 ΔZPEc

1 0.0 0.0 0.0 0.0 0.0 0.0
2 2.9 2.5 3.1 2.8 2.9 −0.4
3 12.4 6.5 3.5 3.0 3.0 −0.6
3’ 15.0 7.6 4.1 4.2 4.0 −0.7
4 24.4 18.8 15.2 15.0 14.9 −1.3
5 27.7 25.6 25.2 26.1 25.7 −0.7
4’ 59.2 49.6 46.6 45.7 45.6 −4.1
6’ 63.7 55.6 51.6 53.2 53.3 −0.6
6 72.0 64.2 61.3 61.9 62.2 −1.1
7 84.8 79.9 81.6 80.0 79.9 −2.9
8’ 95.5 86.4 84.6 83.1 83.6 −1.6
9 81.9 84.4 82.6 86.6 86.4 −1.1
10 102.7 100.4 97.7 102.6 102.9 −3.5
8 139.3 127.3 127.5 123.7 124.5 −4.6

aAll the energy evaluations have been performed on top of rDSD/j3 geometries, except B3/SVP computations, which employ B3/SVP geometries.
bCC-F12 stands for CCSD(F12*)(T+). cFrom harmonic B3/SVP frequencies. All the values are given in kJ mol−1.

Table 2. Equilibrium Rotational Constants and Vibrational
Corrections for the Five Most Stable Energy Minima of
Guanine Computed at the B3/SVP Levela

Ba
eq Bb

eq Bc
eq ΔBa

vib ΔBb
vib ΔBc

vib

1 1910.4 1115.1 704.7 −11.6 −6.7 −4.2
2 1911.5 1109.4 702.4 −12.0 −6.5 −4.2
3 1908.6 1124.5 707.0 −13.3 −6.0 −4.2
3’ 1916.0 1128.3 710.3 −13.8 −6.1 −4.3
4 1912.0 1135.9 712.8 −12.7 −6.2 −4.2

aAll the values are given in MHz.
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increase the already overestimated MP2 rotational constants.
On the other hand, the balanced treatment of both

contributions improves the already satisfactory rDSD/3F12
results. Actually, the errors on equilibrium rotational constants
obtained at the PCS level are close to the expected errors of
vibrational corrections, so that we are approaching the intrinsic
accuracy limit of structure determinations by QC methods.
Guanine contains five 14N nuclei with spin I = 1 and with a

nuclear quadrupole moment that couples to the molecular-
electric-field gradient at the site of the nuclei, with this causing
the coupling of the nuclear spin to the overall rotational
momentum. The presence of five N nuclei results in very
complex hyperfine splitting patterns for all observed rotational
lines. While the corresponding quadrupole coupling constants
can be computed quite accurately at the rDSD level,1 they do
not provide any additional information since no attempt was
made in the experimental studies to assign the quadrupole
hyperfine components, and the rotational frequencies were
measured as the intensity-weighted mean of the line clusters.7

In the same vein, the applied microwave power for optimal
polarization of the rotational transitions was consistent with
the predicted values of the electric dipole moment components
for each tautomer.
The results collected in Table 4 for the five most stable

species show that, contrary to the case of geometrical
parameters, CV correlation plays a negligible role in tuning
the stability of different species. As expected, rDSD/j3

Table 3. Comparison between SE Equilibrium Rotational Constants and the Equilibrium Rotational Constants Obtained by
Different QC Methods for the Five Most Stable Tautomers and Rotamers of Guanine Obtained by Different Methodsa

parameter SEb rDSD/j3 LR rDSD/3F12 PCS MP2/wC3 ae-MP2/wC3

1 Ba
eq 1933.8 1923.2 1932.0 1927.0 1934.1 1921.3 1928.5

Bb
eq 1128.4 1122.8 1128.0 1124.5 1127.9 1128.6 1132.0

Bc
eq 713.2 709.5 712.8 710.7 713.0 711.7 714.1

MUE 6.6 0.9 4.4 0.3 4.7 3.3
MAX 10.6 1.8 6.8 0.4 12.5 5.3
MUE % 0.52 0.06 0.35 0.03 0.29 0.24
MAX % 0.55 0.09 0.35 0.04 0.64 0.32

2 Ba
eq 1934.3 1923.6 1932.5 1927.3 1934.0 1922.3 1929.1

Bb
eq 1123.2 1117.4 1122.5 1119.1 1122.7 1122.9 1126.4

Bc
eq 711.1 707.3 710.5 708.5 710.8 709.5 711.8

MUE 6.7 1.0 4.5 0.3 4.6 3.0
MAX 10.7 1.8 7.0 0.5 12.0 5.2
MUE % 0.53 0.07 0.36 0.03 0.29 0.22
MAX % 0.55 0.09 0.36 0.05 0.62 0.29

3 Ba
eq 1929.4 1920.0 1928.9 1923.2 1929.7 1921.6 1928.1

Bb
eq 1138.4 1132.9 1138.1 1134.7 1138.3 1137.3 1141.0

Bc
eq 716.4 712.8 716.0 713.9 716.2 714.9 717.2

MUE 6.2 0.4 4.1 0.2 3.4 1.6
MAX 9.4 0.5 6.2 0.3 7.8 2.6
MUE % 0.49 0.03 0.33 0.01 0.24 0.14
MAX % 0.51 0.05 0.35 0.02 0.40 0.23

3’ Ba
eq 1937.3 1927.8 1936.8 1931.2 1937.7 1930.3 1937.0

Bb
eq 1142.1 1136.7 1141.9 1138.5 1142.1 1141.3 1145.0

Bc
eq 719.0 715.3 718.6 716.5 718.8 717.6 719.9

MUE 6.2 0.4 4.1 0.2 3.1 1.3
MAX 9.4 0.5 6.1 0.4 7.0 2.9
MUE % 0.49 0.03 0.33 0.02 0.21 0.13
MAX % 0.51 0.05 0.35 0.03 0.36 0.25

4 Ba
eq 1909.3 1918.2 1912.9 1919.5 1909.9 1916.5

Bb
eq 1135.4 1140.6 1137.2 1140.7 1139.8 1143.2

Bc
eq 712.3 715.6 713.5 715.8 714.2 716.5

aAll the values (except % errors) are given in MHz. bSE equilibrium rotational constants obtained from the experimental ground state rotational
constants of ref 7 and the B3/SVP vibrational corrections of Table 2.

Figure 2. Relative (%) deviations of computed rotational constants
from the reference experimental values.
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optimized geometries are already sufficiently reliable for the
computation of accurate electronic energies: for instance, the
average difference between CCSD(T)/3F12 relative energies
at rDSD/j3 and PCS geometries is within 0.1 kJ mol−1. The
PCS and PCS-F12 results are in good agreement with the
maximum and average difference between the relative
stabilities predicted by the two methods being 0.3 and 0.2 kJ
mol−1, respectively. Actually, also the junChS-F12 results
(which employ rDSD/j3 geometries) are sufficiently accurate
(see Table 1), with maximum and average difference of 0.2 and
0.1 kJ mol−1 from PCS (0.4 and 0.3 kJ mol−1 from PCS-F12).
This result gives further support to the reliability of the relative
stabilities given in Table 1 for all the amine tautomers and
rotamers of guanine. It is also noteworthy that the PCS-F12
relative stabilities are virtually identical (maximum difference
of 0.1 kJ mol−1) to the best computations performed until now
(W1-F12),8 despite the use of quite different equilibrium
geometries (PCS in the present case and B3LYP in ref 8).
Finally, the main effect of ZPEs is to increase the relative
stability of all the other tautomers (and rotamers) with respect
to the KA17 (1) species by about 1 kJ mol−1. It is remarkable
that the contributions to the relative stabilities of our
anharmonic ZPEs and the scaled harmonic ones employed in
ref 8 show differences (maximum 0.7 and average 0.5 kJ
mol−1) larger than those between electronic energy contribu-
tions. This result confirms the importance of employing refined
vibrational contributions for obtaining accurate thermochem-
ical data. On the other hand, all the computational approaches
agree with the semi-quantitative experimental estimates of
relative stabilities derived from the intensities of MW signals7

and the infrared results with He droplets.62 In fact, all the
methods forecast a larger population of KA tautomers [KA17
(1) and KA19 (2)] with respect to EA tautomers [EA9 (3)
and EcA9 (3’)].

4. CONCLUDING REMARKS
In this paper, a general strategy aimed at the a priori
computation of accurate spectroscopic parameters for bio-
molecule building blocks has been further improved and
applied to the challenging playground of the guanine
tautomeric equilibrium in the gas phase. Accurate structures
and relative energies are obtained by two new parameter-free
composite schemes (PCS and PCS-F12), which employ very
accurate molecular structures obtained at moderate cost by
combining DFT (double hybrid) valence contributions with
MP2 core-valence correlation. On top of these geometries,
electronic energies are obtained by conventional or explicitly
correlated models in conjunction with accurate yet effective
recipes for CBS extrapolation, perturbative evaluation of
contributions from triple excitations, and core-valence
correlation. The results obtained for guanine are in full
agreement with the available spectroscopic data and permit

their unbiased interpretation in terms of the cooperation or
competition between different stereo-electronic effects.
In a more general perspective, work is already in progress in

order to further extend the dimensions of tractable systems by
employing local correlation methods like PNO or
DLPNO.63−65 Even pending those further developments, the
results of the present investigation pave the way toward highly
reliable investigations of structural and spectroscopic features
for molecular bricks of life, possibly tuned by tautomeric
equilibria, with the aid of fully unsupervised methods coupling
accuracy and feasibility.
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