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Abstract
We offer some theorems, mainly finiteness results, for
certain patterns in elliptical billiards, related to peri-
odic trajectories; these seem to be the first finiteness
results in this context. For instance, if two players hit
a ball at a given position and with directions form-
ing a fixed angle in (0, 𝜋), there are only finitely many
directions for both trajectories being periodic. Another
instance is the finiteness of the billiard shots which send
a given ball into another one so that this falls eventu-
ally in a hole. These results (which are shown not to
hold for general billiards) have their origin in ‘relative’
cases of the Manin–Mumford conjecture and constitute
instances of how arithmetical contentmay affect chaotic
behaviour (in billiards). We shall also interpret the state-
ments through a variant of the dynamical Mordell–Lang
conjecture. In turn, this variant embraces cases, which,
somewhat surprisingly, sometimes can be treated (only)
by completely differentmethods compared to the former
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ones; here we shall offer an explicit example related to
diophantine equations in algebraic tori.

MSC 2020
14G99, 37C25 (primary)

1 INTRODUCTION

The study of billiards is of course a classical mathematical topic, still of wide current interest. Bor-
rowing from Sinai’s ICM survey paper [54], ‘Billiards are dynamical systems which correspond to
the uniform motion of a point inside a domain on a Riemmanian manifold with elastic reflec-
tions on the boundary. [...] The theory of billiards suggests many beautiful problems’. And, to
quote from the preface of Tabachnikov’s book [55] (who in turn refers partly to Katok): ‘Billiards
is not a single mathematical theory; [...] it is rather a mathematician’s playground where various
methods and approaches are tested and honed’.
This viewpoint particularly fits with (the aim of) the present paper: we authors never worked

specifically on billiards, but rather we realized that certain (fairly recent) theorems of arithmetic-
geometrical nature may be applied so to yield, after suitable work, natural conclusions in the
realm of elliptical billiards. More precisely, these results have implications regarding periodical
orbits and finiteness of billiard trajectories with certain (simple and seemingly natural) patterns
or properties which we shall introduce. Naturally the study of elliptical billiards goes back to long
ago† and is present also in recent literature (see, for example, the book [55], the paper [15] by
Connes and Zagier and the paper [47] by Reznik, Garcia, Koiller); however apparently no situ-
ation similar to what appears in this paper has been already analysed and ours seem to be the
first finiteness statements in this context. We remark at once that finiteness conclusions as those
of Theorems 1.4 and 1.5 do not hold for general billiards, neither in the polygonal case nor for con-
tinuous convex billiards, as shall be shown. The choice of considering elliptical billiards is also
motivated by the old conjecture of Birkhoff on integrable billiards being necessarily elliptical.
We recall the ‘rules of the game’ in an elliptic billiard: a ball moves inside the region of the

Euclidean plane bounded by an ellipse; whenever it touches the border, it is reflected according
to the elastic law (we shall speak of a ‘bounce’). Hence a billiard trajectory is a union of segments of
lines, each having end-points on the ellipse, and each segment formingwith its consecutive one an
anglewhich is bisected by the line orthogonal to the tangent to the ellipse at the intersection point.
The results that we intend to apply for the main purposes of this paper have their origin in

the celebrated Manin–Mumford conjecture (a theorem of M. Raynaud since the eighties), which
predicted finiteness of torsion points in a curve of genus at least 2 embedded in its Jacobian. This
was later extended in the realm of abelian schemes, with statements that are part of the so-called
Pink–Zilber conjecture(s). We shall saymore on this below, a fairly extended account (of the basics)
being given in the second author’s book [61].
The link with billiards arises because a billiard shot in an elliptical billiard corresponds to a

point on an elliptic curve which is a member of an elliptic scheme denoted ; periodicity corre-
sponds to this point being torsion. This correspondence too goes back to long ago, essentially to

† Sarnak pointed out to us reference [12] by the Jesuit priest R. Boscovich, an astronomer and scientist, going back to the
XVIII century.
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1270 CORVAJA and ZANNIER

Jacobi’s proof of a famous theorem of Poncelet; see also the book [23] by Dragovic and Radnovic
for a detailed study of this, also in a more general context of hyperelliptic Jacobians, and see the
papers [4] by Barth and Michel, and [31] by Jakob. We especially point out the book by Duister-
maat [24], which (see Chapter 11) treats in detail some issues of elliptic surfaces with reference to
billiards. But to our knowledge no systematic application of this correspondence, similar to what
we propose, has been yet developed or pointed out so far in the literature. Also, we shall develop
several details and equations for the basic setting which seem not to appear in full in the exist-
ing literature, and this study will involve the investigation of relevant (elliptic) algebraic surfaces
and corresponding results in their realm which appear to be new. (The interesting book [24] con-
tains some results and formulae which we develop independently in the Appendix, however the
viewpoint of [24] is somewhat different and no arithmetical information is introduced.)

Some goals of the paper. In the first place we shall use the said description mainly for the
mentioned finiteness theorems, related to periodic orbits in elliptical billiards, in which certain
simultaneous conditions are required; see Theorems 1.4, 1.5 and 1.6.
But we shall also obtain other information about periodic orbits, for instance asymptotic results

on the distribution of billiard trajectories starting at a given point and having given period 𝑛; the
relevant constants will turn out to be expressed explicitly in terms of certain elliptic integrals on
the Legendre curve (see Theorem 1.2). In the complex case, treated in the Appendix because it is
more distant from the main theme, we shall point out an arithmetical meaning of the relevant
constant in the asymptotic.)
Moreover, in Section 5 we shall use the elliptic picture to give a very simple explanation of a

striking formula appearing in [47] (see formula (8)) which expresses the sum of cosines of angles
between consecutive segments in a periodic trajectory; this is an instance of a Birkhoff sum in the
theory of dynamical systems.We shall also ‘characterize’ all such formulae and prove an extension
of the formula for trajectories which are not necessarily periodic.

Further links and results. Several instances of connections between billiards and arith-
metical or geometrical questions are of course already known, butwewonderwhether the present
study may suggest new ones, for instance finiteness issues similar to those mentioned above, pos-
sibly on other types of billiards (as in Remark 1.8), to be still meaningful and maybe raise sensible
questions of diophantine type.
The terminology elliptical, for the billiards we shall deal with, refers to the shape of the billiard

table (see, for example, [55, Chapter 4]).† It seems worth mentioning that several remarkable
investigations in the topic of billiards regard especially polygonal billiards, which indeed occur
among the most natural first examples (see, for example, [55, Chapter 7] for generalities). These
are related in particular to the geometry of suitable curves of genus at least 2 and their Jacobians
(see, for example, Veech’s paper [57] and McMullen’s papers [45, 46], and references therein).
While we do not see any definite direct connection of our billiards with the polygonal ones, it is
puzzling that both our context and the latter have links with torsion divisors in Jacobians and the
Pell–Abel equation‡, that is, a polynomial version of the famous Pell equation in Number Theory.
See [46] for the relation of this equation with polygonal billiards, and see the second author’s

paper [62] for a survey of this topic and links with some results at the basis of the present paper. A
further connection comes from the fact that polygonal billiards are related to real multiplication
in certain Jacobians (see [45]), which occurs also concerning the Theorem of Poncelet (recalled
below) which is at the basis of the ‘billiard-map’ law in elliptical billiards; see Wilson’s paper [59]

† This has not to be confounded with hyperbolic billiards, for which we refer to [54].
‡We follow Serre’s Séminaire Bourbaki paper [51] for this terminology.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1271

for proofs of Poncelet’s theorem coming from real multiplication in Jacobians. We have presently
no general direct explanations for these links but we hope this will be explored in some detail in
the future.
While giving the proofs, we shall see that some of our results on elliptical billiards may be

naturally framed within the following general issue:

Question. Given an algebraic surface with a finitely generated commutative† semigroup Γ of
(rational) endomorphisms, and given three curves on the surface, what can be said assuming the
existence of infinitely many Γ-orbits intersecting each of the curves?

This may be formulated for varieties of arbitrary dimension and reminds of the dynamical
Mordell–Lang conjecture, studied by various authors and still open in its most general case (see for
instance the book [5] by Bell, Ghioca and Tucker). Indeed such conjecture overlaps with our issue:
in our setting, related toTheorem 1.5, the surfacewill be an elliptic surface (a surface fibred in ellip-
tic curves) and Γwill be generated by a single automorphism, corresponding to the translation by
a section of the elliptic fibration.
This can also be phrased as a case of the Question where the surface is the projective plane ℙ2

and the endomorphism is a certain Cremona transformation. Instead, taking the surface again to
be ℙ2, and considering a linear automorphism, and taking for the curves the simplest one, that
is, lines, we obtain another instance of this Question, not directly related to billiards. In the last
part of the paper we shall treat this by proving another finiteness theorem, namely Theorem 1.10,
answering another case of the Question.
We note that this time the arguments shall rely on completely different ingredients com-

pared to the billiard case. This double nature of methods for instances of the same context
seems rather peculiar to us. In the present case the difference seems to come from the nature
of the endomorphism.
We also wonder about a possible general statement containing the dynamical Mordell–Lang

conjecture and this Question as well,‡ linking the whole context to billiards.
In the final remarks in Section 6 we shall point out how further interesting problems arise as

special cases.

1.1 Main statements

Let us now go to state the main results of this paper. Our conclusions will be just samples of what
can be proved with the same methods, and there are many possible variations or generalizations,
which we leave to the interested readers.

†As in the context of the dynamical Mordell–Lang conjecture, the situation with non-commutative semigroups lead to
substantially different problems. For instance, while in a commutative algebraic group every subgroup generated by two
elements has a Zariski-closure of dimension atmost 2, in the non-commutative case the dimension of the Zariski-closure of
a two-generated subgroup can be arbitrarily large. For instance, SL2(ℤ) is two-generated and GL𝑛(ℤ) is finitely generated
for every 𝑛 ⩾ 1. In the case Γ = SL2(ℤ) it is easy to construct triples of lines on the plane intersecting infinitely many orbits
(as in the setting of Theorem 1.10).
‡ Somewhat similar to how the Pink–Zilber conjectures contain the Mordell–Lang’s; see in this direction the paper [27] by
Ghioca and Nguyen. For instance, it is possible to see Falting’s finiteness theorem for curves of genus 2 as an instance of
our Question.
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1272 CORVAJA and ZANNIER

Our setting. Let 𝐶 be an ellipse in the real plane, which together with its interior, denoted
 𝑜, will constitute our billiard table, denoted  = 𝐶 ∪  𝑜. The ‘balls’ will be points in  and a
billiard shot to a ball 𝑝 will correspond to the motion of 𝑝 along a half line until it meets the
boundary 𝐶, in which case it will be reflected according to the usual principle,† and so on. We
suppose that there is no friction so that the ball will continue to move indefinitely, and the speed
will be immaterial for us.
We recall that the phase space (see [55, Chapter 3]) is the set of pairs (𝑝, 𝑣) where 𝑝 ∈ 𝐶 and

𝑣 ∈ 𝑆1 is a unit vector such that 𝑝 + 𝜖𝑣 is inside  for small 𝜖 > 0. So 𝑣 varies in a semicircle
depending on 𝑝 ∈ 𝐶. (During the proofs we shall see how in our context the phase space gives
rise to elliptic algebraic surfaces of various types.) In general by a billiard shot we shall mean
a pair (𝑝, 𝑣) either in the phase space or such that 𝑝 ∈  𝑜, where 𝑣 is a non-zero vector, often
assumed of unit length, representing the direction along which 𝑝 is sent. (So in case 𝑝 ∈  𝑜 the
vector 𝑣 varies in 𝑆1.) This shot generates a billiard trajectory, consisting of the shot together with
the further segments which arise by reflection.

Remark 1.1. Real and complex solutions. We remark at once that the said motion of the balls
in the billiard will be described by real solutions to certain (algebraic) equations. Now, these equa-
tions will make sense even considering their complex solutions. Of course in general these new
solutions will not correspond to an actual billiard trajectory. Nevertheless many results will main-
tain their validity even in the extended realm of solutions. We shall usually omit this comment
in the sequel unless the situation is special. For instance in the Appendix we shall treat explicitly
both cases, and we shall see that certain constants arising from the counting of periodic trajec-
tories have quite a different meaning in the two cases (see also Theorem 1.2 and the comments
which follow).

Most of our conclusions will assert finiteness of certain patterns. But let us start now with an
easier result in the opposite direction. Sincewe shall supplement this result with other oneswhich
are a bitmore distant from themain topic, this first theoremwill be proved in theAppendixwritten
also with Demeio.

Theorem 1.2. Let 𝑝1, 𝑝2 ∈  , not both foci. Then for each integer 𝑛 > 0 there exists a billiard tra-
jectory from 𝑝1 to 𝑝2 with exactly 𝑛 reflections. For odd (resp., even) integer 𝑛 > 0 the number of
periodic trajectories from 𝑝1, of period 𝑛, equals 𝑐𝑜 ⋅ 𝑛 + 𝑂(1) (resp., 𝑐𝑒 ⋅ 𝑛 + 𝑂(1)) where 𝑐𝑜, 𝑐𝑒 are
positive numbers (depending on 𝑝1) which may be ‘explicitly’ expressed in terms of elliptic integrals
on the Legendre curve (as indicated in the Appendix).

At least for algebraic values of the parameters which express the ellipse and the point, the
numbers 𝑐𝑜, 𝑐𝑒 will turn out to be ratios of periods, in the sense of the paper [35] by Kontsevich
and Zagier.
We shall also observe that, as 𝑛 grows the set of slopes of the first segment of such trajectories

is dense in the appropriate circle or semicircle, and tends to be uniformly distributed with respect
to a certain measure, made explicit in Section 2. (This does not hold in the 𝑝-adic case, as shown
in [39].)
Some of these results are maybe known to experts, but we have no reference.

†Namely, the old and new directions will form equal angles with the tangent to 𝐶 at the boundary point.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1273

The asymptotic becomes 𝑐𝑛2 + 𝑂(1) if one looks at complex points, where now the constant
𝑐 is related to the (functional) height of a certain section of an elliptic scheme that we shall use
repeatedly in our proofs (see the paper [16] of Demeio, Masser and the authors for a discussion
on these heights). Our proofs, which work for sections more general than the billiard ones, will
rely on the so-called Betti map (of a section) (in its simplest version), introduced implicitly by
Manin and studied recently by various authors, for example, in the papers [1, 17] of the authors,
resp., with Masser and André (with an appendix of Gao). It turns out that the elliptical billiard
delivers a section on an associated elliptic scheme, which may be taken as the Legendre scheme
after a suitable quadratic base change. We shall analyse this scheme from several viewpoints. In
the Appendix we shall show that analogous distributional results hold for general sections, that
is, not associated to billiards.

Remark 1.3.

(i) Algebraic points, heights. When everything is defined over the field ℚ of algebraic
numbers, one derives further information, for instance that the relevant slopes, though dense,
are sparse. Indeed, it follows from results of Silverman and Tate (1980s) that such slopes are
algebraic numbers of bounded (Weil) height (in particular this implies that there are only
finitely many ones of bounded degree over ℚ); see [61], especially Appendix C by Masser. In
other words, for given points 𝑝1, 𝑝2 on the billiard table, not both foci:
∙ a trajectory starting at 𝑝1 and with slope of large enough height will never pass through 𝑝2.
This is an instance of how arithmetical content can affect chaotic behaviour (in this

case of the trajectories). Since the height is contributed by all absolute values, not only the
archimedean ones, this fact says that in the present circumstances chaotic behaviour is not
a mere consequence of the real usual absolute value of the relevant parameters. A similar
comment holds on thinking that, as already mentioned, density fails in the 𝑝-adic context.

(ii) Relation with integral points over function fields. Consider the case of Theo-
rem 1.2 when 𝑝1 = 𝑝2, so we want periodic trajectories. If we write this condition in terms of
sections of the elliptic scheme  corresponding to the billiard game, the condition amounts
to a section not being torsion, but becoming torsion at the relevant slopes. These slopes cor-
respond to poles of the Legendre coordinates expressing the section. In this way the infinity
of these slopes may be deduced from a function field version of Siegel’s theorem on integral
points, applied here with the elliptic curve  viewed over a finite extension of ℚ(𝑠). See [61]
and [16] for more on this viewpoint, which is valid for all sections (even if not coming from
the billiard).

Our next result concerns two playerswhich start from the same point andwith directionswhich
stay apart by a fixed angle, asking for a periodic path in both cases. We can prove finiteness for
this pattern:

Theorem 1.4. Let 𝑝0 ∈  and 𝛼 ∈ (0, 𝜋). Suppose also that 𝐶 is not a circle. There are only finitely
many pairs of billiard trajectories (𝑝0, 𝑣), (𝑝0, 𝑣′) which are both periodic and such that 𝑣, 𝑣′ form
an angle 𝛼. If 𝐶 is a circle then the same conclusion holds if 𝑝0 ∈  𝑜 is an interior point that is not
its centre.

In a previous version of the paper we only considered the case of a non-circular elliptic billiard.
We owe to Sorrentino the remark that for a circular billiard the situation is slightly different; we
then considered this issue in the present version.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12561 by Scuola N

orm
ale Superiore D

i Pisa, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1274 CORVAJA and ZANNIER

Recently Binyamini [6] has produced effectivity of the relevant ingredients of the proofs, so if
we work with computable quantities one can exhibit in principle the finitely many directions in
question, and similarly for the next results. Here also the question arose about quantitative esti-
mates for the number of solutions in the cases where finiteness holds. This issue was put forward
by Glutsyuk, whomwe thank.We do not know the exact dependence of the bounds on these data.
If we let also the point 𝑝0 vary, then, using, for example, the Betti map for a higher dimensional

base (see in particular [1]), one can show that the relevant pairs form an infinite set, actually
containing a denumerable union of sets of positive dimension. We shall say a little more on these
problems in the final section.
Our second finiteness conclusion is inspired by an elliptical (possibly circular) billiard with two

balls 𝑝1, 𝑝2 ∈  and a hole ℎ ∈ 𝐶. The purpose is that a billiard shot sends 𝑝1 to hit 𝑝2 (after any
number of bounces) so that 𝑝2 in turn goes eventually into ℎ (where we suppose that 𝑝2maintains
the direction of 𝑝1). Again, there is finiteness, except in a well-described situation.

Theorem 1.5. Let 𝑝1, 𝑝2 ∈  0 be distinct interior points and ℎ ∈ 𝐶 a point in the border. There are
only finitely many shots (𝑝1, 𝑣) such that the trajectorymeets both 𝑝2 and ℎ, unless 𝑝1, 𝑝2 are the foci
of 𝐶.

Again, the proof in the special case when 𝐶 is a circle is different (and easier) from the
diophantine viewpoint, involving roots of unity instead of elliptic torsion.
Still another finiteness result concerns trajectories passing several times through a given point.

A shot from a point 𝑝0 giving rise to a trajectory eventually passing again through 𝑝0 will be called
a boomerang shot (from 𝑝0).
Boomerang shots from a point 𝑝0 can be of three types:

(1) periodic trajectories: in that case they pass through 𝑝0 infinitely often;
(2) the trajectory passes through 𝑝0 a second time with the same direction but a different orien-

tation; these trajectories intersect 𝑝0 exactly two times, unless they also belong to the first or
third class;

(3) the trajectory passes through 𝑝0 with another direction; again these trajectories intersect 𝑝0
exactly two times, unless they belong also to one of the two previous classes.

Note that if a trajectory is of types (2) and (3) at the same time, then it intersects 𝑝0 at least three
times. If it passes through 𝑝0 five times, then clearly it is periodic.
We have

Theorem 1.6. Let 𝑝 ∈  𝑜 be an interior point, not a focus of 𝐶. Then there are infinitely many
boomerang shots from 𝑝 of each of the three types above. There are only finitely many boomerang
shots which belong to two distinct types as above. In particular, there are only finitely many shots
giving rise to a trajectory passing through 𝑝 exactly three or four times.

By the same methods, we could prove the further following finiteness result:
Let 𝑝0, 𝑝1 be two points of  , not both foci. There exist only finitely many boomerang shots from

𝑝0 hitting 𝑝1.
In general, if the point 𝑝0 is given in advance, there exist no boomerang shots from 𝑝0 hit-

ting another given point 𝑝1; also there are no non-periodic boomerang shots passing three times
through 𝑝0. Thanks to the mentioned effective results of Binyamini in some ingredients of our
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1275

proofs, it should be possible to effectively decide whether such trajectories exist or not for a given
point 𝑝0.

Remark 1.7. As mentioned above, if the starting point 𝑝0 is allowed to vary on the billiard table,
then this extra degree of freedom enables to produce infinitely many cases where, for example, a
non-periodic boomerang shot hitting 𝑝0 three (and even four) times exists; or, given 𝑝1, one can
find infinitely many points 𝑝0 fromwhich a boomerang shot hitting 𝑝1 can be found. The proof of
these existence results, however, needs a study of the Betti map associated to a section of a higher
dimensional abelian scheme; in particular, one should prove the non-degeneracy of this map in
an open set of real points. This could be done by combining the arguments of [17] with those of
[1, Section 9].

Remark 1.8. About other billiards. It is natural to ask what happens of these statements on
considering other types of billiards.
Let us for instance take rectangular ones. Give a rectangle  we may associated to it a lattice

𝐿 in ℂ having  as fundamental domain. It is easy to see that the analogue of Theorem 1.2 holds
(though the results on heights recalled in Remark 1.3 do not).
As to Theorem 1.4, we shall prove the following:

Theorem 1.9. Let  ⊂ ℂ be a rectangle, 𝐿 ⊂ ℂ be the associated lattice. If for some point 𝑝0 ∈ ℂ

and some angle 𝛼 ∈ (0, 𝜋) there aremore than three pairs of periodic trajectories for the billiard in 
which pass through 𝑝0 and form an angle 𝛼 at 𝑝0, then ℂ∕𝐿 has Complex Multiplication. Vice versa,
if ℂ∕𝐿 has CM then for infinitely many 𝛼 ∈ (0, 𝜋) and for every 𝑝0 ∈  there are infinitely many
pairs of periodic orbits passing through 𝑝0 and forming at 𝑝0 an angle 𝛼.

We shall give the proof in Section 3.2.
One can carry out a similar analysis also for the other results here; for Theorem 1.5 this depends

not only on the billiard but also on the points 𝑝1, 𝑝2, ℎ and similarly for Theorem 1.6.
We think it could be not free of interest to explore what happens of these assertions for more

general polygonal billiards, for example, those considered in the above quoted papers. We owe to
McMullen the remark that for regular 𝑛-agonal billiards, the cross-ratios of the slopes giving rise
to periodical orbits belong to a fixed number field, actually to a cyclotomic field (see, for example,
the paper [13] by Calta and Smillie). This implies that the field of definition of the periodic slopes
is finitely generated. In the case of the square billiard, this field is in factℚ. This phenomenon is in
contrast with what happens with elliptical billiards, where the degree of the field of definition of
periodic orbits tends to infinity with the order of the orbit. This again indicates that the arithmetic
in the case of elliptical billiards plays a special role.
As to billiard tables which are smooth convex curves, again the finiteness results do not gener-

ally hold. For instance, in the case of Theorem 1.4, suppose that the players’ first shot sends the
initial ball from 𝑝0 to points 𝑝1, resp., 𝑝2 on the border, so that the directions differ by an angle
𝛼. Now, on deforming smoothly the border curve in small neighbourhoods of 𝑝1 and 𝑝2 one can
ensure that there are infinitely many shots for which both trajectories are periodic. One could ask
what would happen by imposing further assumptions on such billiards, for example, integrability
conditions. However, this would easily lead again to elliptical billiards, according to a conjecture
of Birkhoff (see [33]).

Diophantine content. It will be clear from the argument (take for instance Theorem 1.4)
that they depend on the fact that a real-analytic arc in a real torus ℝ2∕ℤ2 under appropriate

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12561 by Scuola N

orm
ale Superiore D

i Pisa, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1276 CORVAJA and ZANNIER

assumptions can contain only finitely many rational points. In the present situations, these
assumptions are strongly related to the algebraicity of the elliptic family  associated to the
billiard. In the case of more general curves inside such a torus, this finiteness may well fail; in
any case such finiteness would be probably linked to deep results in transcendence, depending
heavily on the context and generally falling outside the present methods.
Similar considerations hold for the other finiteness results proved in the paper.

As mentioned above, we shall see how the above results may be framed as cases of a general
situation in algebraic dynamics, stated above as a ‘Question’. In this direction, we provide evi-
dence by proving another theorem, not directly related to billiards, but perfectly fitting into the
mentioned general issue, actually being one of the simplest possible examples of it.

Theorem 1.10. Let 𝐿1, 𝐿2, 𝐿3 be (complex) lines in ℙ2 and let 𝛽 ∈ Aut(ℙ2) be a linear automor-
phism. Suppose that no element of the group generated by 𝛽 sends one of the three lines to another
and that none of them contains a fixed point for 𝛽. Then there are only finitely many 𝛽-orbits of
points in ℙ2 which intersect all the three lines 𝐿1, 𝐿2, 𝐿3.

It is clear that if 𝛽 has infinite order there are always countably many orbits intersecting two
given lines. On the other hand, it is natural to expect finiteness starting with three lines. Such
finiteness cannot hold whenever one of the three lines is sent into another one by a power of 𝛽.
On the contrary, the condition that the three lines contain no fixed point for 𝛽 can be relaxed, but
not omitted. In Proposition 4.1, and in the examples following its proof, we shall give a complete
description of the cases in which there exist infinitely many orbits intersecting three given lines.
Our finiteness statement is formulated in terms of orbits, not of points. One can ask what hap-

pens if one of the three lines, say 𝐿1, contains infinitelymany pointswhose orbitmeets both 𝐿2 and
𝐿3. These points might lie in only finitely many orbits. Combining the classical Skolem–Mahler–
Lech theorem with our Theorem 1.10 we can give a complete classification of the cases when this
happens (see Proposition 4.8): in particular, 𝐿1 must have only finitely many images under 𝛽.
As mentioned, the proof of Theorem 1.10 will require entirely different tools compared to the

previous theorems, though several of the preceding statements (especially Theorem 1.5) could be
phrased in terms of finiteness of orbits intersecting given curves on certain surfaces.
Let us explain the main arithmetic difference between the situation arising from billiards and

the one involving linear automorphisms of the projective plane. In the billiard case, say in The-
orems 1.4 and 1.5, the solutions, that is, the directions of the first shot, have a priori bounded
height; the finiteness follows from a bound on their degree. In the proof of Theorem 1.10, on the
contrary, we reduce to diophantine equations in a given number field, and the finiteness of the
set of solutions amounts to bounding their heights.
In Section 6, we shall discuss a plausible general conjecture for finiteness in these situations.

We shall remark how the most obvious tentative would lead to counterexamples, so some care is
needed before putting forward some general (hypothetical) statement.

About our proofs. The starting points for the proofs of all our theorems on elliptical billiards
are the following two facts, which will be recalled in detail in next sections:

(i) first, all segments of a billiard trajectory are tangent to a same conic, confocal with the billiard
table 𝐶, called the ‘caustic’ of the trajectory;
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1277

(ii) second, once a caustic is fixed, the set of possible pairs (𝑝, 𝑙)where𝑝 ∈ 𝐶 and 𝑙 is a line passing
through 𝑝 and tangent to the given caustic, is naturally an algebraic variety which turns out
to be a curve of genus 1.

Varying the caustic (through a parameter) produces an algebraic one-dimensional family of
curves of genus 1: in another language, an elliptic surface. Recall that genus 1 curves can be given a
group structure (starting from amarked point), producing elliptic curves. The ‘billiardmap’, send-
ing the pair (𝑝, 𝑙) to the pair (𝑝′, 𝑙′) obtained after the bounce, consists in a translationwith respect
to this group structure. Hence the billiard map can be viewed as an automorphism of this elliptic
surface, as well as an automorphism of each elliptic curve belonging to the elliptic fibration.
Once this setting is appropriately formulated, the proofs of our finiteness results (Theorems 1.4,

1.5 and 1.6) rely on fairly recent results, mainly obtained via a method introduced by Masser with
the second author in [41], stating the finiteness of simultaneous torsion conditions for several
sections of an elliptic scheme, or, more generally, finiteness for the set of points of the base curve
where independent sections take values satisfying several dependence relations. Crucial results in
this setting have been recently obtained byGhioca, Hsia and Tucker [26] and, in greater generality,
by Barroero and Capuano [2].
Consider for instance the case of Theorem 1.4. Choosing a point and shooting the ball from

it with a certain direction produces a point on a curve of genus 1 (depending on the direction);
after the first bounce one obtains another point on the same curve. Well, their ‘difference’ on
the elliptic curve associated to the curve of genus 1 is a torsion point if and only if the orbit is
periodic. Two shots whose directions differ by a fixed angle as in Theorem 1.4 will produce two
different points on two different elliptic curves. The theorem asserts that these two points cannot
be simultaneously torsion, apart for finitely many cases.
Geometrically, the real points of an elliptic curve form a circle (or a pair of circles); locally, the

family of such circles, for varying the direction of the shots, is topologically constant, so every shot
gives rise to a point on a fixed circle. Varying the pairs of shots with a fixed angle between them
produces a curve on the product of two copies of a circle, that is, a two-dimensional real torus.
Theorem 1.4 follows from the fact that this curve does not meet infinitely many rational points
on the torus. This kind of result strongly depends on the special nature of the curves which arise
and would not be true in a general context. For this reason we suspect that other proofs of these
results could hardly be obtained without appealing to the arithmetic and geometry of the context.
Yet in another language, working on the universal cover of the torus, we obtain a real-analytic

(transcendental) curve inℝ2 and our theorem follows from the fact that this curve cannot contain
infinitely many points with rational coordinates. Ultimately, a diophantine result of Pila (origi-
nating in work by Bombieri–Pila and eventually heavily generalized by Pila and Wilkie to higher
dimensions) on rational points on transcendental surfaces must be used to prove this last fact,
together with height considerations and Galois-theoretic properties coming from the arithmetic
theory of elliptic curves. For an account on these techniques, see the second author’s book [60].
However, in this work some further ingredients are needed for the proofs of both the finiteness
results like Theorems 1.4 and 1.5, and the existence results like Theorem 1.2.
Concerning our Theorem 1.10, the methods of proof are completely different; indeed, the pos-

sible infinite families of points on the first line whose orbit intersects the two other lines are
automatically defined over a fixed number field. They will give rise to a system of exponen-
tial diophantine equations, or equations of mixed polynomial-exponential type. One then can
apply rather classical results from the theory of diophantine equations involving linear recurrence
sequences and relying on the Schmidt Subspace Theorem.
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1278 CORVAJA and ZANNIER

Finally, while in the proofs of Theorems 1.4 and 1.5 the points in question have a priori bounded
height, in the proof of Theorem 1.10 the solutions have a priori bounded degree.

2 PRELIMINARIES AND AUXILIARY RESULTS

In this section we shall recall some basics from the theory of elliptical billiards, and we shall
see how the space parametrizing billiard shots gives rise to an elliptic scheme. Similarly, we
shall see how the phase space gives rise to an elliptic surface. Finally, we shall recall some aux-
iliary theorems of number-theoretical/geometrical nature which will be applied to derive the
sought results.

2.1 Elliptical billiards

The first appearance of properties of the elliptical billiard seems to be rather old, that is, going
back to the XVIII century, in Boscovich’s [12] (a reference which we thank Sarnak for).
As above, by elliptical billiard we mean a billiard whose table  is an ellipse 𝐶 together with

its interior  𝑜. For definiteness, suppose that 𝐶 has foci at (±𝑐, 0) for a 𝑐 ∈ (0, 1), and (affine)
equation

𝐶 ∶ 𝑥2 +
𝑦2

1 − 𝑐2
= 1. (1)

It is a remarkable theorem (capable of an ‘Euclidean proof’, see, for example, [55, Theorem 4.4])
that a billiard trajectory remains tangent to a confocal conic, called caustic. Thiswill be a hyperbola
or an ellipse according as the trajectory crosses or not the segment joining the foci, a property
which shall be shared by all segments of trajectory. (When the trajectory passes through a focus,
it will continue to pass alternatively through the two foci, which amounts to a degenerate case of
the former description, when the caustic becomes the segment connecting the foci.) Let us write
an affine equation for the family of confocal conics:

𝐶𝑠 ∶
𝑥2

𝑠
+

𝑦2

𝑠 − 𝑐2
= 1, (2)

where 𝑠 is a parameter. For real billiard trajectories, we shall have 0 < 𝑠 < 1, and the caustic will
be a hyperbola precisely for 𝑠 < 𝑐2.
Suppose that (𝑝, 𝑣) is a billiard shot in the phase space, so 𝑝 ∈ 𝐶. Then the line determined

by (𝑝, 𝑣) will be tangent to a unique caustic 𝐶𝑠 (𝑠 depending on (𝑝, 𝑣)), so (𝑝, 𝑣) corresponds to a
point in the so-called dual conic 𝐶𝑠. This has equation, in affine coordinates 𝑡, 𝑢,

𝐶𝑠 ∶ 𝑠𝑡2 + (𝑠 − 𝑐2)𝑢2 = 1, (3)

in the sense that a line defined in the 𝑥𝑦-plane by 𝑡𝑥 + 𝑢𝑦 = 1 is tangent to 𝐶𝑠 if and only if (𝑡, 𝑢)
verifies (3).

A rational parametrization of 𝐶. We give explicitly a rational parametrization of the
ellipse 𝐶, which will be independently useful. The projective closure in ℙ2 of 𝐶 becomes
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1279

isomorphic to ℙ1 on using for instance the map 𝑧 and its inverse map given by

𝑧 ∶= (𝑥, 𝑦) ↦ 𝑦∕(𝑥 − 1), 𝑥 = (𝑧2 + 𝑐2 − 1)∕(𝑧2 + 1 − 𝑐2), 𝑦 = 2𝑧(𝑐2 − 1)∕(𝑧2 + 1 − 𝑐2). (4)

The group of automorphisms of 𝐶 generated by sign change on the coordinates corresponds to
the group generated by 𝑧 → −𝑧 (corresponding to (𝑥, 𝑦) → (𝑥,−𝑦)) and 𝑧 → (𝑐2 − 1)𝑧−1 (corr. to
(𝑥, 𝑦) → (−𝑥,−𝑦)).

∙ We note once and for all that the above equations are subject to restrictions (for instance 𝑠 ≠
0, ±𝑐 and for 𝑠 = ±1 the caustic becomes 𝐶), and are affine. However, as usually happens, we
shall always tacitly consider their completions in ℙ2, and occasionally suitably interpret the
objects also for the forbidden values.

2.2 Correspondence with elliptic curves

We now resume in short the correspondence of this context with elliptic curves, due essentially
to Jacobi, who used it to give a proof of the Theorem of Poncelet, which contains as a special case
the situation of the elliptical billiard (see for instance the above quoted sources and the authors’
booklet [18], and the references therein for more).
Given a caustic 𝐶𝑠, one can consider the curve 𝑠 ⊂ 𝐶 × 𝐶𝑠 ⊂ ℙ2 × ℙ2 defined as the closure

of the set of pairs (𝑝, 𝑙), where 𝑝 ∈ 𝐶 belongs to the line 𝑙 ∈ 𝐶𝑠 tangent to 𝐶𝑠. Note that for 𝑠, 𝑝, 𝑙
defined over ℝ such a pair determines uniquely a point (𝑝, 𝑣) in the phase space.
It turns out that 𝑠 is smooth and has genus 1 for complex 𝑠 ≠ 0, 1, 𝑐2,∞. The curve 𝑠 has a

Jacobian 𝐽𝑠, which is an elliptic curve (see [52]), and may be seen as the connected component of
the identity in the group of automorphisms of 𝑠 (they have no fixed points except for the identity).
Ifwe let 𝑠 vary arbitrarily inℂ, the field of definition is immaterial, but ifwe consider 𝑠 as a variable,
then the ground field of the whole construction may be taken as ℚ(𝑐, 𝑠). This will be relevant in
some verifications below.
The above equations give the following presentation for 𝑠 inside ℙ2 × ℙ2, written for sim-

plicity in affine coordinates (𝑥, 𝑦) × (𝑡, 𝑢), but which should be of course extended on using
bi-homogeneous coordinates:

𝑠 ∶
⎧⎪⎨⎪⎩

𝑥2 +
𝑦2

1−𝑐2
= 1

𝑡𝑥 + 𝑢𝑦 = 1

𝑠𝑡2 + (𝑠 − 𝑐2)𝑢2 = 1.

(5)

Here 𝑝 = (𝑥, 𝑦) is a point on the ellipse 𝐶 whereas the line 𝑙 (containing 𝑝) corresponds to (𝑡, 𝑢)
under the usual duality on ℙ2 (expressed through the middle equation).

Automorphisms of order 2. Observe that for 𝑠 ≠ 0, 1, 𝑐2,∞ there is a group of four auto-
morphisms of 𝑠, defined over ℚ, without fixed points and isomorphic to (ℤ∕2)2: the group is
represented by ((𝑥, 𝑦), (𝑡, 𝑢)) → ((𝜖𝑥, 𝜂𝑦), (𝜖𝑡, 𝜂𝑢)), where 𝜖, 𝜂 = ±1, indeed without fixed points
for the said values of 𝑠. (These elements correspond to the four points of order 2 on 𝐽𝑠.)

∙ If we want to refer to the whole total space of all 𝑠 we shall use the notation  .
A choice of a point as an origin will give a model of 𝑠 as an elliptic curve (omitting the said

values of 𝑠). Below we shall give an explicit Legendre model.
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1280 CORVAJA and ZANNIER

2.2.1 The billiard map

A segment of billiard trajectory is determined by two ordered points 𝑝, 𝑝′ on 𝐶. If 𝑣 is a unit (real)
vector which represents the direction 𝑝 → 𝑝′, then (𝑝, 𝑣) is in the phase space. We let (𝑝′, 𝑣′)

correspond to the next segment of trajectory. The billiard map, usually denoted 𝑇 in this paper,
sends (𝑝, 𝑣) to (𝑝′, 𝑣′). Because of the result recalled above, both of these pairs determine the same
caustic 𝐶𝑠, and then the billiard map acts on any 𝑠 and in fact is an (algebraic) automorphism of
𝑠. Thus 𝑇 makes sense also for complex points of 𝐶, complex numbers 𝑠 and complex vectors 𝑣.†
The billiard map may be realized as the composition of two other automorphisms, actually

involutions. A first involution, denoted 𝜄, sends (𝑝, 𝑙) to (𝑝′, 𝑙) (so it sends (𝑝, 𝑣) to (𝑝′, −𝑣) if we
want to work on the phase space). To define a second involution, denoted 𝜄∗, let 𝑙∗ be the other
tangent from 𝑝 to 𝐶𝑠 (possibly 𝑙∗ = 𝑙 whenever 𝑝 ∈ 𝐶 ∩ 𝐶𝑠). Then we put 𝜄∗ = (𝑝, 𝑙∗). (Note that
the map 𝜋 ∶ 𝑠 → 𝐶 has the pairs 𝑥, 𝜄∗(𝑥) as fibres.) Clearly 𝜄, 𝜄∗ are involutions. It is immediately
checked that 𝑇 = 𝜄∗ ◦ 𝜄.
One may also easily see that both 𝜄, 𝜄∗ have fixed points (which are ramification points of the

corresponding quadratic maps); it follows from general theory of curves of genus 1 that 𝑇 has no
fixed points and thus is a translation as an element of the jacobian 𝐽𝑠 of the curve 𝑠 of genus 1.
We have moreover the

Theorem of Poncelet: The translation 𝑇 depends only on the caustic, not on 𝑝.

This follows again from the general theory of curves of genus 1, the proof by Poncelet‡ however
predating such facts; see [55, p. 58] (especially Corollary 4.5), for a somewhat different description
of the translation, without invoking elliptic curves, and described as an element of the circle 𝑆1.
This is consistent because the connected component of the identity in the group of real points
of an elliptic curve over ℝ is a circle. The present description covers also the case of complex
coordinates (compare with Remark 1.1 above).

An invariant. It is also proved in an elementary geometric way that (in our notation) the
function (1 − 𝑐2)𝑥𝑣1 + 𝑦𝑣2 is invariant for the billiard map (that is, is an integral) for 𝑣 = (𝑣1, 𝑣2),
and indeed its square is found to be (1 − 𝑐2)(1 − 𝑠). This corresponds to the constancy of a certain
(easily written down) rational function on the above elliptic curves. We also note that there is an
area form, invariant for the billiard map, on the phase space, given by sin 𝛼 ⋅ d𝛼 ∧ d𝑡, where 𝑡 is
an arc-length parameter on 𝐶 and, for (𝑝, 𝑣) in the phase space, 𝛼 is the angle between 𝑣 and the
positive tangent to 𝐶 at 𝑝 (this was discovered by Birkhoff [7], see also [55, p. 33]).
These very interesting invariances can be used to prove many results without invoking

elliptic curves. However (as we shall remark with explicit examples), the latter descrip-
tion seems indispensable to deal with other conclusions of this paper, especially the present
finiteness theorems.

2.3 Billiard shots and elliptic schemes with sections

We have recalled that each billiard shot defines a caustic, and in turn a curve 𝑠 of genus 1 and
its Jacobian 𝐽𝑠, which is an elliptic curve. If we disregard the ground field, 𝐽𝑠 is isomorphic to the

†We wonder whether the complex billiard dynamics, seen as a dynamics on a real surface corresponding to the ellipse,
may be given a direct simple geometrical description.
‡ Poncelet considered actually a more general dynamics involving arbitrary pairs of non-tangent conics.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1281

curve 𝑠 itself once we have chosen a point on 𝑠 as origin. If we work over ℚ(𝑐, 𝑠) where 𝑠 is a
variable this procedure increases the ground field. Note that this viewpoint is like having a scheme
over the 𝑠-line whose fibres are elliptic curves. We indicate briefly two distinct (but equivalent)
ways of dealing more explicitly with this.
In the first place, it is relevant to consider the intersection𝐶 ∩ 𝐶𝑠, consisting of the ramification

points of the projection of 𝑠 ⊂ 𝐶 × 𝐶𝑠 to 𝐶. One easily finds that

𝐶 ∩ 𝐶𝑠 = {(±𝑥0, ±𝑦0)}, 𝑥20 =
𝑠

𝑐2
, 𝑦20 =

(1 − 𝑐2)(𝑐2 − 𝑠)

𝑐2
. (6)

If these points are pairwise distinct, which amounts to 𝑠 ≠ 0, 𝑐2,∞, then 𝑠 is indeed smooth of
genus 1. Of course to choose these pointswe have to perform a base change from the 𝑠-line, defined
by the equations on the right of (6).
Note that, considering the presentation (5), we have a natural projection 𝑠 → 𝐶. For a point

𝑝 ∈ 𝐶 the inverse image consists of the tangents from 𝑝 to 𝐶𝑠. These tangents coincide precisely
when 𝑝 ∈ 𝐶𝑠, that is, when 𝑝 is one of the points in question. Hence these points are precisely the
ramification points of the said projection. We remark that knowledge of these points determines
the curve 𝑠 up to isomorphism (over an algebraic closure of the ground field).
We must also exclude for the moment 𝑠 = 1, that is, 𝐶𝑠 = 𝐶; however soon we shall see that on

considering other models we may allow this value as well, in the sense that it yields an elliptic
curve, though not associated to the billiard. (When 𝐶 = 𝐶𝑠 one might also conceive a billiard shot
as acting only on balls on 𝐶 and as producing no effect on the ball.)
We finally note that , for real 𝑠 ≠ 0, 1, 𝑐2, these points are real precisely when 𝑠 < 𝑐2, which

happens when 𝐶𝑠 is a hyperbola. This is clear also geometrically. When 𝑠 > 𝑐2 the caustic is an
ellipse and these points have real 𝑥0 and purely imaginary 𝑦0.

2.4 A Legendre model

We nowwant to construct an explicit isomorphism of the curve 𝑠 of genus 1 given by (5) (where 𝑠
is a variable) with an elliptic curve in Legendre form; thiswill be convenient for some calculations.
Using the map 𝑧 of (4) giving an isomorphism 𝐶 ≅ ℙ1, a cross-ratio of the above four points in

(6), denoted here 𝜆, is easily calculated (as obtained below in (8)) to be

𝜆 = 𝑥20 =
𝑠

𝑐2
. (7)

This already shows that the 𝑗-invariant of 𝐽𝑠 is a non-constant rational function of 𝑠, so our scheme
is not isotrivial.
To construct an isomorphism with a Legendre curve, let now 𝜁 ∈ PGL2 send three of the four

points (6) to 0, 1,∞; we can take 𝜁 to be defined over𝐾(𝑥0, 𝑦0), where we put𝐾 ∶= ℚ(𝑐,
√
1 − 𝑐2).

Let us carry out explicitly this construction, for which we have no bibliographical reference.
Choosing 𝑥0, 𝑦0 as in (6), let us put for this argument 𝑃1 = (𝑥0, 𝑦0), 𝑃2 = (−𝑥0, 𝑦0), 𝑃3 =

(𝑥0, −𝑦0), 𝑃4 = (−𝑥0, −𝑦0), and let us denote 𝑧𝑖 ∶= 𝑧(𝑃𝑖), so for instance 𝑧1 = 𝑦0∕(𝑥0 − 1).
The cross-ratio (for a certain ordering) is given by

(𝑧1 − 𝑧2)(𝑧3 − 𝑧4)

(𝑧1 − 𝑧4)(𝑧3 − 𝑧2)
= 𝑥20 = 𝜆. (8)
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1282 CORVAJA and ZANNIER

A homography 𝜁 as required, putting 𝜁𝑖 ∶= 𝜁(𝑧𝑖), is given by

𝜁(𝑧) =
𝑧 − 𝑧2
𝑧 − 𝑧4

(
𝑧3 − 𝑧4
𝑧3 − 𝑧2

)
=

(𝑥0 + 1)𝑧 + 𝑦0
(𝑥0 + 1)𝑧 − 𝑦0

𝑥0, 𝜁1 = 𝜆, 𝜁2 = 0, 𝜁3 = 1, 𝜁4 = ∞. (9)

Then the function 𝜁 ◦ 𝑧 ◦𝜋 from 𝑠 to ℙ1 (where 𝜋 is the projection 𝑠 → 𝐶) will send the four
points (6), resp., to 𝜆, 0, 1,∞. Note that 𝜁(𝑧) is a cross-ratio of 𝑧, 𝑧2, 𝑧3, 𝑧4.
It is not difficult after elimination from (5) to realize 𝑠 as a ramified quadratic cover of ℙ1

through this function, branched exactly above 0, 1,∞, 𝜆 (in the above order), of index 2.
Explicitly, on elimination we find the equation for 𝑡 over ℚ(𝑐, 𝑠, 𝑥) given by(

𝑐2(𝑠 − 1)𝑥2 + (1 − 𝑐2)𝑠
)
𝑡2 + 2(𝑐2 − 𝑠)𝑥𝑡 +

(
𝑠 − 1 + (1 − 𝑐2)𝑥2

)
= 0.

The discriminant is given by

Discriminant

4
= 𝑐2(1 − 𝑐2)(1 − 𝑠)

(
𝑥4 +

(
1 −

𝑠

𝑐2

)
𝑥2 + 𝑠

)
= 𝑐2(1 − 𝑐2)(1 − 𝑠)(𝑥2 − 1)

(
𝑥2 −

𝑠

𝑐2

)
.

Note that (1 − 𝑐2)(1 − 𝑥2) = 𝑦2, andwemay express 𝑥 in terms of 𝑧 in the last factor, which is (𝑥 −

𝑥0)(𝑥 + 𝑥0). After a few calculations we see that we may thus recover 𝑡 (and 𝑢) in the quadratic
extension of ℚ(𝑐, 𝑠)(𝑧) given by ℚ(𝑐, 𝑠)(𝑧, 𝑤), where

𝑤2 = (𝑠 − 1)

(
𝑧2 −

𝑦2
0

(𝑥0 + 1)2

)(
𝑧2 −

𝑦2
0

(𝑥0 − 1)2

)
, (10)

and conversely, we may recover 𝑤 from 𝑧, 𝑡. Indeed, we have

(
𝑐2(𝑠 − 1)𝑥2 + (1 − 𝑐2)𝑠

)
𝑡 = (𝑠 − 𝑐2)𝑥 +

𝑐𝑦0
𝑧2 + 1 − 𝑐2

𝑤.

We also have 𝑤 = ±
√
𝑠 − 1

√∏
(𝑧 − 𝑧𝑖), and the function field of the curve 𝑠, over the field

ℚ(𝑐,
√
1 − 𝑐2,

√
𝑠 − 1, 𝑥0, 𝑦0), is obtained by adding the element

√∏
(𝑧 − 𝑧𝑖).

In conclusion, we find that 𝑠, and also 𝐽𝑠, becomes isomorphic to the Legendre curve
𝑠 = ′

𝜆
∶ 𝑌2 = 𝑋(𝑋 − 1)(𝑋 −

𝑠

𝑐2
), 𝑠 = 𝑐2𝜆, (11)

where we use for the moment capital letters to avoid confusion with 𝑥, 𝑦 on 𝐶. Recall that the
Legendre curve ′

𝜆
, given by the equation

′
𝜆
∶ 𝑌2 = 𝑋(𝑋 − 1)(𝑋 − 𝜆), (12)

is smooth precisely for 𝜆 ∈ ℂ ⧵ {0, 1}.
By the above formulae, a field of definition of an isomorphism is found to be the extension

ℚ(𝑐,
√
1 − 𝑐2)(

√
𝑠 − 1, 𝑥0, 𝑦0) = 𝐾(

√
𝑠 − 1, 𝑥0, 𝑦0), where actually the 𝑋-coordinate is defined

over 𝐾(𝑥0, 𝑦0).
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1283

More explicitly, a point ((𝑥, 𝑦), (𝑡, 𝑢)) on 𝑠 in the model (5) goes under this isomorphism to the
point (𝜁(𝑧(𝑥, 𝑦), 𝜂(𝑥, 𝑦, 𝑡, 𝑢)) ∈ 𝑠, where 𝜂 is a certain rational function obtained as follows. We
have

𝜁(𝑧)(𝜁(𝑧) − 1)(𝜁(𝑧) − 𝜆) =
𝑥0(𝑥0 − 1)(𝑥0 − 𝜆)

(𝑧 − 𝑧4)
4(𝑠 − 1)

𝑤2,

where 𝑤 is given by (10). On using that 𝑥0(𝑥0 − 1)(𝑥0 − 𝜆) = −𝑥2
0
(𝑥0 − 1)2 we find

𝜁(𝑧)(𝜁(𝑧) − 1)(𝜁(𝑧) − 𝜆) =

(
±𝑥0(𝑥0 − 1)

(𝑧 − 𝑧4)
2
√
1 − 𝑠

𝑤

)2

, (13)

so we may take 𝜂 as the expression under brackets on the right (after a choice of sign).
By construction, the point at infinity for the Legendre curve corresponds to one of the four

points (6), namely 𝑃4 = (−𝑥0, −𝑦0) which is defined over 𝐾(𝑥0, 𝑦0). Of course, we have a wide
choice for an origin on each 𝑠, that is, of a zero section, so that 𝑠 becomes an elliptic curve
(scheme). The present choice seems to us natural, because it depends on the points (6) and is also
such that we fall into the familiar framework provided by a Legendre form.

About the field of definition. As said, we have an isomorphism 𝜙 ∶ 𝑠 → 𝑠 defined
over 𝐾(

√
1 − 𝑠, 𝑥0, 𝑦0). If 𝑐 is a given (real) number and 𝑠 is a variable (over ℂ), this last field is

a Galois extension of 𝐾(𝑠) of degree 8, with Galois group, denoted here 𝐺, isomorphic to (ℤ∕2)3,
whereas𝐾(𝑠) is a field of definition for the curves 𝑠,𝑠. Now, for g ∈ 𝐺, we can consider the auto-
morphisms of 𝑠 given by 𝜙g ∶= (𝜙g )−1 ◦𝜙. These form a 1-cocycle for 𝐺 with values in Aut(𝑠).
Looking at the action on the points of order 2 of 𝑠, which correspond through 𝜙 to the four
ramification points considered above, it is not difficult to prove that the 𝜙g are precisely those
automorphisms of the form 𝑥 ↦ ±𝑥 + 𝑡, for 𝑥 ∈ 𝑠, where 𝑡 varies among the four points of order
2. Also, if g0 ∈ 𝐺 fixes 𝐾(𝑥0, 𝑦0) but moves

√
1 − 𝑠 then 𝜙g0

(𝑥) = −𝑥 (see [18]).
We also note that the Jacobian of 𝑠 over say ℂ(𝑠) would be an elliptic curve defined over ℂ(𝑠),

so the appearance of
√
1 − 𝑠 may appear strange. Indeed, it may be checked that the Jacobian is

not the Legendre curve, but the twist of it through
√
1 − 𝑠, given in practice by the same Legendre

equation, butmultiplied by 1 − 𝑠 on the left. Howeverwe have preferred toworkwith the standard
Legendre model, at the cost of enlarging the field.

2.5 Review of generalities about the Legendre curve

In this subsection we review a few facts about the Legendre curve from a complex viewpoint,
namely we analyseWeierstrass functions and periods, as 𝜆 varies inℙ1(ℂ) − {0, 1,∞} = ℂ − {0, 1}.
We shall refer to Silverman’s [52] and especially Husemoller’s [30] books.

2.5.1 Weierstrass equations

First, let us put the Legendre curve in pureWeierstrass form. Setting 𝑈 = 𝑋 − 𝜆+1

3
, 𝑉 = 2𝑌, we

find from (11) (recalling 𝑠 = 𝑐2𝜆):

𝑉2 = 4𝑈3 −
4

3
(𝜆2 − 𝜆 + 1)𝑈 −

4

27
(𝜆 − 2)(𝜆 + 1)(2𝜆 − 1).
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1284 CORVAJA and ZANNIER

For 𝜆 ∈ ℂ − {0, 1} this is indeed the equation of a complex elliptic curve in Weierstrass form
and there is a unique lattice Λ = Λ𝜆 ⊂ ℂ such that the corresponding Weierstrass coefficients
g2(Λ), g3(Λ) yield precisely the given equation, which can then be parametrized by 𝑈 = ℘Λ(𝜇),
𝑉 = ℘′

Λ
(𝜇) for a complex variable 𝜇.

2.5.2 Differentials

Note that the differential d𝜇 corresponds to d℘∕℘′ = d𝑈∕𝑉, and in turn to d𝑋∕2𝑌 on the
Legendre model (11). This is consistent with [30].

2.5.3 Caustics

For our billiard purposes we shall be mainly interested in the case of real 𝜆. Actually, our real
caustics will occur for 0 < 𝑠 < 1, corresponding to 0 < 𝜆 < 1∕𝑐2. For 0 < 𝜆 < 1 the caustic will be
a hyperbola whereas for 1 < 𝜆 < 1∕𝑐2 it will be an ellipse.
There is a degenerate case at 𝑠 = 𝑐2, that is, 𝜆 = 1, when the caustic becomes the horizon-

tal segment connecting the foci (−𝑐, 0), (𝑐, 0). It is very easy to realize that a billiard trajectory
passing through some focus will alternatively pass through the two foci and will tend to become
horizontal; it will become horizontal only when it is originally horizontal, with period 2.
At 𝑠 = 0, 1 again there is a degenerate situation: in the latter case the caustic coincides with the

ellipse and the billiard trajectories will degenerate to points. The situation is more complicated in
the former case, as will be seen in the Appendix.

2.5.4 Periods

We borrowmainly from [30, Chapter 9] (and see also the authors’ book in progress [18]). Onemay
take generators for the lattice which depend locally analytically on 𝜆, but have monodromy as we
move 𝜆 in ℂ − {0, 1}. In the regionmax(|𝜆|, |1 − 𝜆|) < 1, we may pick the periods as given by

𝜔1(𝜆) = 𝑖𝜋𝐹
(
1

2
,
1

2
, 1, 1 − 𝜆

)
, 𝜔2(𝜆) = 𝜋𝐹

(
1

2
,
1

2
, 1, 𝜆

)
,

where 𝐹(1
2
, 1
2
, 1, 𝜆) =

∑∞
𝑛=0

(−1∕2
𝑛

)2
𝜆𝑛 is a hypergeometric function. Note that for real 𝜆 in the

region the second period is real positive whereas the first is purely imaginary; the possibility of
choosing such periods depends (as is not difficult to prove) on the fact that the real points of the
corresponding elliptic curve have two components.Wehave the formulae [30, Chapter 9, Theorem
6.1]

𝜔1(𝜆) = ∫
0

−∞

d𝑥

𝑦
∈ 𝑖ℝ, 𝜔2(𝜆) = ∫

∞

1

d𝑥

𝑦
∈ ℝ, (14)

where we choose as 𝑦 the square root: 𝑦 =
√
𝑥(𝑥 − 1)(𝑥 − 𝜆) with positive imaginary, resp.,

positive real part, resp., in the first and second case.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1285

For |𝜆| < 1 we also have the formula 𝜔2(𝜆) = 2 ∫ 𝜋∕2
0

(1 − 𝜆 sin2 𝜃)−1∕2d𝜃 (see [30, Theorem
5.9]). For |1 − 𝜆| < 1 this yields𝜔2(1 − 𝜆) = 2 ∫ 𝜋∕2

0
(sin2 𝜃 + 𝜆 cos2 𝜃)−1∕2d𝜃, whence after approx-

imating sin 𝜃, cos 𝜃 by 𝜃, 1 near 𝜃 = 0, we easily obtain 𝜔2(1 − 𝜆) = − log 𝜆 + 𝑂(1) as 𝜆 ∈ ℝ tends
to 0+.
The periods satisfy the Gauss–Legendre differential equation

Γ(𝜔) = 𝜆(1 − 𝜆)𝐷2𝜔 + (1 − 2𝜆)𝐷𝜔 −
1

4
𝜔 = 0, 𝐷 ∶=

d

d𝜆
,

which also gives a possibility to obtain the analytic continuation.
Using this differential equationwe obtain that𝐷(𝜔1∕𝜔2) = 𝑐(𝜔2

2
𝜆(1 − 𝜆))−1, and by integration

we find 𝜔1(𝜆) = −𝜔2(𝜆) log 𝜆∕𝜋+ analytic function in a neighbourhood of 0, where the constant
𝑐 is found by using the above asymptotic. This yields both the monodromy and the asymptotic at
0 and similarly at 1. For instance the monodromy at 0 is given by (𝜔1, 𝜔2) → (𝜔1 + 2𝜔2, 𝜔2).
When 1 < 𝜆 < 1∕𝑐2 we can still use this representation, after a change of variables which we

now explain. As in [30], the curve with parameter 𝜆 is isomorphic to the onewith parameter 𝜆′ ∶=
1∕𝜆 under the isomorphism𝑋′ = 𝑋−1,𝑌′ = 𝑌(𝑋2

√
𝜆)−1, in the sense that the dashed coordinates

satisfy the equation with the dashed parameter if the former satisfy (11).

2.5.5 Torsion points of order 2, real points

The torsion points of order (exactly) 2 on the Legendre curve (with 𝜆 ∈ ℝ) are those with
𝑋 = 0, 1, 𝜆 (and 𝑌 = 0). In a fundamental parallelogram for Λ these points correspond to the
𝜔1∕2, 𝜔2∕2 and their sum, in some order. These points together with 0 determine a rectangle,
of which the horizontal sides are sent to real points in the algebraic model, and the vertical
sides to points with real abscissa. The upper side must correspond to the compact connected
component of real points in the affine plane, not meeting the origin, and this determines the
picture. For instance, for 0 < 𝜆 < 1 the lower right vertex 𝜔2∕2 is sent to 1, and the upper ver-
tices 𝜔1∕2, (𝜔1 + 𝜔2)∕2 are sent, resp., to 0, 𝜆 (by connecting 1 with 𝜆). Instead, for 1 < 𝜆, 𝜔2∕2

corresponds to 𝜆.

2.6 The billiard section on 𝒔

We can also give an explicit form to the billiard map, as a translation on the Legendre model (11).
Let 𝜓 ∶ 𝑠 → 𝑠 be the inverse to 𝜙, and let us put

[𝜄] = 𝜓 ◦ 𝜄 ◦𝜙, [𝜄∗] ∶= 𝜓 ◦ 𝜄∗ ◦𝜙, [𝑇] = 𝜓 ◦𝑇 ◦𝜙 = [𝜄∗] ◦ [𝜄]. (15)

So, these are the previous maps, but viewed on the Legendre model. Therefore [𝜄], [𝜄∗] are invo-
lutions on 𝑠, each with some fixed point, hence of the form [𝜄](𝑥) = 𝜅 − 𝑥, [𝜄∗](𝑥) = 𝜅∗ − 𝑥 for
𝑥 ∈ 𝑠 and some 𝜅 = 𝜅𝑠, 𝜅

∗ = 𝜅∗𝑠 ∈ 𝑠 (independent of 𝑥).
To find this explicitly, note that 𝜅 = [𝜄](0). On the other hand, 𝜙(0) = (−𝑥0, −𝑦0) ∈ 𝐶, is

one of the four points in 𝐶 ∩ 𝐶𝑠, so 𝑥2
0
= 𝑠∕𝑐2, 𝑦2

0
= (𝑐2 − 1)(𝑠 − 𝑐2)∕𝑐2. We have that 𝜄(𝜙(0)) is

((𝑥′
0
, 𝑦′

0
),𝓁0), where 𝓁0 is (for the present argument) the tangent to 𝐶𝑠 at (−𝑥0, −𝑦0).
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1286 CORVAJA and ZANNIER

After some easy calculations one finds

𝑥′0 = 𝑥0 ⋅
(1 − 2𝑐2) + 𝑐2𝑠

(1 + (𝑐2 − 2)𝑠
,

whereas 𝑦′
0
is found from the equation for 𝓁0: (𝑥0∕𝑠)𝑥 + (𝑦0∕(𝑠 − 𝑐2))𝑦 = 1:

𝑦′0 = 𝑦0 ⋅
1 − 𝑐2𝑠

1 + (𝑐2 − 2)𝑠
.

We have 𝜅 = 𝜓((𝑥′
0
, 𝑦′

0
),𝓁0).

Things are even simpler for 𝜅∗: in fact, thinking of a pair (𝑝, 𝑙) ∈ 𝑠, the involution 𝜄∗ does
not act on the point 𝑝 on 𝐶, but exchanges the lines 𝑙, 𝑙′ through 𝑝, tangent to 𝐶𝑠. Now, since
the relevant point 𝜙(0) lies in 𝐶 ∩ 𝐶𝑠, the tangent line 𝓁0 is unique, hence 𝜄∗(𝜙(0)) = 𝜙(0) and
[𝜄∗](0) = 0, which implies 𝜅∗ = 0.
In conclusion, the billiard map is represented by translation by −𝜅 = −𝜓((𝑥′

0
, 𝑦′

0
),𝓁0) on 𝑠.

This is a section for our scheme, it may be also thought as the linear equivalence-class of the
divisor (𝑝′, 𝑙′) − (𝑝, 𝑙) on 𝑠 (which is independent of (𝑝, 𝑙) by the theorem of Poncelet).
Let us now compute explicit coordinates for this section on𝑠, using the formulae given above.

We have no knowledge of such an explicit formula in the literature.
First, using the above equations, we find 𝑧(𝑥′

0
, 𝑦′

0
) = 𝑦′

0
∕(𝑥′

0
− 1) = 𝑦0(1 − 𝑐2𝑠)(𝑥0(1 − 2𝑐2 +

𝑐2𝑠) − 1 − (𝑐2 − 2)𝑠)−1. In turn, using (9), after some calculations we find that the 𝑋-coordinate
of the billiard section (as a function of the caustic) is given by

ℎ(𝜆) ∶= 𝜁(𝑧(𝑥′0, 𝑦
′
0)) =

(1 − 𝑐2)𝑠

𝑐2(1 − 𝑠)
=

(1 − 𝑐2)𝜆

1 − 𝑐2𝜆
. (16)

The 𝑌-coordinate, denoted here 𝑘(𝜆), may be found again using the above equations, or
also directly from the Legendre equation. Since ℎ(𝜆) − 1 = (𝜆 − 1)∕(1 − 𝑠), ℎ(𝜆) − 𝜆 = 𝑐2𝜆(𝜆 −

1)∕(1 − 𝑠), we find

𝑘(𝜆) = ±𝑐
√
1 − 𝑐2

𝜆(1 − 𝜆)

(1 − 𝑠)
√
1 − 𝑠

, (17)

for some choice of the sign. As to this, note that we may choose the sign arbitrarily for the 𝑌-
coordinate in the choice of the isomorphism, and such choice reflects in the choice here.
We shall put in the sequel 𝛽(𝜆) ∶= (ℎ(𝜆), 𝑘(𝜆)) ∈ ′

𝜆
.

Remark 2.1. Shape of the billiard section. The billiard map 𝑇, induced by the translation
by the billiard section 𝛽, has turned out to have a very simple shape on the Legendre model.
Indeed, on realizing 𝜁 as a cross-ratio one could predict a priori that ℎ(𝜆) had degree 1, since the
only pole could occur at 𝑠 = 1. Also, it turns out that 𝛽(𝜆)may be expressed even more simply, in
terms of a section with constant 𝑋-coordinate.† Indeed, we may easily check that

𝛽(𝜆) = ±

(
1

𝑐2
,

√
1 − 𝑐2

𝑐3

√
1 − 𝑐2𝜆

)
+ (𝜆, 0), (18)

†Any such sections may be called (a) ‘Masser section’ because Masser referred to them in the original formulation of
problems which led to the results in [41, 43], and subsequent papers.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12561 by Scuola N

orm
ale Superiore D

i Pisa, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1287

where the sum is on 𝑠 and the choice of the sign is at our disposal (but depending on the analo-
gous choice for 𝛽(𝜆)). Note that (𝜆, 0) is a section of order 2; this formula then also simplifies some
calculations with the Betti map (done in the Appendix).
We omit the explicit calculations on these facts, which are straightforward but lengthy. Full

calculations will appear in the forthcoming book [18].

We give three quick arguments for the following easy but important fact:

Proposition 2.2. The billiard section is non-torsion.

Of course, this is equivalent to the billiard map 𝑇 having infinite order.
First argument. Let us start with any point𝑝0 ∈ 𝐶; when the (elliptic) caustic tends to the ellipse

𝐶, that is, for 𝑠 → 1−, the billiard map tends to fix the point, so by continuity it is not possible
that a fixed number of iterations of the map produces the identity, since the map itself is not
the identity.
Secondargument. Take two coprime integers𝑚, 𝑛 ⩾ 3 and consider an𝑚-gon ofmaximal length

among the 𝑚-gon inscribed in 𝐶; also consider an 𝑛-gon of maximal length. Both correspond to
periodic billiard trajectories, and so are circumscribed around caustics. This implies that the bil-
liard section takes torsion values of distinct, actually coprime, orders 𝑚, 𝑛. Now, if the billiard
sectionwould be torsion, say of order 𝑘, then at every caustic it would give rise to periodic trajecto-
ries of length dividing 𝑘 (actually of exact order 𝑘, but this is not needed). From this contradiction
we obtain that the section is non-torsion, and actually we obtain that it assumes values which are
real torsion points of arbitrary prescribed order > 1.
Third argument. From the explicit Equation (17) it is apparent that the section can be defined

only over a ramified extension of the base field, while if it were torsion it would be defined over
an unramified extension.
One may also show (using the Shioda–Tate formula or usual descent) that, provided 𝑐2 ≠ 0, 1,

theMordell–Weil group of the Legendre curve over the fieldℂ(𝜆,
√
1 − 𝑐2𝜆) = ℂ(

√
1 − 𝑠)has rank

1 and is generated modulo the 2-torsion by the billiard section (or the Masser section).

2.7 Real points on 𝒔 read on 𝒔

Let us fix a real 𝑠, 0 < 𝑠 < 1 and 𝑠 ≠ 𝑐2. The curve 𝑠 is then of genus 1, and the real points 𝑠(ℝ)
have two connected components. Recall also that there is a group of four automorphisms of 𝑠,
without fixed points, acting on 𝑠(ℝ).
To describe the real points of 𝑠, let us distinguish between the cases when 𝑠 is an ellipse and

a hyperbola.

Case 1. 𝐶𝑠 is an ellipse, that is, 𝑐2 < 𝑠.

Each real point is represented by a pair (𝑝, 𝑙) where 𝑝 ∈ 𝐶(ℝ) ∩ 𝑙 and where 𝑙 is a line through
𝑝, tangent to 𝐶𝑠. There are exactly two such lines, corresponding to two points (𝑝, 𝑣) in the phase
space; we cannot choose algebraically among these two lines, but over the reals we can select the
line such that 𝑣 forms a smaller angle with 𝑣𝑝, where 𝑣𝑝 is the vector at 𝑝 tangent to 𝐶 and going
in the clockwise direction. Alternatively, we may prescribe that the caustic lies on the right of 𝑣.
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1288 CORVAJA and ZANNIER

This choice yields the two real components. Denoting, for given 𝑣, by 𝑝′ the other intersection of
𝑙 with 𝐶, this choice also yields a self-map of the real points of 𝐶 (depending on 𝑠):

𝑇𝐶 = 𝑇𝐶,𝑠 ∶ 𝐶(ℝ) → 𝐶(ℝ) ∶ 𝑇𝐶(𝑝) = 𝑝′. (19)

Note that if 𝜋 ∶ 𝑠 → 𝐶 is the first projection, we have 𝑇𝐶(𝜋(𝑥)) = 𝜋(𝑇(𝑥)), where 𝑇 as above
is the billiard map. We may equivalently describe this as follows: the billiard map acts on 𝑠(ℝ)
and it acts in fact on each of the two components (as follows from the above definitions). Each of
the two components projects homeomorphically onto 𝐶 through 𝜋. Restricting to one component
this yields the map 𝑇𝐶 (and there is a similar map looking at the other component).
We now want to locate the image of the real points on 𝑠 under the isomorphism 𝜓 ∶ 𝑠 →𝑠. For this we recall Equation (9) and the fact that, in the present Case 1, 𝑥0 is real whereas

𝑦0 is purely imaginary. Recall also that 𝑧 ∶ 𝐶 → ℙ1 is an isomorphism defined over ℝ. It follows
that 𝜁 sends 𝑠(ℝ) precisely to the points in 𝑠 having 𝑋-coordinate of modulus |𝑥0| = √

𝜆. † It
is remarkable that these points form a group, and that their set is stabilized by translations by
points of order 2 and by translation by the billiard map. The interested reader will verify that on
the torus picture for 𝑠 these points are located, modulo the lattice, on the lines ±(𝜔1∕4) + ℝ𝜔2;
this also corresponds to an identity ℘(𝜇)℘(𝜇 + (𝜔1)∕2) = |𝑥0|2, where now ℘ is the ‘translated’
Weierstrass function for the 𝑋-coordinate in the Legendre form. (That the points are located on
horizontal lines follows at once on observing that translation by the billiard map preserves these
points.)

Case 2. 𝐶𝑠 is a hyperbola, that is, 𝑠 < 𝑐2.

Things are somewhat different now. First, 𝑥0, 𝑦0 are both real, and 𝑃1, … , 𝑃4 are real points,
dividing 𝐶(ℝ) into four parts. Only the northern and southern part are relevant for the billiard
shots having such a caustic. These two parts lift (through 𝜋) to two connected components of 𝑠
and the billiard map now switches these components. The shots which point right or left now
do not give rise to distinct connected components: this would happen if we considered only the
affine caustic, whereas in its projective completion the asymptotes constitute points which attach
these components.
Also, 𝑠(ℝ) now corresponds to the points in 𝑠 with real abscissa, and we have already seen

how they are represented in the torus picture.

2.8 An invariant measure

Given a caustic𝐶𝑠, 𝑠 = 𝑐2𝜆, and assuming 𝑠 of good reduction, we have an associated elliptic curve
𝑠 = ′

𝜆
, corresponding to a complex torus Λ𝜆. On this torus the complex differential d𝜇 induces

a measure invariant by translation, that in turn induces an invariant measure on the real points.
We want to transport this last measure to the ellipse 𝐶, and we can do this through the map
𝜁 ◦ 𝑧 ◦𝑝 computed above. Up to a constant, themeasure on′

𝜆
is d𝑋∕𝑌, which equals d𝜁∕𝜂, where

𝜂2 = 𝜁(𝜁 − 1)(𝜁 − 𝜆). We can compute this from the above formulae (9) and (10) and find the

†Note that we can see a priori that these points form two connected components, exchanged by the map −1 on 𝑠 , since
1 < |𝑥0| < 𝜆 so

√
𝑢(𝑢 − 1)(𝑢 − 𝜆) is well defined as 𝑢 travels through a circle of radius |𝑥0|.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1289

measure, up to a constant (depending on 𝑠, that is, on the caustic), given by

d𝑧√
(𝑧 − 𝑧1)(𝑧 − 𝑧2)(𝑧 − 𝑧3)(𝑧 − 𝑧4)

=
d𝑧√

(𝑧2 −
𝑦2
0

(𝑥0+1)
2 )(𝑧

2 −
𝑦2
0

(𝑥0−1)
2 )

. (20)

This measure is invariant by the billiard map on 𝐶 (relative to a given caustic 𝐶𝑠). Note that the
expression (under square root) on the right involves only real numbers, and in fact onemay check
it is of constant sign for the relevant values of 𝑧: if the caustic is an ellipse then this is automatically
positive, for 𝑦2

0
is real negative and 𝑥0 is real; if the caustic is a hyperbola, this is of constant

(negative) sign on the part of the ellipse in between the two branches of the hyperbola. Thus we
may choose a sign so that the measure is continuous. Also, the measure of 𝐶 becomes finite and
non-zero, so that one may normalize so that 𝐶 has measure 1 (where in the case of a hyperbolic
caustic we restrict to the part of 𝐶 mentioned above, that is, the part touched by any billiard shot
with that caustic).

2.9 Other sections

Say that we have chosen a point 𝑝0 ∈  . Then a choice of a (unit) vector 𝑣 determines a billiard
shot (𝑝0, 𝑣). In turn, this corresponds to a caustic. Hence we have a map which associates to 𝑣

a caustic, and therefore a curve in the elliptic family. So we obtain a section of our family, now
viewed over the base which is the space of possible vectors 𝑣. Of course if we look at the real
billiard, this 𝑣will be restricted to the unit circle, but itwill be convenient toworkwith an algebraic
base, for instance ℙ1, regarded as the set of complex slopes of 𝑣. Also, a choice of the direction will
correspond to a quadratic equation, so if we want this to be well defined in the algebraic sense,
our space will be in fact a quadratic cover of the former base.
Here is some more detail for this. Denote 𝑝0 = (𝑎, 𝑏) ∈  and say that our billiard shot (𝑝0, 𝑣)

has slope 𝜉. Then the line 𝑙 ∶ 𝑦 = 𝜉(𝑥 − 𝑎) + 𝑏 will be tangent to the relevant caustic.† By the
formulae above the corresponding caustic shall be 𝐶𝑠 where

𝑠 =
𝑐2 + (𝜉𝑎 − 𝑏)2

𝜉2 + 1
, (𝑠 − 𝑎2)𝜉2 + 2𝑎𝑏𝜉 + (𝑠 − 𝑏2 − 𝑐2) = 0. (21)

To express the coordinates of the points 𝑝, 𝑝′ of intersection of the line 𝑙 with 𝐶, note that the
equation for 𝐶 combined with 𝑦 = 𝜉(𝑥 − 𝑎) + 𝑏, gives (1 − 𝑐2)𝑥2 + (𝜉(𝑥 − 𝑎) + 𝑏)2 = 1 − 𝑐2, so
the abscissas of 𝑝, 𝑝′ are given by

(1 − 𝑐2 + 𝜉2)𝑥2 + 2𝜉(𝑏 − 𝜉𝑎)𝑥 + (𝑏 − 𝜉𝑎)2 + 𝑐2 − 1 = 0. (22)

which has discriminant given by 4(1 − 𝑐2)(𝜉2 − (𝜉𝑎 − 𝑏)2 + 1 − 𝑐2) = 4(1 − 𝑐2)((1 − 𝑎2)𝜉2 +

2𝑎𝑏𝜉 + 1 − 𝑐2 − 𝑏2) = 4(1 − 𝑐2)(1 − 𝑠)(𝜉2 + 1).
Choosing a solution determines the first point where the billiard trajectory meets 𝐶. This is

not defined over ℂ(𝜉) but over a quadratic extension expressed by the equation. We obtain a sec-
tion from the space of slopes to our  , actually defined in fact only over a quartic extension of
† The intersection with the caustic will occur at infinity in case this line passes through the origin.
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1290 CORVAJA and ZANNIER

𝐾1(𝑠), where 𝐾1 may be taken as 𝐾(𝑎, 𝑏). We shall explore this field extension in more detail dur-
ing the proofs; we note that its degree (over 𝐾1(𝑠)) being equal to four is due to the fact that given
an interior point 𝑝 and a caustic 𝐶𝑠, there are in general four shots from 𝑝 giving rise to a tangent
to 𝐶𝑠: indeed, the tangent can be chosen in two ways and for each tangent there is still a choice
for the orientation of the shot.
Note that these sections will give rise to sections of the Legendre model (11), however the field

of definition will increase, so in practice the base will become a corresponding cover of ℙ1. On
composing with the billiard map, we shall obtain sections (one for each point 𝑝0), as functions of
the slopes rather than the caustic (quantities that of course are related through (21)).

2.10 The phase space as an elliptic surface

Wepresent nowan alternativeway of obtaining an elliptic scheme, and actually a compactification
(elliptic surface), this timewithout extending the ground field (but extending scalars fromℝ toℂ).
More details are given in Chapter 9 of our forthcoming book [18] (but the essentials of the proofs
of this paper do not require them).
We can identify the phase space using pairs (𝑝1, 𝑝2) ∈ 𝐶 × 𝐶 instead of the pairs (𝑝, 𝑣) where

𝑝 ∈ 𝐶 and 𝑣 is a (unit) vector: of course, 𝑣 is obtained from the pair (𝑝1, 𝑝2) by taking the normal-
ized vector connecting 𝑝1 to 𝑝2. Whenever 𝑝1 = 𝑝2, such a vector is the tangent vector. We obtain
a rational map

𝐶 × 𝐶 ⤏ ℙ1

associating to every pair (𝑝1, 𝑝2) the unique caustic tangent to the line connecting 𝑝1 to 𝑝2; the
uniqueness of this caustic follows from the linearity in 𝑠 of Equation (3) (in geometric terms: the
fact that the dual family of caustics is a pencil of conics).
The fibres of the projection are curves of bidegree (2,2) on 𝐶 × 𝐶 ≃ ℙ1 × ℙ1, so, whenever they

are smooth, they have genus 1.
The above map is undefined at four points, namely the points (𝑝, 𝑝) where 𝑝 is one of the four

complex points (
±
1

𝑐
, ±𝑖

1 − 𝑐2

𝑐

)
. (23)

Indeed, for each such point 𝑝, the tangent at 𝑝 to the billiard 𝐶 is tangent also to every other
caustic 𝐶𝑠 (at points depending on 𝑠).
Blowing up these four points, all situated on the diagonal of 𝐶 × 𝐶, we obtain another (smooth

projective) surface, containing four distinguished exceptional divisors. The projection to ℙ1 is still
undefined at four newpoints, one on each of the four exceptional divisors. Blowing themup again,
we obtain a new smooth projective surface  , endowed with a well-defined projection to the line,
fitting in the diagram

(24)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1291

The four exceptional divisors produced in the last blowing-up procedure are images of sec-
tions ℙ1 →  . One can take one of them to be the zero section; then the other three are sections of
order 2. In the above diagram, the base ℙ1 denotes the space of caustics.
Let us describe more concretely these sections. First note that on 𝐶 × 𝐶 one can replace pairs

(𝑝1, 𝑝2) by pairs (𝑝, 𝑙), where 𝑝 = 𝑝1 and 𝑙 is the line joining 𝑝1 to 𝑝2. While working with the
four points (23) which have been blown up on 𝐶 × 𝐶, it is better to use this second point of view.
Letting 𝑝0 be one of the points (23) of 𝐶, and 𝑙0 be the line through 𝑝0 which is a common tangent
to all the caustics, the zero section can be described as the section associating to each caustic the
pair (𝑝0, 𝑙0).
Note that by the adjunction formula the self-intersection of the zero section is−1, and thismust

be true of all the (images of) sections. (Indeed the canonical divisor on an elliptic surface lies in
the class of a multiple of a fibre, in our case the negative of a fibre, so has constant intersection
product with every section; this proves that in the adjunction formula 2g(Θ) − 2 = Θ2 + 𝐾 ⋅ Θ,
whereΘ is the image of a section, g(Θ) its genus, that is, the genus of the base, and 𝐾 a canonical
divisor on the surface, the term 𝐾 ⋅ Θ is independent of Θ and so also the self-intersection of Θ
must be constant.)
The map 𝑃 ↦ −𝑃 on  , deriving from the group law on the fibres, corresponds on 𝐶 × 𝐶 to

permuting the coordinates; in other words, to inverting the direction of the motion; this is the
same as in the Legendre model.
Translation by elements of order 2 is viewed in 𝐶 × 𝐶 as the effect of applying the symmetries

(𝑥, 𝑦) ↦ (±𝑥,±𝑦), where 𝑥, 𝑦 are the coordinates in the affine plane containing the ellipse 𝐶 of
Equation (1).
The fibre of 𝑠 = 1 in𝐶 × 𝐶 is the diagonal, countedwithmultiplicity 2 (recall that the fibres have

bidegree (2,2)). The four blown-up points belong to this diagonal. The fibre of the same point 𝑠 = 1

viewed on the surface  is a five component divisor of the form 𝐹 = 2Φ + Φ0 + Φ1 + Φ2 + Φ3,
whereΦ is the strict transform in of the diagonal of𝐶 × 𝐶 andΦ0,… ,Φ3 are the strict transforms
of the exceptional divisors occurring in the first blow-up. This configuration of divisors is named
𝐼∗
0
in Kodaira’s classification [34].
The other singular fibres occur over the points 𝑠 = 0, 𝑐2,∞ and each of them consists in the

union of two rational curves intersecting at two points, thus forming a configuration of type 𝐼2 in
the mentioned Kodaira’s classification.
Let us analyse in detail the case 𝑠 = 𝑐2. Recall that for 𝑠 real in the interval 0 < 𝑠 < 𝑐2, the

caustics are hyperbolae, while for 𝑐2 < 𝑠 < 1 the caustics are ellipses. In the middle case 𝑠 = 𝑐2,
the ‘caustic’ defined by Equation (2) becomes the horizontal line 𝑦 = 0. In this case, the billiard
game consists in sending the ball alternatively to the two foci (−𝑐, 0) and (𝑐, 0). The genus 1 curve
𝑠 ⊂ 𝐶 × 𝐶 degenerates in the two rational curves consisting of pairs (𝑝1, 𝑝2) ∈ 𝐶 × 𝐶 such that
𝑝1, (−𝑐, 0), 𝑝2 (resp., 𝑝1, (𝑐, 0), 𝑝2) are collinear.
To see the shape of the two remaining singular fibres, namely 𝑠 = ∞ and 𝑠 = 0, note that the

four lines which are common tangents to all the caustics, that is, those drawn from the points
(23), intersect in six points, naturally coupled in three pairs of points: one such pair is the pair of
foci; the remaining two pairs (consisting in complex non-real points) give rise to two more pairs
of rational curves defined in exactly the same way.
The billiard map 𝛽 ∶ ℙ1 →  is a well-defined section, generating the Mordell–Weil group up

to torsion (indeed, 2-torsion). The image −𝛽(ℙ1) ⊂  can be described as follows: in the phase
space consisting of pairs (𝑝, 𝑙)where 𝑝 is a point on the ellipse and 𝑙 a line containing 𝑝 as above,
the section is the curve (𝑝0, 𝑙(𝑠)), 𝑠 ∈ ℙ1, where for each caustic 𝑠 the line 𝑙(𝑠) is the second tangent
to 𝐶𝑠 drawn from 𝑝0 (the first one being the common tangent 𝑙0).
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1292 CORVAJA and ZANNIER

2.10.1 The elliptic surface associated to an interior point

Take now a point 𝑝 in the interior of the billiard, not on the 𝑥-axis nor in the 𝑦-axis (in par-
ticular, not a focus). As already remarked, the algebraic curve 𝑌𝑝 ⊂ 𝐶 × 𝐶 ≈  made of pairs
(𝑝1, 𝑝2) ∈ 𝐶 × 𝐶 with collinear 𝑝1, 𝑝2, 𝑝 is not a (rational) section, but rather a multi-section, pre-
cisely a degree four algebraic section: indeed, for a generic caustic there are two possible choices
for the tangents drawn from 𝑝 and for each tangent, two possible directions. To obtain a rational
section from this curve, we must perform a degree four (ramified) cover of the base. This cover
can be described as follows: recalling that 𝑌𝑝 is sent by a degree four morphism to the curve
parametrizing caustics (isomorphic to ℙ1), we can form the fibre product

𝑝 ⤏ 
↓ ↓

𝑌𝑝 ⟶ ℙ1

The top arrow is not a morphism because in taking a relatively minimal model for the elliptic
surface 𝑝 →  we have to contract the four pre-images of the curves Φ0,… ,Φ3. It turns out that
now the fibre of 𝑠 = 1 becomes smooth, as it is the case for Legendre’smodel. In other terms, 𝑠 = 1

is a place of potentially good reduction, although of bad reduction, for the fibration  → ℙ1.
The elliptic surface𝑝 can be birationally described as the set of quadruples (𝑝1, 𝑝2, 𝑞1, 𝑞2) ∈ 𝐶4

where 𝑞1, 𝑞2, 𝑝 are aligned and the line containing them is tangent to the same caustic which is
tangent to the line joining 𝑝1, 𝑝2. The projection 𝑝 ∋ (𝑝1, 𝑝2, 𝑞1, 𝑞2) ↦ (𝑞1, 𝑞2) ∈ 𝑌𝑝 provides
the elliptic fibration.
By construction, this new elliptic surface 𝑝 → 𝑌𝑝 ≃ ℙ1 has one more section, say 𝜎𝑝, associ-

ating to every point (𝑞1, 𝑞2) ∈ 𝑌𝑝 of the base (recall that the caustics are now parametrized 4 to 1
by 𝑌𝑝, that is, every caustic appears four times) the quadruple (𝑞1, 𝑞2, 𝑞1, 𝑞2) ∈ 𝐶2 × 𝐶2.
Although this is not obvious, the elliptic surface admits also another section, denoted by 𝜎̃𝑝 ∶

𝑌𝑝 → 𝑝, ‘changing the tangent’ with respect to 𝜎𝑝: this follows from the fact that the covering
𝑌𝑝 → ℙ1 is Galois, as explained in Section 9.5.3 of our book [18] (see in particular Theorem 9.5.6
therein).
From the two sections 𝜎𝑝, 𝜎̃𝑝 one can produce two more sections, interchanging 𝑝1 with 𝑝2;

these new sections just coincide with −𝜎𝑝 and −𝜎̃𝑝, with respect to the group law just defined.
The surface 𝑝 is a K3-surface. Its Picard group may be checked to be of rank 17; the fibration𝑝 → 𝐿𝑝 possesses 12 singular fibres, so by Shioda–Tate’s formula its rank is 3. Its Mordell–Weil

group is generated up to torsion by the sections 𝜎𝑝, 𝜎̃𝑝 and the billiard section 𝜅 (see [18, Theorem
9.5.11]).
Note that by changing the excentricity of the ellipse (that is, the parameter 𝑐) and the position

of the point 𝑝 we obtain a three-dimensional family of 𝐾3 surfaces of rank at least 17. From the
general theory of 𝐾3 surfaces (see, for example, Griffiths and Harris book [28, Chapter 4, p. 590]),
this family is a full irreducible component in the relevant moduli space.

2.10.2 The elliptic surface associated to a boundary point

Let us now choose a point ℎ ∈ 𝐶 on the boundary of the billiard. We shall consider the curve on
𝐶 × 𝐶 formed by the points (𝑝1, 𝑝2) with 𝑝2 = 𝑝, and denote by 𝐿𝑝 ⊂  the corresponding curve
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1293

on . Now the projection 𝐿ℎ → ℙ1 has degree two: indeed, while given a caustic𝐶𝑠 one can always
draw two tangent lines to 𝐶𝑠 from ℎ, a given direction, namely that pointing to 𝑝, is now chosen
for each caustic, reducing the number of choices to two. In geometric terms, the curve 𝐿ℎ is a
bisection; it induces a section after the quadratic base change 𝐿ℎ → ℙ1; the corresponding elliptic
surface ℎ turns out to be a rational elliptic surface, of Mordell rank 2.

2.11 Auxiliary results

In this subsection we list a few results used in our proofs. Some of them may be considered as
special cases of the Pink–Zilber conjectures (see [60] and [61]) whereas the last one is taken from
the theory of 𝑆-unit equations (see [8]).We believe that this recallmay be helpful for some readers;
some of these theorems go back to some time ago, whereas others are more recent.
Our first result is taken from the paper [17] of Masser with both of the authors. (As recalled in

[61], it was first formulated by Shou–Wu Zhang as a question.)

Theorem 2.3 [17, Theorem 1.2]. Let  →  be an abelian-surface scheme over a complex (affine)
curve  and let 𝜎 ∶  →  be a sectionwhose image is not contained in any proper group subscheme.
Then there are only finitely many points 𝑥 ∈  such that 𝜎(𝑥) is torsion on the fibre𝑥 .

Previous results concerned only the case of ℚ as a ground field. After intermediate progress,
this result, if we limit to the ground field ℚ, was recently extended by Barroero and Capuano, to
cover not merely torsion points but also linear relations. They prove in [2, Theorem 1.1], a result
which immediately implies the following:

Theorem 2.4 [2, Theorem 1.2]. Let  →  be an abelian scheme over a(n affine) curve  defined
over a number field and let 𝜎 ∶  →  be a sectionwhose image is not contained in any proper group
subscheme. Then the intersection of 𝜎()with the union of all subgroup schemes of of codimension
at least 2 is a finite set.

By subgroup schemewe tacitlymean that it is surjective onto the base. Contrary to the previous
result, here the field of definition is assumed to be ℚ. It is probable that the methods of [17] (or
other methods) allow to replace this with ℂ, but this has not yet been formally proved. So in
applying this result we shall tacitly work over ℚ.
It is worth mentioning that before this general theorem, a similar but weaker conclusion

(together with other results immaterial here) was proved (with partially independentmethods) as
Theorem 1.1 of the paper [26] of Ghioca, Hsia and Tucker: this assumed equal to a (fibre) prod-
uct of two elliptic schemes, and moreover restricting to certain special subgroup schemes, but
would be sufficient for our applications here (though probably not for generalizations of them).
The two previous results have their origin in the following one, previously a conjecture by Lang,

proved in the sixties by Ihara, Serre and Tate (independently).

Theorem 2.5. Let𝐶 ⊂ 𝔾2
m be an irreducible algebraic curve and Γ ⊂ 𝔾2

m(ℂ) be the torsion subgroup
of the torus. If 𝐶 ∩ Γ is infinite, then 𝐶 is a translate of a subtorus by a torsion point.

Vice versa, it is clear that if 𝐶 is a subtorus, or more generally a torsion translate of a subtorus,
then 𝐶 contains infinitely many points with coordinates in Γ.
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1294 CORVAJA and ZANNIER

The above theorem was generalized to curves in abelian varieties, and later to subvarieties of
semi-abelian varieties. Theorem 2.3 can be viewed as the ‘relative’ version of the generalization of
Theorem 2.5 to abelian surfaces.
We state one further result in this context, due to Laurent [37] and useful for the proofs of

Theorem 1.10 and for some results on circular billiard. It arose from results of Siegel,Mahler, Lang,
Schmidt, together with the previous ones on torsion points. It solves theMordell–Lang conjecture
for algebraic tori:

Theorem 2.6. Let Γ ⊂ 𝔾𝑛
m(ℂ) be a multiplicative group of finite ℚ-rank. Let Σ ⊂ Γ be any subset.

The Zariski-closure of Σ in 𝔾𝑛
m is a finite union of translates of algebraic subgroups.

An important instance of the above theorem is represented by the special case of a finitely
generated group Γ. This is the case appearing in the proof of Theorem 1.10. The case when Γ

coincides with the torsion subgroup generalizes Theorem 2.5 to higher dimensions and is used
in the proof of Theorem 1.5 for circular billiards. This torsion case was proved independently by
Sarnak–Adams [48].
Our last auxiliary result is due to Bombieri, Masser and the second author:

Theorem 2.7. Let 𝐶 ⊂ 𝔾𝑛
m be an irreducible algebraic curve. Suppose it is not contained in any

translate of an algebraic subgroup of the torus. Then the union of the sets of the form 𝐶 ∩ 𝐻, where
𝐻 ⊂ 𝔾𝑛

m is a codimension 2 subgroup is finite.

This result was improved byMaurin [44], who replaced the hypothesis on𝐶 by the weaker (and
optimal) one that 𝐶 is not contained in any torsion subgroup. See also [9] by the authors of [10]
with Habegger for a different proof.
The crucial case of the above theorem, and the one which is needed in the present work, is the

case of a curve in 𝔾3
m: the theorem can be rephrased by saying that given three rational functions

on any curve,multiplicatively independentmodulo constants, the set of points on the curvewhere
the values of the three functions satisfy two independent multiplicative dependence relations
is finite.
We spend just a few words on the proofs of these results. The first two depend on an analytic

description of the abelian varieties which appear, namely as complex tori (which vary). Corre-
spondingly, expressing the values of the sections as linear combinations in a basis of periods for
the tori, gives rise to coefficients which are real-valued functions; these are called ‘Betti coordi-
nates’. Now, the relevant relations correspond to relations with integer coefficients among these
coordinates; in turn, one uses counting theorems for rational points in transcendental varieties to
prove that if these relations hold for values at points of large degree, then they must come from a
geometric relation (see [61] for much more on this).
The proof of Theorem 2.5 is more elementary and still uses, albeit in a simpler way, the Galois

action on torsion points. This theorem will be needed to treat circular billiards.
The last theorem in the above list, Theorem 2.7, is proved by combining a height estimate for

points on a curve satisfyingmultiplicative dependence relationswith lower bounds for theMahler
measure of algebraic points in tori.
On the other hand, as we already mentioned, the proof of Theorem 2.6 needs the Schmidt Sub-

space Theorem in Diophantine Approximation; this is a deep result, but of rather different nature
compared to the former theorems. See the book [8] by Bombieri and Gubler for a proof, and see
[61] for a description of related results and evolutions.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1295

So, the context shows the peculiarity that completely analogous statements admit completely
different treatments.
One can ask if it is possible to compute the relevant solutions, when they are finite in number.

Now, the Subspace Theorem is presently ineffective and there is to date little hope to obtain an
effective proof. The results alluded to for the former theorems were ineffective as well, but con-
ceptually the obstacles to effectivity were considered of more moderate nature compared to the
Subspace Theorem. Indeed, Binyamini [6] recently found many effective proofs in this realm.
It appears that these should allow to make effective some of the present results. Concerning
Theorem 2.7, to be used only for circular billiard, at present it is still ineffective.

3 PROOFS

For the proof of Theorem 1.2 we refer to the Appendix, where we shall add several other
discussions and conclusions.

3.1 Proof of Theorem 1.4

In this context we have two billiard shots (𝑝0, 𝑣), (𝑝0, 𝑣′), such that 𝑣, 𝑣′ (in some order) form an
angle 𝛼 ∈ (0, 𝜋) given in advance. Also, we denote 𝑝0 = (𝑎, 𝑏) where we are supposed to be in a
real billiard, so that 𝑎, 𝑏 are real numbers (a restriction which can be eliminated). If 𝜉, 𝜉′ are the
respective slopes of 𝑣, 𝑣′, then, setting 𝑡0 ∶= tan 𝛼 ∈ (−∞,+∞), we have

𝜉′ =
𝜉 + 𝑡0
1 − 𝑡0𝜉

=∶ g(𝜉), (25)

and 𝜉′ = −1

𝜉
if 𝑡0 = ∞, where for this proof we denote by g ∈ PGL2 the homography defining 𝜉′.

Note that it has the fixed points ±𝑖.
As illustrated in Section 2.3, each billiard shot corresponds to a section of  over a base whose

function field is a quadratic extension of ℂ(𝜉), resp., ℂ(𝜉′) (we do not mind extending to ℂ the
constants in this case). We may view the pair of shots as giving a section of the fibre product of
 with another copy of  over the 𝜉-line, with respect to the map defined by (25). That is, the
second copy equals the first, however with 𝜉′ in place of 𝜉. Hence we obtain an abelian scheme
 over a finite cover 𝐵 of the 𝜉-line, where the fibres are products of two elliptic curves, in short
 = 1 ×𝐵 2, where𝑖 are elliptic schemes.
Recall now that each scheme is of Legendre type, with parameter 𝜆 = 𝑠∕𝑐2 (where 𝐶𝑠 is the

relevant caustic), and that 𝑠 is given in terms of the slope 𝜉 by Equation (21), that is,

𝑠 =
𝑐2 + (𝜉𝑎 − 𝑏)2

𝜉2 + 1
=∶ 𝑅(𝜉),

where, again for this proof, we denote by 𝑅 the present rational function of degree 2 expressing 𝑠
in terms of 𝜉.
We start by proving that the two schemes obtained as above are not (generically and geomet-

rically) isogenous, that is, the corresponding elliptic curves do not become isogenous over any
extension of ℂ(𝑠). In principle there are several methods for checking this, and we choose the
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1296 CORVAJA and ZANNIER

following one. If the curves were isogenous, their 𝑗-invariants 𝐽, 𝐽′ would satisfy some modular
equation Φ𝑛(𝐽, 𝐽

′) = 0. Recall that such equations are over ℤ, irreducible over ℂ, symmetric and
monic in both variables. Therefore 𝐽′ is integral over ℤ[𝐽] and conversely. In particular, if 𝐽, 𝐽′ are
rational functions on a certain complete smooth curve, they have exactly the same poles.
Now, the 𝑗-invariant of the Legendre elliptic curve with parameter 𝜆 is given by

𝑗(𝜆) = 1728
(𝜆2 − 𝜆 + 1)3

𝜆2(1 − 𝜆)2
.

So this has poles of order 2 at 𝜆 = 0, 1,∞. If we take 𝜆 = 𝑠∕𝑐2, this corresponds to 𝑠 = 0, 𝑐2,∞. In
turn, if we use the above formula relating 𝑠 and 𝜉 this corresponds respectively to

𝜉 =
𝑏 ± 𝑖𝑐

𝑎
,

±𝑏

𝑐 ± 𝑎
, ±𝑖,

at any rate for 𝑎 ≠ 0, ±𝑐, which we suppose for the moment. Consider now the image 𝜉′ of these
points under the map g appearing in (25). The last two points are fixed by g , while under our
present assumption the whole set of these points has to be stabilized by g . So the set of the first
four points has to be stabilized by g . Since however g is defined overℝ in fact it has to send the set
of the first (resp., second) two points into itself. Since g has only±𝑖 as fixed points, g2must then fix
all points, and then it has to be the identity, forcing 𝑡0 = ∞ (since 𝑡0 = 0, corresponding to 𝛼 = 0,
is excluded. But then g(𝜉) = −𝜉−1 and from g((𝑏 + 𝑖𝑐)∕𝑎) = g((𝑏 − 𝑖𝑐)∕𝑎) we get 𝑏2 + 𝑐2 = −𝑎2

which is impossible.
It remains to consider the cases 𝑎 = 0 and 𝑎 = 𝑐.
If 𝑎 = 0 the first two points are replaced by∞ and we obtain that the set {∞, 𝑏∕𝑐, −𝑏∕𝑐} is acted

on by the automorphism g , which, we recall, fixes ±𝑖. This is possible if only if 𝑡0 = ±
√
3, that is,

𝛼 = ±𝜋∕3, 𝑝 = (0, 𝑐∕
√
3) and the three point set is {∞, 1∕

√
3, −1∕

√
3}. In this case, we have

𝜆(𝜉) =
4

3(𝜉2 + 1)
, 𝜆(𝜉′) =

3𝜉′2 + 2
√
3𝜉′ + 1

3(𝜉′2 + 1)
.

From these relations it follows that, although the two functions 𝑗(𝜆(𝜉)) and 𝑗(𝜆(𝜉′)) have the same
pole set, the correspondingmultiplicities do not coincide: for instance 𝜉 = ∞ is a pole of order 4 for
𝑗(𝜆(𝜉))while 𝜉′ = ∞ is a double pole for 𝑗(𝜆(𝜉′)). Since the modular polynomials are symmetric,
the two functions 𝑗(𝜆(𝜉)) and 𝑗(𝜆(𝜉′)), for 𝜉′ = g(𝜉), cannot be related by such an equation.
In the last case to consider, namely 𝑎 = 𝑐, an argument of the same type as above shows that

g is an involution, so 𝛼 is a right angle and 𝑝 lies in a focus. Then the assertion of the theorem is
then trivial, since, as we previously noticed, there is only one periodic trajectory passing through
the foci.
We note that the whole argument we have used can be rephrased in terms of bad reduction:

unless 𝑝 lies in a focus, there always exist an angle 𝛾 giving rise to bad reduction while 𝛾 + 𝛼

corresponds to a non-degenerate caustic.
This proves that the two elliptic schemes are not isogenous (up to one possible exception, when

the theorem is already proved). But then the present scheme has no proper group subschemes
other than product or torsion subschemes, and any such subscheme projects to a torsion sub-
scheme on at least one component. But then, if our product section has image contained into one
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1297

of these, then one of the sections would be torsion. But the billiard section is not torsion, as we
have shown in Proposition 2.2. Then we may apply Theorem 2.3, which concludes the argument.

3.1.1 Proof of Theorem 1.4 in the circular case

It remains to treat the case of circular billiards, where both the geometric and the diophantine
tools are very different.
We can suppose the circle is defined by the equation

𝑥2 + 𝑦2 = 1

and the point 𝑝0 from which the ball is shot has coordinates (𝑢, 0), with −1 < 𝑢 < 1, 𝑢 ≠ 0. The
line containing the first segment of the trajectory has an equation of the form

𝑥

𝑢
+ 𝑏𝑦 = 1

for some 𝑏 ∈ ℝ. Let 𝐶𝑏 the only circle centred at the origin which is tangent to that line. The
billiard trajectory associated to 𝑏 will be periodic if and only if the angle formed by the tan-
gent to 𝐶𝑏 drawn from a point on the border of the billiard with the diameter is commensurable
with 𝜋. We can consider the point (−1, 0), so that this tangent line will have an equation of the
form

−𝑥 + 𝑏′𝑦 = 1.

The fact that these two lines are tangent to a same circle centred in the origin amounts to the
quadratic relation

𝑢−2 + 𝑏2 = 1 + 𝑏′2. (26)

Letting 𝛾 be the angle formed by the first linewith the horizontal diameter, and 𝛽 the angle formed
by the same diameter with the second line, we have

tan(𝛾) = (−𝑏𝑢)−1, tan(𝛽) = 𝑏′−1.

The relation (26) is easily seen to be equivalent to the relation

𝑢2 sin2 𝛾 = sin2 𝛽.

By obvious symmetries, we can suppose that 𝑢 sin 𝛾 = sin 𝛽. Now, let us suppose that the shots
of angles 𝛾 and 𝛾 + 𝛼, where 𝛼 is fixed, both give rise to periodic orbits. We then obtain that
𝑢 sin 𝛾 = sin 𝛽 and 𝑢 sin(𝛾 + 𝛼) = sin 𝛽′ for two angles 𝛽, 𝛽′ which are commensurable with 𝜋.
Writing

sin 𝛾 =
𝑡 − 𝑡−1

2𝑖
, sin(𝛾 + 𝛼) =

𝑡𝑒𝑖𝛼 − 𝑡−1𝑒−𝑖𝛼

2𝑖
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1298 CORVAJA and ZANNIER

for a suitable complex number 𝑡 in the unit circle, and correspondingly for the sines of 𝛽, 𝛽′, we
arrive at the system of algebraic equations{

𝑢 ⋅ (𝑡 − 𝑡−1) = 𝜉 − 𝜉−1

𝑢 ⋅ (𝑡𝑒𝑖𝛼 − 𝑡−1𝑒−𝑖𝛼) = 𝜂 − 𝜂−1
(27)

to be solved in (𝑡, 𝜉, 𝜂) ∈ 𝔾3
m where 𝜉, 𝜂 are roots of unity. We let  ⊂ 𝔾3

m be the algebraic
curve defined by the above system, 𝜋 ∶ 𝔾3

m → 𝔾2
m be the projection to the (𝜉, 𝜂) coordinates and

 = 𝜋() the projected algebraic curve. We must prove that  cannot contain infinitely many
torsion points.
We shall first verify that if 𝑒𝑖𝛼 ≠ ±1, which we have supposed,  and  are isomorphic under

𝜋. We will then check that if 𝑢 ≠ 0, ±1, which we are supposing,  (and so ) is not a rational
curve. This will allow the application of Theorem 2.5 completing the proof.
For the first assertion, we must check that for every (𝜉, 𝜂) ∈  = 𝜋() there is just a point 𝑡

satisfying both equations in the system (27). Indeed, these equations are quadratic in 𝑡 and the
product of the two solutions to the first equation is −1, while the product of the solutions to the
second equation is 𝑒−2𝑖𝛼, excluding that the two sets of solutions coincide.
As to the second assertion, we can view  as a fibre product of the two quadratic coverings of

the 𝑡-line given by the individual equations of the system (27). These equations define (isomor-
phic) elliptic curves, since the discriminant of the quadratic equation satisfied by 𝜉 (resp., by 𝜂)
is 𝑢(𝑡 − 𝑡−1)2 + 4 (resp., 𝑢(𝑡𝑒𝑖𝛼 − 𝑡−1𝑒−𝑖𝛼)2 + 4) which are rational functions on the line with four
simple zeroes and two double poles. Hence the corresponding curve is a quadratic cover of the
line ramified over four points. Now, since  dominates an elliptic curve it cannot be rational.

3.2 Discussion on rectangular billiards

We start with proving the proposition below on plane lattices from which Theorem 1.9 follows
easily. A lattice 𝐿 ⊂ ℂ defines a (complex) torus ℂ∕𝐿, endowed with a flat metric deriving from
the Euclidean metric of the plane. The geodesic in the torus correspond to lines on the plane; a
closed (sometimes also called periodic) geodesic corresponds to a line on the plane of the form
𝑝0 + 𝑣 ⋅ ℝ, where 𝑝0 ∈ ℂ and the non-zero vector 𝑣 belongs of the setℝ ⋅ 𝐿 ∶= {𝑡𝜆 ∶ 𝑡 ∈ ℝ, 𝜆 ∈ 𝐿}.
Whenever 𝐿 is the lattice associated to a rectangle  , that is,  is a fundamental domain for

𝐿, every billiard trajectory on  gives rise to a geodesic on the torus ℂ∕𝐿; the billiard trajectory is
periodic if and only if this geodesic is closed.
The key to proving Theorem 1.9 is the following proposition, concerning arbitrary lattices,

which might have an independent interest:

Proposition 3.1. Let 𝐿 ⊂ ℂ be a lattice and fix an angle 𝛼 ∈ (0, 𝜋). Suppose there exist four pairs
of closed geodesic on the torus ℂ∕𝐿 forming an angle 𝛼 at each intersection point. Then the complex
torus ℂ∕𝐿 admits Complex Multiplication.
Vice versa, if 𝐿 is a CM lattice, then for infinitely many numbers 𝛼 ∈ (0, 𝜋) there exist infinitely

many pairwise non-proportional vectors 𝑣 such that 𝑣 ∈ ℝ ⋅ 𝐿 and 𝑒𝑖𝛼𝑣 ∈ ℝ ⋅ 𝐿.

Note that a pair of closed geodesic on a torus form the same angle at each of their intersection
points. Also a pair of geodesic forming an angle 𝛼 at their intersection points correspond to a
non-zero vector 𝑣 ∈ ℝ ⋅ 𝐿, defined up to multiplication by a scalar, such that 𝑒𝑖𝛼𝑣 ∈ ℝ ⋅ 𝐿.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1299

Proof. Let us normalize the lattice 𝐿 by complex dilation (which does not affect the issue), so as to
assume that 𝐿 = ℤ𝜏 + ℤ, ℑ(𝜏) > 0. We shall write elements 𝜆 ∈ 𝐿 as linear combinations 𝑎𝜏 + 𝑏

of 𝜏, 1with integer coefficients, indicating this with 𝐹𝜆(𝜏), andwe denote by 𝐹𝜆(𝑥) the polynomial
𝑎𝑥 + 𝑏 in the indeterminate 𝑥 of degree at most 1 having those same coefficients (so 𝜆 = 𝐹𝜆(𝜏) is
consistent).
Suppose that 𝑣 ∈ ℂ ⧵ {0} ≃ ℝ2 ⧵ {0} is a vector such that 𝑣 ∈ ℝ ⋅ 𝐿 and also 𝑣′ = 𝑒𝑖𝛼𝑣 ∈ ℝ ⋅ 𝐿. A

solution of this amounts to an equation 𝑒𝑖𝛼 = 𝑡𝜆∕𝛿, where 𝑡 ∈ ℝ∗ and 𝜆, 𝛿 ∈ 𝐿 − {0}, and where
two solutions have to be considered equivalent if the respective 𝜆, 𝛿 are the same up to a factor in
ℝ (which in fact should then lie in ℚ); this amounts to the directions being the same.
If ℂ∕𝐿 has 𝐶𝑀 then the ℚ-vector space generated by the lattice is a field and, for an infinity

of 𝛼, we obtain an infinity of inequivalent solutions starting from any single solution: indeed,
from a solution 𝑒𝑖𝛼 = 𝑡𝜆∕𝛿 and any 𝜂 ∈ 𝐿, 𝑛 ∈ ℕ, we obtain another solution 𝑒𝑖𝛼 = 𝑡𝜆′∕𝛿′, where
𝜆′ = 𝑛𝜆𝜂, 𝛿′ = 𝑛𝛿𝜂 both belong to 𝐿 for suitable 𝑛 > 0. By taking an infinity of pairwise non-ℝ-
proportional elements 𝜂 ∈ 𝐿, we obtain infinitely many pairs of periodic solutions satisfying the
conditions of Theorem 1.9.
For the converse assertion, let us then suppose to have four essentially distinct solutions (that

is, with non-proportional 𝑣), denoted as 𝑡𝑗, 𝜆𝑗, 𝛿𝑗 , 𝑗 = 1, 2, 3, 4. Put g𝑗(𝑥) = 𝐹𝜆𝑗 (𝑥), ℎ𝑗(𝑥) = 𝐹𝛿𝑗 (𝑥).
We have 𝑒𝑖𝛼 = 𝑡𝑗𝜆𝑗∕𝛿𝑗 , so

𝜆𝑖𝛿𝑗 = (𝑡𝑗∕𝑡𝑖)𝜆𝑗𝛿𝑖 = 𝑡𝑖𝑗𝜆𝑗𝛿𝑖, 𝑡𝑖𝑗 = 𝑡𝑗∕𝑡𝑖 ∈ ℝ∗.

Wemaywrite uniquely 𝜆𝑖𝛿𝑗 = g𝑖(𝜏)ℎ𝑗(𝜏) as a quadratic 𝑎𝑖𝑗𝜏2 + 𝑏𝑖𝑗𝜏 + 𝑐𝑖𝑗 with integer coefficients
in such a way that the same holds on replacing 𝜏 with 𝑥. For 1 ⩽ 𝑖 < 𝑗 ⩽ 4, set 𝐯𝑖𝑗 = (𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗);
these are six vectors in ℚ3.
Let 𝜏2 + 𝑎𝜏 + 𝑏 = 0 be the minimal equation of 𝜏 over ℝ; we have to prove that 𝑎, 𝑏 ∈ ℚ.
In any case, the vector 𝐮 ∶= (1, 𝑎, 𝑏) is proportional to 𝐯𝑖𝑗 − 𝑡𝑖𝑗𝐯𝑗𝑖 , provided this last vector

is non-zero. Now, if 𝐯𝑖𝑗 − 𝑡𝑖𝑗𝐯𝑗𝑖 = 0 for some pair (𝑖, 𝑗), 1 ⩽ 𝑖 < 𝑗 ⩽ 3, then we have identically
g𝑖(𝑥)ℎ𝑗(𝑥) = 𝑡𝑖𝑗g𝑗(𝑥)ℎ𝑖(𝑥). But g𝑘(𝑥), ℎ𝑘(𝑥) cannot be proportional, no matter 𝑘, since otherwise
𝑒𝑖𝛼 would be real. So, the equation implies that ℎ𝑗(𝑥) = 𝑐ℎ𝑖(𝑥), g𝑗(𝑥) = 𝑐𝑡−1

𝑖𝑗
g𝑖(𝑥), for a rational

constant 𝑐, and 𝑡𝑖𝑗must also be rational. But then the two equations for 𝑒𝑖𝛼 are essentially the same,
that is, obtained just by multiplying the lattice elements by rational constants. We may assume
this is not the case, so 𝐯𝑖𝑗 − 𝑡𝑖𝑗𝐯𝑗𝑖 ≠ 0 for all 1 ⩽ 𝑖 < 𝑗 ⩽ 3, and actually the same argument proves
that 𝐯𝑖𝑗 and 𝐯𝑗𝑖 are linearly independent. This already shows that 𝐮 lies in the plane spanned by
them, that is, the rational plane orthogonal to 𝐯𝑖𝑗 ∧ 𝐯𝑗𝑖 ≠ 0, so 1, 𝑎, 𝑏 are linearly dependent over
ℚ. If there exist two of these planeswhich are distinct, then𝐮would lie in their intersection, which
is a rational line, so 𝐮must be rational as wanted. So suppose that all these planes are equal; then
the polynomials g𝑖(𝑥)ℎ𝑗(𝑥), 𝑖 ≠ 𝑗 generate a vector space of dimension 2 over ℚ. In particular,
g1(𝑥)ℎ2(𝑥), g1(𝑥)ℎ3(𝑥) generate this space, or ℎ2(𝑥), ℎ3(𝑥) are proportional. This last assumption
is impossible, since otherwise the second and third solutions would be essentially equal. Hence
any g𝑠(𝑥)ℎ𝑘(𝑥), 𝑠 ≠ 𝑘, is a linear combination of g1(𝑥)ℎ2(𝑥), g1(𝑥)ℎ3(𝑥), and hence is a multiple
of g1(𝑥). In particular, g1|g2ℎ3 and g1|g2ℎ4, so, since g1 cannot divide g2, for the same reason why
ℎ𝑠 cannot be proportional to ℎ𝑘 for 𝑠 ≠ 𝑘, we must have g1|ℎ3 and g1|ℎ4; but this implies that ℎ3
and ℎ4 are proportional. This contradiction concludes the argument. □

Proof of Theorem 1.9. Let 𝑝0 ∈  ⊂ ℂ and 𝛼 ∈ (0, 𝜋) as in the statement. Let 𝐿 be the lattice asso-
ciated to  . As we observed a billiard trajectory in  passing through 𝑝0 corresponds to a real
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1300 CORVAJA and ZANNIER

line in ℂ of the form 𝑝0 + ℝ𝑣 and to a geodesic in ℂ∕𝐿; such a trajectory is periodic if and only if
𝑣 ∈ ℝ ⋅ 𝐿. Then both parts of Theorem 1.9 follow from Proposition 3.1. □

Note that Proposition 3.1 is more general than Theorem 1.9, since it holds for arbitrary lattices,
not only those admitting a rectangular fundamental domain.

Discussion of the assertion in Remark 1.8 concerning Theorem 1.5. For Theorem 1.5 things are again
elementary, and we only add a few words. It is easy to see that, for instance in a rectangular bil-
liard, taking three points𝑝𝑖 = (𝑎𝑖, 𝑏𝑖), and setting𝛼𝑖𝑗 = 𝑎𝑖 − 𝑎𝑗 , 𝛽𝑖𝑗 = 𝑏𝑖 − 𝑏𝑗 , the trajectories from
𝑝1 passing through 𝑝2 and 𝑝3 correspond to integer solutions (𝑥, 𝑦, 𝑧, 𝑤) of (𝛼13 + 𝑥)(𝛽12 + 𝑦) =

(𝛼12 + 𝑧)(𝛽13 + 𝑤). For instance if 𝑝1, 𝑝2, 𝑝3 are rational points with common denominator𝑁 and
if, putting 𝐴𝑖𝑗 = 𝑁𝛼𝑖𝑗 , 𝐵𝑖𝑗 = 𝑁𝛽𝑖𝑗 , we have 𝐴13𝐵12 ≡ 𝐴12𝐵13 (mod 𝑁), there are infinitely many
integer solutions: it suffices to find ‘many’ integers𝑚 > 0,𝑚 ≡ 𝐴13𝐵12 (mod 𝑁), and having two
divisors congruent modulo 𝑁, resp., to 𝐴13 and 𝐴12.
We leave it to the interested readers to discover the exact assumptions that have to be imposed

for obtaining an analogue of Theorem 1.5 (and possibly Theorem 1.6) for rectangular billiards. □

3.3 Proof of Theorem 1.5 and the finiteness part of Theorem 1.6

We now prove Theorem 1.5 distinguishing the elliptic and the circular cases; the proofs are some-
what different. The technique used to treat the elliptic case turns out to be useful in the proof of
the finiteness part in Theorem 1.6.

3.3.1 Proof of Theorem 1.5 in the elliptic case

Given the three points𝑝1, 𝑝2 ∈  𝑜 andℎ ∈ 𝐶, consider the sections𝜎𝑝1 , 𝜎𝑝2 , 𝜎ℎ associated to these
points, as explained at the end of Section 2.10, namely at Sections 2.10.1 and 2.10.2.
Before going on, we recall that these sections are not well defined over the base (parametrizing

the caustics) of our elliptic scheme, but 𝜎𝑝1 and 𝜎𝑝2 are defined over (possibly different) quartic
extensions of the base (see 2.10.1; these extensions ramify over the points of the base corresponding
to the two caustics passing through the relevant point and to the caustic 𝐶. On the contrary, the
section 𝜎ℎ is defined over a quadratic extension, as explained in Section 2.10.2.
We can then define three elliptic schemes 𝑝1

,𝑝2
,ℎ, each of them derived from the bil-

liard scheme  → ℙ1 − {4 points} by base change, each endowed with a new section, namely
𝜎𝑝1 , 𝜎𝑝2 , 𝜎ℎ. These sections associate to each point of the base of 𝑝1

(resp., 𝑝2
,ℎ) a ‘shot’ pass-

ing through 𝑝1 (resp., 𝑝2, ℎ). We can also let 𝐵 be the compositum of all the base changes, and
define an abelian scheme → 𝐵 by taking the fibre products of the ellipic schemes 𝑝1

,𝑝2
,ℎ.

The billiard shots we are considering in Theorem 1.5, that is, those sending 𝑝1 to 𝑝2 after
𝑚 bounces and then 𝑝2 to ℎ after 𝑛 further bouncings, correspond to the values of 𝑠 ∈ 𝐵

such that {
(𝜎𝑝1 + 𝑚𝛽)(𝑠) = 𝜎𝑝2(𝑠)

(𝜎𝑝2 + 𝑛𝛽)(𝑠) = 𝜎ℎ(𝑠)
(28)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1301

where 𝛽 is the billiard section viewed on 𝐵. More precisely, if (contrary to what is claimed in
Theorem 1.5) there existed infinitely many shots from 𝑝1 sending the ball to 𝑝2 and eventually to
the hole ℎ, then for a suitable choice of the sections associated to𝑝1, 𝑝2, ℎ, the system of Equations
(28) would admit infinitely many solutions 𝑠 ∈ 𝐵,𝑚, 𝑛 ∈ ℤ.
Let us write this system in the form{

(𝜎𝑝2 − 𝜎𝑝1)(𝑠) = 𝑚𝛽(𝑠)

(𝜎ℎ − 𝜎𝑝2)(𝑠) = 𝑛𝛽(𝑠).
(29)

The three sections 𝜎𝑝2 − 𝜎𝑝1 , 𝜎𝑝2 − 𝜎ℎ, 𝛽 give rise to a section 𝜎 ∶ 𝐵 →  to the three-dimensional
abelian scheme just defined. The solutions 𝑠 ∈ 𝐵 to the above system give rise to points where 𝜎(𝑠)
is contained in a subgroup scheme of codimension 2.
Before going on, we note that in the present situation, unlike that of the proof of Theorem 1.4,

the four sections 𝜎𝑝1 , 𝜎𝑝2 , 𝜎ℎ, 𝛽 we are considering can be algebraically (not rationally) defined
over the same scheme ′ → ℙ1 (the Legendre scheme). Hence in principle there can be lin-
ear relations among them (and indeed there are some, in very special cases). So some extra
work is needed to exclude linear relations of a certain type, which might prevent an applica-
tion of Theorem 2.4. That is, the image of our section could identically lie in a subgroup scheme
of codimension 2, and then of course this would continue to hold for each specialization at
points 𝑠 ∈ 𝐵.
More precisely, if the three sections 𝜎𝑝2 − 𝜎𝑝1 , 𝜎𝑝2 − 𝜎ℎ, 𝛽 are linearly independent, the curve

𝜎(𝐵) is not contained in any proper subgroup schemeof → 𝐵, andTheorem2.4 applies, assuring
the finiteness of the solutions to (29).
Hence we have to investigate these possible dependencies.
We first show that the sought independence holds generically and thenwe shall treat the special

cases.

Claim. Let 𝑝1, 𝑝2 be interior points outside the axes of the ellipse. Unless the two caustics contain-
ing 𝑝1 coincide with the two caustics containing 𝑝2, the four sections 𝜎𝑝1 , 𝜎𝑝2 , 𝜎ℎ, 𝛽 are linearly
independent. In particular, the three sections 𝜎𝑝2 − 𝜎𝑝1 , 𝜎𝑝2 − 𝜎ℎ, 𝛽 are linearly independent.

The principle of the proof is the following: if some algebraic sections 𝜎1, … , 𝜎𝑘 of an elliptic
scheme can be rationally defined on a base which is unramified over a certain place 𝑠0 while
another section 𝜎𝑘+1 cannot, then no multiple of this last section can belong to the group gen-
erated by the previous ones. In particular, if 𝜎1, … , 𝜎𝑘 are proved to be independent, then also
𝜎1, … , 𝜎𝑘+1 will be independent.
Proof of theClaim. Suppose first that the elliptic caustics passing through𝑝1 and𝑝2 are different.

Recall that the billiard section is defined over a quadratic extension of the base of the Legendre
scheme which ramifies only over 𝑠 = 1 and 𝑠 = ∞; since the minimal field of definition of 𝜎ℎ
ramifies over the hyperbolic caustic containing ℎ, the section 𝜎ℎ cannot be dependent with 𝛽.
Consider now 𝜎𝑝1 ; observe that it is defined on a base which ramifies over the elliptic caustic
passing through 𝑝1, while 𝛽, 𝜎ℎ can be defined on a base which is unramified over such a caustic.
Hence nomultiple of 𝜎𝑝1 belongs to the subgroup generated by 𝜎ℎ, 𝛽. For the same reason, looking
at the elliptic caustic passing through 𝑝2, we deduce that no multiple of 𝜎𝑝2 can be generated by
𝛽, 𝜎ℎ, 𝜎𝑝1 .
If, on the contrary, the two points 𝑝1, 𝑝2 are contained in a same elliptic caustic, but not in

a same hyperbolic caustic, we argue as follows: certainly at most one of the two hyperbolic
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1302 CORVAJA and ZANNIER

caustics containing 𝑝1, 𝑝2 can contain ℎ; suppose for instance that the hyperbolic caustic con-
taining 𝑝2 does not contain ℎ (nor 𝑝1). Then we proceed as before to prove that 𝛽, 𝜎ℎ, 𝜎𝑝1 are
linearly independent, and to conclude the argument we use the ramification over this hyperbolic
caustic (containing 𝑝2 but not 𝑝1).
It remains to treat the special case when 𝑝1, 𝑝2 lie at the intersection of the same caustics

or one of them lies on the axis; we shall see that in this case 𝜎𝑝1 , 𝜎𝑝2 can indeed be linearly
dependent (and they always are so for a suitable choice of the sections). For simplicity, we shall
still suppose that 𝑝1, 𝑝2 do not lie on the axes, leaving to the reader that special (and easier)
case.
In the sequel we shall treat this special case, but we stress that the theorem is already proved

in the ‘generic’ case when 𝑝1, 𝑝2 are not on the same caustics, so that the arguments we are using
below are needed only in that special case.
We shall use a modification of Theorem 2.4, which can be formally deduced from the general

results of [2] and was formulated earlier by Ghioca, Hsia and Tucker. Here is the statement:

Theorem 3.2. Let 𝜌1, 𝜌2, 𝜅 be sections of a complex elliptic scheme  → 𝐵. If there are infinitely
many points 𝑠 ∈ 𝐵 such that the system{

𝑚𝜅(𝑠) = 𝜌1(𝑠)

𝑛𝜅(𝑠) = 𝜌2(𝑠)

admits a solution (𝑚, 𝑛) ∈ ℤ2 then either there exists an index 𝑖 ∈ {1, 2} and an integer 𝑙 ∈ ℤ such
that 𝑙𝜅 = 𝜌𝑖 , or 𝜌1, 𝜌2 are linearly dependent.

After re-writing (29) in the more symmetric way{
(𝜎𝑝1 − 𝜎ℎ)(𝑠)) = (𝑚 − 𝑛)𝛽(𝑠)

(𝜎𝑝2 − 𝜎ℎ)(𝑠) = 𝑛𝛽(𝑠)
(30)

we set 𝜌1 = 𝜎𝑝1 − 𝜎ℎ, 𝜌2 = 𝜎𝑝2 − 𝜎ℎ, 𝜅 = 𝛽 and shall apply the above Theorem.
To proceed in the proof of Theorem 1.5 we need to prove the following two lemmas:

Lemma 3.3. Let 𝑝, ℎ ∈  be distinct real points, not foci. For no choice of sections 𝜎𝑝, 𝜎ℎ associated
to them a relation of the form 𝜎𝑝 − 𝜎ℎ = 𝑙𝛽 can hold.

In this lemma, to be proved below together with the next one, 𝑝 and ℎ can be either interior
points of the billiard table  or border points; in our application here 𝑝 is an interior one and ℎ
lies on the border 𝐶. Note that geometrically this means that, whatever the interior point 𝑝 and
the hole ℎ be fixed, there exists no integer 𝑙 such that shooting the ball from 𝑝 in any direction,
after 𝑙 bounces the ball ends in the hole. From this fact it follows that the set of directions from 𝑝

sending the ball to the hole is at most countable. (In Theorem 1.2 we also show that it is indeed
an infinite countable set and provide an estimate for the number of suitable directions in term of
the number of bounces.)

Lemma 3.4. Suppose that for some choices of three distinct points 𝑝1, 𝑝2, ℎ, of which ℎ is on the
border, 𝑝1, 𝑝2 are interior and not foci, and some choice of sections 𝜎𝑝1 , 𝜎𝑝2 and 𝜎ℎ the two sec-
tions 𝜎𝑝1 − 𝜎ℎ, 𝜎𝑝2 − 𝜎ℎ are linearly dependent. Then the two caustics passing through 𝑝1 coincide
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1303

with those passing through 𝑝2 and a minimal linear relation reads 2(𝜎𝑝2 − 𝜎ℎ) = 2(𝜎𝑝1 − 𝜎ℎ) that
is,

2𝜎𝑝1 = 2𝜎𝑝2 . (31)

Let us conclude the proof of Theorem 1.5 assuming these lemmas (to be proved in a moment).
The application of Theorem 3.2 provides the sought finiteness result unless 𝜎𝑝1 , 𝜎𝑝2 satisfy the
above linearly dependence relation (since the first conclusion of Theorem 3.2 cannot hold in view
of Lemma 3.3). In that case, looking at the system (29) we obtain that the solutions 𝑠 to the system
are torsion points for both 𝛽 and 𝜎𝑝2 − 𝜎ℎ. But 𝜎𝑝2 − 𝜎ℎ is non-torsion by the above lemma, and
the billiard section 𝛽 is also non-torsion, as we have already remarked. Then by Theorem 2.3 the
set of such points 𝑠 is finite.
It remains now to prove the two lemmas.

Proof of Lemma 3.3. We prefer to use the phase space model of the elliptic scheme described
in Section 2.10. Recall that the compactification of the total space of the basic billiard surface
is the surface  obtained by suitably blowing up eight times over the surface 𝐶 × 𝐶 ≃ ℙ1 × ℙ1:
more precisely, four points are blown up on 𝐶 × 𝐶 and four more points on the corresponding
exceptional divisors. The billiard map can also be viewed as an automorphism 𝑇 ∶  →  of that
surface. The sections 𝜎𝑝, 𝜎ℎ are indeed multi-sections in this model, and correspond to curves
𝑌𝑝, 𝐿ℎ on the surface  . The lemma we are proving amounts to saying that no power of 𝑇 sends
the curve 𝑌𝑝 to the curve 𝐿ℎ.
Consider the images𝑌𝑝 (resp., 𝐿ℎ) of 𝐿𝑝 (resp., 𝐿ℎ) on𝐶 × 𝐶 (see diagram (24)). Observe that 𝐿ℎ

intersects the diagonal of𝐶 × 𝐶 at the point (ℎ, ℎ), while𝑌𝑝 intersects the diagonal at the complex
points of the form (𝑞, 𝑞)where 𝑞 ∈ 𝐶 is such that the tangent at 𝑞 passes through 𝑝. Now, since 𝑝
is an interior point, 𝑞 cannot be real, so in particular 𝑞 ≠ ℎ; this implies that (𝑞, 𝑞) does not belong
to 𝐿ℎ. Also, since 𝑝 is not a focus, 𝑞 is not one of the four points to blow up in the construction
of  . It follows that the automorphism 𝑇, viewed as a rational automorphism of 𝐶 × 𝐶, is well
defined at these points (𝑞, 𝑞) (there are two of them) and fixes them. Since (𝑞, 𝑞), which is fixed
by 𝑇, does not belong to 𝐿ℎ, no power of 𝑇 can send 𝑌𝑝 to 𝐿ℎ. □

Note that in the case of our concern, that is, when ℎ lies on the boundary and 𝑝 is an interior
point, a simpler proof is available: take an elliptic caustic 𝐶𝑠 so that 𝑝 lies inside it; then every
trajectory starting from ℎ, which is made of segments of lines tangents to 𝐶𝑠, cannot pass through
the point 𝑝. This proves that for such an 𝑠 and for every positive integer 𝑙, 𝜎ℎ(𝑠) + 𝑙𝛽(𝑠) ≠ 𝜎𝑝(𝑠).
Concerning Lemma 3.4, we first note that it can happen that 𝜎𝑝1 , 𝜎𝑝2 satisfy relation (31).

Indeed, suppose that 𝑝2 is the image of 𝑝1 under one of the three non-identical automorphisms
(𝑥, 𝑦) ↦ (±𝑥,±𝑦) of 𝐶 × 𝐶; this is precisely the case when the caustics passing through 𝑝1 are the
same as those passing through 𝑝2. We already remarked in Section 2.10 that these symmetries lift
on the surface  to the automorphisms of translations by points of order 2. The corresponding
multi-sections 𝑌𝑝1

, 𝑌𝑝2
are interchanged by one of these order 2 automorphisms. This implies

that after performing a base change so that 𝑌𝑝1
⊂  gives rise to a rational section 𝜎𝑝1 , there is a

suitable choice for the rational section 𝜎𝑝2 , depending on the choice of 𝜎𝑝1 (recall that there are
four choices for each section above 𝑌𝑝2

), such that the difference 𝜎𝑝2 − 𝜎𝑝1 is of order 2, and so
relation (31) holds.
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1304 CORVAJA and ZANNIER

Proof of Lemma 3.4. The lemma has already been proved in the generic case, that is, with the pos-
sible exceptions when 𝑝1, 𝑝2 lie on the same caustics (that is, the two caustics passing through 𝑝1
coincide with the two caustics passing through 𝑝2) and ℎ lies in the hyperbolic caustic containing
𝑝1, 𝑝2. Let us then consider only this case. Denote by±𝜎𝑝1, ±𝜎̃𝑝2 the four sections associated to the
interior point 𝑝1 as in 2.10.1 and by 𝜎ℎ one of the two sections associated to ℎ, ‘pointing towards ℎ’;
the other such section is−𝜎ℎ − 𝛽. Then the four sections associated to the second interior point𝑝2
are of the form ±𝜎𝑝1 + 𝜌, ±𝜎̃𝑝1 + 𝜌, where 𝜌 is a torsion section of order 2. To prove the lemma, it
suffices to prove the independence modulo torsion of the two sections 𝜎𝑝1 − 𝜎ℎ, 𝜎̃𝑝1 − 𝜎ℎ as well
as the independence of the two sections 𝜎𝑝1 − 𝜎ℎ, −𝜎𝑝1 − 𝜎ℎ. It then remains to consider only the
trivial case of the pair of sections both equal to 𝜎𝑝𝑖 − 𝜎ℎ which leads to the relation (31).
The linear independence of the sections 𝜎𝑝1 − 𝜎ℎ, −𝜎𝑝1 − 𝜎ℎ follows simply by the already

proven independence of the sections 𝜎𝑝1 , 𝜎ℎ.
As to the remaining case, this can be achieved by computing the canonical height quadratic

form in the lattice generated by 𝜎𝑝1 , 𝜎̃𝑝1 , 𝜎ℎ. The calculations follow by a systematic procedure in
the theory of elliptic surfaces, so we do not perform themhere, and refer to [18, Chapter 9]. It turns
out that the intersection matrix of the Néron–Tate height bilinear form is (dropping the index we
write 𝜎𝑝 for 𝜎𝑝1)

𝜎𝑝 𝜎̃𝑝 𝜎ℎ
𝜎𝑝 1 0 1∕2

𝜎̃𝑝 0 1 −1∕2

𝜎ℎ 1∕2 −1∕2 1.

From these data the independence modulo torsion of the three sections 𝜎𝑝, 𝜎̃𝑝, 𝜎ℎ follows imme-
diately, so in particular the follows differences 𝜎𝑝1 − 𝜎ℎ, 𝜎̃𝑝1 − 𝜎ℎ turn out to be independent
modulo torsion. □

3.3.2 Proof of the finiteness statement in Theorem 1.6

The proof of this statement is similar to that just given for Theorem 1.5. Given an interior point
𝑝 ∈  0, we can define four algebraic sections 𝜎𝑝, 𝜎̃𝑝, −𝜎𝑝, −𝜎𝑝 corresponding to the four possible
shots from 𝑝 with given caustic. Once 𝜎𝑝 is chosen, −𝜎𝑝 corresponds to changing the orientation
of the trajectory, while 𝜎̃𝑝 and −𝜎̃𝑝 correspond to the other choice for the tangent. These four
sections become rational after a single quartic extension of the base.
Suppose that for a certain shot, that is, for a point 𝑠 of the base, 𝜎𝑝(𝑠) gives rise to a trajectory

of types (2) and (3), namely passing through 𝑝 two more times, once with the same tangent but
opposite orientation and once with different direction. Then 𝑠 will be a solution to the system{

𝜎𝑝(𝑠) + 𝑚𝛽(𝑠) = −𝜎𝑝(𝑠)

𝜎𝑝(𝑠) + 𝑛𝛽(𝑠) = 𝜎̃𝑝(𝑠),
(32)

where 𝛽 still denotes the billiard section. This system can be written in the form{
2𝜎𝑝(𝑠) = −𝑚𝛽(𝑠)

𝜎𝑝(𝑠) − 𝜎̃𝑝(𝑠) = −𝑛𝛽(𝑠),
(33)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1305

similar to the system (30). We have already proved that 𝜎𝑝, 𝛽 are linearly independent. It can be
proved, for example, looking at the canonical height, that, if 𝑝 is not on an axis of the ellipse, the
three sections 𝜎𝑝, 𝜎̃𝑝, 𝛽 are also linearly independent (see again [18, Chapter 9], where we calcu-
lated the intersection matrix of the images of these sections, from which independence follows at
once). From this fact, an application of Theorem 2.4 provides the sought finiteness.
If, however, the point 𝑝 lies on an axis but not on a focus, then 𝜎̃𝑝 can be obtained from 𝜎𝑝 by

applying a symmetry of the ellipse𝐶, which corresponds to translation by a point of order 2. Hence
the linear dependence relation between 𝜎𝑝, 𝜎̃𝑝 reads 𝜎𝑝 = ±𝜎̃𝑝 + 𝜌, where 𝜌 has order two, and
every solution 𝑠 of (33) either gives rise to a torsion point for the two sections 𝜎𝑝, 𝛽, which enables
an application of Theorem 2.3, or to an equation of the form 𝜌(𝑠) = −𝑛𝛽(𝑠) which is impossible
(but would have solutions over the complex points).
Suppose now that the trajectory for a given point 𝑠 of the base is at the same time of types (1)

and (3), so it is periodic and passes through 𝑝 (infinitely many times) with both orientations. This
corresponds to a system {

𝜎𝑝(𝑠) + 𝑚𝛽(𝑠) = 𝜎𝑝(𝑠)

𝜎𝑝(𝑠) + 𝑛𝛽(𝑠) = 𝜎̃𝑝(𝑠)
(34)

which also reads as {
𝑚𝛽(𝑠) = 0

(𝜎𝑝 − 𝜎𝑝)(𝑠) = −𝑛𝛽(𝑠).
(35)

We have already proved that, if the point is not on the axis, the three sections 𝜎𝑝, 𝜎̃𝑝, 𝛽 are inde-
pendent, so, we can apply Theorem 2.3, which provides the finiteness of the solutions 𝑠 ∈ 𝐵 of the
above system. If, on the contrary, the point lies on one axis, we argue as above.
In the case a trajectory is of types (1) and (2), we reduce to the system{

(𝜎𝑝 + 𝑚𝛽)(𝑠) = 𝜎𝑝(𝑠)

(𝜎𝑝 + 𝑛𝛽)(𝑠) = −𝜎𝑝(𝑠)
(36)

which again implies that both 𝜎𝑝(𝑠) and 𝛽(𝑠) are torsion points in 𝑠. Again Theorem 2.3 leads to
finiteness. This concludes the proof.

3.3.3 Proof of Theorem 1.5 in the circular case

It remains to treat the case of circular billiards in the context of Theorem 1.5. Let then 𝐶 be the
unit circle in the complex plane, so that 𝐶 is the multiplicative group of complex numbers of
modulus 1. Clearly, the billiard map consists in a rotation, in the following sense; if a segment
of the trajectory goes from point 𝜁 ∈ 𝐶 to point 𝜁𝜉, for some 𝜉 ∈ 𝐶, then the orbit consists of the
points of the form 𝜁𝜉𝑛, for 𝑛 ∈ ℤ.We can then parametrize the phase space as pairs (𝜁, 𝜉) ∈ 𝐶 × 𝐶,
where 𝜉 determines the rotation corresponding to the billiard map.
Let us fix two interior points 𝑝1, 𝑝2, both distinct from the centre; without loss of generality,

we can suppose that the hole is represented by the point 1 ∈ 𝐶. The shots passing through 𝑝1
are parametrized by pairs (𝜁, 𝜉) ∈ 𝐶 × 𝐶 such that the real line joining 𝜁 with 𝜁𝜉 contains 𝑝1. If
𝑝1 is represented by the complex number 𝛼 with 0 < |𝛼| < 1, then the condition that 𝜁, 𝜁𝜉, 𝛼 are
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1306 CORVAJA and ZANNIER

aligned corresponds to the condition that the solution 𝑡 to the equation 𝑡𝜁 + (1 − 𝑡)𝜁𝜉 = 𝛼 be real.
Since 𝑡 is given by 𝑡 = (𝛼 − 𝜁𝜉)∕(𝜁 − 𝜁𝜉), such a condition amounts to the relation

𝛼 − 𝜁𝜉

𝜁 − 𝜁𝜉
=

𝛼̄ − 𝜁𝜉̄

𝜁 − 𝜁𝜉
.

Since 𝜁 = 𝜁−1 and 𝜉̄ = 𝜉−1, the above equation can be written as an algebraic equation which
becomes, after some simplifications,

𝜉 = −
1 − 𝛼𝜁−1

1 − 𝛼̄𝜁
.

Setting 𝑢 = 𝛼𝜁−1 the above equation becomes

𝜉 = −
1 − 𝑢

1 − |𝛼|2𝑢−1 . (37)

The condition that after 𝑚 bounces the ball hits 𝑝2 =∶ 𝛽 amounts to a similar equation referred
to the pair (𝜁𝜉𝑚, 𝜉), namely

𝜉 = −
1 − 𝑣

1 − |𝛽|2𝑣−1 . (38)

where 𝑣 = 𝛽𝜁−1𝜉−𝑚.
Finally, the ball will fall into the hole after 𝑛 bounces if and only if 𝜁𝜉𝑛 = 1. This gives the

relations

𝑢 = 𝛼𝜉𝑛, 𝑣 = 𝛽𝜉𝑛−𝑚. (39)

The system of Equations (37) and (38) defines a curve ⊂ 𝔾3
m, while the relations (39) imposes

two multiplicative dependence conditions. In other words, we are interested in solutions (𝜉, 𝑢, 𝑣)
such that 𝛼−1𝑢, 𝛽−1𝑣 lie in the multiplicative subgroup generated by 𝜉.
We first note that the algebraic curve  , birational to a cubic curve in the plane, is irreducible

of genus 1 if |𝛼| ≠ |𝛽|, while in the special case |𝛼| = |𝛽| it is the union of a conic and one line.
Let us first consider the generic case, when |𝛼| ≠ |𝛽|. We claim that in this case the curve  ⊂

𝔾𝑛
m is not contained in any translate of an algebraic subgroup. Indeed, first note that 𝑣 is quadratic

over ℂ(𝑢) = ℂ(𝑢, 𝜉), while 𝑢 is quadratic over ℂ(𝑣, 𝜉) = ℂ(𝑣). Now, starting from an equation of
the form 𝜉𝑎 ⋅ 𝑢𝑏 ⋅ 𝑣𝑐 = const., supposing, for example, 𝑐 ≠ 0, we would deduce that the conjugate
𝑣′ of 𝑣 differsmultiplicatively from 𝑣 by a root of unit.Writing 𝑣′ = 𝜁𝑣, with 𝜁𝑐 = 1, we obtain that
its trace is (1 + 𝜁)𝑣 ∈ ℂ(𝑢), forcing 𝜁 = −1 and its trace being zero. However, from the quadratic
Equation (38) follows that the trace is 1 + 𝜉 ≠ 0.
We can then apply Theorem 2.7, which provides the finiteness of the points (𝜉, 𝑢, 𝑣) ∈ 

satisfying the dependence conditions (39). This concludes the proof in the case |𝛼| ≠ |𝛽|.
Let us consider now the special case |𝛼| = |𝛽| =∶ 𝑟. In this case, we have

𝑢 = 𝑣 or 𝑢𝑣 + 𝑟 − 𝑟(𝑢 + 𝑣) = 0. (40)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1307

The first possibility 𝑢 = 𝑣 leads to a curve contained in a proper algebraic subgroup of 𝔾3
m.

Hence Theorem 2.7 does not apply. In this case, however, the relations (39) are equivalent to
𝜉𝑚 = 𝛽∕𝛼. We have then to solve Equation (37) (or the equivalent Equation (38)) under the con-
dition 𝑢 = 𝛼𝜉𝑛, knowing that 𝜉 is an 𝑚th root of 𝛽∕𝛼. If 𝛽∕𝛼 is a root of unity, we can apply
directly Theorem 2.5, since the curve defined in 𝔾2

m by Equation (37) is not an algebraic subgroup.
Otherwise we can either apply the full Laurent’s theorem, using for Γ the division group of the
cyclic group generated by 𝛼∕𝛽 or use the following trick: given a solution (𝜉, 𝑢) = (𝜉, 𝛼𝜉𝑛) with
𝜉𝑚 = 𝛼∕𝛽 we obtain other solutions conjugating over ℂ(𝛼, 𝛽). The conjugate solutions are of the
form (𝜃𝜉, 𝜃𝑛𝜉) for some root of unit 𝜃. After taking two conjugates, we obtain two more equa-
tions. We then obtain three algebraic equations in (𝜉, 𝑢, 𝜃, 𝜃′) to be solved in roots of unity 𝜃, 𝜃′.
Eliminating 𝜉, 𝑢, one obtains a single algebraic equation in 𝜃, 𝜃′ to which Theorem 2.5 applies. A
third way to conclude in this case is by applying a theorem of Schinzel on irreducibility of lacu-
nary polynomials [49], which constitutes a particular case of Theorem 2.7 (see Remark after [10,
Theorem 2]).
Let us now consider the second possibility in the degenerate case |𝛼| = 𝛽|, that is, the second

equality in (40). In that case, after rewriting (37), (38) and the second equality in (40) we arrive at
the system of equations

⎧⎪⎪⎨⎪⎪⎩
𝜉 = 𝑢−1

𝑢−𝑟
⋅ 𝑢

𝜉 = 𝑣−1

𝑣−𝑟
⋅ 𝑣

𝑢 = 𝑣−1

𝑣−𝑟
⋅ 𝑟.

The above equations imply 𝑢𝑣𝜉−1 = 𝑟, so our curve is contained in a non-torsion translate of
an algebraic subgroup. In this situation we can either conclude by applying the full Maurin’s
theorem, or argue more simply in a way similar to the previous one, since from the last equality
and relations (39) we can deduce that 𝜉2𝑛−𝑚−1 = 𝑟𝛼−1𝛽−1.

4 PROOF OF THEOREM 1.10

We recall the notation in the statement of Theorem 1.10. We are given three lines 𝐿1, 𝐿2, 𝐿3 in
the plane and we are looking for the (complex) points 𝑃 ∈ 𝐿1 such that for some pair (𝑚, 𝑛) ∈

ℤ2, 𝛽𝑚(𝑃) ∈ 𝐿2, 𝛽
𝑛(𝑃) ∈ 𝐿3. It is useful to write this condition in the form 𝑃 ∈ 𝐿1 ∩ 𝛽−𝑚(𝐿2) ∩

𝛽−𝑛(𝐿3). In view of our assumption that 𝐿1, 𝐿2, 𝐿3 lie in different orbits under 𝛽, the three lines
𝐿1, 𝛽

−𝑚(𝐿2), 𝛽
−𝑛(𝐿3) are pairwise distinct and we shall have 𝐿1 ∩ 𝛽−𝑚(𝐿2) ∩ 𝛽−𝑛(𝐿3) = {𝑃}.

The automorphism 𝛽 is given by a 3 × 3 invertible matrix, defined up to scalars. The powers
of 𝛽 form a cyclic subgroup of PGL3(ℂ); its Zariski-closure is an algebraic subgroup of PGL3; we
shall denote by 𝐺𝛽 the connected component of this algebraic group containing the identity.
For the algebraic group 𝐺𝛽 , as a linear algebraic group, there are five possible isomorphism

classes: {1}, 𝔾𝑎, 𝔾𝑚, 𝔾𝑎 × 𝔾𝑚, 𝔾
2
𝑚 (we recall that we are working over the complex number field,

or over its subfield of algebraic numbers; we shall omit any reference to the ground field). The first
case arises when 𝛽 has finite order; the last case is the generic one, holding outside a countable
union of proper Zariski-closed subsets ofPGL3, and corresponds to a diagonalizablematrixwhich,
in suitable normalized form, has eigenvalues 1, 𝜆1, 𝜆2 with 𝜆1, 𝜆2 multiplicatively independent.
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1308 CORVAJA and ZANNIER

The aim of this subsection is the proof of the following proposition, of which Theorem 1.10 is
an immediate consequence:

Proposition 4.1. Let 𝐿1, 𝐿2, 𝐿3 be three lines in ℙ2, 𝛽 ∈ PGL3(ℂ) be a projective automorphism.
Suppose that the three lines 𝐿1, 𝐿2, 𝐿3 belong to distinct orbits for the group generated by 𝛽. Denote
by  = (𝐿1, 𝐿2, 𝐿3; 𝛽) the set of orbits for the action of 𝛽 on ℙ2(ℂ) which intersect each of the three
lines 𝐿1, 𝐿2, 𝐿3. Let 𝐺𝛽 ⊂ PGL3 be the algebraic group determined by 𝛽 as above.
Then

(1) If 𝐺𝛽 = 𝔾2
𝑚 then  is finite.

(2) If𝐺𝛽 = 𝔾𝑚 and is infinite, thenat least one of the three lines, say𝐿1, contains a fixed point for𝛽.
Also, the set of pairs (𝑚, 𝑛) such that there exists a point𝑃 ∈ 𝐿1 such that𝛽𝑚(𝑃) ∈ 𝐿2, 𝛽

𝑛(𝑃) ∈ 𝐿3
is the union of finitely many cosets of subgroups in ℤ2.
Also, either each of the three lines contains a fixed point and there exists an automorphism

𝛾 ∈ PGL3(ℂ) such that the group Γ =< 𝛽, 𝛾 > is commutative and  is contained in finitely
many orbits for Γ, or only one line contains a fixed point. In this last case, the set of points 𝑃 on
such a line whose orbit lies in  is given, in suitable affine coordinates, by the values of a binary
linear recurrence sequence.

(3) If𝐺𝛽 = 𝔾𝑎 × 𝔾𝑚 and is infinite, then two among the three lines 𝐿1, 𝐿2, 𝐿3, say 𝐿1, 𝐿2, contain a
fixed point for 𝛽. Also, the set of pairs (𝑚, 𝑛) ∈ ℤ2 such that there exists a point 𝑃 ∈ 𝐿1 such that
𝛽𝑚(𝑃) ∈ 𝐿2, 𝛽

𝑛(𝑃) ∈ 𝐿3 is the union of a finite set and an infinite set of the form𝑚 = 𝑎𝜆𝑛 + 𝑏𝑛,
where 𝑎, 𝑏 ∈ ℚ∗. Also, there exists an automorphism 𝛾 ∈ PGL3(ℂ) such that the group Γ =<

𝛽, 𝛾 > is commutative and  is contained in finitely many orbits for Γ.
(4) If 𝐺𝛽 = 𝔾𝑎 and  is infinite, then the set of fixed points for 𝛽 contains a line, so each of the

three lines 𝐿1, 𝐿2, 𝐿3 contains a fixed point. All the pairs (𝑚, 𝑛) ∈ ℤ2 such that there exists a
point 𝑃 ∈ 𝐿1 such that 𝛽𝑚(𝑃) ∈ 𝐿2 and 𝛽𝑛(𝑃) ∈ 𝐿2 lie on a single line in ℤ2. Also, there exists
an automorphism 𝛾 ∈ PGL3(ℂ) as in case (3).

In each case, there is an effective procedure to detect whether the set is infinite: when it is so,
 is the union of finitely many infinite families, which can be explicitly described, and a finite set.
Examples of infinite families in cases (2)–(4) will be constructed.
Let us begin the proof of Proposition 4.1, by fixing the notation which will be used.
In projective coordinates, the three lines 𝐿1, 𝐿2, 𝐿3 are defined by the vanishing of a linear form

in three variables, which will also be denoted by 𝐿1, 𝐿2, 𝐿3. Let us write the three linear forms as

𝐿1(𝑥1, 𝑥2, 𝑥3) = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3
𝐿2(𝑥1, 𝑥2, 𝑥3) = 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3
𝐿3(𝑥1, 𝑥2, 𝑥3) = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3.

Before proceeding to the proof, let us make three useful remarks, which will be applied several
times throughout the proof.

Remark 4.2. We are looking for triples (𝑃,𝑚, 𝑛) with 𝑃 ∈ 𝐿1,𝑚, 𝑛 ∈ ℤ, such that

𝑃 ∈ 𝐿1, 𝛽𝑚(𝑃) ∈ 𝐿2, 𝛽𝑛(𝑃) ∈ 𝐿3. (41)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1309

We are assuming that 𝐿1, 𝐿2, 𝐿3 have distinct 𝛽-orbits. Hence every pair (𝑚, 𝑛) ∈ ℤ2 can give rise
to at most one triple (𝑃,𝑚, 𝑛) satisfying the above relation. Also, if one among 𝑚, 𝑛 or 𝑚 − 𝑛 is
bounded, there are at most finitely many points 𝑃 ∈ ℙ2 giving rise to a solution (𝑃,𝑚, 𝑛) of (41).

Remark 4.3. If the first line 𝐿1 is invariant under 𝛽, then there can be atmost one 𝛽-orbit intersect-
ing 𝐿1, 𝐿2 and 𝐿3. Indeed, if there is one such orbit, up to changing 𝐿2, 𝐿3 by suitable pre-images
of themselves under powers of 𝛽, we can suppose that 𝐿1 ∩ 𝐿2 ∩ 𝐿3 = {𝑃} is non-empty. Then the
only orbit intersecting all the three lines is the orbit of 𝑃. Of course, the same remark applies when
𝐿2 or 𝐿3 is invariant.

Remark 4.4. If two of the three lines intersect in a point 𝑃 which is fixed for 𝛽, then the orbit of 𝑃
is the only orbit which can intersect all the three lines, and actually 𝑃 would be the unique point,
if any, belonging to 𝐿1 and possessing images both in 𝐿2 and in 𝐿3.

To prove Proposition 4.1, we shall distinguish several cases, according to the nature of the group
𝐺𝛽 , which in turn depends on the Jordan form of a matrix associated to 𝛽.

Case 1. 𝐺𝛽 = 𝔾2
𝑚. As mentioned, this is the generic case. It means that the automorphism is diag-

onalizable with pairwise distinct eigenvalues 𝜆1, 𝜆2, 𝜆3 such that 𝜆1∕𝜆3, 𝜆2∕𝜆3 are multiplicatively
independent. We can choose suitable coordinates so that the matrix is in diagonal form, and also
normalize it so that one eigenvalue equals 1, so the matrix of 𝛽 will be of the form

⎛⎜⎜⎝
𝜆1 0 0

0 𝜆2 0

0 0 1

⎞⎟⎟⎠. (42)

Given a pair of positive integers 𝑚, 𝑛, the existence of a point 𝑥 = (𝑥1 ∶ 𝑥2 ∶ 𝑥3) ∈ ℙ2(ℂ) such
that 𝐿1(𝑥) = 𝐿2(𝛽

𝑚(𝑥)) = 𝐿3(𝛽
𝑛(𝑥)) = 0 amounts to the relation

det

⎛⎜⎜⎜⎝
𝑎1 𝑎2 𝑎3

𝑏1𝜆
𝑚
1

𝑏2𝜆
𝑚
2

𝑏3

𝑐1𝜆
𝑛
1

𝑐2𝜆
𝑛
2

𝑐3

⎞⎟⎟⎟⎠ = 0.

Let us then consider the subvariety 𝑉 of 𝔾4
𝑚 defined by the equation

𝑉 ∶ det
⎛⎜⎜⎝
𝑎1 𝑎2 𝑎3
𝑏1𝑥1 𝑏2𝑥2 𝑏3
𝑐1𝑦1 𝑐2𝑦2 𝑐3

⎞⎟⎟⎠ = 0. (43)

We are looking for points (𝑥1, 𝑥2, 𝑦1, 𝑦2) = (𝜆𝑚
1
, 𝜆𝑚

2
, 𝜆𝑛

1
, 𝜆𝑛

2
) ∈ 𝑉 ∩ Γ, where Γ ⊂ 𝔾4

𝑚(ℂ) is the
multiplicative group generated by the points (𝜆1, 𝜆2, 1, 1) and (1, , 1, 𝜆1, 𝜆2).
Suppose first that the variety𝑉 is the whole of𝔾4

𝑚. Then in particular for every choice of𝑚, 𝑛 ∈

ℤ, the three lines 𝐿1, 𝛽−𝑚(𝐿2), 𝛽−𝑛(𝐿3) are concurrent. This can happen only if their intersection
point is fixed for the group, hence for 𝛽, and we conclude via Remark 4.4.
We can then suppose that 𝑉 is a hypersurface of 𝔾4

𝑚.
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1310 CORVAJA and ZANNIER

Let𝑊 ⊂ 𝑉 be a positive-dimensional irreducible component of the Zariski-closure of 𝑉 ∩ Γ in
𝑉. By Theorem 2.6, it is a translate of a subtorus of 𝔾4

𝑚. In particular,𝑊 is contained in a translate
of a maximal proper subtorus, so its points satisfy a monomial relation of the form

𝑥𝑎1𝑥
𝑏
2𝑦

𝑐
1𝑦

𝑑
2 = 𝜉

for some non-zero complex number 𝜉 ∈ ℂ∗ and some non-zero vector (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℤ4. By our
assumptions Γ ∩𝑊 is dense in𝑊, so in particular we have infinitely many solutions (𝑚, 𝑛) ∈ ℤ2

to the equation

𝜆𝑎𝑚+𝑐𝑛
1

𝜆𝑏𝑚+𝑑𝑛
2

= 𝜉. (44)

Since 𝜆1, 𝜆2 are multiplicatively independent, the above relation implies a pair of relations of the
form {

𝑎𝑚 + 𝑐𝑛 = 𝑒

𝑏𝑚 + 𝑑𝑛 = 𝑓

for suitable fixed integers 𝑒, 𝑓 ∈ ℤ and all𝑚, 𝑛.
Then either the above relations are independent, so there exists at most one pair (𝑚, 𝑛)

satisfying them, or we can parametrize all the pairs (𝑚, 𝑛) as 𝑚 = 𝑚0 − 𝑐𝑡, 𝑛 = 𝑛0 + 𝑎𝑡 for
suitable 𝑚0, 𝑛0 ∈ ℤ, where 𝑡 varies in ℤ. Put 𝑏∗

1
= 𝑏1𝜆

𝑚0

1
, 𝑏∗

2
= 𝑏2𝜆

𝑚0

2
, 𝑐∗

1
= 𝑐1𝜆

𝑛0
1

and 𝑐∗
2
=

𝑐2𝜆
𝑛0
2
. Note that 𝑏∗

1
, 𝑏∗

2
, 𝑏3 (resp., 𝑐∗1 , 𝑐

∗
2
, 𝑐3) are the coefficients of the linear form vanishing on

𝛽−𝑚0(𝐿2) (resp., on 𝛽−𝑛0(𝐿3). Hence by our assumptions the line vectors (𝑏∗1 , 𝑏
∗
2
, 𝑏3), (𝑐

∗
1
, 𝑐∗

2
, 𝑐3)

are linearly independent.
By Remark 4.2, if 𝑎 or 𝑏 vanishes, we are done. Then suppose none of them vanishes, so we

obtain that identically (for (𝑥1, 𝑥2) ∈ 𝔾2
𝑚):

det

⎛⎜⎜⎜⎝
𝑎1 𝑎2 𝑎3

𝑏∗
1
𝑥−𝑏𝑡
1

𝑏∗
2
𝑥−𝑏𝑡
2

𝑏3

𝑐∗
1
𝑥𝑎𝑡
1

𝑐∗
2
𝑥𝑎𝑡
2

𝑐3

⎞⎟⎟⎟⎠ = 0. (45)

Now, if the third column vanishes, the point (0 ∶ 0 ∶ 1), which is a fixed point for the group,
is the intersection point 𝐿1 ∩ 𝛽−𝑚(𝐿2) ∩ 𝛽−𝑛(𝐿3), hence of 𝐿1 ∩ 𝐿2 ∩ 𝐿3 and by Remark 4.4 we are
done. Analogously, if the second column vanishes, then (0 ∶ 1 ∶ 0), which is also a fixed point
for the group, would be the intersection point of 𝐿1 ∩ 𝛽−𝑚(𝐿2) ∩ 𝛽−𝑛(𝐿3), while the vanishing of
the first column would give 𝐿1 ∩ 𝛽−𝑚(𝐿2) ∩ 𝛽−𝑛(𝐿3) = (1 ∶ 0 ∶ 0), and again by Remark 4.2 we
are done.
Suppose then that no column in the matrix in (45) vanishes.
In view of Remark 4.3, we can also suppose that (𝑎2, 𝑎3) ≠ (0, 0).
If the second column in (45) is a multiple of the third one for every 𝑥2 ∈ 𝔾𝑚, then since, as we

remarked, we cannot have neither (𝑎2, 𝑎3) = 0 nor the vanishing of the second column, we shall
have 𝑎2 ≠ 0, 𝑎3 ≠ 0 and so 𝑏∗

2
𝑥−𝑏𝑡
2

as well as 𝑐∗
2
𝑥𝑎𝑡
2
would be constant. This implies 𝑏∗

2
= 𝑐∗

2
= 0,

so 𝛽−𝑚(𝐿2) ∩ 𝛽−𝑛(𝐿3) would be the fixed point (0 ∶ 1 ∶ 0). But this point would then belong to
𝐿2 ∩ 𝐿3 and by Remark 4.4 we are done.
Finally, we can suppose that the last two columns are generically independent. Then, since

the determinant in (45) is identically zero, the first column is, for every 𝑥1 ∈ 𝔾𝑚, a multiple of
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1311

a constant vector. This can happen only if two of the three coefficients 𝑎1, 𝑏∗1 , 𝑐
∗
1
vanish, or if 𝑎1

vanishes and 𝑎 = 𝑏. In the first case two lines would meet in a fixed point for the group, and once
againwe apply Remark 4.4. In the second casewe have 𝑎 − 𝑏 = 0, that is, (𝑚, 𝑛) = (𝑚0, 𝑛0) + (𝑡, 𝑡)

and by Remark 4.2 we obtain the finiteness of the relevant points 𝑃.
This achieves the proof in Case 1.

Case 2. 𝐺𝛽 = 𝔾𝑚. In this case the Zariski-closure of the cyclic group generated by 𝛽might be a dis-
connected algebraic group. Observe, however, that the conclusion does not change if we replace
𝛽 by one of its powers with non-zero exponent, and replace the three lines by suitable elements in
their 𝛽-orbit. Hence we can and shall suppose that the Zariski-closure of the cyclic group gener-
ated by 𝛽 itself is isomorphic to 𝔾𝑚, so that 𝛽 can be expressed in suitable coordinates by a matrix
of the form

⎛⎜⎜⎝
𝜆𝑢 0 0

0 𝜆𝑣 0

0 0 1

⎞⎟⎟⎠,
where 𝜆 ∈ ℂ∗ is not a root of unity and 𝑢, 𝑣 are non-zero integers.
We repeat the argument developed in Case 1 (and the notation for the equations of the three

lines): consider the variety 𝑉 ∈ 𝔾2
𝑚 defined by the equation

det

⎛⎜⎜⎜⎝
𝑎1 𝑎2 𝑎3

𝑏1𝑥
𝑢
1

𝑏2𝑥
𝑣
1

𝑏3

𝑐1𝑥
𝑢
2

𝑐2𝑥
𝑣
2

𝑐3

⎞⎟⎟⎟⎠ = 0.

By the same argument as in Case 1, if the determinant vanishes identically, the above matrix con-
tains at least two zeros in one single row or one single column, so we conclude by applying one of
the Remarks 4.4 and 4.3. So we assume that 𝑉 is a curve in 𝔾2

𝑚 and look for its points of the form
(𝑥1, 𝑥2) = (𝜆𝑚, 𝜆𝑛). In principle, the equation of 𝑉 involves monomials of the form 𝑥𝑖

1
𝑥
𝑗
2
where

for the exponents (𝑖, 𝑗) six pairs are possible, namely

(𝑢, 0), (𝑣, 0) (0, 𝑢) (0, 𝑣), (𝑢, 𝑣), (𝑣, 𝑢).

It is easy to see that if 𝑢 or 𝑣 or 𝑢 − 𝑣 vanishes, then 𝑉 is indeed a translate of a subgroup, but
the resulting equation in (𝜆𝑚, 𝜆𝑛) leads to a bound on either𝑚 or 𝑛 or 𝑛 − 𝑚 and we conclude by
Remark 4.2.
So we can suppose that 𝑢, 𝑣, 𝑢 − 𝑣 are all non-zero, which implies that the six pairs of integers

displayed above are pairwise distinct. Then, in order that the determinant equation involves only
two monomials, so that it defines a translate of a sub-torus of 𝔾2

𝑚, it is necessary and sufficient
that three coefficients in the abovematrix vanish; as we already remarked, these coefficients must
belong to different lines and rows.
Then, up to permuting the coordinates we can suppose that the vanishing coefficients are

𝑎3, 𝑏2, 𝑐1 and we obtain the equation 𝑏1𝑐3𝑎2𝑥
𝑢
1
+ 𝑐2𝑎1𝑏3𝑥

𝑣
2
= 0. This equation can have infinitely

many solutions of the form (𝑥1, 𝑥2) = (𝜆𝑚, 𝜆𝑛). In this case the pair (𝑚, 𝑛) satisfies the equation

𝑚𝑢 − 𝑛𝑣 = 𝑑,
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1312 CORVAJA and ZANNIER

where 𝑑 ∈ ℤ is fixed. It then follows that the pairs (𝑚, 𝑛) are parametrized as

𝑚 = 𝑚0 + 𝑣𝑡, 𝑛 = 𝑛0 + 𝑢𝑡

for suitable𝑚0, 𝑛0 and varying 𝑡. Then, after replacing 𝐿2 by 𝛽𝑚0(𝐿2) and 𝐿3 by 𝛽𝑛0(𝐿3), we obtain
an infinite family of solutions (𝑃, 𝑣𝑡, 𝑢𝑡). The solution corresponding to 𝑡 = 0 provides a point 𝑃
in the intersection 𝐿1 ∩ 𝐿2 ∩ 𝐿3. In our coordinates, 𝐿1 contains the fixed point (1 ∶ 0 ∶ 0), 𝐿2 the
fixed point (0 ∶ 0 ∶ 1) and 𝐿3 the fixed point (0 ∶ 1 ∶ 0). After change of coordinates, which will
not affect the matrix of 𝛽, we can suppose that 𝑃 = (1 ∶ 1 ∶ 1). Hence 𝐿1 (resp., 𝐿2, 𝐿3) must be
defined by the equation 𝑦 = 𝑧 (resp., 𝑥 = 𝑦, 𝑧 = 𝑥). The points of 𝐿1

𝑃𝑡 ∶= (1 ∶ 𝜆𝑢𝑣𝑡 ∶ 𝜆𝑢𝑣𝑡) ∈ 𝐿1

have the properties that for 𝑚 = 𝑣𝑡 and 𝑛 = 𝑢𝑡, 𝛽𝑚(𝑃𝑡) ∈ 𝐿2 and 𝛽𝑛(𝑃𝑡) ∈ 𝐿3. Note that all the
points 𝑃𝑡 lie in a same orbit for the action of a diagonal matrix, hence for an automorphism
commuting with 𝛽.
It remains to consider the other situation, of an equation involving more than two monomials

and nevertheless defining a translate of an algebraic subgroup. Namely, the determinant might
be a reducible polynomial in ℂ[𝑥±1

1
, 𝑥±

2
], one of its factor being a binomial. This case can occur

for instance when 𝑢 = −𝑣 (see Example 4.6). In this case too the conclusion that the relevant
pairs (𝑚, 𝑛) belong to finitely many lines in ℤ2 still hold. We omit the proof that in this case the
corresponding points 𝑃 ∈ 𝐿1 form a binary linear recurrent sequence. This fact will be clear from
the concrete example presented in 4.6.

Case 3. 𝐺𝛽 = 𝔾𝑎 × 𝔾𝑚. In this case we can suppose that the matrix of 𝛽 takes the form

⎛⎜⎜⎝
1 1 0

0 1 0

0 0 𝜆

⎞⎟⎟⎠
for some 𝜆 ∈ ℂ∗ which is not a root of unity. Its powers are

⎛⎜⎜⎝
1 𝑛 0

0 1 0

0 0 𝜆𝑛

⎞⎟⎟⎠.
The presence of a triple (𝑃,𝑚, 𝑛) satisfying (41) is equivalent to the equation

det
⎛⎜⎜⎝
𝑎1 𝑎2 𝑎3
𝑏1 𝑏1𝑚 + 𝑏2 𝑏3𝜆

𝑚

𝑐1 𝑐1𝑛 + 𝑐2 𝑐3𝜆
𝑛

⎞⎟⎟⎠ = 0.

Then the above equation reads as

𝜆𝑚𝑃(𝑛) − 𝜆𝑛𝑄(𝑚) = 𝑅(𝑚, 𝑛) (46)

for suitable polynomials 𝑃(𝑋), 𝑄(𝑌), 𝑅(𝑋, 𝑌) ∈ ℂ[𝑋, 𝑌] of degree ⩽ 1.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1313

Suppose first that 𝑏3 and 𝑐3 are both non-zero, so that we can take them to be equal to 1. Then

𝑃(𝑋) = 𝑎1𝑐1𝑋 + 𝑎1𝑐2 − 𝑐1𝑎2, 𝑄(𝑋) = 𝑎1𝑏1𝑋 + 𝑎1𝑏2 − 𝑎2𝑐1.

If one of the two polynomial vanishes then one couple among (𝑎1, 𝑎2), (𝑎1, 𝑏1) and (𝑎1, 𝑐1) must
vanish. Then we can apply either Remark 4.3 (in the first case) or Remark 4.4 (in the second and
third cases).
Then we can suppose that the two polynomials 𝑃(𝑋), 𝑄(𝑋) are both non-zero. We claim that

then either 𝑚, or 𝑛 or 𝑚 − 𝑛 is bounded, which permits to conclude via Remark 4.2. Indeed,
suppose that an infinite sequence of solutions (𝑚, 𝑛) to Equation (46) exists with𝑚, 𝑛, |𝑚 − 𝑛| all
tending to infinity. We can extract a subsequence for which𝑚 > 𝑛 and𝑚∕𝑛 converges in [1, +∞].
Dividing by 𝜆𝑛 we get the equation

𝑃(𝑛)𝜆𝑚−𝑛 = 𝑄(𝑚) + 𝑅(𝑚, 𝑛)𝜆−𝑛.

Now, since 𝜆 is not a root of unity, there exists an absolute value | ⋅ |𝜈 of a field containing 𝜆 and
all the involved coefficients with |𝜆|𝜈 > 1 (if 𝜆 is transcendental this is possible since it can be
sent by a possibly discontinuous automorphism of ℂ to any other transcendental number; if 𝜆
is algebraic, this follows from the fact that its height is > 1). Now, if 𝑚∕𝑛 → 1, we can bound|𝑅(𝑚, 𝑛)|𝜈 ≪ 1 + 𝑛 and so clearly 𝑅(𝑚, 𝑛)𝜆−𝑛 → 0, while |𝑄(𝑚)|𝜈 ≪ 𝑚 so that the above relation
cannot hold for large𝑛 and large𝑚 − 𝑛. If on the contrary𝑚∕𝑛 does not tend to 1, then𝑚 − 𝑛 ≫ 𝑚

and again the above relation cannot hold for large𝑚.
It remains then to consider the case in which one between 𝑏3 and 𝑐3 vanishes. Note that we can

suppose that exactly one of them vanishes, otherwise the two lines 𝐿2, 𝐿3 would meet in the fixed
point (0 ∶ 0 ∶ 1) and we would conclude via Remark 4.4. For the same reason we can also assume
that 𝑎3 ≠ 0.
Suppose then that 𝑏3 = 0, 𝑐3 = 𝑎3 = 1. Equation (46) reads

𝜆𝑛(𝑎1𝑏2 − 𝑎2𝑏1 + 𝑎1𝑏1𝑚) + (𝑏1𝑐2 − 𝑏2𝑐1 + 𝑏1𝑐1(𝑛 − 𝑚)) = 0

which can be written as

𝑚 =
𝐴𝜆𝑛 + 𝐵𝑛 + 𝐶

𝐷𝜆𝑛 + 𝐸
,

where 𝐴 = 𝑎2𝑏1 − 𝑎1𝑏2, 𝐵 = −𝑏1𝑐1, 𝐶 = 𝑏1𝑐2 − 𝑏2𝑐1, 𝐷 = 𝑎1𝑏1, 𝐸 = −𝑏1𝑐1. Recall that we are
supposing that the above ratio on the right-hand side, depending only on 𝑛, takes infinitely many
integral values. By taking a subsequence of these integer numbers, and looking at its limit, we
conclude that 𝐷 = 0. Then𝑚 is of the form𝐴𝜆𝑛 + 𝐵𝑛 + 𝐶, as predicted by the proposition we are
proving. Note also that 𝐵 ≠ 0, otherwise either 𝑏1 = 0, so 𝐿2 would be invariant for 𝛽, or 𝑏1 ≠ 0,
𝑐1 = 0 and, in view of 𝐷 = 0, we would have 𝑎1 = 𝑐1 = 0, so that 𝐿1 ∩ 𝐿3 would be a fixed point.
Again, Remarks 4.3 or 4.4 would provide finiteness.
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1314 CORVAJA and ZANNIER

Case 4. 𝐺𝛽 = 𝔾𝑎. In this case the automorphism 𝛽 can admit either just one fixed point, or
infinitely many (forming a line). In the first case the matrix of 𝛽 is conjugate to the matrix

⎛⎜⎜⎝
1 1 0

0 1 1

0 0 1

⎞⎟⎟⎠
so that its 𝑛th power reads

⎛⎜⎜⎝
1 𝑛

(𝑛
2

)
0 1 𝑛

0 0 1

⎞⎟⎟⎠.
We now prove that in this situation the set  is finite. With the above notation, the determinant
equation becomes

det

⎛⎜⎜⎜⎝
𝑎1 𝑎2 𝑎3

𝑏1 𝑏1𝑚 + 𝑏2 𝑏1
(𝑚
2

)
+ 𝑏2𝑚 + 𝑏3

𝑐1 𝑐1𝑛 + 𝑐2 𝑐1
(𝑛
2

)
+ 𝑐2𝑛 + 𝑐3

⎞⎟⎟⎟⎠ = 0

which reads

𝑎1𝑏1𝑐1(𝑚
2𝑛 − 𝑚𝑛2) = 𝑃(𝑚, 𝑛) (47)

for a polynomial 𝑃(𝑋, 𝑌) ∈ ℂ[𝑋, 𝑌] of degree at most 2.
If 𝑎1𝑏1𝑐1 = 0 thenwe can suppose, by symmetry, that 𝑐1 = 0. Then the equation takes the form

𝑄(𝑚) = 𝑛𝐹(𝑚)

for polynomials 𝑄(𝑋), 𝐹(𝑋) with deg𝑄 ⩽ 2, deg𝐹 ⩽ 1. Now, either the solutions (𝑚, 𝑛) of the
above diophantine equation have 𝑚 bounded, or the two polynomials 𝑄(𝑋), 𝐹(𝑋) admit a com-
mon integral root𝑚0; in that case, however, the line 𝛽−𝑚0𝐿2 would coincide with 𝐿1, contrary to
our assumptions.
We can then suppose that the coefficient 𝑎1𝑏1𝑐1 in Equation (47) does not vanish, so that the

equation defines a cubic curve with three (rational) points at infinity. Now, if this curve is irre-
ducible, then by Runge’s theorem it has only finitely many integral points, which can be easily
found. In the reducible case, the only components which can contain infinitely many integral
points are lines; now, for such a line, looking at its point at infinity one sees that its integral points
(𝑚, 𝑛) would have either𝑚, or 𝑛 or𝑚 − 𝑛 bounded, concluding the proof in this sub-case.
Let us now consider the case in which 𝐺𝛽 = 𝔾𝑎 and 𝛽 admits infinitely many fixed points. In

suitable coordinates, the matrix for 𝛽 reads

⎛⎜⎜⎝
1 1 0

0 1 0

0 0 1

⎞⎟⎟⎠.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1315

The relevant determinant equation becomes

det
⎛⎜⎜⎝
𝑎1 𝑎2 𝑎3
𝑏1 𝑏1𝑚 + 𝑏2 𝑏3
𝑐1 𝑐1𝑛 + 𝑐2 𝑐3

⎞⎟⎟⎠ = 0

which is either unsolvable or is the equation of a line.

We now show how to produce infinite families of solutions in each of the cases (2), (3) and (4).

Example 4.5. Here is a first example of an infinite set of orbits intersecting all the lines in the
setting of Proposition 4.1. The three lines are given by the equations:

𝐿1 ∶ 𝑦 − 𝑧 = 0 𝐿2 ∶ 𝑥 + 𝑦 = 0 𝐿3 ∶ 𝑥 + 𝑦 + 𝑧 = 0.

Take for 𝛽 the automorphism represented by the matrix

⎛⎜⎜⎝
1 1 0

0 1 0

0 0 2

⎞⎟⎟⎠
so that 𝐺𝛽 = 𝔾𝑎 × 𝔾𝑚. Note the fixed points (1 ∶ 0 ∶ 0) ∈ 𝐿1 and (0 ∶ 0 ∶ 1) ∈ 𝐿2.
The sequence of points in 𝐿1

𝑃𝑚 = (−𝑚 − 1 ∶ 1 ∶ 1)

has the property that for each𝑚 ∈ ℤ, 𝛽𝑚(𝑃𝑚) ∈ 𝐿2; also, if𝑚 = 2𝑛 + 𝑛 then 𝛽𝑛(𝑃𝑚) ∈ 𝐿3.
Note that letting 𝛾 denote the automorphism defined by the matrix

⎛⎜⎜⎝
1 1 0

0 1 0

0 0 1

⎞⎟⎟⎠
we have 𝛾 ◦ 𝛽 = 𝛽 ◦ 𝛾 and 𝑃𝑚 = 𝛾−𝑚(𝑃0).

Example 4.6. Here is another example of an infinite family of solutions for 𝐺𝛽 = 𝔾𝑚. Given
non-zero complex numbers 𝑎, 𝑏, the three lines are defined by the equations

𝐿1 ∶ 𝑥 − 𝑦 = 0 𝐿2 ∶ 𝑎𝑥 + 𝑏𝑦 = 𝑧 𝐿3 ∶ 𝑏𝑥 + 𝑎𝑦 = 𝑧.

The automorphism is defined by the matrix

⎛⎜⎜⎝
𝜆 0 0

0 𝜆−1 0

0 0 1

⎞⎟⎟⎠
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1316 CORVAJA and ZANNIER

for any 𝜆 ∈ ℂ∗, not a root of unity, so that𝐺𝛽 = 𝔾𝑚. The line 𝐿1 contains the fixed point (0 ∶ 0 ∶ 1),
while the other lines contain no fixed point.
Consider the sequence 𝑃𝑚 ∈ 𝐿1 defined by

𝑃𝑚 = (1 ∶ 1 ∶ 𝑎𝜆𝑚 + 𝑏𝜆−𝑚).

(Observe that the sequence𝑚 ↦ 𝑎𝜆𝑚 + 𝑏𝜆−𝑚 is a binary recurrent sequence.) Now 𝛽𝑚(𝑃𝑚) ∈ 𝐿2
and 𝛽−𝑚(𝑃𝑚) ∈ 𝐿3. Note that the automorphism 𝐹 ∈ PGL3(ℂ) sending (𝑥 ∶ 𝑦 ∶ 𝑧) ↦ (𝑦 ∶ 𝑥 ∶ 𝑧)

restricts to the identity on 𝐿1, interchanges 𝐿2 with 𝐿3 and satisfies 𝐹 ◦ 𝛽 ◦𝐹−1 = 𝛽−1. From these
facts it follows that if a point 𝑃 ∈ 𝐿1 satisfies 𝛽𝑚(𝑃) ∈ 𝐿2, then 𝛽−𝑚(𝑃) = 𝐹(𝛽𝑚(𝑃)) ∈ 𝐿3.

Example 4.7. It is easy to construct examples where the set  is infinite when 𝐺𝛽 = 𝔾𝑎. In this
case, one can take for 𝛽 an affine translation, say defined by 𝛽(𝑥, 𝑦) = (𝑥 + 1, 𝑦). Observe that
for every three concurrent lines 𝐿1, 𝐿2, 𝐿3 defined over ℚ, none of which is horizontal, there are
infinitely many horizontal lines cutting 𝐿1, 𝐿2, 𝐿3 at points having integral distances. This gives
an infinite family of 𝛽-orbits intersecting 𝐿1, 𝐿2, 𝐿3. However, not every example is given by lines
and endomorphisms definable (in suitable coordinates) over the rationals.

We end this section by classifying the cases when infinitely many points of a single orbit lie on
a line, and this orbit intersects the other two lines. This completes the classification of the cases
when infinitely many points on a line have their orbit intersecting the other two lines. We prove
the following:

Proposition 4.8. Suppose the lines 𝐿1, 𝐿2, 𝐿3 ⊂ ℙ2 have distinct orbits under an automorphism 𝛽 of
ℙ2. Suppose that a point 𝑃 ∈ 𝐿1 has the property that its orbit intersects 𝐿1 at infinitely many points
and it also intersects 𝐿2 and 𝐿3. Then the orbit of the line 𝐿1 is finite and at most finitely many points
of the orbit of 𝑃 can intersect 𝐿2 ∪ 𝐿3.

Proof. We shall apply the celebrated Skolem–Mahler–Lech theorem concerning zeroes of linear
recurrent sequences. In appropriate homogeneous coordinates, the line 𝐿1 is expressed by the
equation 𝑧 = 0 and the point 𝑃 has homogeneous coordinates (1 ∶ 0 ∶ 0). Letting 𝑇 ∈ GL3(ℂ) be
a matrix representing the automorphism 𝛽, the condition 𝛽𝑚(𝑃) ∈ 𝐿1 reads

𝑢𝑚 ∶= (0, 0, 1) ⋅ 𝑇𝑚 ⋅
⎛⎜⎜⎝
1

0

0

⎞⎟⎟⎠ = 0.

The left-hand side is a sequence satisfying a linear recurrence of the form 𝑢𝑚+3 = 𝑎𝑢𝑚+2 +

𝑏𝑢𝑚+1 + 𝑐𝑢𝑚, where 𝑎, 𝑏, 𝑐 are the coefficients of the characteristic polynomial of 𝑇, that
is, det(𝑇 − 𝑥𝐼3) = −𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐. By hypothesis the above equation has infinitely many
solutions 𝑚 ∈ ℤ. By the mentioned Skolem–Mahler–Lech theorem there is an arithmetic pro-
gression 𝑛 ↦ ℎ𝑛 + 𝑘 = 𝑚, for suitable integers 𝑘 ⩾ 0 and ℎ ⩾ 1, such that for each 𝑚 in that
set, 𝑢𝑚 = 0. This amounts to saying that 𝛽𝑘 ◦ (𝛽ℎ)𝑛(𝑃) ∈ (𝐿1) for all 𝑛 = 0, 1, …, which can be
written as

(𝛽ℎ)𝑛(𝑃) ∈ 𝛽−𝑘(𝐿1)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1317

for all 𝑛 = 0, 1, … But then, since the orbit of 𝑃 is infinite, so that 𝑃 cannot be a fixed point for 𝛽ℎ,
the line 𝛽−𝑘(𝐿1) must be invariant under 𝛽ℎ. This implies that 𝐿1 too is invariant under 𝛽ℎ and
that the 𝛽-orbit of 𝐿1 is finite. The second conclusion of the proposition follows immediately. □

5 SOME REMARKABLE FORMULAE

In this section we comment about a series of rather surprising formulae pointed out in the paper
[47], and verified subsequently by Akopian, Bialy, Schwartz and Tabachnikov in private commu-
nication to the authors of [47] (see this paper for references). Let us start with a brief summary
about this, focusing on only one of several similar phenomena.
Suppose that we have a sequence of distinct points 𝑝1, … , 𝑝𝑛 ∈ 𝐶(ℝ) defining a periodic billiard

trajectory of exact period 𝑛. Several things were known, for example, on the perimeter of the
corresponding polygon; see, for example, [15, 47]. In [47] a new property was pointed out:

Claim. Let 𝛼𝑖 be the angle of the trajectory at 𝑝𝑖 . Then, keeping fixed the caustic (tangent to all
the segments), the sum

∑𝑛
𝑖=1 cos 𝛼𝑖 is constant, that is, it is independent of 𝑝1.

Our purpose here is twofold: first, we wish to prove this property using the viewpoint of ellip-
tic curves, showing moreover how to obtain in a sense ‘all’ properties of this type. Second, we
will see how this viewpoint allows to say something also when the trajectory is not periodic. For
instance we shall prove that this sum, again as a function of 𝑝1 for a fixed caustic, cannot attain
any value more than twice (taking into account obvious symmetries), which is a best possible
conclusion.
The proofs by the authors mentioned above that we have alluded to allow to analyse also the

case of more general billiard curves; however it seems to us that such approach can hardly extend
to the case of non-periodical orbits.
Since this topic is not a main one in this paper, we shall keep the proofs short.
We have remarked above that the function given on the phase space by (1 − 𝑐2)𝜉1 + 𝑦𝜉2, where

(𝑥, 𝑦) ∈ 𝐶 and 𝜉 = (𝜉1, 𝜉2) denotes the velocity vector at (𝑥, 𝑦), depends only on the caustic. Then
it is easy to see that up to a quantity depending only on the caustic, we may replace cos 𝛼𝑖 by the
reciprocal of the squared norm of the gradient of (1 − 𝑐2)𝑥2 + 𝑦2 at 𝑝𝑖 , that is, we may replace
cos 𝛼𝑖 by ℎ(𝑝𝑖), where ℎ is the function of degree 4 on 𝐶 given by

ℎ(𝑝) = ℎ(𝑥, 𝑦) =
1 − 𝑐2

(1 − 𝑐2)2𝑥2 + 𝑦2
=

1

1 − 𝑐2𝑥2
=

1

2

(
1

1 + 𝑐𝑥
+

1

1 − 𝑐𝑥

)
.

This function on 𝐶 has simple poles at the four non-real points (±1∕𝑐, ±𝑖(1 − 𝑐2)∕𝑐) ∈ 𝐶(ℂ),
denoted 𝑣𝑖 , 𝑖 = 1, … , 4, for this section (we have already considered these points; see formula (23)).
As already noted, these points are significant since the tangent to𝐶 at 𝑣𝑖 , denoted 𝑙𝑖 in this section,
is tangent to every caustic.
As before, we may express ℎ as a function of 𝑧 = 𝑦∕(𝑥 − 1), which provides an isomorphism

𝑧 ∶ 𝐶 → ℙ1. The poles become the values 𝑧(𝑣𝑖), that is,±𝑖(1 ± 𝑐). A partial fraction decomposition
then yields

ℎ =
1

1 − 𝑐2
+
∑ 𝜖

𝑐
⋅

(1 + 𝜂𝑐)

𝑧 ± 𝜖𝑖(1 ± 𝜂𝑐)
,

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12561 by Scuola N

orm
ale Superiore D

i Pisa, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1318 CORVAJA and ZANNIER

the sum running over all choices of 𝜖, 𝜂 = ±1.
Further, we let ℎ∗ be the rational function on 𝑠 which is the pullback of ℎ via 𝜋, namely, if

𝜉 ∶= (𝑝, 𝑙) ∈ 𝑠, so 𝑝 ∈ 𝑙 and 𝑙 is tangent to 𝐶𝑠, and if 𝜋(𝜉) ∶= 𝑝, we put

ℎ∗ = ℎ ◦𝜋 ∶ 𝑠 → ℙ1, ℎ∗(𝜉) = ℎ∗(𝑝, 𝑙) = ℎ(𝑝).

The poles of ℎ∗ are the points in 𝜋−1(𝑣𝑖) =∶ {𝜈𝑖, 𝜈
′
𝑖
}, say. Since 𝑙𝑖 is tangent to every caustic, we

may put 𝜈𝑖 = (𝑣𝑖, 𝑙𝑖), whereas 𝜈′𝑖 = (𝑣𝑖, 𝑙
′
𝑖
), say, with 𝑙′

𝑖
depending on 𝑠 and being the other tangent

to 𝐶𝑠 from 𝑣𝑖 .
Let us compute the billiard map 𝑇 = 𝜄∗ ◦ 𝜄 on 𝑠, when applied to 𝜈𝑖 . Since 𝑙𝑖 is tangent to every

caustic, it is tangent to 𝐶, hence 𝑙𝑖 meets 𝐶 only in 𝑣𝑖 withmultiplicity 2, hence 𝜄 fixes 𝜈𝑖: 𝜄(𝜈𝑖) = 𝜈𝑖 .
Therefore𝑇(𝜈𝑖) = 𝜄∗(𝜈𝑖) = 𝜈′

𝑖
, by the very definition of 𝜄∗. Hence the billiardmap sends 𝜈𝑖 to 𝜈′𝑖 and

𝜋−1(𝑣𝑖) = {𝜈𝑖, 𝑇(𝜈𝑖)}.
For an integer 𝑛 > 0, let us now put

𝐻(𝜉) = ℎ∗(𝜉) + ℎ∗(𝑇(𝜉)) +⋯ + ℎ∗(𝑇𝑛−1(𝜉)), 𝐻 ∶ 𝑠 → ℙ1. (48)

Proof of Claim. Verifying the above Claim amounts to proving that 𝐻 is constant if 𝑇𝑛 =identity
on 𝑠.
For this, let now 𝜒 = 𝜒𝑠 be a non-zero differential of the first kind on 𝑠 and let us consider the

differential 𝐻 ⋅ 𝜒, which is the sum of the differentials𝑊𝑟 ∶= (ℎ∗ ◦𝑇𝑟)𝜒, 0 ⩽ 𝑟 ⩽ 𝑛 − 1. Since 𝜒
is invariant by 𝑇 (which is a translation on an elliptic curve corresponding to 𝑠), we have𝑊𝑟 =

𝑊0 ◦𝑇
𝑟.

Since 𝜒 has no zeros and no poles, the divisor of𝑊0 equals the divisor of ℎ∗, hence has simple
poles at the points in

⋃4
𝑖=1{𝜈𝑖, 𝑇(𝜈𝑖)}. Moreover, by the above partial fraction decomposition, the

residues of𝑊0 are, resp., constant multiples of the residues of the differentials obtained through
the functions of degree 1 on𝐶which appear in the decomposition, pulled back to𝑠 andmultiplied
by 𝜒. The four such functions have simple poles, resp., at {𝜈𝑖, 𝑇(𝜈𝑖)}, and since the sum of the
residues is zero, the same happens for ℎ∗ ⋅ 𝜒.
Let then 𝑟𝑖 , resp., −𝑟𝑖 be the residue of ℎ∗ ⋅ 𝜒 at 𝜈𝑖 , resp., 𝑇(𝜈𝑖). Then𝑊𝑟 = 𝑊0 ◦𝑇

𝑟 will have
simple poles at 𝑇−𝑟(𝜈𝑖) and 𝑇−𝑟+1(𝜈𝑖) with residues, resp., 𝑟𝑖, −𝑟𝑖 , for 𝑖 = 1, 2, 3, 4.
Hencewe see that the poles of𝐻 ⋅ 𝜒 occur at the𝑇𝑠(𝜈𝑖), 𝑠 = 1, 0, … ,−𝑛 + 1, with residueswhich

cancel except possibly for 𝑠 = 1, −𝑛 + 1, where anyway the residues are opposite. But if 𝑇𝑛 is the
identity, then these poles are the same and the residues cancel as well. Hence 𝐻 ⋅ 𝜒 has no poles
and is therefore a regular differential on 𝑠, which must be a constant multiple of 𝜒, proving that
𝐻 is constant, as wanted. □

5.0.1 Other formulae?

One may ask for other rational functions g on 𝐶 behaving like ℎ, that is, having the following

Property. For a fixed caustic𝐶𝑠 forwhich𝑇 has finite order𝑛 on𝑠, the sum g(𝑝1) +⋯ + g(𝑝𝑛−1)

is constant as a function of 𝑝1.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12561 by Scuola N

orm
ale Superiore D

i Pisa, W
iley O

nline L
ibrary on [10/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1319

The same argument as above shows that in place of ℎ we may take any linear combination of
the functions occurring in its partial fraction decomposition, that is, constants and the functions
𝑧 ± 𝑖(1 ± 𝑐)−1 on 𝐶.
Actually, restricting to caustics of even period 𝑛 for 𝑇, there are many other such functions.

Indeed, let g be a (rational) function on𝐶 which is oddwith respect to the automorphism 𝑝 → −𝑝

on 𝐶, that is, g(−𝑝) = −g(𝑝). Now, note that if 𝑇 has even period 2𝑚 on an elliptic caustic 𝐶𝑠,
then the points 𝑝1, … , 𝑝𝑛 in a periodic orbit can be grouped into 𝑚 pairs 𝑝𝑖, 𝑝𝑖+𝑚, which satisfy
𝑝𝑖+𝑚 = −𝑝𝑖: indeed, we have that 𝑇𝑚 is an automorphism of period 2, which can be checked to
correspond to 𝑝 → −𝑝 on 𝐶. (This may be verified, for example, on using the elliptic picture, in
which passing from 𝑖 to 𝑖 + 𝑚with respect to the caustic𝐶𝑠 corresponds to adding𝑚𝐵(𝜆) in𝐿𝜆, and
the above analysis shows that this is a point of order 2 corresponding to the said automorphism.
Wenote that the case of hyperbolic caustics is slightlymore complicated and the period considered
modulo 4 plays a role.) Thus

∑
g(𝑝𝑖) = 0.

In general, these functions are essentially the only exceptions. Indeed assuming for instance
that g has only simple poles, and restricting to odd period, we may prove the following assertion:

Proposition 5.1 (Converse Claim). Suppose that a function g ∈ ℂ(𝐶), with only simple poles sat-
isfies the Property merely for infinitely many caustics, but where we require that the period is odd.
Then g is a linear combination of the functions 1 and 𝑧 ± 𝜖𝑖(1 ± 𝜂𝑐)−1 on 𝐶.

We remark that the restriction to odd periods can be eliminated, allowing the other functions
described above, at the cost of a more complicated argument. Since this relies exactly on the same
ideas, and especially since this matter is not the main one on this paper, we confine to the given
statement, which illustrates all the principles (and we shall be brief in the proofs).
On the other hand, we remark that the finiteness assertions at the basis of many results of

this paper (especially Theorem 2.3) play a role also in this proof, and this is one more reason for
including such result here. After the proof we shall observe that replacing ‘infinitely many’ with
‘at least 𝐾’ would lead to a false assertion no matter how large 𝐾 is.

Sketch of proof. Let us consider a given caustic 𝐶𝑠 so that the assumptions holds for it, so 𝑇 is
periodic on 𝑠 of odd (exact) period 𝑛 = 𝑛𝑠.
Let 𝑉 be the set of poles of g on 𝐶. Each 𝑣 ∈ 𝑉 lifts to at most 2 points (𝑣, 𝑙) ∈ 𝑠, related by

𝜄∗, whose set we denote by 𝑉̃. These poles are the ones of g∗ ∶= g ◦𝜋 and they are simple except
when 𝑣 is one of the four ramification points of 𝜋, namely the 𝑃𝑖 . But this holds only for finitely
many caustics atmost, so let us assume this is not the case, so each 𝑣 ∈ 𝑉 lifts to exactly two points
of 𝑉̃, related by 𝜄∗.
The assumption yields that the function 𝐺 ∶= g∗ + g∗ ◦𝑇 +⋯ + g∗ ◦𝑇𝑛−1 is constant on 𝑠.

Then, it is not too difficult to perform a similar analysis as in the previous proof of the Claim,
to show that a certain cancellation would necessarily occur among the poles of the (g∗𝜒) ◦𝑇𝑚,
𝑚 = 0,… , 𝑛 − 1, which entails that the poles of g∗𝜒may be grouped in sets in the same orbit under
𝑇, such thatmoreover the sumof the residues in each such set vanishes. Going to an infinite subset
of caustics we may assume that the same grouping occurs and that the corresponding poles of g
in each group are the same for all caustics.
Let 𝑊̃ be one such group, with distinct poles 𝜈1, … , 𝜈𝑟 of g∗, so that 𝜈𝑖 = 𝑇𝑚𝑖𝜈1, where 𝑚𝑖 are

distinct integers modulo 𝑛 depending on 𝑠 (𝑚1 = 0), whereas the set𝑊 ∶= 𝜋𝑊̃ does not depend
on 𝑠, and the sum of the residues of g∗𝜒 at these poles is zero.
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1320 CORVAJA and ZANNIER

We may now interpret this on the Legendre model, through the isomorphism 𝜓 ∶ 𝑠 → 𝑠. In
the above notation, we have (recalling 𝑠 = 𝑐2𝜆)

𝜓(𝜈𝑖) = 𝜓(𝜈1) + 𝑚𝑖𝐵(𝜆), 𝑖 = 1, … , 𝑟.

Since the sum of the residues vanishes, we have 𝑟 ⩾ 2 for each group of points. Since this holds for
infinitely many 𝑠 such that 𝐵(𝜆) has finite (odd) order on 𝑠 = 𝐿𝜆, by Theorem 2.3 we infer that
the sections 𝜓(𝜈𝑖) − 𝜓(𝜈𝑗) and 𝐵(𝜆) are (generically) linearly dependent for each 𝑖, 𝑗 ∈ {1, … , 𝑟}.
These sections correspond to a basewhich is a cover of the 𝑠-line unramified except above a certain
finite set whereas the minimal field of definition of 𝐵 is unramified except above 𝑠 = 0, 𝑐2, 1,∞.
Let us inspect the ramification overℂ(𝑠) of aminimal field of definition of a section𝜓(𝜈), where

𝜋(𝜈) = 𝑣 = (𝑣𝑥, 𝑣𝑦) ∈ 𝐶. From Equation (10) we see that the ramification occurs when 𝑧(𝑃0) =

𝑧(𝛾𝜈), where 𝛾 varies in the group Γ of four symmetries of 𝑠, which lift the symmetries of 𝐶
obtained from sign changes. A simple calculation yields that the ramification occurs when 𝜆 =

𝑣2𝑥 or equivalently 1 − 𝜆 = 𝑣2𝑦∕(1 − 𝑐2). On the other hand, since the said sections are linearly
dependent, we must have that 𝜓(𝜈𝑖) − 𝜓(𝜈𝑗) is defined over a field unramified except above 𝑠 =
0, 𝑐2, 1,∞. To exploit this information we distinguish among some cases.
Suppose first that in a given group there are two indices 𝑖, 𝑗 such that the corresponding 𝑣2𝑥

are distinct and distinct from 0, 1, 1∕𝑐2. Then the corresponding section 𝜓(𝜈𝑖) − 𝜓(𝜈𝑗) is defined
over a field necessarily ramified above some point outside the said ones, so it cannot be linearly
dependent with 𝐵. The same holds if one of the 𝑣2𝑥 is distinct from 0, 1, 1∕𝑐2 and all the others fall
in this set. Therefore we may assume that for all groups and for all pairs of points we have either
𝑣2𝑥 ∈ {0, 1, 1∕𝑐2} or we have that the 𝑣2𝑥 are equal.
Let us then consider the case when in a group𝑊 as above there are points 𝜈1 ≠ 𝜈2 such that

𝑣1𝑥 = 𝑣2𝑥 ∉ {0, 1, 1∕𝑐2}. Then 𝑣1 = 𝛾(𝑣2) for some 𝛾 ∈ Γ. If 𝑣1 = 𝑣2 then necessarily 𝜈2 = 𝜄∗𝜈1, so
𝜓(𝜈2) = −𝜓(𝜈1). Then 𝜓(𝜈2) − 𝜓(𝜈1) = −2𝜓(𝜈1) is not (generically) linearly dependent with 𝐵(𝜆)

since the respectiveminimal fields of definition have distinct ramification. If 𝑣1 ≠ 𝑣2 then𝜓(𝜈2) =
±𝜓(𝜈1) + 𝜏 where 𝜏 is a section of order exactly 2. If the minus sign holds, then we conclude as
before using ramification. If the plus sign holds, then 𝜓(𝜈2) − 𝜓(𝜈1) = 𝜏 has exact order 2, thus
there cannot be any 𝑠0 (of good reduction) for which it equals a multiple of 𝐵(𝜆0), which has
odd order.
So we are reduced to the case when every relevant 𝑣𝑥 in a group𝑊 is in {0, 1, 1∕𝑐2}. It is easily

seen (for example, with a simple explicit calculation) that the first two possibilities lead to dis-
tinct sections for which 𝜓(𝜈) has exact order 4. Therefore the difference 𝜓(𝜈2) − 𝜓(𝜈1) of any two
distinct ones of them is of (exact) even order, which may be excluded as before.
The third case instead leads to the poles with 𝑣𝑥 = ±1∕𝑐. The corresponding sections 𝜈 satisfy

2𝜓(𝜈) = ±𝐵. Indeed, if 𝑣 = 𝜋(𝜈), we may assume that 𝜈 = (𝑣, 𝑙) where 𝑙 is tangent to all caustics
(this is the distinguished property of the points in question). Hence 𝜄 fixes 𝜈 and therefore 𝜄∗(𝜈) =
𝑇(𝜈) (we have seen this already in the proof of the Claim). At the level of Legendre curves we have
𝜓(𝜄∗𝜈) = 𝜓(𝜈) + 𝐵. However [𝜄∗] = −1, which yields the assertion. Now, if a group 𝑊 contains
poles of both types then again we find that the order of 𝐵 would be even.
But then the function g has only poles in the said set of four points, and an easy analysis with

residues completes the proof. □

As a further remark, we note that if we let the function g depend also on 𝑠, then the space
of relevant functions greatly increases, containing, for example, all those of the shape 2𝑓(𝑣) −
𝑓(𝑇𝐶(𝑣)) − 𝑓(𝑇−1

𝐶
(𝑣)). It may be still of interest to describe more completely this space. In any
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1321

case this shows that we may construct counterexamples to the conclusion of the Proposition, sat-
isfying however the assumption for any finite set of caustics: indeed, by easy interpolation, given
distinct 𝑠1, … , 𝑠𝑚, onemay construct a function g(𝑠, 𝑝) on ℙ1 × 𝐶, such that g(𝑠𝑖, 𝑝) coincides with
a prescribed function g𝑖 on 𝐶 (depending on 𝑖), and we may choose the g𝑖 as above.
To go ahead, we remark that, in the opening case of the function ℎ above, we could compute

the relevant constant, for example, integrating with respect to the invariant measure mentioned
above, and then obtain another proof of the complete results of the above cited authors. But
instead we show how this approach leads to further conclusions in the case when 𝑇 is not of
finite order.

5.0.2 Non-periodic orbits

We now conclude this section by studying the same function (as in the Claim above)
∑𝑛

𝑖=1 cos 𝛼𝑖 ,
but when the trajectory starting with 𝑝1, 𝑝2, … is not periodic. This issue does not appear in the
quoted papers, and certainly the sum cannot be constant on 𝐶 (in the above sense) this time.
Nevertheless, we shall see that something relevant still can be said, on adopting the ‘elliptic
scheme viewpoint’.
By the same remarks as above, for any given caustic 𝑠, the problem is reduced to the study of

the rational function𝐻 on 𝑠 given by (48). Indeed, we have remarked that, for a fixed caustic, we
have

∑𝑛
𝑖=1 cos 𝛼𝑖 = 𝑘(𝑠)𝐻(𝜉), for a number 𝑘(𝑠) ≠ 0 depending only on the caustic 𝐶𝑠 and for 𝜉 a

point in 𝑠 with 𝜋(𝜉) = 𝑝1.
As in the proof of the Claim, the poles of 𝐻 ⋅ 𝜒 occur at at the 𝑇𝑠(𝜈𝑖), 𝑠 = 1, 0, … ,−𝑛 + 1, with

residues which cancel except possibly for 𝑠 = 1, −𝑛 + 1, where anyway the residues are opposite.
Now we are assuming that 𝑇 has not finite order (on 𝑠) so we cannot draw the conclusion that
even these last poles cancel. Actually, the converse assertion is true as well. (The same holds if 𝑇
has finite order not dividing 𝑛.)
However all this says that𝐻 ⋅ 𝜒 has only eight simple poles, and the same holds for the function

𝐻 on 𝑠. In particular, 𝐻 has degree 8, is not constant, and cannot attain any value more than
8 times.
Now, if

∑𝑛
𝑖=1 cos 𝛼𝑖 (as a function of 𝑝1 for a given caustic) attains a certain value at 𝑝1, then, by

the invariance of themap ℎ under the symmetries of the ellipse, it is easily seen geometrically that
this value is attained by𝐻 at one point of 𝑠 above 𝑝1 and above another point in the same semi-
ellipse, namely at the symmetrical of 𝑝1 with respect to the 𝑥-axis. The function 𝐻 also attains
the same value at two further points corresponding to two points of 𝐶 in the other semi-ellipse.
(This is clear also algebraically, say on looking at 𝑠, since the two points above a given point of
the ellipse correspond to changing sign in the elliptic curve, and the four symmetries correspond
to addition of points of order 2.) Then we also obtain the following

Proposition 5.2. If𝑇𝑛 is not the identity on 𝑠, the sum∑𝑛
𝑖=1 cos 𝛼𝑖 , as a function of𝑝1 (and keeping

fixed the caustic), cannot attain any value more than twice in any semi-ellipse.

Note that this function is ‘half 𝐶-periodic’, in the sense that it attains the same values at 𝑝 and
−𝑝 (see also below). So, the result is in a sense best possible: viewed on a semi-ellipse considered
as an interval, the function is real and periodic, and non-constant, so the Proposition implies that
it will assume each value at least twice.
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1322 CORVAJA and ZANNIER

Let us now see how we can extract even more information. For this it shall be convenient to
distinguish between even and odd 𝑛, and let us say that 𝑛 = 2𝑚 + 1 is odd. We put

𝐻1(𝜉) = 𝐻(𝑇−𝑚(𝜉)) = ℎ∗(𝑇−𝑚(𝜉)) +⋯ + ℎ∗(𝑇−1(𝜉)) + ℎ∗(𝜉) +⋯ + ℎ∗(𝑇𝑚(𝜉)).

For a given caustic, this function is a constant times the above sum of the cosines; however con-
sidered as a function of 𝑝𝑚+1, which is the central point in the sequence of 2𝑚 + 1 points in the
billiard trajectory, we shall see that this function, more symmetrical than the former, has a very
special shape.
Let𝐷 be the group of four automorphisms of 𝑠, introduced above, induced by the four natural

symmetries of 𝐶 (they correspond to the translation by points of order 2 on 𝐽𝑠). Note that each ele-
ment of 𝐷 commutes with 𝑇. For 𝜎 ∈ 𝐷, we thus have ℎ∗(𝑇𝑟(𝜎(𝜉)) = ℎ∗(𝜎(𝑇𝑟(𝜉))) = ℎ∗(𝑇𝑟(𝜉)),
where the last equality follows since ℎ is a function on 𝐶 invariant by the mentioned four
symmetries. Hence 𝐻 is invariant by 𝐷. (This gives another explanation of the fact mentioned
before.)
Let also 𝐷1 be the group generated by 𝐷 and 𝜄∗. Note that this group is commutative (as can be

very easily checked by direct geometric reasoning), hence isomorphic to (ℤ∕(2))3. We also note
that on the Legendre model 𝜄∗ corresponds to 𝑥 ↦ −𝑥 so the group is represented by 𝑥 ↦ ±𝑥 + 𝑡

for 2𝑡 = 0.
Now, we have 𝑇 ◦ 𝜄∗ = 𝜄∗ ◦ 𝜄 ◦ 𝜄∗ = 𝜄∗ ◦𝑇−1. Moreover, since 𝜋 ◦ 𝜄∗ = 𝜋, the function ℎ∗ is invari-

ant by 𝜄∗. Therefore ℎ∗(𝑇𝑟𝜄∗𝜉) = ℎ∗(𝜄∗𝑇−𝑟𝜉) = ℎ∗(𝑇−𝑟𝜉). This entails that 𝐻1 is also invariant by
𝐷1.
Recall from the proof of the Claim that the poles of ℎ∗ are simple and consist of the points

denoted therein 𝜈𝑖 (𝑖 = 1, … , 4) and 𝜄∗𝜈𝑖 . These points 𝜈𝑖 are distinct and have the property of
being fixed points of 𝜄, so that 𝜄∗𝜈𝑖 = 𝑇𝜈𝑖 . The poles of 𝐻 turn out to be simple and occurring at
the eighth points 𝑇𝜈𝑖 and 𝑇1−𝑛𝜈𝑖 , and in turn the poles of 𝐻1 occur at the 𝑇1+𝑚𝜈𝑖 and 𝑇−𝑚𝜈𝑖 ,
𝑖 = 1, 2, 3, 4. (We could show the poles are distinct under the present assumption, but that is in
fact not needed.)
Now, 𝐷1 acts as a group of automorphisms on the function field of 𝑠, for example, over ℂ,

the fixed field having therefore index 8 in ℂ(𝑠). Since ℎ∗ has degree 8, the fixed field is precisely
ℂ(ℎ∗). Hence 𝐻1 lies in ℂ(ℎ∗). On the other hand, 𝐻1 has degree at most 8, hence 𝐻1 is a linear
fractional transformation of ℎ∗:

𝐻1(𝜉) = 𝐻(𝑇−𝑚(𝜉)) = ℎ∗(𝑇−𝑚(𝜉)) +⋯ + ℎ∗(𝑇𝑚(𝜉)) =
𝑎𝑛ℎ

∗ + 𝑏𝑛
𝑐𝑛ℎ

∗ + 𝑑𝑛
, (49)

where 𝑎𝑛, 𝑏𝑛, 𝑐𝑛, 𝑑𝑛 are complex numbers not all zero depending on 𝑛 and 𝑠, actually they are
real because all functions are defined over ℝ. Note this could give rise to a constant function
(if 𝑎𝑛𝑑𝑛 = 𝑏𝑛𝑐𝑛), and this may indeed happen if 𝑇 has order dividing 𝑛, as we have seen. The
corresponding discussion also shows that these are the only cases.
Note that we may view 𝐻1 also as a function 𝐻̃1 on 𝐶 because it is invariant under 𝜄∗, hence,

setting 𝑝 ∶= 𝜋(𝜉), we may write 𝐻1(𝜉) = 𝐻̃1(𝑝). Recalling the above formula for ℎ and putting
𝑝 = (𝑥, 𝑦) ∈ 𝐶, we have

𝐻̃1(𝑝) =
𝑎′𝑛𝑥

2 + 𝑏′𝑛
𝑐′𝑛𝑥

2 + 𝑑′𝑛
, (50)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1323

where 𝑎′𝑛, 𝑏
′
𝑛, 𝑐

′
𝑛, 𝑑

′
𝑛 ∈ ℝ′ again depend (only) on 𝑛 and 𝑠 and are not all zero. This also says that

the function 𝐻̃1 is ‘a quarter of 𝐶-periodic’, and takes its extremal values for 𝑥 = 0,±1, that is, at
the vertices of the ellipse, that is, the points where 𝑥𝑦 = 0. Hence we may improve the previous
Proposition with the following:

Theorem 5.3. If 𝑇 has not finite order dividing 𝑛, the function 𝐻̃1 assumes its maximum and min-
imum precisely at the points of 𝐶 where 𝑥𝑦 = 0, and assumes equal values at opposite points. It
assumes each value in its range exactly once in each quarter of 𝐶 (that is, between any consecutive
two of the said points).

Clearly this entails a corresponding statement for the sum
∑𝑚

𝑖=−𝑚 cos 𝛼𝑖 .
The case of even 𝑛 = 2𝑚 is similar, just a little more laborious: it suffices to observe that

we may write 𝑇 = 𝑈2 for an automorphism 𝑈 of 𝑠 and then the sum once symmetrized
becomes ℎ∗(𝑈−𝑚(𝜉)) +⋯ + ℎ∗(𝑈−1(𝜉)) + ℎ∗(𝑈(𝜉)) +⋯ + ℎ∗(𝑈𝑚(𝜉)). We omit the verifications
for brevity.
It should also be possible to express the numbers 𝑎𝑛, … in terms of significant quantities, as has

been done for the original of the mentioned authors, but we have not performed this analysis.
We suspect that themaximum (orminimum) is not attained always at the same points, but that

it is attained at vertices (on the lines 𝑥𝑦 = 0) which alternate (finitely many times) depending on
the caustic. However we have not proved this normade particular effort, so that we do not express
any opinion on how difficult this could be.
On the other hand, we do not know whether these results admit (simple) proofs not using the

elliptic description.

6 FINAL REMARKS

It is clear how Theorem 1.10 is related to the Question formulated in the Introduction, and indeed
this representsmaybe the simplest issue of it. Let us now illustrate how also some of our finiteness
theorems on billiards enter into this frame.

Theorem 1.5 and the Question. Consider for instance Theorem 1.5. The algebraic surface
mentioned in the question will be the billiard elliptic surface  , which, we recall, is birationally
isomorphic to the product 𝐶 × 𝐶 ≃ ℙ1 × ℙ1, hence also to the plane ℙ2. The group of endomor-
phisms Γ is the cyclic group generated by the billiard map 𝛽, viewed as an automorphism of the
surface . The curves 𝐿1 (resp., 𝐿2, 𝐿3) are defined by the pairs (𝑥1, 𝑥2) ∈ 𝐶 × 𝐶 ≈  such that the
line joining 𝑥1, 𝑥2 passes through 𝑝1 (resp., through 𝑝2, through ℎ). Theorem 1.5 may be stated as
asserting that there are only finitely many points of 𝐿1 whose orbit under Γ intersects both 𝐿2 and
𝐿3.
Note that, since the surface  is rational, the automorphism 𝛽 can also be viewed as a rational

automorphism of the planeℙ2 (a Cremona transformation). Aswe already remarked, themethods
of proof in this case is very different from the case when 𝛽 is a regular automorphism of ℙ2.
We have seen in Proposition 4.1, and in the examples at the end of Section 4, that, in the case

of the plane ℙ2 and a linear automorphism, the hypothesis that the lines belong to distinct orbits
does not guarantee the finiteness of the set of orbits intersecting all of them.
Similar counterexamples arise on elliptic surfaces. Consider for example the case in which 𝐿1 is

the image of the zero section and the curves 𝐿2, 𝐿3 are distinct torsion curves (images of algebraic
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1324 CORVAJA and ZANNIER

torsion sections); taking for 𝛽 the automorphismof the surface induced by translationwith respect
to another (non-torsion), section we obtain that infinitely many torsion points for 𝛽 have an orbit
intersecting all the three curves.

Another example of infinitude of orbits intersecting three curves.We can pro-
duce another example, still concerning elliptic surfaces and related to Example 4.6 (involving the
projective plane).
Let again be an elliptic surface with a section 𝛽 of infinite order, let 𝐿1 be the zero section and

take another arbitrary curve 𝐿2 on . Let𝐹 ∶  →  be the automorphism sending𝑃 → −𝑃 (with
respect to the group law on the fibres of the elliptic surface). Put 𝐿3 = 𝐹(𝐿2). Denoting again by 𝛽
the translation map induced by the section 𝛽, we observe that, as it was the case in Example 4.6,
𝐹 ◦ 𝛽 ◦𝐹−1 = 𝛽−1, and𝐹 induces the identity on 𝐿1. Then for every point 𝑃 ∈ 𝐿1 and every integer
𝑚 ∈ ℤ such that 𝛽𝑚(𝑃) ∈ 𝐿2, it holds 𝛽−𝑚(𝑃) ∈ 𝐿3.

Further links with the dynamical Mordell–Lang conjecture. Let us describe more
formally the link between our results and the so-called dynamical Mordell–Lang conjecture, for
whichwe refer to the book [5] by Bell, Ghioca andTucker. It turns out that our results are instances
of a case of the dynamical Mordell–Lang problem for an automorphism group of rank 2.
Let us consider again our Theorem 1.10. To insert this result into the frame of the dynamical

Mordell–Lang conjecture, let us consider the algebraic fourfold  ≃ ℙ2 × ℙ2 parametrizing pairs
of lines on the plane. Given an automorphism 𝛽 of the plane, we define an action on  by the
commutative group ℤ2 by setting

ℤ2 ×  ∋ ((𝑚, 𝑛), (𝐿, 𝐿′)) ↦ (𝛽−𝑚(𝐿), 𝛽−𝑛(𝐿′)).

Given a line 𝐿1, consider the hypersurface𝐿1
=  ⊂  formed by the pairs (𝐿, 𝐿′) ∈  such that

𝐿 ∩ 𝐿′ ∩ 𝐿1 ≠ ∅.
Finally, fix two more lines 𝐿2, 𝐿3, so that the pair (𝐿2, 𝐿3) is a point of  .
Given a pair (𝑚, 𝑛) ∈ ℤ2, the existence of a point 𝑃 ∈ 𝐿1 such that 𝛽𝑚(𝑃) ∈ 𝐿2 and 𝛽𝑛(𝑃) ∈ 𝐿3

amounts to the condition that (𝛽−𝑚(𝐿2), 𝛽−𝑛(𝐿3)) ∈  . Hence, the problem treated in Theo-
rem 1.10 is equivalent to that of describing the pairs (𝑚, 𝑛) such that the corresponding image
of the point (𝐿2, 𝐿3) lies on the closed proper subvariety  of  .
No general result seems to be known in the context ofℤ2-actions; to our knowledge, differently

from the one-dimensional case of ℤ-actions, no general conjecture has been formulated so far.
In the specific example just described, we proved that generically such pairs (𝑚, 𝑛) are finite in

number, while in particular cases we found infinite families which either consist of lines in ℤ2 or
in ‘exponential families’ of the form (𝑚, 𝑎𝜆𝑚 + 𝑏𝑚 + 𝑐), for fixed 𝑎, 𝑏, 𝑐, 𝜆.

Another instance the Question and its diophantine implications. Let us consider
three algebraic curves in ℝ2; projecting onto the torus ℝ2∕ℤ2 they define possibly non-closed
curves on the torus. Outside special cases one should prove the finiteness of triple intersections.
If we lift the situation to ℝ2 this falls in a special case of the Question: the algebraic surface is the
plane 𝔸2, the finitely generated semigroup Γ is the lattice of translations ℤ2; an orbit intersecting
all the three curves corresponds to a triple intersection point on the torus. In some cases finiteness
follows from Siegel’s theorem on integral points on curves. We think that this special case of the
Question might attract further investigation from those interested in diophantine geometry and
the theory of Unlikely Intersections.

Dynamical viewpoint on Theorem 1.4. Concerning Theorem 1.4, we can view it as a state-
ment about finiteness of periodic points in a subvarieties. Here are the details. Consider the
fourfold  ×  , parametrizing pairs of segments of a billiard trajectory. It is endowed by the diag-
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1325

onal automorphism (𝛽, 𝛽). The pairs (𝑥, 𝑦) corresponding to shots from a given point 𝑝0 forming
a given angle 𝛼 form a curve 𝐿 ⊂  ×  . If the two shots 𝑥, 𝑦 are both periodic for 𝛽, then so is the
pair (𝑥, 𝑦) for (𝛽, 𝛽). Hence Theorem 1.4 asserts the finiteness of periodic points lying on 𝐿. Note
that the periodic subvarieties of ×  , that is, those formed by the fixed points of the iterates of 𝛽,
are two-dimensional (product of two curves in  × ), so the expected condition for a subvariety
𝐿 ⊂  ×  to contain infinitely many periodic points is that dim𝐿 ⩾ 2.

Links with other issues. A very recent work by Cantat and Dujardin [14] studies orbits for
a group of automorphisms of surfaces. Possibly the present methods can be applied in some cases
to deduce the finiteness of periodic orbits outside exceptional cases, which could be classified. A
first case to treat might be that of a double elliptic fibration on a surface.

APPENDIX: WITH THE COLLABORATION OF JULIAN DEMEIO

In this Appendix we shall prove in particular Theorem 1.2. But we shall develop several other
results, for completely general sections of elliptic schemes, both in the real and the complex case.
For the case of the real billiard we shall give quite explicit formulae for the constants which

express the asymptotics. We remark that, for this issue, some similar analysis has been carried
out in the book [24] (where a special attention is given to the so-called QRT maps which we do
not consider here). However the present treatment is different in several respects: it is direct and
essentially self-contained and develops formulae in terms of elliptic integrals of the first kind
which we have not found in the existing literature.

A.1 Proof of Theorem 1.2

We start by recalling very briefly the notion of Betti map (for which see especially [1, 17]).

The Betti map of a section
Let 𝜋 ∶  → 𝐵 be an elliptic scheme over an (affine) complex smooth curve 𝐵, and let 𝜎 ∶ 𝐵 → 
be a section. Locally for 𝑏 ∈ 𝐵(ℂ)wemay represent the elliptic curve𝑏 ≅ ℂ∕Λ𝑏 analytically as a
complex torus, where Λ𝑏 = ℤ𝜔1(𝑏) + ℤ𝜔2(𝑏) is a lattice and the periods 𝜔𝑖 vary locally holomor-
phically on 𝐵. Again locally on disks𝑈 ⊂ 𝐵we have exponential maps exp𝑏 ∶ ℂ → 𝑏 ∶= 𝜋−1(𝑏)

varying holomorphically on𝑈, and wemay take an elliptic logarithm 𝜎̃ of the section, so 𝜎̃ ∶ 𝑈 →

ℂ is holomorphic and of the shape 𝜎̃(𝑏) = 𝛽1(𝑏)𝜔1(𝑏) + 𝛽2(𝑏)𝜔2(𝑏), for real-valued real-analytic
functions 𝛽𝑖 on𝑈. These are called ‘Betti coordinates’ of 𝜎 and themap 𝑏 ↦ (𝛽1(𝑏), 𝛽2(𝑏)) is called
‘Betti map’ of 𝜎. Of course this holds only locally, the map is determined only up to the addition of
integer constants, and there aremonodromy transformations if we perform analytic continuation.
Also, this may be done more generally for schemes of abelian varieties over a complex algebraic
base variety; see [1, 17, 61] for much more on this.

Betti map on real points. Suppose that  is defined over ℝ, so for 𝑏 ∈ 𝐵(ℝ) the group
𝑏(ℝ) is not empty and has one or two connected components. Let 𝜎 be a section defined over
ℝ and let 𝑏0 ∈ 𝐵(ℝ), so 𝜎(𝑏0) ∈ 𝑏0

(ℝ). In some neighbourhood 𝑈 ⊂ 𝐵(ℂ) of 𝑏0, the values of
an elliptic logarithm 2𝜎̃ of 2𝜎 at points 𝑏 of 𝑈(ℝ), where 𝜎 is real, will be of the shape (2𝑡𝑟 +
𝑚)𝜔1(𝑏) + (2𝑡𝑠 + 𝑛)𝜔2(𝑏) for some real 𝑡 = 𝑡(𝑏) and integers 𝑟, 𝑠,𝑚, 𝑛, necessarily constant, by
continuity, in a neighbourhood of 𝑏0 which we may assume to be 𝑈. Hence the Betti map of 𝜎
restricted to real points in the neighbourhood will be of the shape 𝑏 ↦ (𝑟𝑡(𝑏) + 𝑚

2
, 𝑠𝑡(𝑏) + 𝑛

2
), for

some real-analytic function 𝑡, hence mapping to a segment of a rational line in ℝ2.
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1326 CORVAJA and ZANNIER

Note that we may always choose the periods 𝜔1, 𝜔2 in such a way that 𝜔2(𝑏) = 𝜔2(𝑏) for 𝑏 ∈

𝑈(ℝ). In this case, with the notation above, wemay assume that 𝑠 = 1, 𝑟 = 0, that is, the Betti map
takes the shape 𝑏 ↦ (𝑚

2
, 𝑡(𝑏) + 𝑛

2
) on𝑈(ℝ). Wewill then refer to the Betti coordinate associated to

the period𝜔2 on𝑈 as the realBetti coordinate. The function𝑈(ℝ) ∋ 𝑏 ↦ 𝑡(𝑏) + 𝑛

2
will be referred

to as the real Betti map.
For the Legendre curve things may be described even more precisely. Let us assume that 𝜆 is

real. Then we have recalled that the corresponding lattice Λ𝜆 is generated by a purely imaginary
period 𝜔1 and a real period 𝜔2, that we have expressed explicitly in the region 0 < 𝜆 < 1.
Recall now that we have the elliptic scheme 𝜋 ∶  → ℙ1. Namely, a point (𝑝, 𝑙) of  yields a

caustic 𝐶𝑠 to which 𝑙 is tangent, a corresponding point (𝑝, 𝑣) on the phase space, and finally a
point on  obtained on applying the isomorphism 𝜙 above. Here a parameter on ℙ1 is given by
𝑠2, which determines the caustic, so 𝜋𝜙((𝑝, 𝑣)) = 𝑠2 (see also the third of equations (5)), and the
fibres of 𝜋 are the 𝑠 (which really depend on 𝑠2). The billiard map determines a section of ,
however the base should be extended to the curve with function field 𝐾(𝑠,

√
𝑠2 − 1,

√
𝑠2 − 𝑐2),

𝐾 = ℚ(𝑐,
√
𝑐2 − 1), after removing the points with 𝑠 = 0, ±𝑐,∞.

Betti map of the billiard section. Let 𝛽(𝜆) denote the billiard section expressed on the
Legendre curve, as in Equations (16) and (17), where 0 < 𝑠 < 1 and we may choose the positive
sign and the positive square root in the second formula. In order to express the elliptic logarithm,
and hence the Betti map, we shall use (18), where the sign is found to be positive (since we have
chosen the positive sign and square root in (17)).
Suppose first that 0 < 𝜆 < 1, so 0 < 𝑠 < 𝑐2 and the caustic is a hyperbola. The Betti map of

(𝜆, 0) is (1∕2, 1∕2) (up to integer points), since (𝜆, 0) corresponds to (𝜔1 + 𝜔2)∕2 by the discussion
in Section 2.5.5. The section with constant abscissa 1∕𝑐2 takes values in the connected component
of the identity in 𝐿𝜆(ℝ), hence its Betti map takes values in ℤ × ℝ. Also, by the discussion in
Section 2.5.1 an elliptic logarithmof the first section is given by−(1∕2) ∫ ∞

1∕𝑐2 d𝑥∕
√
𝑥(𝑥 − 1)(𝑥 − 𝜆),

where we choose the positive sign of the square root, and where the minus sign is due to the fact
that℘′

𝜆
(𝜇) is negative in the interval (0, 𝜔2∕2)whereas 𝑘(𝜆) > 0. Hence, by the second equation in

(14), and denoting

𝐼𝑢(𝜆) = ∫
∞

𝑢

d𝑥√
𝑥(𝑥 − 1)(𝑥 − 𝜆)

, 𝑢 ⩾ 1, (A.1)

the Betti map of the billiard section for 0 < 𝜆 < 1 is given by

𝛽(𝜆) = (𝛽1(𝜆), 𝛽2(𝜆)) =

(
1

2
,
1

2
−

𝐼1∕𝑐2(𝜆)

2𝐼1(𝜆)

)
. (A.2)

We prove that the function on the right is monotonic increasing in 𝜆. In fact, it suffices to show
that 𝐼1∕𝑐2(𝜆)′𝐼1(𝜆) − 𝐼1∕𝑐2(𝜆)𝐼1(𝜆)

′ < 0 where the dash denotes derivative with respect to 𝜆. The
derivative 𝐼′𝑢(𝜆) is obtained by a similar integral, where however the integrand is multiplied by
𝛼(𝑥) ∶= (2(𝑥 − 𝜆))−1. Then, denoting for this argument by 𝑓(𝑥) the integrand expressing 𝐼𝑢(𝜆),
we have

𝐼1∕𝑐2(𝜆)
′𝐼1(𝜆) − 𝐼1∕𝑐2(𝜆)𝐼1(𝜆)

′ = ∫ ∫𝐴 𝑓(𝑥1)𝑓(𝑥2)(𝛼(𝑥1) − 𝛼(𝑥2))d𝑥1d𝑥2,
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1327

where𝐴 = (1∕𝑐2,∞) × (1,∞) = ((1∕𝑐2,∞) × (1∕𝑐2,∞)) ∪ ((1∕𝑐2,∞) × (1, 1∕𝑐2)) = 𝐴1 ∪ 𝐴2, say.
The integral over 𝐴1 vanishes since the integrand is anti-symmetric. The integral over 𝐴2 is
negative since 𝛼 is a decreasing function and 𝑓 is positive.
For 𝜆 tending to 1, 𝐼1 diverges whereas 𝐼1∕𝑐2 remains bounded so 𝛽 tends to (1∕2, 1∕2). For 𝜆

tending to 0, both integrals converge and we may pass to the limit under the integral sign, so
for 𝑢 ⩾ 1, 𝐼𝑢(𝜆) → ∫ ∞

𝑢 d𝑥∕(𝑥
√
𝑥 − 1) = 2 ∫ ∞√

𝑢−1
d𝑧∕(𝑧2 + 1) = 𝜋 − 2 arctan

√
𝑢 − 1. Therefore 𝛽

tends to (1∕2, 𝜋−1 arctan
√
(1∕𝑐2) − 1).

We have already commented the behaviour of the billiard map in the case 𝜆 = 1, that is, 𝑠 = 𝑐2;
this is a degenerate case, when the caustic degenerates into the segment connecting the foci. Any
billiard shot passing through one focus will give rise to a sequence of segments passing alter-
natively through the foci, and tending to the horizontal segment, without reaching it unless the
whole trajectory is horizontal, and periodic of period 2. This also explains the ‘1∕2’ in the formula.
(Note however that the geometrical intuition is not equally effective when 𝜆 = 0.)
Let us now consider the case 1 < 𝜆 < 1∕𝑐2, when the caustic is an ellipse. Now the Betti map of

(𝜆, 0) is (0, 1∕2) (still by Section 2.5.1). Again, the section with constant abscissa 1∕𝑐2 takes values
in the connected component of the identity in ′

𝜆
(ℝ), hence its elliptic logarithm may be taken

in ℝ𝜔2(𝜆). This logarithm may be again expressed by (−1∕2)𝐼1∕𝑐2(𝜆), by similar considerations
as before.
The period 𝜔2 now equals ∫ ∞

𝜆 d𝑥∕𝑦; however for computing the derivative we prefer to use the
alternative formula

𝜔2(𝜆) = ∫
∞

𝜆

d𝑥

𝑦
= ∫

1

0

d𝑥

𝑦
, 1 < 𝜆,

which follows either by substitution 𝑥 ↦ 𝜆∕𝑥 or by looking at the corresponding integrals on a
representative torus, or by observing that the connected components of real points on the torus
are homologous, thus lead to equal integrals.
The same considerations as above then show that the Betti map of 𝛽(𝜆) is given by

𝛽(𝜆) = (𝛽1(𝜆), 𝛽2(𝜆)) =
⎛⎜⎜⎝0, 12 −

𝐼1∕𝑐2(𝜆)

2 ∫ 1
0

d𝑥

𝑦

⎞⎟⎟⎠ =
⎛⎜⎜⎝0,

∫ 1∕𝑐2

𝜆
d𝑥

𝑦

2𝜔2(𝜆)

⎞⎟⎟⎠. (A.3)

With the same notation as above now the derivative of the ratio 𝐼1∕𝑐2∕𝜔2 is found to be positive
because equal to ∫ ∫𝐵 𝑓(𝑥1)𝑓(𝑥2)(𝛼(𝑥1) − 𝛼(𝑥2))d𝑥1d𝑥2, where now 𝐵 = [1∕𝑐2,∞] × [0, 1] and
where now 𝛼(𝑥1) ⩾ 0 whereas 𝛼(𝑥2) ⩽ 0 for all relevant values.
The limit of 𝛽(𝜆) for 𝜆 → 1+ is (for the same reason as before) (0, 1∕2), whereas for 𝜆 → 1∕𝑐2

−

we have easily 𝐼1∕𝑐2𝜔−1
2

→ 1, hence the limit of 𝛽 is (0,0).
Of course onemay find various other expressions for these functions, for example, power series

expansions, to approximate their values rapidly.
Betti map and rotation number. We briefly point out an interpretation of the Betti (bil-

liard) map as a rotation number; for this notion we refer to Yoccoz’s paper in the volume
[58].
For simplicity let us consider only the case when the caustic is an ellipse. So, fix such a caustic

𝐶𝑠, 𝑐2 < 𝑠 < 1, and consider the map 𝑓 = 𝑓𝑠 ∶ 𝐶 → 𝐶 defined as follows. For 𝑥 ∈ 𝐶 there are two
tangents from 𝑥 to 𝐶𝑠. Choose then the one meeting 𝐶 in a point 𝑦 ≠ 𝑥 which comes first on
travelling 𝐶 from 𝑥 in the clockwise direction. We put 𝑓(𝑥) ∶= 𝑦. (This may be clearly expressed
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1328 CORVAJA and ZANNIER

also on using the billiard map on 𝑌𝑠, but the present definition is more direct. Note also that
referring to 𝑌𝑠 would not lead to an algebraic notion because of the orientation.)
Now, it is clear that 𝑓 is a bijective map 𝐶 → 𝐶. After identifying 𝐶 with the circle 𝑆1, 𝑓 may

be thought of as a topological automorphism of the circle, and we may iterate it and consider its
rotation number. We only recall from the quoted article that this may be defined as the supremum
of the set of fractions𝑝∕𝑞 such that the iterates𝑓 ◦𝑚(𝑥), 0 ⩽ 𝑚 ⩽ 𝑞, locate a sequence on𝐶making
𝑝 tours through 𝐶. If we now think of 𝑌𝑠(ℝ) as the identity component of the real points on an
elliptic curve, and of the billiard map as a translation on 𝑌𝑠(ℝ), it is immediate to realize that this
rotation number equals 𝛽2(𝜆). We leave the easy verifications to the interested readers.
With this interpretation for instance it becomes a priori clear that 𝛽2 is a decreasing function

for 1 < 𝜆 < 1∕𝑐2, and that it tends to 0 at the upper extreme. Indeed, as 𝜆 grows the corresponding
caustics strictly increase, hence the values 𝑓𝑠(𝑥) decrease in 𝑠 for any given point 𝑥. When 𝑠 → 1−

the caustic 𝐶𝑠 approaches the ellipse 𝐶, so 𝑓𝑠 tends to the identity and the rotation number tends
to 0.

Proof of Theorem 1.2. We start by recalling an elementary euclidean argument for the first
existence assertion. This is clear for 𝑛 = 1 so suppose 𝑛 ⩾ 2. Consider all sequences 𝑥0 ∶=

𝑝1, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛 ∶= 𝑝2, where 𝑥1, … , 𝑥𝑛−1 lie on 𝐶. By compactness there is a choice so that the
total length |𝑝1 − 𝑥1| + |𝑥1 − 𝑥2| +⋯ + |𝑥𝑛−2 − 𝑥𝑛−1| + |𝑥𝑛−1 − 𝑝2| (of the piecewise linear tra-
jectory with 𝑛 segments and ordered vertices in the sequence) is maximal. We contend that this is
a billiard trajectory. Indeed, let us first assume 1 < 𝑗 < 𝑛 − 1 and consider the segments 𝑥𝑗−1 − 𝑥𝑗
and 𝑥𝑗 − 𝑥𝑗+1, that is those not containing 𝑝1 or 𝑝2. Consider the line through 𝑥𝑗 which forms
equal angles with these segments and has both 𝑥𝑗±1 in the same half-plane; if this is not tangent
to 𝐶 at 𝑥𝑗 then it meets the ellipse at a point 𝑥 ≠ 𝑥𝑗 strictly between 𝑥𝑗−1 and 𝑥𝑗+1. But then by
the Fermat–Héron principle, we would have |𝑥 − 𝑥𝑗−1| + |𝑥 − 𝑥𝑗+1| > |𝑥𝑗 − 𝑥𝑗−1| + |𝑥𝑗 − 𝑥𝑗+1|,
contradicting maximality. Similarly if 𝑗 = 1 or 𝑛 − 1. This proves the claim except possibly if
𝑥𝑗 = 𝑝1 = 𝑝2 (because maximality is intended with 𝑝1, 𝑝2 given). But, taking into account the
theorem on caustics, the argument proves that all segments are tangent to a same caustic, hence
the reflexion law holds also at 𝑝1.
Note that (on taking 𝑝1 = 𝑝2 and 𝑛 a prime) this yields another proof of Proposition 2.2.
Let us now take a point 𝑝 = (𝑎, 𝑏) ∈  and prove the stated estimates, indicating at the same

time how to obtain formulae for the constants 𝑐𝑜, 𝑐𝑒. For brevity we treat in full only the case when
𝑝 ∈  𝑜 and 𝑏 > 0, 0 < 𝑎 < 𝑐.
Let 𝜉 ∈ [−∞,+∞] be the slope of a billiard shot from 𝑝. By symmetry we can consider only the

case when the shot hits 𝐶 on the right of 𝑝. The line 𝓁 ∶ 𝑦 = 𝜉(𝑥 − 𝑎) + 𝑏 from 𝑝 will be tangent
to the caustic 𝐶𝑠 where

𝑠 =
(𝜉𝑎 − 𝑏)2 + 𝑐2

𝜉2 + 1
.

This function of 𝜉 tends to 𝑎2 at both±∞, is increasing from the left until it reaches its maximum
then decreases until its minimum, and finally increases again indefinitely to the right. Let us set

𝑀 = 𝑀(𝑎, 𝑏, 𝑐) = max
𝜉

(𝜉𝑎 − 𝑏)2 + 𝑐2

𝜉2 + 1
, 𝑚 = 𝑚(𝑎, 𝑏, 𝑐) = min

𝜉

(𝜉𝑎 − 𝑏)2 + 𝑐2

𝜉2 + 1
. (A.4)
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1329

Since we are in the case 0 < 𝑎 < 𝑐, for 𝜉 near to −∞ the caustic will be a hyperbola. This will
continue until 𝓁 will hit the focus (0, 𝑐), when 𝜉𝑎 − 𝑏 = 𝜉𝑐 and 𝑠 = 𝑐2. In the interval ( −𝑏

𝑐−𝑎
, 𝑏

𝑐+𝑎
)

the caustic will be an ellipse, and will return to be a hyperbola on the whole right of it.
We note that easy geometry shows that the maximum will be attained when 𝐶𝑠 is an ellipse

passing through 𝑝, and 𝜉 < 0, whereas 𝑚 will be attained when 𝐶𝑠 is a hyperbola through 𝑝,
and 𝜉 > 0, in both cases 𝓁 being tangent to 𝐶𝑠 at 𝑝. Of course𝑀,𝑚 can be very easily expressed
explicitly but we omit the not very simple formulae.
Now let 𝑛 > 0 be an integer and suppose that the billiard shot corresponding to 𝓁 has period

(dividing) 𝑛. This will happen if and only if the billiard map corresponds to a torsion point of
order 𝑛 on 𝑠, or if and only if the value 𝛽(𝜆) of the Betti map, where 𝑐2𝜆 = 𝑠, is rational with
denominator (dividing) 𝑛.
Now suppose first that 𝑛 is odd. Then by (A.2), the caustic cannot be a hyperbola, hence we

confine our attention to the elliptic caustics, where we require that 𝑛𝛽2(𝜆) is integer in (A.3). By
the above considerations this will correspond to the 𝜉 in the interval when the caustic is an ellipse.
Since all involved functions are continuous and never locally constant it follows that the number
of relevant values is 2|𝛽2(𝑀∕𝑐2) − 𝛽2(1)| ⋅ 𝑛 + 𝑂(1), where 𝑀 is the maximum defined in (A.4).
Thus, taking into account the abovementioned symmetry, and recalling 𝛽2(1) = 1∕2 > 𝛽2(𝑀∕𝑐2),
we have

𝑐𝑜 = 2 − 4𝛽2

(
𝑀

𝑐2

)
.

We also note that this value is constant for points 𝑝′ on the elliptic caustic through 𝑝.
If 𝑛 is even things are similar but we have to consider also hyperbolic caustics. By an easy

argument as above the relevant value is found to be

𝑐𝑒 = 2
(
1 − 𝛽2

(
𝑀

𝑐2

)
− 𝛽2

(
𝑚

𝑐2

))
,

where𝑀.𝑚 are defined in (A.4). □

Proposition A.2 will provide another approach to the proof of Theorem 1.2, which also applies
to the existence part in Theorem 1.6.

Remark A.1.

(i) About elementary formulae and rational values. It is to be remarked that the values
so obtained for 𝑐𝑜, 𝑐𝑒 are not expressible by elementary functions (in the classical sense) of
the parameters, at any rate for generic values of them. This may be proved from the formulae
(A.2) and (A.3), or from the formulae in Remark A.7, using for instance the theory for the
differential equations satisfied by the periods and similar functions, which are known not to
be satisfied by elementary functions. We cannot pause more on this issue here, and refer to
the article by Beukers in [58]. In any case we point out that𝑀,𝑚 are not constant (their level
curves are, resp., elliptic and hyperbolic caustics) and are algebraically independent, so we
may consider them as independent variables.
Also, the function 𝛽2 is not rational but when 𝑐 ∈ ℚ it is a ratio of functions from a finite-

dimensional space (over ℂ) spanned by 𝐺-functions (as is not difficult to prove). Then it
may be proved that the rational values of 𝑐𝑜, 𝑐𝑒 at rational points 𝑝 are subject to (severe)
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1330 CORVAJA and ZANNIER

restrictions. This follows, for example, from results in the paper [22] of Dèbes with the second
author.† In particular, we may state the following conclusion:
For a given ellipse 𝐶 with 𝑐 ∈ ℚ, there are infinitely many rational points 𝑝 ∈  𝑜 such that

𝑐𝑜, 𝑐𝑒 are both irrational.
Note that if, for example, 𝑝 ∈ 𝐶 then 𝑐𝑜 = 2, hence  𝑜(ℚ) cannot be replaced with 𝐶(ℚ).

We leave the formal proof of this assertion to the interested readers.
(ii) Bicyclotomic polynomials. In view of formula (18) the values of 𝜆 which make torsion

the billiard section are the same which make torsion the section with constant abscissa 1∕𝑐2.
Hence these values are the real roots of the polynomials studied in the paper [42] of Masser
and the second author, and called Bicyclotomic therein. The above formulae give therefore
estimates for the number of these real roots.

A.2 Asymptotic estimates on torsion values for general sections

We put ourselves in the context of Section A.1.1, and we assume that we have two algebraic
sections 𝜎, 𝜏 of → 𝐵, both defined over ℝ. We prove

Proposition A.2. If the algebraic section 𝜎 is not torsion, then for large enough integer𝑁, the set of
points 𝑥 of 𝐵(ℝ) such that 𝜏(𝑥) = 𝑁𝜎(𝑥) is non-empty and for varying𝑁 is dense in 𝐵(ℝ). Actually,
in any neighbourhood 𝐼 of a 𝑏0 ∈ 𝐵(ℝ) the number of such points is 𝑐 ⋅𝑁 + 𝑂(1), for a 𝑐 = 𝑐(𝐼) > 0

independent of𝑁.

Proof of Proposition A.2. The proof is conceptually very easy, however near the points of bad
reduction of the elliptic scheme one needs some control of the section and the Betti map. This
could be dealt with directly, but here we proceed on invoking some results on definability of the
relevant Betti maps.
Consider the (real) Betti maps 𝛽𝜎, 𝛽𝜏 associated to the two sections, well defined as above on

an open disk𝑈 ⊂ 𝐵, supposed to contain 𝑏0 ∈ 𝐵(ℝ). We may assume that𝑈 ∩ 𝐵(ℝ) = 𝐼. Let𝑁 be
a large integer and consider 𝛽𝜎 − 𝑁−1𝛽𝜏 on 𝑈.
The function 𝛽𝜎 − 𝑁−1𝛽𝜏, evaluated at a point 𝑥 ∈ 𝐼 takes a rational value with denominator

dividing 𝑁 precisely when 𝜏(𝑥) = 𝑁𝜎(𝑥). We call this number 𝐴𝑁 .
We need now the following definition and three observations.
For a continuous function 𝑓 ∶ 𝐼 → ℝ, we say that themonotonia number of 𝑓 is the minimum

integer 𝑟 (possibly ∞) such that there exists a partition of 𝐼 = [𝑎, 𝑏] in 𝑟 intervals 𝐼 = [𝑎, 𝑎1] ∪

⋯ ∪ [𝑎𝑟−1, 𝑏], 𝑎 ⩽ 𝑎1 ⩽ ⋯ ⩽ 𝑎𝑟−1 ⩽ 𝑏, and such that 𝑓 is (weakly) monotone on each of these
𝑟 intervals.
First observation. Let 𝑁 be a natural number, and let 𝑓 ∶ 𝐼 → ℝ be a continuous, piecewise

differential function of monotonia number 𝑟 < ∞. Then the number of 𝑥 ∈ 𝐼 such that 𝑓(𝑥) = 𝑚

𝑁
,

for some𝑚 ∈ ℤ, is 𝑁 ∫𝐼 |d𝑓| + 𝑂(𝑟), where the big 𝑂 is absolute
Second observation. Let 𝑓(𝑥, 𝑦) ∶ 𝐼 × [0, 1] → ℝ be a definable function (by definable we will

always mean definable in ℝ𝑎𝑛,𝑒𝑥𝑝, we refer to [56, p. 16] for the definition of definability and
𝑜-minimal models). Then the monotonia number of 𝑓(𝑥, 𝜖) ∶ 𝐼 → ℝ is uniformly bounded for
𝜖 ∈ [0, 1]. In fact, letting 𝑓 = (𝑓, 𝑖𝑑𝜖) ∶ 𝐼 × [0, 1] → ℝ × [0, 1], using Hardt’s theorem [56, Theo-
rem 9.1.2], one shows that there exists a finite cell decomposition 𝐼 × [0, 1] = 𝐶1 ∪⋯ ∪ 𝐶𝑅 such

†Known theorems of Bombieri–Pila— see [60, Appendix A]— can also yield some results, however subject to restrictions
on heights.
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1331

that 𝑓|𝐶𝑜
𝑖
(where 𝐶𝑜

𝑖
denotes the open part of 𝐶𝑖) is continuous and it is either injective or of the

form (𝑐, 𝑖𝑑𝜖), where 𝑐 is a constant function. In particular, for a fixed 𝜖 ∈ [0, 1], 𝑓(𝑥, 𝜖) is weakly
monotone on the 𝑅 (possibly degenerate) intervals 𝐶1|𝐼×{𝜖}, … , 𝐶𝑅|𝐼×{𝜖}.
Third observation. For a piecewise differentiable function 𝑓 ∶ 𝐼 → ℝ of monotonia number 𝑟,

we have that ∫𝐼 |d𝑓| < 𝑟𝜆(𝑓(𝐼)), where 𝜆 denotes the Lebesgue measure. In particular, a bounded
function with bounded monotonia number satisfies ∫𝐼 |d𝑓| < ∞.
Now, by a result of Jones and Schmidt [32], 𝛽𝜎 and 𝛽𝜏 are bounded definable functions on

the domain 𝐼. In particular, by the second observation above, the monotonia number of these
functions is bounded, andwe deduce by the third observation that ∫𝐼 |d(𝛽𝜎)| < ∞, ∫𝐼 |d(𝛽𝜏)| < ∞.
Now, as 𝑁 → ∞, we have

𝐴𝑁

𝑁
= ∫𝐼 |d(𝛽𝜎 − 𝑁−1𝛽𝜏)| + 𝑂(1∕𝑁),

where the equality follows from the first observation.
Moreover, since 𝜎 is not a torsion section, its Betti map 𝛽𝜎 is not constant, by a (special case

of a) theorem of Manin (see [1, 18, 40] for results in higher dimensions). In particular, the finite
integral 𝑐 = ∫𝐼 |d(𝛽𝜎)| ≠ 0 is non-zero, as desired. □

We recall a self-contained argument for the assertion alluded in the proof, actually for then
general case of ℝ𝑑, which would be useful for proving a complex analogue. Let 𝑓 ∶ 𝑈 → ℝ𝑑 be
a 𝐶1-map from a ball 𝑈 ⊂ ℝ𝑑 centred at 0. Assume that for 𝑥, 𝑦 ∈ 𝑈∕2, it satisfies |d𝑓(𝑥)−1| ⩽ 𝑐,
where 𝑐 ⩾ 1, and that 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + d𝑓(𝑥)𝑦 + 𝑘(𝑥, 𝑦), where |𝑘(𝑥, 𝑦)| ⩽ (2𝑐2)−1|𝑦|. Then we
assert that there exists an open ball 𝑉 depending only on 𝑈, 𝑐 such that 𝑓(𝑈) contains 𝑓(0) + 𝑉.
For a proof one can follow Newton’s method. Let 𝑉 be a disk of small enough

radius 𝑟 centred at 0; given 𝑣 ∈ 𝑓(0) + 𝑉, define a sequence 𝑥𝑛 as follows. Put 𝑥0 = 0

and, having defined 𝑥𝑛, let 𝑥𝑛+1 ∶= 𝑥𝑛 + d𝑓(𝑥𝑛)
−1(𝑣 − 𝑓(𝑥𝑛)). Setting 𝑥𝑛+1 = 𝑥𝑛 + 𝑦,

note that 𝑓(𝑥𝑛+1) = 𝑓(𝑥𝑛) + d𝑓(𝑥𝑛)𝑦 + 𝑘(𝑥𝑛, 𝑦) = 𝑣 + 𝑘(𝑥𝑛, 𝑦). Hence |𝑓(𝑥𝑛+1) − 𝑣| ⩽|(2𝑐2)−1|d𝑓(𝑥𝑛)−1(𝑣 − 𝑓(𝑥𝑛))| ⩽ (2𝑐)−1|𝑓(𝑥𝑛) − 𝑣|, so |𝑓(𝑥𝑛) − 𝑣| ⩽ 𝑟(2𝑐)−𝑛 by induction.
Note also that |𝑥𝑛+1| ⩽ |𝑥𝑛| + 𝑐|𝑣 − 𝑓(𝑥𝑛)| ⩽ |𝑥𝑛| + 𝑐𝑟(2𝑐)−𝑛. Hence the sequence 𝑥𝑛 lies in 𝑈∕2

if 𝑟 is small enough and converges to a solution of 𝑓(𝑥) = 𝑣.

Proof of the existence part in Theorem 1.6. Recall that it remains to prove that, given an interior
point 𝑝 ∈  , there exist infinitely many boomerang shots from 𝑝 of types (2) and (3): namely,
trajectories passing once again through 𝑝 with same direction but opposite orientation (type (2))
or with the other possible direction (type (3)).
Using the notation of the proof of the finiteness part of Theorem 1.6, we associate to the point 𝑝

four sections±𝜎𝑝, ±𝜎′𝑝 of the elliptic scheme𝑝 → 𝐵𝑝, obtained after a base change (for example,
from the Legendre scheme) depending on 𝑝. The sections 𝜎𝑝, 𝜎′𝑝 correspond to different choice of
tangents for each caustic; change of sign corresponds to inversion of the orientation of the path.
Denote again by 𝛽 ∶ 𝐵𝑝 → 𝑝 the billiard section. As explained in the proof of the first part

of the theorem, boomerang shot of type (2) correspond to points 𝑠 ∈ 𝐵𝑝(ℝ)v such that for some
integer 𝑛 > 0,

𝜎𝑝(𝑠) + 𝑛𝛽(𝑠) = −𝜎𝑝(𝑠),
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1332 CORVAJA and ZANNIER

that is, 2𝜎𝑝(𝑠) = −𝑛𝛽(𝑠); those of type (3) are given by the relation

𝜎𝑝(𝑠) + 𝑛𝛽(𝑠) = 𝜎′𝑝(𝑠),

that is, (𝜎𝑝 − 𝜎′𝑝)(𝑠) = −𝑛𝛽(𝑠).
Since, as already proved, 𝜎𝑝, 𝜎′𝑝 are linearly independent, so in particular 2𝜎𝑝 and 𝜎𝑝 − 𝜎′𝑝

are both non-torsion, we can apply Proposition A.2, concluding that both equations above admit
infinitely many solutions 𝑠 ∈ 𝐵𝑝(ℝ) □

RemarkA.3. Complex and 𝑝-adic points. (i) An analogue of Proposition A.2 would follow for
the complex points, following the same method of proof. More on this in Theorem A.6.
Note also that there are examples proving that the restriction that 𝑁 has to be large cannot be

omitted. This restriction will not be necessary for the sections coming from the billiard map, as
follows from Theorem 1.2 that we shall soon prove.
See the paper of Lawrence [38] and [1, Section 9] for a study of the Betti map on the real points

of a certain higher dimensional base, giving density results similar in spirit to the present ones.
On the other hand, density fails in the 𝑝-adic context; see [39] for an instance.
(ii) In the complex case, Theorem A.6 (proven in [16], we give a quick sketch of the proof

below) gives such an estimate. In this case, moreover, it has to be noted that the limit lim𝑛→∞
𝐴𝑛

𝑛2

appearing in the theorem has also another meaning. Namely, one can show that it is equal to the
canonical height ℎ̂(𝜎) of the section 𝜎. To prove this, one has to use the fact that the points in the
base 𝐵 such that the differential of the Betti map vanishes are a finite amount. This is proven in
[16].
(iii) In the case that 𝜎𝑀 is the special Masser section, that is, the one defined on the Legendre

scheme  → 𝐵′ by 𝜎𝑀(𝜆) ∶= (2,
√
2(2 − 𝜆)), then the canonical height ℎ̂(𝜎𝑀) is equal to 1

2
(see,

for example, [16, Example 3.4]). 𝐵′ here denotes the cover of ℙ1,𝜆 defined by the quadratic field
extension ℂ(𝜆) ⊂ ℂ(

√
2 − 𝜆).

Onemay use this to calculate the height of the billiard section 𝐵(𝜆), as described in Remark 2.1.
Let us denote by 𝐵𝑐(𝜆) the billiard section associate to the ellipse with parameter 𝑐 (following the
present notation of (1)). We note that, for 𝑐0 = 1∕

√
2, we have that 𝐵𝑐0(𝜆) = 𝜎𝑀(𝜆) + 𝑇2, where

𝑇2 = (0, 𝜆) is a torsion section of order 2. In particular, by general facts on heights, we have that
ℎ̂(𝐵𝑐0) = ℎ̂(𝜎𝑀). Moreover, since ℎ̂(𝜎) is rational for every section 𝜎 (see, for example, [50, Sec-
tion 11.8]), and ℎ̂(𝐵𝑐) varies with continuity for 𝑐 ∈ ℂ ⧵ {0, ±1,∞}, we find that ℎ̂(𝐵𝑐) is always
equal to 1∕2 for 𝑐 ≠ 0, ±1.

We note that themethods of [21], which deal with the distribution of points at which a section of
an elliptic scheme attains torsion value, do not give results such as Proposition A.2, although they
give similar results for the complex points (which are independent from those on the real points,
see Theorem A.6).

Remark A.4. Non-monotonicity of the (real) Betti map. We see from the proof of Propo-
sition A.2 that we have that 𝑐 = ∫𝐼 |d𝛽𝜎|. It would be interesting if one could remove the absolute
value from the formula. In fact, one can show, with arguments that would go beyond the scope
of the paper, that ∫𝐵(ℝ) d𝛽𝜎 is related to some intersection numbers on (a complete model of) the
smooth real surface(ℝ), when this complete model happens to be orientable. However, it is not
true for a general 𝜎 that 𝛽𝜎 is monotone (although it is in some specific cases, for instance the
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1333

case where 𝜎 is the section associated to the billiard shot and 𝐼 is a connected component of 𝐵(ℝ),
as shown in Theorem 1.2). In Example A.5 we provide three (classes of) examples of sections in
which the sign of d𝛽𝜎 is not constant on a connected segment 𝐼 of 𝐵(ℝ), so that, in those cases
one has that

𝑐 = ∫𝐼 |d𝛽𝜎| ≠ ||||∫𝐼 d𝛽𝜎||||.
Example A.5. Non-monotonicity of the (real) Betti map: Counterexample via
linear combination. Let 𝜎1 and 𝜎2 be two linearly independent algebraic sections of  over
𝐵, both defined over ℝ. For simplicity, we assume that → 𝐵 is (a base change of) the Legendre
scheme, so that, on some small neighbourhood 𝑈 of a point 𝑝0 ∈ 𝐵(ℝ), we have a choice of real
and imaginary period as in Section 2.5.4. For 𝑝 ∈ 𝑈, let us denote by 𝑏1(𝑝) = (𝛽1(𝑝), 𝛽1(𝑝)) and
𝑏2 = (𝛽2(𝑝), 𝛽2(𝑝)) the Betti maps of 𝜎1(𝑝) and 𝜎2(𝑝), where 𝛽1(𝑝) and 𝛽2(𝑝) are the real Betti
coordinates of 𝜎1(𝑝) and 𝜎2(𝑝).
Wehave that the ratio† d𝛽1(𝑝)∕d𝛽2(𝑝), 𝑝 ∈ 𝑈(ℝ) is nowhere locally constant. Indeed, if it were,

we would have that 𝛽1 = 𝑐0𝛽2 + 𝑘0, 𝑐0, 𝑘0 ∈ ℝ on 𝑈(ℝ).
Consider now the analytic section 𝜎 ∶= 𝜎1 − 𝑐0𝜎2 − 𝑘0, defined on 𝑈. The Betti map of

𝜎(𝑝) is 𝑏(𝑝) ∶= 𝑏1(𝑝) − 𝑐0𝑏2(𝑝) − 𝑘0 = (𝛽1, 𝛽1) − 𝑐0(𝛽2, 𝛽2) − (0, 𝑘0) ∈ (ℝ∕ℤ)2. Note that, since
𝛽1(𝑝), 𝛽2(𝑝) ∈

1

2
ℤ for 𝑝 ∈ 𝑈(ℝ), the function 𝑏(𝑝) is constant on𝑈(ℝ). Since𝑈(ℝ) is a (real) vari-

ety of dimension 1, by [17, Proposition 1.1], thiswould imply that, for𝑝 ∈ 𝑈, 𝑏(𝑝) = 𝑏(𝑝0) ∈ (1
2
ℤ)2.

Hence 𝜎 would be torsion of order 2.
In particular we would have that 2𝜎1 = 2𝑐0𝜎2 + 2𝑘0 on 𝑈. Now some non-trivial monodromy

arguments (see, for example, [18, Theorem 6.3.10]) show that, in this case, 𝑘0, 𝑐0 ∈ ℚ. Hence 𝜎1
and 𝜎2 would be linearly equivalent as algebraic sections.
As a consequence, there exist points 𝑝, 𝑞 ∈ 𝑈(ℝ) such that d𝛽1∕d𝛽2(𝑝) < d𝛽1∕d𝛽2(𝑞). We

choose integers 𝑁,𝑀 ≠ 0 such that d𝛽1∕d𝛽2(𝑝) < 𝑁∕𝑀 < d𝛽1∕d𝛽2(𝑞).
If we define now 𝜏 ∶= [𝑀]𝜎1 − [𝑁]𝜎2, we see that d𝛽𝜏(𝑝) = 𝑀d𝛽𝜎1(𝑝) − 𝑁d𝛽𝜎2(𝑝) < 0 and

d𝛽𝜏(𝑞) = 𝑀d𝛽𝜎1(𝑞) − 𝑁d𝛽𝜎2(𝑞) > 0. Hence the sign of d𝛽𝜏(𝑝), 𝑝 ∈ 𝑈(ℝ) is not constant on𝑈(ℝ)

(as it attains different values on 𝑝 and 𝑞). In the example below we provide an explicit class of
examples, of dynamic nature, that are instances of the phenomenon just described.

Counterexample on the billiard. Let 𝐶 be an elliptical billiard. We choose a point 𝑝0 ∈ 𝑜 (we remind the reader that  𝑜 denotes the interior of the billiard), not lying on the line
connecting the two foci (that is, the axis 𝑦 = 0).
We denote by  → ℙ1 the Legendre elliptic scheme, we choose a point 𝜆0 ∈ ℙ1(ℝ) correspond-

ing to an elliptical caustic (through the identification 7), and we choose a neighbourhood 𝑈

of 𝜆0, where we can make a choice of a real and an imaginary period as in Section 2.5.4. We
denote by 𝛽2(𝜆) ∶ 𝑈 → ℝ∕ℤ a local branch of the real Betti map of the billiard section 𝑈 → 
(note that the billiard section is not algebraic over 𝑈, but this does not represent an issue for the
counterexample).
We consider the base changed elliptic scheme′ ∶=  ×ℙ1

𝐶 → 𝐶, where the map 𝜙 ∶ 𝐶 → ℙ1

is the one that sends a point 𝑐 ∈ 𝐶 to the caustic associated to the shot from 𝑝0 directed towards 𝑐
(and the successive bounces). We denote by 𝐼 ⊂ ℙ1(ℝ) the interval parametrizing elliptical caus-

† In this example the symbol dwill always denote the differential on the real domain𝑈(ℝ), and not the differential on the
complex domain 𝑈(ℂ).
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1334 CORVAJA and ZANNIER

tics, and by 𝐼′ the inverse image 𝜙−1(𝐼) ∩ 𝐶(ℝ), that is, 𝐼′ is the set of 𝑐 ∈ 𝐶(ℝ) such that the line
𝑝0𝑐 defines an elliptical caustic. Note that this set is the disjoint union of two intervals.
The restriction 𝜙|𝐼′ ∶ 𝐼′ → 𝐼 is not monotone on each of the two connected components of 𝐼′.

In fact, it has local extrema at the two points 𝑐 ∈ 𝐼′ ⊂ 𝐶(ℝ) such that the line 𝑝0𝑐 is tangent to the
ellipse confocal to 𝐶 passing through 𝑝0.
Hence, keeping in mind that the real Betti map 𝛽2(𝜆) ∶ 𝐼 → ℝ∕ℤ of the billiard section ℙ1 → 

is monotone (as shown in the proof of Theorem 1.2), we see that the composition 𝛽2 ◦𝜙 ∶ 𝐼′ →

ℝ∕ℤ, which is the Betti map associated to the billiard section on the base changed elliptic scheme
′ ∶=  ×ℙ1

𝐶 → 𝐶, is not monotone on each of the two connected components of 𝐼′.
This provides the sought example of non-monotonicity of the Betti map of a billiard section.

We leave to the interested reader the exercise of extending this counterexample by combining it
with the previous one.

Counterexample via analytic methods.Choose a segment 𝐼 ⊂ 𝐵(ℝ). For the sake of expo-
sition, let us assume for simplicity that  → 𝐵 is the Legendre scheme, and that 𝜆 ≠ 0, 1,∞ on
𝐼. Let 𝛽2(𝜆) ∶ 𝐼 → ℝ be any real-analytic function whose derivative is of non-constant sign on 𝐼,
and choose a complex (connected) neighbourhood 𝑈, containing 𝐼, such that 𝛽2(𝜆) extends to
an analytic function 𝑈 → ℂ (note that such an extension is always unique). We define an ana-
lytic section 𝜎 of  on 𝑈 as the abelian exponential of 𝛽2(𝜆)𝜔2(𝜆) (where 𝜔2(𝜆) designates the
real period). Note that, by construction, the Betti coordinates of 𝜎(𝜆), 𝜆 ∈ 𝐼, are (0, 𝛽2(𝜆)). We can
approximate the analytic section 𝜎with algebraic sections 𝜎𝑛 of the Legendre scheme (we remind
that an algebraic section is a rational section defined over a finite cover 𝐵′ → 𝐵), as onemay easily
prove using the Stone–Weierstrass theorem. Moreover, one may choose these sections to be real.
It follows now that any section 𝜎𝑛 sufficiently near to 𝜎 will be such that d(𝛽2)𝜎𝑛 has non-

constant sign on 𝐼, providing again a class of examples where the Betti map of the section is
not monotone.

Theorem A.6 [16, Theorem 3.2]. Let 𝜎 be a non-torsion algebraic section of the complex space
(ℂ) → 𝐵(ℂ), defined on a finite covering 𝐵′ → 𝐵. Then we have the following asymptotic:

∫𝐵′(ℂ) d𝛽1 ∧ d𝛽2 = lim
𝑛→∞

𝐴𝑛

𝑛2
, (A.5)

where 𝐴𝑛 ∶= {𝑝 ∈ 𝐵′(ℂ) ∣ 𝜎(𝑝) is torsion of order dividing 𝑛}.

Proof. We refer to [16] for a complete proof, and just hint at the main idea here. It starts with the
following two facts about definability.
First fact. Let 𝐶 ⊂ ℝ2 be any bounded definable set (again by this wemean definable inℝ𝑎𝑛,𝑒𝑥𝑝,

we refer to [56, p. 16] for the notion of definability, but the reader may just think of 𝐶 as a finite
union of closed compact sets of the form 𝑓1(𝑥) ⩽ 𝑦 ⩽ 𝑓2(𝑥), 𝑥 ∈ [𝑎, 𝑏], where 𝑓1 and 𝑓2 are piece-
wise analytic functions). Then we have by a theorem of Barroero and Widmer [3, Theorem 1.3]
that the number

𝐴𝑛(𝐶) ∶= {𝑝 ∈ 𝐶 ∣ 𝑝 has rational coordinates with denominator dividing 𝑛}

satisfies lim𝑛→∞ 𝐴𝑛(𝐶)∕𝑛
2 = 𝜆(𝐶), where 𝜆 denotes the Lebesgue measure.

Second fact.We remind the reader that the Betti map 𝛽𝜎 is definable. UsingHardt’s theorem [56,
Theorem 9.1.2], one can show that there exists a finite decomposition of 𝐵′(ℂ) = ⊔𝑖𝐷𝑖 in definable
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FINITENESS THEOREMS ON ELLIPTICAL BILLIARDS 1335

sets 𝐷𝑖 ⊂ 𝐵′(ℂ), such that, on each set 𝐷𝑖 , the function 𝛽 ∶= (𝛽1, 𝛽2) is injective. One then shows
that 𝐴𝑛 =

∑
𝑖 𝐴𝑛(𝛽(𝐷𝑖)).

The result can be deduced from the two facts above. □

Remark A.7. Algorithms for checking if a section is torsion. In Proposition A.2 an
essential assumption was that 𝜎 was not torsion. There are effective algorithms which allow to
check such facts, for general sections (provided everything is defined over a ‘computable’ field).
For instance onemay appeal (i) to results about Galois theory of torsion sections (as in work going
back to Fricke and Weber): the Galois group becomes large for large torsion order so one can
bound the possible order. (ii) on good reduction: torsion sections are defined over fields unrami-
fied outside the bad reduction. For instance by (18) the minimal field of definition for the billiard
section is ramified above 𝜆 = 1∕𝑐2 which is of good reduction for 𝑐2 ≠ 0, 1. (iii) Height theory: the
height of torsion sections is bounded. (iv) A further algorithm to checkwhether a section is torsion
is due to Manin. It is very practical, though it works only over function fields, and moreover if the
answer is ‘yes’ it does not give the torsion order. This algorithm requires merely computing the
Gauss–Legendre operator on the elliptic logarithm of the section. As proved by Manin in general,
this yields always an algebraic function, given explicitly in [40], however in a form which needs
a small correction, carried out in [16, (6.65)]. This algebraic function is a differential expression
in terms of the coordinates of the section and is additive. It vanishes if and only if the section is
torsion, which provides the algorithm.
In the case of the billiard section this function is 2𝑐(1 − 𝑐2)1∕2(1 − 𝑐2𝜆)−3∕2. This gives another

proof that this section is non-torsion, but can be useful for other purposes. For instance it shows
that the Betti coordinate 𝛽2(𝜆) is a product of functions satisfying a differential equation of
Fuchsian type.
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