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Abstract

In this thesis, we describe block rational Krylov subspaces highlighting their correspondence with rational
matrices and generalizing important properties that hold for the non-block case. We develop procedures
based on block rational Krylov subspaces for the solution of Sylvester and tensor Sylvester equations, for
the computation of functions of Hermitian hierarchically semiseparable (HSS) matrices and the action of
functions of Hermitian matrices on block vectors.

In the context of Sylvester equations with low-rank right-hand sides, solvers based on Krylov subspaces
are widely employed. By exploiting the correspondence between rational matrices and block rational Krylov
subspaces, we develop a new formulation of the residual obtainedwhen projectionmethods based on block
rational Krylov subspaces are utilized. This formulation explicitly depends on the poles and represents a
non-trivial extension of the result provided by Beckermann for Sylvester equations with rank-one right-hand
sides. This extension establishes a connection between the convergence of block rational Krylov methods
and the task of minimizing the norm of a small rational matrix across the spectrum or ûeld-of-values of
the involved matrices. In contrast to the rank-one scenario, where the minimization problem is scalar, here
it becomes matrix-valued. Substituting the norm of the objective function with a more computationally
tractable function leads to various adaptive pole selection strategies, offering a theoretical analysis for
established heuristics as well as effective novel techniques. We also provide a procedure based on pole
reordering to efûciently compute the residual.

A natural extension is represented by tensor Sylvester equations, which involve d summands. In these
equations, both the unknown and the right-hand side are d-dimensional tensors. Speciûcally, for each i, the
ith summand on the left-hand side multiplies the unknown by a matrix in the ith mode. Methods based on
projection onto Krylov subspaces have previously been utilized in this context, but they typically assume
a right-hand side of rank one. In this thesis, we demonstrate how to apply block rational Krylov methods
to handle right-hand sides with low multilinear or tensor train rank. By extending the results established
for Sylvester equations, we present a formulation of the residual based on rational matrices for the tensor
case as well. This extension enables us to generalize the pole selection strategies and the techniques
for computing the residual developed for classical Sylvester equations. An efûcient computation of the
residual becomes crucial in this scenario since explicitly constructing the residual is a highly expensive
operation, which becomes impossible when dealing with a large tensor that cannot be fully stored.

Both Sylvester and tensor Sylvester solvers, employing block rational Krylov subspaces with adaptive
pole selection, are tested on model problems derived from the discretization of partial differential equa-
tions. This testing demonstrates the efûciency of the proposed techniques compared to other strategies
available in the literature. Particularly noteworthy is the effectiveness of rational Krylov subspaces in the
tensor case. As the solution of the projected problem tends to be the most computationally demanding
aspect, utilizing block rational Krylov subspaces enables the handling of smaller projected tensor Sylvester
equations compared to their polynomial counterparts, leading to signiûcant gains in terms of computational
time and memory requirements.

In the context ofmatrix functions, we utilize block rational Krylovmethods in an unconventionalmanner.
Our aim is to leverage the rapid convergence of block rational Krylov subspaces while circumventing costly
operations such as solving large linear systems.

A signiûcant rank structure frequently encountered in various applications, particularly in the context
of discretized (fractional) differential and integral operators, is known as Hierarchically semiseparability.
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HSS matrices possess numerous appealing properties that aid in the creation of efûcient algorithms. In
this study, we present a fast algorithm designed to approximate f(A), where A represents a Hermitian
HSS matrix. We use a telescopic decomposition ofA, inspired by the recent work of Levitt and Martinsson
that allows us to approximate f(A) by recursively performing low-rank updates with block rational Krylov
subspaces while keeping the size of the matrices involved in the rational Krylov subspaces small. In par-
ticular, no large-scale linear system needs to be solved, which yields favorable complexity estimates and
reduced execution times compared to existing methods, including an existing divide-and-conquer strategy.
The advantages of our newly proposed algorithm are demonstrated in several examples from the litera-
ture, featuring the exponential, the inverse square root, and the sign function of a matrix. Even for matrix
inversion, our algorithm exhibits superior performance, even if not speciûcally designed for this task.

Finally, the concepts used in computing functions of HSS matrices are extended to develop a memory-
efûcient algorithm for computing f(A)C , where A is a Hermitian matrix (not necessarily HSS), and C is
a block vector. Our approach combines a block Lanczos algorithm with a basis compression technique
based on block rational Krylov subspaces involving only small matrices. The computational effort required
for the compression steps is minimal compared to the block Lanczos algorithm. This approach enables us
to avoid storing the entire Lanczos basis, leading to signiûcant reductions in memory usage. The method
is particularly effective when the block Lanczos algorithm requires numerous iterations to converge. Theo-
retical results demonstrate that, for a wide variety of functions, the proposed algorithm differs from block
Lanczos by an error term that is typically negligible. Comparisons with other low-memory Krylov methods
from the literature on various test problems reveal competitive performance.



Chapter 1

Introduction

Over the past few decades, handling computations involving large-scale matrices and tensors has emerged
as a core challenge in numerical linear algebra, aimed at solving problems stemming from science and
engineering, such as electronic structure calculations [5, 16, 32, 115], micromagnetics [50,51], control prob-
lems [3, 14], and üuid dynamics [47].

In this thesis, our focus is on the use of block Krylov methods, speciûcally their rational variants, to
address signiûcant tasks in numerical linear algebra: solving Sylvester and tensor Sylvester equations, as
well as computing matrix functions.

To illustrate the signiûcance of these tasks, we can consider a basic model problem involving the
solution of the partial differential equation:





∂u(x,t)
∂t = ∆u(x, t) + f(x) in Ω× [0,∞)

u(x, t) = 0 on ∂Ω× [0,∞)

u(x, 0) = u0(x) in Ω

(1.1)

where ∆ represents the Laplace operator, and Ω = [0, 1]d. This problem is a classical model describing
the temperature u(x, t) within a hypercube at time t. Initially, the temperature distribution is determined by
u0(x), and it evolves over time under the inüuence of an external heat source denoted by f(x), while the
boundary temperature remains constant at zero. When pursuing the steady-state solution (where ∂u

∂t = 0),
the problem transforms into: {

−∆u(x) = f(x) in Ω

u(x) = 0 on ∂Ω,
(1.2)

which, through numerical discretization, reduces the problem to solving a (tensor) Sylvester equation.
Moreover, the discretized solution of (1.1) for a speciûc time t can be obtained by additionally comput-
ing the product between a matrix function and a vector.

Krylov subspace methods are an essential tool in addressing matrix equations and matrix functions
associated with large matrices [40, 41, 111, 113]. The primary concept behind Krylov subspace methods is
projecting a large-scale problem onto a Krylov subspace, converting it into a smaller-scale problem that is
easier to solve. Indeed, linear algebra problems involving small-sized matrices have been deeply studied,
and several methods for solving a wide class of problems have been developed. In particular, due to the
small size of the problem, techniques that do not leverage any speciûc matrix structure are often employed,
usually referred to as dense methods.

In the context of Krylov methods, the most classical variants are the polynomial Krylov methods [55,
76,88, 113, 114]. These methods are founded on the idea of constructing a subspace spanned by iteratively
applying a matrix to a given vector, thereby providing an efûcient framework for solving matrix equations
and computing the action of a matrix function on a vector. Despite their remarkable success, polynomial
Krylov methods are not without limitations. Speciûcally, their convergence can be attributed to the qual-
ity of polynomial approximation for functions relevant to the problem. For many problems of interest, the

11



12 CHAPTER 1. INTRODUCTION

associated function is poorly approximated by polynomials; therefore, polynomial Krylov methods may ex-
hibit slow convergence rates or even fail to converge altogether. To address these challenges, researchers
have turned to the rational Krylov methods, which offer a promising alternative. Rational Krylov meth-
ods [40, 66, 108, 110], extend the concept of polynomial Krylov methods by integrating the matrix-vector
products with shifted linear systems. This üexibility allows for establishing a connection between the con-
vergence of rational Krylov methods and rational approximations of functions relevant to the problem, re-
sulting in faster convergence rates compared to their polynomial counterparts. Given a matrixA ∈ C

n×n,
a vector c ∈ C

n and a sequence of poles ξk = {À0, . . . , Àk−1} ¦ C ∪ {∞} that are not eigenvalues of
A, the associated rational Krylov subspaceQk(A, c, ξk) is given by

span{(A− À0I)
−1c, (A− À1I)

−1(A− À0I)
−1Ac, . . . , (A− Àk−1I)

−1 · · · (A− À0I)
−1Ak−1c},

where I represents the identity matrix and with the convention that if a pole is equal to inûnity, the cor-
responding shifted inverse of A reduces to the identity matrix. While rational Krylov methods frequently
enable a satisfactory approximate solution using a smaller dimensional subspace, their construction re-
quires solving shifted linear systems that are more computationally expensive compared to the matrix-
vector products employed in the polynomial Krylov version.

Another notable variant of polynomial Krylov subspaces, which has garnered signiûcant attention in
recent years, is their block version employed, for instance, for the computation of the action of a matrix
function on multiple vectors, see [93] and the references therein. In this setting, the matrix-vector product
is replaced by a matrix-matrix product, involving a large square matrix and a block vector, that is, a tall and
skinny matrix. An essential aspect for the effectiveness of block polynomial Krylov methods is their utiliza-
tion of BLAS level 3 operations. BLAS (Basic Linear Algebra Subprograms) level 3 operations, optimized for
matrix-matrix multiplications, provide a signiûcant performance boost by exploiting parallelism and cache
locality. By efûciently utilizing these operations, block polynomial Krylov methods can achieve substantial
improvements in computational efûciency, particularly for large-scale problems involving multiple vectors.

It is important to note that block Krylov subspaces have been introduced in various forms, such as the
global [22,45,73,78] and loop-interchange [107] variants. In this work, we focus on the classical block Krylov
subspaces [34, 60, 112], which are larger than their variants mentioned above, thus usually allow for more
accurate approximate solutions.

While block polynomial Krylovmethods have been studied and applied in various contexts, their rational
generalization remains relatively unexplored. The central aim of this thesis is to utilize block rational Krylov
methods in the context of matrix equations and matrix functions.

In the solution of matrix equations, block rational Krylov methods offer broader applicability compared
to traditional rational Krylov methods. Speciûcally, for a certain class of matrix equations, we demonstrate
that when combined with a suitable pole selection strategy, they facilitate faster convergence compared
to block polynomial methods. By advancing theoretical understanding regarding the convergence of block
polynomial Krylov methods, we derive efûcient methods for selecting poles, thus providing effective algo-
rithms for the task.

In the context of Hermitian matrix functions, we employ block rational Krylov subspaces for the devel-
opment of new procedures for the computation of functions of rank-structured matrices, often outperform-
ing existing methods in computational complexity and execution time. Additionally, when only the action
of a matrix function on a block vector is needed, we enhance the efûciency of the block Lanczos algo-
rithm [88,112] by reducing memory requirements through a compression procedure based on block rational
Krylov subspaces.

In Chapter 2, we introduce block rational Krylov subspaces and the necessary tools from the theory of
matrix polynomials and rational functions. Furthermore, we extend the core principles of rational Krylov
methods to the block framework, leveraging the advantages of rational approximation and block structure.

An important application of block rational Krylov methods regards the solution of the Sylvester equa-
tions

AX −XB = C, (1.3)
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in which the coefûcient matrices A and B are large square matrices, and the right-hand side is low rank,
that is, C = C1C

H
2 where C1 and C1 are tall and skinny matrices [121]. Sylvester equations commonly

arise in control theory [3, 14] and in the numerical solution of PDEs on tensorized domains [103], such as
the model problem in (1.2) with Ω = [0, 1]2.

Numerous authors have shown interest in the numerical solution of Sylvester equations, especially
focusing on their variant, the Lyapunov equation, where B = −AH , since it is frequently encountered in
control problems [14]. When dealing with moderately sized matricesA andB, dense methods such as the
Bartels-Stewart [7] and theHessenberg Schur [59] algorithms are usually employed. However, dense solvers
may become impractical for large coefûcient matrices due to memory limitations and their computational
cost, which typically grows cubically with the size of the matrices, thus, it becomes crucial to utilize the
sparsity and data-sparsity structures of the involvedmatrices [8,82,104]. In cases where the right-hand side
C is a low-rank matrix, exponential decay of the singular values of the solution X is frequently observed
[13, 125], therefore, X can be well approximated by a low-rank matrix.

A widely used approach for solving Sylvester equations with a low-rank right-hand side is known as the
Alternating Direction Implicit (ADI) iteration [15, 46]. This method entails generating a sequence of matri-
ces that progressively converge towards the solution. The ADI method requires solving numerous linear
systems with varying shifts, the selection of which signiûcantly inüuences its convergence. As extensively
investigated by Sabino in his thesis [116], theoretical insights into the convergence of the ADI method en-
able the development of techniques for determining a priori shifts. However, these techniques are often
not easily applicable, or they result in slow convergence. Consequently, efûcient techniques based on the
adaptive determination of shifts during the algorithm have been developed; for a broader discussion on
this topic, we refer to [121, Section 5.2.2].

When solving Sylvester equations, ADI and rational Krylov methods are closely linked, as discussed
in [42, 91]. Speciûcally, Beckermann in [9] demonstrated that when dealing with a right-hand side of rank
one, the ADI method cannot produce notably superior approximations compared to rational Krylov methods
that employ the shifts used in the ADI iterations as poles.

The fundamental concept behind Krylov methods for solving Sylvester equations is that block rational
Krylov subspaces involving A and BH , with suitable poles, enable a highly accurate approximation of the
spaces spanned by the columns and rows of X. Thus, denoting by U and V tall and skinny matrices,
whose columns are orthonormal bases of the block rational Krylov subspaces associated withA andBH ,
respectively, X can be well approximated by UY V H , where Y is the solution of the Sylvester equation
obtained from (1.3) by replacingA,B, andC with their projections into the block rational Krylov subspaces,
that isUHAU , V HBV , andUHCV . Therefore, the problem is transformed into a new Sylvester equation
with smaller coefûcient matrices that can be efûciently solved using dense methods. The accuracy of the
approximate solution is heavily inüuenced by the selection of poles. Speciûcally, when the right-hand side
of the original Sylvester equation has rank one, rational Krylov subspaces can be used instead of their
block counterparts. In such instances, Beckermann developed a formulation of the residual that explicitly
depends on the chosen poles [9].

Chapter 3 is devoted to proving a non-trivial extension of this formulation to the case of Sylvester
equations with a low-rank right-hand side, employing block rational Krylov methods. It presents a new for-
mulation of the residual based on a small rational matrix, enabling the design of an adaptive pole selection
algorithm. In this algorithm, pole selection relies on minimizing the norm of a parameter-dependent matrix.
Due to the numerical challenges associated with such minimization, it is natural to substitute the matrix
with a simpler surrogate. We explore various options and demonstrate that one of these aligns with the
heuristic proposed by Druskin and Simoncini in [42], providing a theoretical justiûcation for this choice.
Furthermore, we show that alternative choices for the surrogate function are viable. Speciûcally, we intro-
duce an adaptive technique for pole selection that marginally enhances the approach proposed in [42]. The
proposed results enable the development of an algorithm for solving Sylvester equations with a low-rank
right-hand side based on projecting onto block rational Krylov subspaces, adaptively determining the poles.
Furthermore, we demonstrate how to practically compute the residual with a low computational effort by
appropriately reordering the poles of the block rational Krylov subspace.
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Chapter 4 is dedicated to extending the results developed in Chapter 3 to tensor Sylvester equations

X ×1 A1 + X ×2 A2 + · · ·+ X ×d Ad = C,

where, for each i, ×i denotes the ith mode product of tensors [81]. Here, the coefûcient matrices Ai are
large and square, while the right-hand side C and the unknown X are d-dimensional tensors. Such tensor
equations arise, for example, in the solution of d-dimensional PDEs on tensorized domains [52, 63, 123],
such as the model problem in (1.2) for general d.

The problem of solving tensor Sylvester equations can be reformulated as the solution of a linear sys-
tem, which size grows exponentially in d. To address this challenge, several techniques have been de-
veloped to manage linear systems involving tensors, including TT-GMRES [36] and the AMEn method [37].
However, the convergence of these methods is not always clear. Speciûcally for solving tensor Sylvester
equations, a generalization of the Bartels-Stewart algorithm has been provided in [30]. Nevertheless, its
computational complexity is cubic in the size of the coefûcient matrices, and the required memory storage
scales exponentially in d, limiting its applicability to small problems. Similar to classical Sylvester equa-
tions, exploiting the structure of large matrices becomes essential for their tensor counterparts [52, 96].
When the right-hand side C has rank one, Krylov methods, speciûcally in their polynomial variant, have been
previously employed by Kressner and Tobler [84]. Our contribution can be seen as a generalization of such
work for cases where the right-hand side has low multilinear or tensor train rank, achieved by employing
block rational Krylov subspaces. The formulation of the residual in terms of poles allows us to generalize
adaptive pole selection strategies introduced in Chapter 3. Moreover, the development of an efûcient way
to compute the residual norm, using a lower amount of memory, is fundamental because the residual is
typically a large tensor that may not even be stored explicitly.

The application of block rational Krylov methods in solving tensor Sylvester equations underscores the
efûcacy of our approach. While Sylvester equations with low-rank right-hand sides can be decomposed
into a small number of Sylvester equations with right-hand side of rank one solvable with rational Krylov
methods, extending this procedure to the tensor case is often impractical. This is because representing
a tensor with low multilinear or tensor train rank as the sum of rank-one tensors typically requires a large
number of summands, and determining the smallest number of terms is an NP-Hard problem [72]. Block
rational Krylov methods effectively address this challenge by managing the right-hand side in Tucker or
tensor train format. Additionally, solving the projected tensor Sylvester equations often constitutes the
most computationally demanding aspect of the procedure, rendering the computational effort needed for
solving shifted linear systems involving the matrices Ai relatively small. By selecting suitable poles, it
becomes feasible to solve a projected tensor Sylvester equation with signiûcantly smaller coefûcient sizes
compared to those generated by block polynomial Krylov methods. Consequently, the block rational variant
yields signiûcantly faster solvers.

In Chapters 5 and 6, we employ block rational Krylov methods in the setting of Hermitian matrix func-
tions. Consider a Hermitian matrix A ∈ C

n×n with spectral decomposition A = V ΛV H , with the orthog-
onal matrix V and the diagonal matrix Λ = diag(¼1, . . . , ¼n) containing the eigenvalues of A. Given a
scalar function f well deûned on the eigenvalues of A, the matrix function f(A) ∈ C

n×n is deûned as
V f(Λ)V H , where f(Λ) := diag(f(¼1), . . . , f(¼n)). Popular examples include the matrix inverse, the
matrix exponential, the sign function, and the (inverse) matrix square root; see the monograph [74] for an
overview. Matrix functions ûnd signiûcant applications in the discretized solution of partial differential
equations [39, 89] and network analysis [49]. In particular, the solution of the numerical discretization of
the model problem in (1.1) is given by exp(tA)(u0 + f)−A−1f , where A, u0 and f are discretizations of
the Laplace operator, u0(x) and f(x), respectively.

In the general case, for any (block) vector C , computing f(A)C using its deûnition requires a compu-
tational effort that is cubic in the size of A, making it unfeasible for large matrices. In such cases, both
polynomial and rational Krylov methods, in both standard and block settings, ûnd extensive application
(see [66, 93]). Similar to the context of matrix equations, these methods involve projecting the problem
into a Krylov subspace generated byA andC , thereby reducing it to computing the action of the small ma-
trix function f(UHAU) on the (block) vector UHC , where U denotes an orthonormal basis of the Krylov
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subspace.
The accuracy of the approximation achieved by polynomial and rational Krylov subspaces depends

on the approximation error of f across the spectrum of A, using polynomial and rational functions, re-
spectively, whose degree is proportional to the dimension of the Krylov subspace. Consequently, rational
Krylov methods have the potential to yield superior approximations using smaller subspaces. However, it
is important to stress once again that they require solving shifted linear systems withA, which can render
them impractical or potentially reduce their computational advantage, the extent of which is not always
clear. Therefore, several authors have studied techniques to employ polynomial Krylov methods, circum-
venting the need to store the complete basis of the Krylov subspace, to handle potentially large Krylov
subspaces. These techniques include the low-memory Lanczos method [21, 57], the multi-shift conjugate
gradient method [55, 127], and strategies based on restarting [43, 53, 54]. For a more comprehensive treat-
ment of the topic, we refer to the surveys [68, 69].

In this thesis, we utilize block rational Krylov methods within the context of matrix functions in an
unconventional manner. Our objective is to exploit the “anticipating the future” feature of block rational
Krylov methods, thereby circumventing the challenge of solving large linear systems. We achieve this by
leveraging block rational Krylov subspaces associated with smaller matrices.

WhenA is a large matrix, exploiting the structure ofA becomes crucial for the development of efûcient
algorithms for the computation of f(A), as demonstrated in works such as [33, 56, 105]. In Chapter 5 we
develop a fast algorithm for approximating the whole matrix function f(A) of a square matrix A that is
Hermitian and has hierarchically semiseparable (HSS) structure, with f well approximable by a rational
function, fully exploiting the data-sparsity of A.

A matrix A ∈ C
n×n is hierarchically semiseparable if it can be recursively partitioned as

A =

[
A11 A12

A21 A22

]

where the matrices A12 and A21 are of low rank, and A11 and A22 are square matrices that can be re-
cursively partitioned in the same manner. Furthermore, the low-rank factors representing the off-diagonal
blocks at different levels of recursion are nested. For a more detailed description, refer to [94, 97, 129].
Notable examples include banded matrices, moreover, rational functions of HSS matrices remain HSS [33].
Consequently, this structure synergizes effectively with functions that can be well-approximated by rational
functions, allowing the development of several methods to manage linear algebra tasks [33, 64, 85].

We introduce a general framework for telescopic decomposition for HSS matrices, which generalizes
the data sparse representation employed by Levitt and Martinsson in [90] for approximating an HSS matrix
using matrix-vector products with a few random vectors. In practice, we decompose A into the sum of
a block diagonal and a low-rank matrices, where the latter one involves a smaller HSS matrix which is
recursively deûned. This allows us to approximate f(A) by computing functions of low-rank updates of
matrices using block rational Krylov methods as described in [10]. Additionally, the speciûc structure of
the matrices enables us to construct block rational Krylov subspaces only involving small matrices, thus
avoiding the solution of large linear systems.

Although not all matrices exhibit the HSS structure, any Hermitian matrix can be transformed into a
(block) tridiagonal matrix via unitary similarity employing direct methods [128, Section 5.5]. Since block
tridiagonal matrices exhibit the HSS property, this provides a theoretical framework for extending the pro-
cedure introduced in Chapter 5 to arbitrary matrices. This observation is purely of theoretical interest, as
the computational cost of the Hessenberg reduction scales cubically with the size of the involved matrix,
rendering it impractical for large matrices. However, in the context of computing the action of a matrix
function on a block vector, the block Lanczos algorithm [88, 112] behaves similarly to a Hessenberg reduc-
tion, transforming a Hermitian matrix into a block tridiagonal one. This concept forms the core idea driving
the development of the contents in Chapter 6.

In Chapter 6, we propose a memory-efûcient algorithm for computing f(A)C , where A is a Hermitian
matrix and C is a block vector. Our method combines an outer block Lanczos algorithm with a proce-
dure based on inner block rational Krylov subspaces for compressing the Lanczos basis, thereby avoiding
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the storage of the entire Lanczos basis. Speciûcally, the construction of the inner block rational Krylov
subspace involves only small matrices, making the computational effort needed for basis compression
negligible compared to the cost of the block Lanczos algorithm. The approximation provided by the pro-
posed procedure differs from that of the block Lanczos algorithm by an error that is negligible if f can
be effectively approximated by a rational function across the spectrum of A. This applies to important
functions, such as the exponential and the (inverse) square root.

The proposed algorithm exhibits performance that is comparable to or better than other low-memory
methods proposed in the literature, such as the two-pass Lanczos method [21, 57], techniques based on
multishift conjugate gradient [55, 127], and restarted Krylov methods [43, 53, 54].

Each of the following chapters, except for Chapter 2, concludes with a section on numerical experi-
ments. In these experiments, the proposed algorithms are systematically compared with other methods
available in the literature using various test problems.

1.1 Notation

We utilize a variety of scripts and boldface styles, as detailed in Table 1.1, to distinguish between different
objects. We maintain strict adherence to these choices whenever possible, ensuring that an object’s usage
can be determined from its typeface. The ûeld of values (or numerical range) of a matrix A, denoted by
W(A), is deûned as the set {xHAx : xHx = 1}. While determining the ûeld of values of a matrix
is generally challenging, there are cases where it can be easily computed. For example, if A is normal,
its ûeld of values is the convex hull of its spectrum. Speciûcally, if A is Hermitian, its ûeld of values is
the interval [¼min, ¼max], where ¼min and ¼max are the minimum and maximum eigenvalues of A. We
employ a Matlab-like notation for submatrices, for instance, given A ∈ C

m×n the matrix Ai1:i2,j1:j2 is the
submatrix obtained selecting only rows from i1 to i2 and columns from j1 to j2 (extrema included). Given
two vectors, k, h with d components, the notation h f kmeans that h is component-wise smaller than k.
We often use the terminology “block vectors”, to indicate tall and skinny matrices and we usually employ
b to denote the block size, that is, the number of columns of block vectors. To simplify the notation we
use bold letters to denote block indices, that is, we use s to denote the set of indices b(s − 1) + 1 : bs.
Given a list of matricesAi, we denote the block diagonal matrix containing these matricesAi as diagonal
blocks by blkdiag(Ai). It’s worth noting that in our scenario, the matrices Ai might be rectangular, and
consequently, so is blkdiag(Ai). For a compact set S ¢ C and a continuous function f : S → C, we
denote by ∥f∥S the supremum norm of the function f on S. When the domain of the function f is evident
from the context, we denote the supremum norm of f on its domain of deûnition as ∥f∥∞.

Table 1.1: Symbol Glossary

Symbol Description Example

C space of complex numbers

C space of extended complex num-
bers (i.e. C ∪ {∞})

R space of real numbers

N space of natural numbers

P space of polynomials with com-
plex coefûcients

Pd space of polynomials with
complex coefûcients of degree
bounded by d

Continued on next page
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Table 1.1 Continued from previous page

Symbol Description Example

P(Cb×b) space of matrix polynomials with
coefûcients in Cb×b

Pd(Cb×b) space of matrix polynomials with
coefûcients in C

b×b of degree
bounded by d

Lower case Latin letters natural numbers and scalar poly-
nomials

n,m, b, d, k ∈ N, q ∈ P

Upper case Latin letters matrices, block vectors (i.e., tall
and skinnymatrices), matrix poly-
nomials and rational matrices

A ∈ C
n×n, C ∈ C

n×b, P ∈
P(Cb×b), R ∈ P(Cb×b)/q

Uppercase Greek letters small square matrices (typically
coefûcients of matrix polynomi-
als)

Γ,∆

Bold lowercase latin letters vectors of complex or natural
numbers

c ∈ C
n,k ∈ N

d

Bold lowercase greek letters sequence of extended complex
numbers (usually poles of ratio-
nal Krylov subspaces)

ξk ∈ C
k

Uppercase calligraphic Latin letters tensors X , C ∈ C
n1×···×nd

Superscripts , H and T conjugate, conjugate transpose
and transpose respectively

A,AH , AT where A ∈ C
n×n

¹ Kronecker product

· Kronecker sum

vec(·) transforms a matrix or a tensor
into a vector ordering its entry lex-
icographically

ifC ∈ C
n×b, then vec(C) ∈ C

nb

Λ(·) spectrum of a matrix Λ(A) , where A ∈ C
n×n

Pk space of multivariate polynomi-
als with complex coefûcients and
degrees bounded by the vector k

Pk(Cb×b) space of multivariate matrix poly-
nomials with coefûcients inCb×b

and degrees bounded by the vec-
tor k

W(·) ûeld-of-values of a matrix W(A), where A ∈ C
n×n

Ã(·) set of singular values of a matrix Ã(A), where A ∈ C
n×n

I identity matrix (sometimes with a
subscript that denotes the dimen-
sion)

Ib ∈ C
b×b

Continued on next page
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Table 1.1 Continued from previous page

Symbol Description Example

Ei block vector deûned as ei ¹ Ib,
where ei is the ith element of the
canonical basis

∥·∥F Frobenius norm

∥·∥2 Euclidean norm



Chapter 2

Block rational Krylov methods

In the last decades, Krylov methods have emerged as a fundamental tool for solving matrix equations [121]
and computing the action of matrix functions on (block) vectors [66]. Following the success of polyno-
mial Krylov methods, their rational counterparts were introduced, offering the distinct advantage of faster
convergence in terms of required iterations, with the trade-off of solving potentially large linear systems.
While the block generalization of polynomial Krylov methods has been extensively studied (see [93] and
the references therein), the block variant of rational Krylov methods remains relatively underexplored in the
literature. Although some progress has been made, as evidenced in [48], the available literature lacks the
breadth and depth found in its polynomial counterpart.

This chapter aims to address this disparity by introducing block rational Krylov subspaces and eluci-
dating their principal properties. Our exploration begins with an investigation into matrix polynomials and
their associated rational matrices, providing the foundational knowledge necessary to relate block ratio-
nal Krylov subspaces and rational functions. Additionally, we aim to generalize important properties from
rational Krylov subspaces to their block counterparts, such as the exactness on rational functions.

2.1 Matrix polynomials and rational functions

In this section, we provide some deûnitions and properties about matrix polynomials that we use in the
thesis.

Matrix polynomials can be equivalently interpreted as polynomials with a scalar variable and matrix
coefûcients or as a matrix with polynomial entries. Both interpretations can be useful for proving different
results.

Deûnition 2.1.1 ( [58]). If Γ0, . . . ,Γd are b × b complex matrices and Γd is nonzero, the matrix-valued
function deûned on the complex numbers by

P (z) :=
d∑

i=0

ziΓi,

is called matrix polynomial of degree d. When Γd is the identity matrix, the matrix polynomial is said to be
monic.

Formally, we will denote by P(Cb×b) the space of b× b matrix polynomials, with coefûcients in Cb×b.
We use the notation Pd(Cb×b) to denote the set of matrix polynomials of degree less than or equal to d.

In order to analyze block Krylov methods, we associate a matrix polynomials with a linear operator that
acts on block vectors. More precisely, we deûne an operator ◦ as a function from C

n×n × C
n×b to C

n×b

as follows: given two matrices A ∈ C
n×n and C ∈ C

n×b, we set

P (A) ◦ C :=
d∑

i=0

AiCΓi.

19
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This notation has already been used in [79,119,122], and has been exploited in [93] for the analysis of block
Krylov subspaces. If the matrixA is ûxed, the mapC 7→ P (A)◦C is a linear function fromC

n×b toCn×b.
When dealing with rational Krylov methods, it will often be useful to apply the inverse of the operator, that
is given a generic vector C ûnding another block vector Z such that P (A) ◦Z = C. Since the operator is
linear in Z , this is equivalent to solving a linear system. A formal deûnition can be given as follows.

Deûnition 2.1.2. Given a matrix A ∈ C
n×n, a block vector C ∈ C

n×b and a matrix polynomial P (z) =∑d
i=0 z

iΓi ∈ P(Cb×b), such that det(P (¼)) ̸= 0 for each ¼ eigenvalue of A, we deûne P (A) ◦−1 C as
the block vector Z ∈ C

n×b, such that P (A) ◦ Z = C.

SinceZ is implicitly deûned as the solution of a linear system, we shall check that the system is invert-
ible to ensure that the deûnition is well-posed.

Lemma 2.1.1. Given a matrixA ∈ C
n×n, a block vectorC ∈ C

n×b, and a matrix polynomial P (z) as above
such that det(P (¼)) ̸= 0 for ¼ ∈ Λ(A), there is a unique Z ∈ C

n×b verifying P (A) ◦ Z = C.

Proof. The relation P (A) ◦ Z = C can be rewritten as vec(P (A) ◦ Z) = vec(C), in addition, we note
that

vec(P (A) ◦ Z) =

(
d∑

i=0

ΓT
i ¹Ai

)
vec(Z),

where ¹ denotes the Kronecker product, and we used the standard Kronecker relation vec(AXB) =
(BT ¹ A)vec(X). We now prove that the matrix

∑d
i=0 Γ

T
i ¹ Ai is invertible, which implies the sought

claim, since Z can be deûned as

Z = vec−1



(

d∑

i=0

ΓT
i ¹Ai

)−1

vec(C)


 .

Let A = UTUH be a Schur decomposition of A, with T upper triangular, then

d∑

i=0

ΓT
i ¹Ai = (Ib ¹ U)

(
d∑

i=0

ΓT
i ¹ T i

)
(
Ib ¹ UH

)
.

There exists a permutation matrix S ∈ C
nb×nb (the “perfect shufüe”, see [61]), such that

d∑

i=0

ΓT
i ¹ T i = S

(
d∑

i=0

T i ¹ ΓT
i

)
SH .

Hence, it is sufûcient to prove the invertibility of
∑d

i=0 T
i ¹ ΓT

i that is a block triangular matrix with
block diagonal matrices given by P (¼1)

T , . . . , P (¼n)
T , where ¼i are the eigenvalues ofA. Therefore, the

assumption det(P (¼)) ̸= 0 for each ¼ eigenvalue of A yields the claim.

Remark 2.1.1. The proof of well-posedness of Deûnition 2.1.2 also gives us an explicit representation of
P (A)◦−1: for any C ∈ C

n×b

P (A) ◦−1 C = vec−1



(

d∑

i=0

ΓT
i ¹Ai

)−1

vec(C)


 .

In particular, the hypothesis det(P (¼)) ̸= 0 for ¼ ∈ Λ(A) is necessary to guarantee the invertibiliy of∑d
i=0 Γ

T
i ¹Ai.
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The previous deûnitions and results essentially deal with matrix polynomials; for rational Krylov meth-
ods, we will need a way to incorporate rational functions into the picture. In practice, it will be sufûcient to
consider objects of the form q(z)−1P (z), where q(z) is a scalar polynomial, andP (z) amatrix polynomial.
It is immediate to check that any rational matrix (i.e., a matrix with rational entries) can be always written
in this form.

The following lemma suggests a way to extend the operators ◦ and ◦−1 to rational matrix polynomials
with scalar denominator.

Lemma 2.1.2. LetP (z) =
∑d

i=0 Γiz
i ∈ Pd(Cb×b) and let q(z) ∈ Pk(C) be a scalar polynomial. Denoting

by P̃ (z) = q(z)P (z) =
∑d+k

i=0 ∆iz
i, it holds

q(A) · (P (A) ◦ C) = P̃ (A) ◦ C and q(A)−1 · (P (A) ◦−1 C) = P̃ (A) ◦−1 C,

where in the second equality we assume det(P̃ (¼)) ̸= 0 for each ¼ ∈ Λ(A).

Proof. To derive the ûrst equality it is sufûcient to prove the case of q(z) = z − ³ for ³ ∈ C, since we
can factor q(z) as the product of linear terms. By deûnition of P̃ (z),

P̃ (z) = (z − ³)P (z) =

d+1∑

i=0

(Γi−i − ³Γi)z
i,

with the convention that Γ−1 = Γd+1 = 0. In particular ∆i = Γi−1 − ³Γi. Hence,

P̃ (A) ◦ C =

d+1∑

i=0

AiC∆i =

d∑

i=0

Ai+1CΓi − ³

d∑

i=0

AiCΓi

=A · P (A) ◦ C − ³P (A) ◦ C = (A− ³In) · (P (A) ◦ C) = q(A) · (P (A) ◦ C).

For the second identity, it is sufûcient to prove that P̃ (A)◦ (q(A)−1Z) = C , whereZ = P (A)◦−1C.
Using the ûrst identity,

P̃ (A) ◦ (q(A)−1Z) = q(A) · (P (A) ◦ (q(A)−1Z)) = q(A)

d∑

i=0

AiQ(A)−1ZΓi.

Since q(A) commutes with the powers of A, this can be reduced to

P̃ (A) ◦ (q(A)−1Z) = P (A) ◦ Z.

By deûnition of Z it follows that P (A) ◦ Z = C , that concludes the proof.

In view of the previous result, we can extend the action of a matrix polynomial P (A) ◦ C to the case
of rational matrices with prescribed poles.

Deûnition 2.1.3. Let q(z) ∈ P(C) and let R(z) ∈ P(Cb×b)/q(z), that is there exists P (z) ∈ P(Cb×b)
such that R(z) = P (z)/q(z). Given A ∈ C

n×n such that q(A) is invertible and C ∈ C
n×b, we deûne

R(A) ◦ C = q(A)−1 (P (A) ◦ C) and R(A) ◦−1 C = q(A)
(
P (A) ◦−1 C

)
.

The expression of a rational matrix in the form R(z) = P (z)/q(z) is not unique; however the previ-
ous deûnition does not depend on the representation, indeed if R(z) = P (z)/q(z) = P̃ (z)/q̃(z), then
q(z)P̃ (z) = q̃(z)P (z), hence by Lemma 2.1.2,

q(A) · (P̃ (A) ◦ C) = q̃(A) · (P (A) ◦ C) (2.1)

and
q(A)−1 · (P̃ (A) ◦−1 C) = q̃(A)−1 · (P (A) ◦−1 C). (2.2)

Multiplying both sides of (2.1) on the left by q(A)−1 · q̃(A)−1 we obtain the well-posedness of the map
C 7→ R(A) ◦ C , and multiplying both sides of (2.2) on the left by q(A)q̃(A) we have the well-posedness
of the map C 7→ R(A) ◦−1 C.
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Remark 2.1.2. If the matrix A is ûxed, both operators

C 7→ R(A) ◦ C and C 7→ R(A) ◦−1 C

are linear. As in the polynomial case, the latter is only deûned ifR(z) is nonsingular over all the eigenvalues
of A.

Lemma 2.1.3. IfA,B ∈ C
n×n commute, then for every rational matrixR(z) = P (z)/q(z), where P (z) ∈

P(Cb×b) and q(z) ∈ P(C),
B ·R(A) ◦ C = R(A) ◦ (BC),

moreover, if det(P (¼)) ̸= 0 for each ¼ ∈ Λ(A),

B ·R(A) ◦−1 C = R(A) ◦−1 (BC).

Proof. Let P (z) =
∑d

i=1 z
iΓi ∈ Pd(Cb×b) and q(z) ∈ P(C), such that R(z) = P (z)/q(z). Then

B ·R(A) ◦ C = BQ(A)−1
d∑

i=1

AiCΓi = q(A)−1
d∑

i=1

AiBCΓi = R(A) ◦ (BC),

and therefore

vec(B ·R(A) ◦−1 C) = (Ib ¹B)(Ib ¹ q(A))

(
d∑

i=1

ΓT
i ¹Ai

)−1

vec(C)

=(Ib ¹ q(A))

(
d∑

i=1

ΓT
i ¹Ai

)−1

(Ib ¹B)vec(C) = vec(R(A) ◦−1 (BC)).

Given a matrix polynomial P (z) =
∑d

i=0 z
iΓi, we denote by PH(z) the matrix polynomial PH(z) :=∑d

i=0 z
iΓH

i . Similarly, we denote by P̄ (z) the matrix polynomial with complex conjugate (but not trans-
posed) coefûcients. Given a function R(z) = P (z)/q(z), we denote by R̄(z) and RH(z) the rational
functions P̄ (z)/q̄(z) and PH(z)/q̄(z), respectively.

Lemma 2.1.4. Given C ∈ C
n×b and Z ∈ C

m×b, the following identities hold:

R(zIn) ◦−1 C = C(R(z))−1 R(zIn) ◦−1 CZH = C(RH(z̄Im) ◦−1 Z)H .

Proof. Let P (z) =
∑d

i=1 z
iΓi ∈ Pd(Cb×b) and q(z) ∈ P(C), such that R(z) = P (z)/q(z). It holds

vec
(
R(zIn) ◦−1 C

)
=q(z)

(
d∑

i=0

ΓT
i ¹ ziIn

)−1

vec(C)

=
((

RT (z)
)−1 ¹ In

)
vec(C) = vec

(
v(R(z))−1

)
,

from which follows the ûrst equality. For the second identity notice that

R(zIn) ◦−1 CZH = C(R(z))−1ZH = C(Z(RH(z̄))−1)H = C(RH(z̄Im) ◦−1 Z)H .

The following theorem is a generalization of the Cauchy integral formula to the action of rational ma-
trices.
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Theorem 2.1.5. Let A ∈ C
n×n, C ∈ C

n×b and let µ be a compact contour that encloses once the eigen-
values of A with positive orientation. Then, for any R(z) ∈ P(Cb×b)/q(z), such that det(R(z)) ̸= 0 for
each z in the compact set enclosed by µ, it holds

1

2Ãi

∫

µ
R(zIn) ◦−1

[
(zIn −A)−1C

]
dz = R(A) ◦−1 C.

Proof. Let P (z) =
∑d

i=1 z
iΓi, be such that R(z) = P (z)/q(z). Then

vec

(∫

µ
R(zIn) ◦−1

[
(zIn −A)−1C

]
dz

)

=



∫

µ
q(z)

(
d∑

i=0

ΓT
i ¹ ziIn

)−1

·
(
In ¹ (zIn −A)−1

)
dz


 vec(C)

=



∫

µ
q(z)

(
d∑

i=0

ΓT
i z

i

)−1

¹ (zIn −A)−1 dz


 vec(C).

For each s, t ∈ {1, . . . , b}, let fs,t(z) be the function that maps z in the entry in position (s, t) of the

rational matrix q(z)
(∑d

i=0 Γ
T
i z

i
)−1

. Since for each z inside the compact set bounded by µ it holds

det(R(z)) ̸= 0, the functions fs,t(z), are holomorphic on such set. Then for the Cauchy integral formula,
we have

1

2Ãi

∫

µ
q(z)

(
d∑

i=0

ΓT
i z

i

)−1

s,t

¹ (zIn −A)−1 dz =
1

2Ãi

∫

µ
fs,t(z) · (zIn −A)−1 dz = fs,t(A).

Then, if we denote by F ∈ C
nb×nb the block matrix for which the block in position (s, t) is deûned by

fs,t(A), we have the equivalence

F =
1

2Ãi

∫

µ
q(z)

(
d∑

i=0

ΓT
i z

i

)−1

¹ (zIn −A)−1 dz.

We now claim that F = (Ib ¹ q(A))
(∑d

i=0 Γ
T
i ¹Ai

)−1
, which implies the sought results, since

vec

(
1

2Ãi

∫

µ
R(zIn) ◦−1 (zIn −A)−1C dz

)
= F · vec(C)

= (Ib ¹ q(A))

(
d∑

i=0

ΓT
i ¹Ai

)−1

vec(C) = vec
(
R(A) ◦−1 C

)
.

Hence in the following we prove that
(∑d

i=0 Γ
T
i ¹Ai

)
· F = Ib ¹ q(A).

For any s, t ∈ {1, . . . , b}, let us deûne gs,t(z) =
(∑d

i=0 Γ
T
i z

i
)
s,t

. Since

(
d∑

i=0

ΓT
i z

i

)
·


q(z)

(
d∑

i=0

ΓT
i z

i

)−1

 = q(z)Ib,

it holds

q(z)¶s,t =
b∑

r=1

gs,r(z)fr,t(z), (2.3)
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where ¶s,t denotes the Kronecker delta.
To simplify the notation, for any integer r ∈ {1, . . . , b}, we deûne ix(r) as the set of indices n(r −

1) + 1 : nr. For any s, t ∈ {1, . . . , b} we have

((
d∑

i=0

ΓT
i ¹Ai

)
· F
)

ix(s),ix(t)

=

b∑

r=1

(
d∑

i=0

(ΓT
i )s,r ·Ai

)
f(A)r,t =

b∑

r=1

gs,r(A)fr,t(A) = ¶s,tq(A),

where the last equality follows from (2.3).

Let us now recall the concept of divisibility for matrix polynomials and the deûnition of block character-
istic polynomial. We use the term regular to identifymatrix polynomials whose determinant is not identically
zero overC. The following results, including proofs of theorems, can be found in [93, Section 2.5] or in the
more classical reference [58, Section 7.7].

The results extend the familiar concept of Euclidean division tomatrix polynomials. Matrix polynomials
form a non-commutative ring, so we need to differentiate between left and right divisors. However, the
underlying idea of dividing P (z) by D(z) is still the same: we want to write P (z) as a multiple of D(z)
plus an additional remainder term, which should be of lower degree than D(z).

Deûnition 2.1.4. LetP (z),K(z), R(z) andD(z) be matrix polynomials, whereP (z) has degree d,D(z) is
regular with degree less than d, andR(z) has degree less than degD(z). K(z) is deûned as “left quotient”
and R(z) as the “left remainder” of P (z) divided by D(z) if

P (z) = D(z)K(z) +R(z).

If R(z) = 0, we say that P (z) is left divisible by D(z).

A natural question arises: givenP (z) and a lower degree polynomialD(z), can we easily check ifD(z)
divides P (z) (i.e., if the remainder of the left or right division is zero)?

For a scalar polynomial p(¼) and a linear divisor ¼ − s, this amounts to check if p(s) = 0. A similar
result holds for matrix polynomials as well.

Theorem 2.1.6. [93, Theorem 2.17] The matrix polynomial P (z) ∈ P(Cb×b) is left divisible by zIb − S,
where S ∈ C

b×b if and only if P (S) = 0.

Deûnition 2.1.5. Let P (z) be a matrix polynomial. A matrix S ∈ C
b×b is called a left solvent of P (z) if

P (S) = 0.

In the following, we omit “left” when referring to quotients, divisibility and solvents.
We remark that solvents are important tools in the analysis of matrix polynomials. They can be used

to compute a part of the spectrum [87], and are closely related to the solution of one-sided matrix equation
that arises, for instance, in some Markov chains (see [20] and the references therein).

We now present a possible way to construct a monic block characteristic polynomial. In the scalar
case, we may think of building the characteristic polynomial of a matrix A by computing its eigenvalues
s1, . . . , sn, and then taking the product of the linear factors p(¼) = (¼−s1) . . . (¼−sn). The next theorem
presents the extension of this idea to the block case, where the eigenvalues are replaced by blocks in a
block diagonal matrix similar to the original one, and solvents play the role of the roots.

Deûnition 2.1.6. Let A ∈ C
db×db and C ∈ C

db×b. A monic block characteristic polynomial of A with
respect to C is a matrix polynomial P (z) =

∑d
i=0 z

iΓi ∈ Pd(Cb×b), with Γd = Id, such that

P (A) ◦ C = 0.
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A sufûcient condition for the existence of a monic block characteristic polynomial ofA ∈ C
db×db with

respect to C ∈ C
db×b, is the invertibility of the matrix

[C,AC, . . . , Ad−1C].

For further details, refer to [93, Section 2.2.5]. For simplicity, throughout the thesis, we will assume this
condition whenever monic block characteristic polynomials are employed.

Theorem 2.1.7. [93, Theorem 2.24] Let A ∈ C
db×db and C ∈ C

db×b. Let P (z) be a monic block charac-
teristic polynomial of A with respect to C. Assuming that there exists a block diagonal matrix

T =



Θ1

. . .

Θd


 ,

with {Θi}i=1:d ¦ C
b×b and an invertible matrix U ∈ C

db×db such that

A = UTU−1,

and letting [∆1, . . . ,∆d]
T = U−1C , with {∆i}di=1 ¦ C

b×b, then if ∆i is invertible for each i, it holds that

1. Si = ∆−1
i Θi∆i are solvents of P(z);

2. if Si − Sj is nonsingular for each i ̸= j then

P (z) = (zIb − S1) · · · · (zIb − Sd).

2.2 Block rational Krylov subspaces

Given a matrix A ∈ C
n×n, a block vector C ∈ C

n×b and a sequence of poles ξk = {Àj}k−1
j=0 ¦ C \ Λ(A)

the kth block rational Krylov subspace is deûned as

Qk(A,C, ξk) =

{
R(A) ◦ C : R(z) =

P (z)

qk(z)
, with P (z) ∈ Pk−1(C

b×b)

}
, (2.4)

where
qk(z) =

∏

Àj∈ξk,Àj ̸=∞

(z − Àj). (2.5)

For simplicity, we sometimes denote such space byQk(A,C) omitting poles. If all the poles are equal to
inûnity, (2.4) is usually referred as block polynomial Krylov subspace, and it is denoted by Kk(A,C).

The dimension ofQk(A, v, ξk) is deûned as the rank of the matrix1

[(A− À0)
−1C, (A− À1)

−1(A− À0)
−1AC, . . . , (A− Àk−1)

−1 · · · (A− À0)
−1Ak−1C]. (2.6)

To simplify the notation we will always assume that (2.6) is full rank, that is, the dimension of Qk(A,C)
is equal to kb.

An orthonormal block basis of Qk(A,C) (for simplicity, we will often just say “orthonormal basis”)
is deûned as a matrix Vk = [V (1), . . . , V (k)] with orthonormal columns, where V (1), . . . , V (k) ∈ C

n×b,
such that every block vector Z ∈ Qk(A,C) can be written as Z =

∑k
i=1 V

(i)Γi, for Γi ∈ C
b×b.

Key components in utilizing Krylov subspaces involve calculating a block orthonormal basis and per-
forming the corresponding projection ofA. If an orthonormal basis Vk is known, than the projected matrix
is given by Ak = V H

k AVk.

1Where the matrix (A− ξ)−1 is replaced by the identity matrix if ξ = ∞.
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The matrix Vk can be computed by a block rational Arnoldi Algorithm2 1, that iteratively computes the
block columns of Vk and two matrices Kk−1, Hk−1 ∈ C

bk×b(k−1) in block upper Hessenberg form such
that

AVkKk−1 = VkHk−1. (2.7)

We refer to the portion of Algorithm 1 enclosed between lines 4 and 10 as Arnoldi iteration.

Algorithm 1 Block Rational Arnoldi

Input: A ∈ C
n×n, C ∈ C

n×b, ξk = {À0, . . . , Àk−1}
Output: Vk ∈ C

n×bk, Hk−1,Kk−1 ∈ C
bk×b(k−1)

1: Z ← (I −A/À0)
−1C ▷ with the convention A/∞ = 0

2: [V (1),∼]← qr(Z) ▷ compute a thin QR decomposition
3: for j = 1, . . . , k − 1 do

4: Compute Z = (I −A/Àj)
−1AV (j)

5: for i = 1, . . . , j do

6: (Hk−1)i,j ← (V (i))HZ ▷ where i and j are block indices
7: Z ← Z − V (i)(Hk−1)i,j
8: end for

9: [V (j+1), (Hk−1)j+1,j]← qr(Z) ▷ compute a thin QR decomposition
10: (Kk−1)i,1:(j+1)b ← (Hk−1)i,1:(j+1)b/Àj − Ej , ▷ where Ej = [0, . . . , 0, 1, 0]T ¹ Ib
11: end for

12: Vk ← [V (1), . . . , V (k)]

Relation (2.7) completely determines the rational Krylov subspace, and encodes all the information
regarding poles and column span of the starting block vector. The following deûnition given by Elsworth
and Güttel in [48] generalizes relation (2.7).

Deûnition 2.2.1 ( [48]). Let A ∈ C
n×n. A relation of the form

AVkKk−1 = VkHk−1

is called orthonormal block rational Arnoldi decomposition (BRAD), if the following conditions are satisûed3:

1. Vk ∈ C
n×bk has orthonormal columns;

2. Kk−1 and Hk−1 are bk × b(k − 1) block upper Hessenberg matrices such that for each i either

(Kk−1)i+1,i or (Hk−1)i+1,i (or both) are invertible;

3. for any i, there exist two scalars µi, ¿i ∈ C, with at least one different from zero, such that

µi(Kk−1)i+1,i = ¿i(Hk−1)i+1,i;

4. the numbers Ài = µi/¿i above, called poles of the BRAD, are outside the spectrum of A.

Remark 2.2.1. The relation (2.7) produced by the block rational Arnoldi algorithm is a block rational Arnoldi
decomposition, see [48, Section 2].

Remark 2.2.2. The matrices Hk−1 and Kk−1 of a block rational Arnoldi decomposition are both full rank.
This follows from [48, Lemma 3.2].

The following theorem relates rational Arnoldi decompositions with rational Krylov subspaces.

2For simplicity we describe a version of the algorithm that does not allow poles equal to zero. For a more complete version of
the algorithm, we refer to [48].

3The bold subscripts denote block indices. For instance i = [(i− 1)b+ 1, . . . , ib].
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Theorem 2.2.1 ( [48]). Let A ∈ C
n×n, C ∈ C

n×b, ξk = {À0, . . . Àk−1} and let Qk(A,C) be the block
rational Krylov subspace with poles ξk. Let

AVkKk−1 = VkHk−1

be a BRAD with poles {À1, . . . Àk−1}, such that the ûrst block column of Vk is an orthonormal basis of the
space spanned by the columns of (I − A/À0)

−1C. Then Vk is an orthonormal block basis of Qk(A,C).
Moreover, the matrix obtained by taking the ûrst j block columns of Vk is an orthonormal block basis for
Qj(A,C, {Ài}j−1

i=0 ) for each j f k.

For the proof of the theorem and a more detailed description of block rational Arnoldi decompositions
we refer to [48].

Let Vk−1 be the matrix obtained by taking the ûrst b(k − 1) columns of Vk. The computation of the
projected matrix Ak−1 = V H

k−1AVk−1 by using the formula is usually expensive if the dimension of the
matrix A is large. For the case of Hermitian A, several methods that exploit the structure of Ak−1 have
been developed to avoid expensive operations for the computation, see for instance [27, 102]. In the non-
Hermitian case, it is more difûcult to exploit a structure ofAk−1. However, if the last pole of the associated
BRAD is equal to inûnity the projected matrix can be easily computed asAk−1 = Hk−1K

−1
k−1, whereKk−1

andHk−1 are the head (k− 1)b× (k− 1)b principal submatrix ofKk−1 andHk−1 respectively. To prove
this, notice that if the last pole is equal to inûnity then the last block row of Kk−1 has to be zero, then
since Kk−1 is full rank, Kk−1 is invertible, hence multiplying both the terms of the block rational Arnoldi
decomposition (2.7) on the left by V H

k−1 and on the right by K−1
k−1 we obtain Ak−1 = Hk−1K

−1
k−1.

A technique that is often used to compute Ak is to add a pole equal to inûnity every time we want to
compute a new projected matrix. However, this would signiûcantly increase the size of the block rational
Krylov subspace in an artiûcial manner. In the next section, we describe a way to ensure that the last pole
is always equal to inûnity, avoiding these additional steps.

2.2.1 Reordering poles

Let us assume to know a block rational Arnoldi decomposition

AV̂k+1K̂k = V̂k+1Ĥk (2.8)

with poles {À1, . . . , Àk−2,∞, Àk−1}. In the following, we introduce a practical way to swap the last two
poles by using unitary transformations producing a block rational Arnoldi decomposition associated with
the sequence of poles {À1, . . . , Àk−2, Àk−1,∞}. This technique has been already described for the non-
block case in [66]. By Deûnition 2.2.1, since the second last pole is equal to inûnity, the submatrix (K̂k)k,k−1

is equal to zero. Moreover, to produce a new block rational Arnoldi decomposition that has the last pole
equal to inûnity it is sufûcient to annihilate the submatrix (K̂k)k+1,k, keeping the block Hessenberg struc-
ture of the two matrices. This can be done by employing unitary transformations. Let

Q1R1 =

[
(K̂k)k,k

(K̂k)k+1,k

]

be a thin QR decomposition and let R2Q2 be an RQ decomposition4 for the last block row of

QH
1

[
(Ĥk)k,k−1 (Ĥk)k,k

0 (Ĥk)k+1,k

]
.

Then, the matrices

QH
1

[
0 (K̂k)k,k
0 (K̂k)k+1,k

]
QH

2 and QH
1

[
(Ĥk)k,k−1 (Ĥk)k,k

0 (Ĥk)k+1,k

]
QH

2

4An RQ decomposition consists of writing a matrix as the product of an upper triangular matrix times a unitary matrix. It can
be computed by using the same techniques involved in the computation of a QR decomposition.
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are block upper triangular and the last block row of the ûrst one is equal to zero.
If we let

Vk+1 = V̂k+1(Ib(k−1) ·Q1),

Kk = (Ib(k−1) ·QH
1 )K̂k(Ib(k−2) ·QH

2 )

Hk = (Ib(k−1) ·QH
1 )Ĥk(Ib(k−2) ¹QH

2 ),

where· denotes the Kronecker sum, the relation

AVk+1Kk = Vk+1Hk

is a new block rational Arnoldi decomposition with poles {À1, . . . , Àk−2, Àk−1,∞}.
The procedure described above can be used to efûciently compute the projected matrix during the

block rational Arnoldi algorithm. It is sufûcient to start by performing the block rational Arnoldi algorithm
(Algorithm 1) using poles {À0,∞} to compute the matrices V2,K1, H1 that form a block rational Arnoldi
decomposition. Then, by performing a newArnoldi iteration, the pole À1 can be added, and subsequently the
produced block rational Arnoldi decomposition can be transformed into a new oneV3,K2, H2 by swapping
the last two poles. In particular, since the last pole is equal to inûnity, the projected matrix satisûes A2 =
H2K

−1
2 . This strategy can be iterated to enlarge the Krylov subspace by adding all the remaining poles.

Observe that the computational cost of the procedure to swap the poles is independent of the size of
A, therefore it is usually negligible compared to the computational cost of an iteration of the block rational
Arnoldi algorithm (Algorithm 1).

Remark 2.2.3. When we transform the matrix V̂k in Vk we only perform a linear combination between the
last two block columns. For this reason the top-left principal b(k − 1)× b(k − 1) submatrix of Ak is equal
toAk−1 . Hence, to computeAk it is sufûcient to determine its last block row and column. This can be done
using the relation Ak = HkK

−1
k and so

AkEk = HkK
−1
k Ek and ET

k Ak = ET
k HkK

−1
k ,

with Ek = ek ¹ Ib, where ek ∈ C
k is the last vector of the canonical basis.

2.3 Properties of block rational Krylov subspaces

One of the key characteristics of rational Krylov subspaces lies in the “exactness” on rational functions
(see [66, Lemma 4.6]). We extend this property to the block rational Krylov framework.

Proposition 2.3.1 (Block exactness). LetA ∈ C
n×n,C ∈ C

n×b and let ξk be a set of poles. Denoting by
Vk an orthonormal basis ofQk(A,C, ξk), for anymatrixU with orthonormal columns such that span(Vk) ¦
span(U), we have

UUHR(A) ◦ C = UR(UHAU) ◦ UHV,

for anyR(z) ∈ Pk(Cb×b)/q(z)with q(z) =
∏

À∈ξk,À ̸=∞(z−À). In particular, ifR(z) ∈ Pk−1(C
b×b)/q(z)

it holds

R(A) ◦ C = UR(UHAU) ◦ UHC.

As a consequence, we have

UQk(U
HAU,UHC, ξk) = Qk(A,C, ξk).

Proof. The proof is composed of two parts. First, we suppose that the poles are all equal to inûnity, i.e.,
q(z) = 1. Then, we extend the proof for a generic choice of poles.
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For the ûrst part, by linearity, it is sufûcient to prove the equalities for R(z) = zjIb with j f h.
We proceed by induction on j. If j = 0 there is nothing to prove. For R(z) = zj+1Ib, by the inductive
hypothesis we have

UUHAj+1C = UUHAAjC = UUHAU(UHAU)jUHC = U(UHAU)j+1UHC.

Moreover, if j + 1 f k − 1, Aj+1C ∈ Kk(A,C), hence UUHAj+1C = Aj+1C.
Let nowR(z) = P (z)/q(z) with P (z) ∈ P(Cb×b). Using the commutativity property of Lemma 2.1.3,

we have that
R(A) ◦ C = q(A)−1P (A) ◦ C = P (A) ◦ (q(A)−1C).

Hence, if we let C̃ = q(A)−1C , from the result of the ûrst step we have

UUHR(A) ◦ C = UUHP (A) ◦ C̃ = UP (UHAU) ◦ (UHC̃),

and, if R(A) ∈ Pk−1(C
b×b)/q(A), we have

R(A) ◦ C = P (A) ◦ C̃ = UP (UHAU) ◦ (UHC̃).

To conclude it is sufûcient to prove that UHC̃ = q(UHAU)−1UHC. Since C = q(A)C̃ , or analogously
C = Q(A) ◦ C̃ where Q(z) = q(z)Ib, by the ûrst step of the proof we have

UUHC = UUHQ(A) ◦ C̃ = UQ(UHAU) ◦ (UHC̃) = Uq(UHAU)UHC̃.

Since UHU = I , multiplying both sides on the left by q(UHAU)−1UH we get

q(UHAU)−1UHC = UHC̃,

that concludes the proof.

Corollary 2.3.2. LetÇ(z) ∈ Pk(Cb×b) be a monic block characteristic polynomial for V H
k AVk with respect

to V H
k C. Denoting by RG(z) = Ç(z)/q(z), it holds

V H
k RG(A) ◦ C = 0,

moreover RG(A) ◦ C minimizes ∥R(A) ◦ C∥F over all the R(z) ∈ Pk(Cb×b)/q(z) such that R(z) =
P (z)/q(z) where P (z) is a monic matrix polynomial of degree k.

Proof. By Proposition 2.3.1 it holds

VkV
H
k RG(A) ◦ C = VkR

G(V H
k AVk) ◦ V H

k C = 0.

Since V H
k Vk = Ibk , multiplying on the left by V H

k we obtain the ûrst equivalence.
The problem of minimizing ∥R(A) ◦ C∥F over all the R(z) ∈ Pk(Cb×b)/q(z) with monic numerator

can be rewritten as

min
R̂(z)∈Pk−1(z)/q(z)

∥∥∥q(A)−1AkC − R̂(z) ◦ C
∥∥∥
F

= min
Y ∈Cbk×b

∥∥∥q(A)−1AkC − VkY
∥∥∥
F

= min
Y ∈Cbk×b

∥∥∥(Ib ¹ q(A)−1Ak)vec(C)− (Ib ¹ Vk)vec(Y )
∥∥∥
2
.

The solution of the least square problem is given by the matrix Y such that

(Ib ¹ Vk)
H
(
(Ib ¹ q(A)−1Ak)vec(C)− (Ib ¹ Vk)vec(Y )

)
= 0,

that is analogue to ask thatV H
k (q(A)−1AkC−VkY ) = 0, that is, the solution of theminimization problem

sathisûes V H
k (R(A) ◦ C) = 0, hence the function RG(z) is the solution.
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Whenworking on developing algorithms for computingmatrix functions, we frequently encounter Krylov
subspaces that involve block diagonal matrices. Proposition 2.3.3 is a fundamental yet straightforward
result essential for our purposes.

Proposition 2.3.3. LetA := blkdiag(Ai) andC := blkdiag(Ci)withAi ∈ C
ni×ni andCi ∈ C

ni×bi and
let ξk be a sequence of poles. Then an orthonormal basis ofQk(A,C, ξk) is given by V := blkdiag(Vi),
where Vi is an orthonormal basis ofQk(Ai, Ci, ξk) for each i.

Proof. By deûnition, every element ofQk(A,C, ξk) takes the form

qk(A)−1
k−1∑

j=0

AjCΓj =

k−1∑

j=0

blkdiag
(
qk(Ai)

−1Aj
iCi

)
Γj ,

with qk deûned in (2.5). Because qk(Ai)
−1Aj

iCi ∈ Qk(Ai, Ci, ξk) for every i, j, we haveQk(A,C, ξk) =
span(blkdiag(Vi)).

2.4 Low-rank updates of Hermitian matrix functions

The following result from [10] shows how to approximate a low-rank update of a Hermitian matrix function,
using block rational Krylov subspaces.

Theorem 2.4.1 ( [10, Theorem 4.5]). Let A = B + C∆CH , where B ∈ C
n×n,∆ ∈ C

b×b are Hermitian
andC ∈ C

n×b. Let [a, b] be an interval that contains the spectra ofA and∆, and let ξk = {À0, . . . , Àk−1} ¦
C, be a sequence of poles closed under complex conjugation. For a function f analytic on [a, b], we consider
the approximation

f(A) ≈ F̂ := f(B) + Vk

(
f(V H

k AVk)− f(V H
k BVk)

)
V H
k , (2.9)

where Vk is an orthonormal basis of Qk(B,C, ξk). Then the approximation error E(f) := F̂ − f(A)
satisûes

∥E(f)∥2 f 4 min
r∈Pk−1/qk

∥f − r∥∞ ,

where qk(z) =
∏

À∈ξk,À ̸=∞(z − À) and ∥·∥∞ denotes the supremum norm on [a, b]. In particular, the

approximation (2.9) is exact if f ∈ Pk−1/qk.

Theorem 2.4.1 can be extended to the case where Vk is replaced by a matrix U such that span(U) §
Qk(B,C, ξk) as shown in Proposition 2.4.2.

Proposition 2.4.2. Using the notation of Theorem 2.4.1, we have

f(A) ≈ F̂ := f(B) + U
(
f(UHAU)− f(UHBU)

)
UH , (2.10)

where U is matrix with orthonormal columns such that span(U) § Qk(B,C, ξk). Then the approximation
error E(f) := F̂ − f(A) satisûes

∥E(f)∥2 f 4 min
r∈Pk−1/qk

∥f − r∥∞ .

Proof. If we assume that the approximation (2.10) is exact when f ∈ Pk−1/qk , then we can prove the
statement using the same proof as [10, Theorem 4.5]. So, we just need to show that if f ∈ Pk−1/qk , then
the approximation (2.10) is exact.

First of all, we note that, since span(U) § Qk(B,C, ξk) we have UUHVk = Vk, where Vk is an
orthonormal basis ofQk(B,C, ξk). Moreover, by Theorem 2.4.1 we have

r(B + C∆CH)− r(B) = VkYk(r)V
H
k = UUHVkYk(r)V

H
k UUH ,
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with
Yk(r) := r(V H

k AVk)− r(V H
k BVk).

To conclude it is sufûcient to prove that

UHVkYk(r)V
H
k U = r(UHAU)− r(UHBU).

It follows from Proposition 2.3.1 that UHVk is an orthonormal basis of the subspace

Qk(U
HAU,UHC, ξk) = UHQk(A,C, ξk),

and by Theorem 2.4.1 we obtain

r(UHAU)− r(UHBU)

= UHVk

(
r(V H

k UUHAUUHVk)− r(V H
k UUHBUUHVk)

)
V H
k U

= UHVk(r(V
H
k AVk)− r(V H

k BVk))V
H
k U

= UHVkYk(r)V
H
k U.
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Chapter 3

Sylvester equations

The contents of this chapter result from joint work with Leonardo Robol, as detailed in [26].
We are concerned with the solution of Sylvester equations of the form

AX −XB = C1C
H
2 , where C1 ∈ C

n×b, C2 ∈ C
m×b, (3.1)

and A,B are square matrices of sizes n × n and m × m, respectively. The matrices C1, C2 are block
vectors with a few b columns, with bj n,m. If A and B have disjoint spectra, the solution is unique and
can be expressed in the integral form

X =
1

2Ãi

∫

µ
(zIn −A)−1C1C

H
2 (zIm −B)−1dz (3.2)

where µ is a compact contour that encloses once, in positive orientation, the eigenvalues ofA, but not the
eigenvalues of B [86].

Sylvester equations arise often in control theory [3, 14], and in the solution of 2D PDEs on tensorized
domains [103,124]. In this setting, the matrices involved are often of large size, and exploiting the low-rank
structure in the right-hand side is essential. For problems arising from control theory, the rank is linked
with the number of inputs and outputs in the system, so b is typically moderate and related to the analysis
of MIMO systems [3]. For PDEs, the low-rank property holds in an approximate sense and is related to the
regularity of the problem under consideration.

When the spectra ofA andB are well-separated, one can show that the matrixX that solves (3.1) has
exponentially decaying singular values [13], and can be approximated as a low-rank matrix [121]. If X is
close to a low-rank matrix, i.e., we can write it as X = UY V H + E where U, V are matrices with a few
orthogonal columns, and E is a small error, then the Sylvester equation can be approximately solved by
computing the exact solution of the projected equation (UHAU)Y − Y (V HBV ) = UHC1C

H
2 V . This

is the core idea of projection methods. The main difûculty lies in identifying good bases U and V to use
for projecting the equation.

A common choice is to takeU and V as orthonormal basis of polynomial or rational Krylov subspaces;
progressively increasing the dimensions of the subspaces produce a sequence of approximate solutions.

When C1, C2 are vectors, the characterization of Krylov subspaces through polynomials or rational
functions allow us to link the convergence of the method with a polynomial (resp. rational) approximation
problem, which allows us to state explicit results (at least in the case of normal matrix coefûcients) [9].
The rational methods are inherently more complex to analyze because a choice of poles is involved, and
the convergence is dependent on the quality of these poles.

WhenC1 andC2 are block vectors an analogous construction can bemade. The results in the literature
focus mostly on the non-block case and are more scarce for this setting. One of the contributions of this
chapter is to extend the convergence analysis for rational Krylov found in [9] to this more general setting.
This is done by exploiting the notation for rational matrices introduced in Section 2.1.

If X = UY V H with U, V bases of a Krylov subspace of order ℓ, then the residual AX − XB −
C belongs to the Krylov subspace of order ℓ + 1 [121]. This property can be exploited to compute the

33
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residual error almost for free at each step. For rational Krylov subspaces, the analogous result tells us
that the residual belongs to a larger subspace obtained by adding an inûnity pole. However, if inûnity poles
are periodically injected into the space for residual computation rather than necessity, we risk artiûcially
inüating the size of the projected problem. In this chapter, we show how one can exploit the techniques
for pole reordering described in Section 2.2.1 to maintain a single inûnity pole in the deûnition of the block
rational Krylov subspace, precisely with the aim of checking the residual.

Then, the convergence analysis, which extends the results provided by Beckermann in [9], is utilized to
design an adaptive-pole-selection algorithm. Since the objective function is now matrix-valued, instead of
scalar, the problem ismuch richer. In particular, theminimization of its norm is numerically challenging, and
it is natural to replace the objective function with a simpler surrogate. We present various options, and we
show that one of these leads to the same heuristic proposed by Druskin and Simoncini in [42] generalizing
the rank 1 case. Hence, our theory provides a theoretical analysis of the convergence of this choice. Then,
we show that other choices for the surrogate function are possible; in particular, we provide an adaptive
technique of pole selection that slightly improves the one proposed in [42].

3.1 Rational Krylov for Sylvester equations

Krylov subspace methods are one of the most popular methods for solving the Sylvester equation (3.1)
whereA ∈ C

n×n, B ∈ C
m×m are large size matrices and C1 ∈ C

n×b, C2 ∈ C
m×b are tall and skinny. In

such a case, the solution can be approximated by a low-rank matrix to avoid storing the complete solution
which is prohibitive for large n andm. We refer to [121, Section 4.4] for a more complete discussion about
the topic.

The technique described in Section 2.2.1 can be employed in the context of solving Sylvester equa-
tions: let Uh+1 and Vk+1 be orthonormal block basis for Qh+1(A,C1) and Qk+1(B

H , C2) respectively,
generated by the block rational Arnoldi algorithm 1 and let Uh ∈ Cn×bh and Vk ∈ C

m×bk be the matrices
obtained removing from Uh+1 and Vk+1 the last b columns. Letting Ah = UH

h AUh and Bk = V H
k BVk ,

the solution X can be approximated by Xh,k = UhYh,kV
H
k , where Yh,k solves the projected equation

AhYh,k − Yh,kBk = UH
h C1(V

H
k C2)

H . (3.3)

For simplicity of notation in the rest of the section, we assume that À0 =∞, that is,

UH
h C1 = E1Θ1 and V H

k C2 = E1Θ2,

where Θ1,Θ2 ∈ C
b×b and E1 is the block vector of appropriate dimensions, containing a b × b identity

matrix in its ûrst block and zeros elsewhere.

If Uh+1 and Vk+1 are determined as described in Section 2.2.1, the projected matricesAh andBk can
be easily computed at each step. In the following, we show that this choice of poles also allows a cheap
computation of the norm of the residual matrix

Rh,k = AXh,k −Xh,kB − C1C
H
2 .

Since the last pole used to generateQh+1(A,C1) is always equal to inûnity, the columns ofAUh belongs
toQh+1(A,C1), that is,

Uh+1U
H
h+1AUh = AUh.

In the same way it holds

V H
k BVk+1V

H
k+1 = V H

k B.

Using the last two relations, the deûnition of Xh,k and that the ûrst block columns of Uh+1 and Vk+1 are
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given by the orthonormalization of C1 and C2 respectively, we can rewrite the residual as

Rh,k = Uh+1U
H
h+1AUhYh,kV

H
k − UhYh,kV

H
k BVk+1V

H
k+1 − Uh+1E1Θ1Θ

H
2 ET

1 V
H
k+1

= Uh+1

(
UH
h+1AUhYh,k

[
Ibh 0

]
−
[
Ibk
0

]
Yh,kV

H
k BVk+1 − E1Θ1Θ

H
2 ET

1

)
V H
k+1

= Uh+1

[
UH
h AUhYh,k − E1Θ1Θ

H
2 ET

1 −Yh,kV H
k BV (k+1)

(U (h+1))HAUhYh,k 0

]
V H
k+1

= Uh+1

[
AhYh,k − Yh,kBk − E1Θ1Θ

H
2 ET

1 −Yh,kV H
k BV (k+1)

(U (h+1))HAUhYh,k 0

]
V H
k+1

= Uh+1

[
0 −Yh,kV H

k BV (k+1)

(U (h+1))HAUhYh,k 0

]
V H
k+1

where U (h+1) and V (k+1) are the last block columns of Uh+1 and Vk+1 respectively, and the zero matrix
in the top left corner of the block matrix in the last row is given by equation (3.3).

Since the columns of Uh+1 and Vk+1 are orthonormal, the norm of the residual is equal to the norm of
the block matrix [

0 −Yh,kV H
k BV (k+1)

(U (h+1))HAUhYh,k 0

]
. (3.4)

Let us now consider the block rational Arnoldi decomposition

AUh+1Kh
(A) = Uh+1Hh

(A).

Multiplying both the terms of the equations on the right by
(
Kh

(A)
)−1

, where Kh
(A) is the bh× bh head

principal submatrix of Kh
(A), noting that the last block row of Kh

(A) is equal to zero, we have

AUh = Uh+1Hh
(A)
(
Kh

(A)
)−1

. (3.5)

Analogously, if
BHVk+1Kk

(B) = Vk+1Hk
(B)

is a block rational Arnoldi decomposition, we have that

BHVk = Vk+1Hk
(B)
(
Kk

(B)
)−1

, (3.6)

where K
(B)
k is the head bk × bk principal submatrix of Kk

(B).
Using the equations (3.5) and (3.6), we can rewrite the matrix (3.4) as


 0 −Yh,k

(
K

(B)
k

)−H (
Hk

(B)
)H

V H
k+1V

(k+1)

(U (h+1))HUh+1Hh
(A)
(
K

(A)
h

)−1
Yh,k 0


 , (3.7)

exploiting the orthogonality of the columns of Uk+1 and Vk+1, the matrix (3.7) is equal to


 0 Yh,k

(
K

(B)
k

)−H (
Hk

(B)
)H

EH
k+1

Eh+1Hh
(A)
(
K

(A)
h

)−1
Yh,k 0


 ,

where Eh+1 ∈ C
b(h+1)×b and Ek+1C

b(k+1)×b consist of the b × b identity in the last block row and zero
elsewhere. Therefore, the norm of 3.7 can be recovered by the norms of the block vectors

Eh+1Hh
(A)
(
K

(A)
h

)−1
Yh,k and Yh,k

(
K

(B)
k

)−H (
Hk

(B)
)H

EH
k+1.

In particular the computation of the norm of the residual does not involve the matrices A and B, hence it
can be performed with a computational cost that does not depend on n and m.
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3.2 Residual and pole selection

This section aims to prove the following theorem1:

Theorem 3.2.1. Let A ∈ C
n×n, B ∈ C

m×m, be matrices with disjoint spectra and let C1 ∈ C
n×b and

C2 ∈ C
m×b. Let U ∈ C

n×bh and V ∈ C
m×bk be orthonormal block basis for Qh(A,C1, ξ

(A)
h ) and

Qk(B
H , C2, ξ

(B)
k ), respectively, and let Ah = UHAU , Bk = V HBV . Assuming that Ah and Bk have

disjoint spectra, let Xh,k = UYh,kV
H where Yh,k is the solution of the Sylvester equation

AhYh,k − Yh,kBk = C
(h)
1 (C

(k)
2 )H ,

with C
(h)
1 = UHC1, and C

(k)
2 = V HC2. Let ÇA(z) ∈ Ph(Cb×b) and ÇB(z) ∈ Pk(Cb×b), be monic block

characteristic polynomials of Ah with respect to C
(h)
1 and Bk with respect to C

(k)
2 , respectively. Deûne

RG
A(z) =

ÇA(z)

qA(z)
and RG

B(z) =
ÇB(z)

qB(z)
,

where
qA(z) =

∏

À∈ξ
(A)
h

,À ̸=∞

(z − À) and qB(z) =
∏

À∈ξ
(B)
k

,À ̸=∞

(z − À).

Then the residual matrix can be written as Rh,k = R
(1)
h,k + R

(2)
h,k + R

(3)
h,k , where

R
(1)
h,k = U(RG

B
H
(Ah) ◦−1 C

(h)
1 )(RG

B(B
H) ◦ C2)

H ,

R
(2)
h,k =

(
RG

A(A) ◦ C1

)
(RG

A
H
(Bk) ◦−1 C

(k)
2 )HV H ,

R
(3)
h,k =

(
RG

A(A) ◦ C1

(
RG

A(∞)
)−1
)(

RG
B(B

H) ◦ C2

(
RG

B(∞)
)−1
)H

,

with
RG

A(∞) = lim
|¼|→∞

RG
A(¼) and RG

B(∞) = lim
|¼|→∞

RG
B(¼).

Moreover

∥Rh,k∥2F =
∥∥∥R(1)h,k

∥∥∥
2

F
+
∥∥∥R(2)h,k

∥∥∥
2

F
+
∥∥∥R(3)h,k

∥∥∥
2

F
. (3.8)

Remark 3.2.1. If one of the poles of ξ
(A)
h or ξ

(B)
k is chosen equal to inûnity, then R

(3)
h,k = 0.

The residualmatrix representation described in Theorem3.2.1 allows us to develop adaptive techniques
for selecting poles in solving Sylvester equations, as extensively discussed in Section 3.2.2.

3.2.1 Proof of Theorem 3.2.1

Theorem 3.2.1 and the proof we provide in this section, are generalizations of the ones provided by Beck-
ermann in [9] for the case of classical rational Krylov methods.

The next two lemmas are trivial consequences of Proposition 2.3.1 and Corollary 2.3.2.

Lemma 3.2.2. Employing the notation of Theorem 3.2.1, for any RA(z) ∈ Ph(Cb×b)/qA(z) and RB ∈
Pk(Cb×b)/qB(z), we have

UUHRA(A) ◦ C1 = URA(Ah) ◦ C(h)
1 , and V V HRB(B

H) ◦ C2 = V RB(Bk) ◦ C(k)
2 ,

in particular, RA(z) ∈ Ph−1(C
b×b)/qA(z), and RB ∈ Pk−1(C

b×b)/qB(z), imply

R(A) ◦ C1 = URA(Ah) ◦ C(h)
1 , and RB(B

H) ◦ C2 = V RB(Bk) ◦ C(k)
2

respectively.
1For simplicity of readability, we remove the subscript from the orthonormal basis notation of Krylov subspaces.
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Lemma 3.2.3. Let ÇA(z) ∈ Ph(Cb×b) and ÇB(z) ∈ Pk(Cb×b) be monic block characteristic polynomial

for Ah with respect to C
(h)
1 and Bk with respect to C

(k)
2 , respectively. Let RG

A(z) = ÇA(z)/qA(z) and
RG

B(z) = ÇB(z)/qB(z). It holds

UHRG
A(A) ◦ C1 = 0 and V HRG

B(B) ◦ C2 = 0.

Moreover RG
A(A) ◦ C1 minimizes ∥R(A) ◦ C1∥F over all the R(z) ∈ Ph(Cb×b)/qA(z) such that R(z) =

P (z)/qA(z) where P (z) is a monic matrix polynomial of degree h. Analogously RG
B(B) ◦ C2 minimizes

∥R(B) ◦ C2∥F over all the R(z) ∈ Pk(Cb×b)/qB(z) with monic numerator of degree k.

Before proceeding with the proof of the theorem, we introduce two additional lemmas that are crucial
for its establishment.

Lemma 3.2.4. Let RA(z) ∈ Ph(Cb×b)/qA(z). For any z such that det(RA(z)) ̸= 0 it holds

RA(zIn) ◦−1 [RA(zIn) ◦ Z −RA(A) ◦ Z] = URA(zIbh) ◦−1
[
RA(zIbh) ◦ Z̃ −RA(Ah) ◦ Z̃

]
, (3.9)

where Z := (zIn −A)−1C1 and Z̃ := (zIbh −Ah)
−1C

(h)
1 .

Similarly, for any RB(z) ∈ Pk(Cb×b)/qB(z) and for each z such that det(RB(z)) ̸= 0

RB(zIm) ◦−1
[
RB(zIm) ◦ Y −RB(B

H) ◦ Y
]
= V RB(zIbk) ◦−1

[
RB(zIbk) ◦ Ỹ −RB(Bk) ◦ Ỹ

]
,

where Y := (zIm −BH)−1C2 and Ỹ := (zIbk −Bk)
−1C

(k)
2 .

Proof. We only derive the ûrst equality, the second follows by an analogous argument. Note that the op-
erator RA(zIn)◦−1 is well-deûned since det(RA(z)) ̸= 0. By Lemma 2.1.4 equation (3.9) is equivalent
to

[RA(zIn) ◦ Z −RA(A) ◦ Z](R(z))−1 = U
[
RA(zIbh) ◦ Z̃ −RA(Ah) ◦ Z̃

]
(R(z))−1,

hence, multiplying both sides on the right by R(z), it is sufûcient to prove

RA(zIn) ◦ Z −RA(A) ◦ Z = U
[
RA(zIbh) ◦ Z̃ −RA(Ah) ◦ Z̃

]
.

SinceA and (zIn−A)−1 commute and analogously for (zIbh−Ah)
−1 andAh, by Lemma 2.1.3 the claim

can be equivalently restated as follows:

(zIn −A)−1 [RA(zIn) ◦ C1 −RA(A) ◦ C1]

=

U(zIbh −Ah)
−1
[
RA(zIbh) ◦ C(h)

1 −RA(Ah) ◦ C(h)
1

]
.

(3.10)

To prove it, we introduce the auxiliary function Gz(x) := RA(z) − RA(x). We consider Gz(x) as a
function in the variable x, and assume that z is ûxed; in particularGz(x) = Pz(x)/qA(x), where Pz(x) is
a matrix polynomial of degree h in the variable x. Note thatGz(A) ◦C1 = RA(zIn) ◦C1−RA(A) ◦C1;
indeed, letting Pz(x) =

∑h
i=0∆ix

i ∈ Ph(Cb×b) and qA(x) =
∑h

i=0 qix
i, from the deûnition of Gz(x)

we have that

RA(x) = RA(z)−Gz(x) = (qA(x)RA(z)− Pz(x))/qA(x) =

[
h∑

i=0

(qiRA(z)−∆i)x
i

]
/qA(x).

Hence,

RA(A) ◦ C1 = qA(A)−1

[
h∑

i=0

AiC1(qiRA(z)−∆i)

]

= qA(A)
−1

[
RA(z)

h∑

i=0

qiA
iC1

]
− qA(A)−1

[
h∑

i=0

AiC1∆i

]

= RA(z)qA(A)−1qA(A)C1 −Gz(A) ◦ C1 = RA(zIn) ◦ C1 −Gz(A) ◦ C1.
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Analogously, it can be proven that Gz(Ah) ◦ C(h)
1 = RA(zIbh) ◦ C(h)

1 − RA(Ah) ◦ C(h)
1 . Using the

equivalences introduced before, we may rewrite (3.10) as

(zIn −A)−1Gz(A) ◦ C1 = U(zIbh −Ah)
−1Gz(Ah) ◦ C(h)

1 . (3.11)

By deûnition, evaluatingGz(x) at x = zIb yieldsGz(zIb) = RA(z)−RA(zIb) = 0. This implies that the
linear matrix polynomial (xIb − zIb) is a left solvent for Pz(x), and we may write

G̃z(x) := (z − x)−1Gz(x) = −(xIb − zIb)
−1Gz(x) ∈ Ph−1(C

b×b)/qA(x).

Thanks to the exactness from Lemma 3.2.2 we have G̃z(A)◦C1 = UG̃z(Ah)◦C(h)
1 , that by Lemma 2.1.2

is equal to (3.11), concluding the proof.

Lemma 3.2.5. Let ÇA(z) ∈ Ph(Cb×b) and ÇB(z) ∈ Pk(Cb×b) be monic block characteristic polynomials

for Ah with respect to C
(h)
1 and Bk with respect to C

(k)
2 , respectively. Let RG

A(z) = ÇA(z)/qA(z) and
RG

B(z) = ÇB(z)/qB(z). We have that

(zIn −A)−1C1 − U(zIbh −Ah)
−1C

(h)
1 = RG

A(zIn) ◦−1 RG
A(A) ◦ (zIn −A)−1C1,

and

(zIm −BH)−1C2 − U(zIbk −Bk)
−1C

(k)
2 = RG

B(zIm) ◦−1 RG
B(B

H) ◦ (zIm −BH)−1C2,

Proof. It follows from Lemma 3.2.4 observing that RG
A(Ah)C

(h)
1 = 0 and RG

B(Bk)C
(k)
2 = 0.

We are now ready to give the proof of Theorem 3.2.1:

Proof of Theorem 3.2.1. To simplify the notation we deûneZ = (zIn−A)−1C1, Z̃ = (zIbh−Ah)
−1C

(h)
1 ,

Y = (z̄Im−BH)−1C2 and Ỹ = (z̄Ibk −Bk)
−1C

(k)
2 . According to Equation (3.2), lettingX the solution

of the Sylvester equation, we have

X −Xh,k =
1

2Ãi

∫

µA

ZY H − UZ̃Ỹ HV Hdz,

where µA is a compact contour with positive orientation that encloses the eigenvalues of A and Ah, but
not the eigenvalues of B and Bk. Using Lemma 3.2.5 we have

X −Xh,k =
1

2Ãi

∫

µA

(
(Z − UZ̃)Y H + Z(Y − V Ỹ )H − (Z − UZ̃)(Y − V Ỹ )H

)
dz (3.12)

=
1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
Y Hdz (3.13)

+
1

2Ãi

∫

µA

Z
(
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ Y
)H

dz (3.14)

− 1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

) (
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ Y
)H

dz. (3.15)

The residual matrix can be written as Rh,k = A(X −Xh,k) − (X −Xh,k)B that is the sum of the three
differences of integrals AS − SB, where S is substituted by (3.13), (3.14) and (3.15). In the following, we
study each difference of integrals separately. Concerning (3.13), by Lemma 2.1.3 we have

1

2Ãi
A

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
Y Hdz − 1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
Y HBdz

(3.16)

=
1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦AZ

)
Y Hdz − 1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
(BHY )Hdz.

(3.17)
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Let now µB be a positively oriented compact contour that encloses the eigenvalues of B and Bk , but not
the eigenvalues of A and Ah. Since the integrand is O(z−2)z→∞, we can replace µA with µB just by
changing the sign of the integral. Noting that

AZ = (A− zIn)Z + zInZ = −C1 + zZ and analogously, BHY = −C2 + z̄Y, (3.18)

the sum of integrals in (3.17) can be rewritten as

− 1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

)
Y Hdz +

1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
CH
2 dz.

Then, changing µA with µB we obtain

1

2Ãi

∫

µB

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

)
Y Hdz, (3.19)

since the integral
1

2Ãi

∫

µB

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

)
CH
2 dz,

vanishes for the residual theorem.
The same technique can be used to write the second difference of integrals as

1

2Ãi

∫

µA

Z
(
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ C2

)H
dz. (3.20)

Using again the relations in (3.18), the third difference of integrals can be written as I3,1 + I3,2, where

I3,1 =
1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

) (
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ Y
)H

dz,

and

I3,2 = −
1

2Ãi

∫

µA

(
RG

A(zIn) ◦−1 RG
A(A) ◦ Z

) (
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ C2

)H
dz. (3.21)

For a generic choice of poles, it is only guaranteed that the integrand of I3,1 isO(z−1)z→∞ hence, changing
µA with µB , we can rewrite I3,1 as

(
RG

A(∞ · In) ◦−1 RG
A(A) ◦ C1

) (
RG

B(∞ · Im) ◦−1 RG
B(B

H) ◦ C2

)H
(3.22)

− 1

2Ãi

∫

µB

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

) (
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ Y
)H

dz. (3.23)

Summing (3.19), (3.20), (3.21), (3.22) and (3.23), we obtain

Rh,k =
(
RG

A(∞ · In) ◦−1 RG
A(A) ◦ C1

) (
RG

B(∞ · Im) ◦−1 RG
B(B

H) ◦ C2

)H

+
1

2Ãi

∫

µB

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

) ((
Im −RG

B(z̄Im) ◦−1 RG
B(B

H)
)
◦ Y
)H

dz

+
1

2Ãi

∫

µA

((
In −RG

A(zIn) ◦−1 RG
A(A)

)
◦ Z
) (

RG
B(z̄Im) ◦−1 RG

B(B
H) ◦ C2

)H
dz.

Applying Lemma 3.2.5, we have

Rh,k =
(
RG

A(∞ · In) ◦−1 RG
A(A) ◦ C1

) (
RG

B(∞ · Im) ◦−1 RG
B(B

H) ◦ C2

)H

+
1

2Ãi

∫

µB

(
RG

A(zIn) ◦−1 RG
A(A) ◦ C1

)
Ỹ HV Hdz

+
1

2Ãi

∫

µA

UZ̃
(
RG

B(z̄Im) ◦−1 RG
B(B

H) ◦ C2

)H
dz,
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and thanks to Lemma 2.1.4 the above term can be rewritten as

Rh,k =
(
RG

A(A) ◦ C1

(
RG

A(∞)
)−1
)(

RG
B(B

H) ◦ C2

(
RG

B(∞)
)−1
)H

+
1

2Ãi

∫

µB

(
RG

A(A) ◦ C1

) (
RG

A
H
(z̄Ibk) ◦−1 Ỹ

)H
V Hdz

+
1

2Ãi

∫

µA

U
(
RG

B
H
(zIbh) ◦−1 Z̃

) (
RG

B(B
H) ◦ C2

)H
dz.

Finally, by Theorem 2.1.5 we have

Rh,k =
(
RG

A(A) ◦ C1

(
RG

A(∞)
)−1
)(

RG
B(B

H) ◦ C2

(
RG

B(∞)
)−1
)H

+
(
RG

A(A) ◦ C1

) (
RG

A
H
(Bk) ◦−1 C

(k)
2

)H
V H

+ U
(
RG

B
H
(Ah) ◦−1 C

(h)
1

) (
RG

B(B
H) ◦ C2

)H
.

To prove (3.8) consider the orthogonal projectors ΠA = UUH and ΠB = V V H . Applying Lemma 3.2.3
we obtain the sought identities

ΠARh,k(Ibk −ΠB) = R
(1)
h,k, (Ibh −ΠA)Rh,kΠB = R

(2)
h,k

and (Ibh −ΠA)Rh,k(Ibk −ΠB) = R
(3)
h,k.

3.2.2 Pole selection

The results of Theorem 3.2.1 can be used to adaptively ûnd good poles for the block rational Arnoldi al-
gorithm (Algorithm 1) for the solution of Sylvester equations. The concept of employing adaptive pole
selection strategies has already been developed in the literature, see for instance cite [41, 42].

During this discussion, we assume that one of the poles in ξ
(A)
k or ξh(B) is chosen to be equal to

inûnity. Therefore, by Remark 3.2.1, the term R
(3)
h,k in the formulation of the residual is equal to zero. With

this assumption, the norm of the residual is monitored by the norms of

R
(1)
h,k = U(RG

B
H
(Ah) ◦−1 C

(h)
1 )(RG

B(B
H) ◦ C2)

H ,

and
R
(2)
h,k =

(
RG

A(A) ◦ C1

)
(RG

A
H
(Bk) ◦−1 C

(k)
2 )HV H .

Let us start by considering the norm of R
(1)
h,k. We have that

∥∥∥R(1)h,k

∥∥∥
F
f
∥∥∥RG

B
H
(Ah) ◦−1 C

(h)
1

∥∥∥
F
·
∥∥RG

B(B
H) ◦ C2

∥∥
F
.

By Lemma 3.2.3, the vectorRG
B(B

H) ◦C2 minimizes
∥∥R(BH) ◦ C2

∥∥
F

over allR(z) ∈ Ph(Cb×b)/qB(z)

with monic numerator, for this reason, we choose the new pole by minimizing the norm of RG
B
H
(Ah) ◦−1

C
(h)
1 .

Let ÇB(z) =
∑k

i=0 Γiz
i be monic block characteristic polynomial of Bk. By the deûnition of the

operator ◦−1, we have

∥∥∥RG
B
H
(Ah) ◦−1 C

(h)
1

∥∥∥
F
=

∥∥∥∥∥∥
(Ib ¹ q̄B(Ah))

(
k∑

i=0

Γ̄i ¹Ai
h

)−1

vec(C
(h)
1 )

∥∥∥∥∥∥
2

,
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where q̄B(z) is the conjugate of qB(z) and Γ̄i denotes the conjugate of the matrix Γi.
Assuming for simplicity thatAh is diagonalizable, i.e.,Ah = ShDhSh

−1 withDh diagonal matrix, we
have the following bound:

∥∥∥∥∥∥
(Ib ¹ q̄B(Ah))

(
k∑

i=0

Γ̄i ¹Ai
h

)−1

vec(C
(h)
1 )

∥∥∥∥∥∥
2

f»(Sh) ∥C1∥F

∥∥∥∥∥∥
(Ib ¹ q̄B(Dh))

(
k∑

i=0

Γ̄i ¹Di
h

)−1
∥∥∥∥∥∥
2

,

where »(Sh) denotes the condition number of Sh. The two norm of (Ib ¹ q̄B(Dh))(
∑k

i=0 Γ̄i ¹Di
h)

−1 is
equal to the two norm of the matrix

(
q̄B(Dh)¹ Ib

)
(

k∑

i=0

Di
h ¹ Γ̄i

)−1

=



R̄−1

B (¼1)
. . .

R̄−1
B (¼h)


 ,

where R̄B(z) = Ç̄B(z)/q̄B(z) = (
∑h

i=0 z
iΓ̄i)/q̄B(z) and ¼1, . . . , ¼h are the eigenvalues of Ah. In

particular ∥∥∥∥∥∥
(Ib ¹ q̄B(Dh))

(
k∑

i=0

Γ̄i ¹Di
h

)−1
∥∥∥∥∥∥
2

= max
i=1,...,h

∥∥R̄−1
B (¼i)

∥∥
2
.

This shows that keeping the function
∥∥R̄−1

B (z)
∥∥
2
small over the eigenvalues ofAh guarantees a small

norm for R
(1)
h,k. In order to obtain a condition independent of h, we can ask for

∥∥R̄−1
B (z)

∥∥
2
to be small on

the ûeld of values of A, which encloses the spectra of all Ah.

In the following, we describe practical methods to adaptively choose poles for ξ
(B)
k . The same tech-

niques can be used to provide poles for ξ
(A)
h .

Let us assume to know thematrixBk−1 obtained afterk−1 steps of the block rational Arnoldi algorithm

(Algorithm 1) with poles ξ
(B)
k−1 and that we want to choose a new pole to perform the next step of the

algorithm. As we saw before the norm of R
(1)
h,k after the kth step can be monitored by

∥∥R̄−1
B (¼)

∥∥
2
= |¼− À̄k| ·

∥∥Ç̄k(¼)
−1q̄k−1(¼)

∥∥
2
, (3.24)

for ¼ ∈W(A), where qk−1(z) =
∏

À∈ξ
(B)
k−1,À ̸=∞

(z − À) and Çk(z) is a monic block characteristic polyno-

mial of Bk. In practice, we assume that the monic block characteristic polynomial of Bk−1, say Çk−1(z),
well approximates Çk(z) over W(A), hence we approximate (3.24), by

|¼− À̄k| ·
∥∥Ç̄k−1(¼)

−1q̄k−1(¼)
∥∥
2
. (3.25)

To keep (3.25) small over W(A) we can choose Àk as the conjugate of

arg max
¼∈W(A)

∥∥Ç̄k(¼)
−1q̄k−1(¼)

∥∥
2
.

Remark 3.2.2. By constructing Çk as outlined in Theorem 2.1.7 and under the assumption that the eigenval-
ues of Bk are not within W(A), the function we are maximizing is analytic on W(A). Therefore, if W(A)
has a nonempty interior, for the maximum modulus principle it is sufûcient to maximize the function over its
boundary.

Remark 3.2.3. In the case of rational Krylov, i.e., b = 1 for the solution of Lyapunov equations, that is
B = −AH , this result reduces to the choice of poles developed in [41] for the case of A Hermitian and
in [42] for general A.
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The numerical computation of Àk using the deûnition of the block characteristic polynomial given by
Theorem 2.1.7 is often inaccurate due to the large condition number of the matrices ∆i. Overcoming this
problem requires developing an alternative method to compute the norm of the evaluation of block char-
acteristic polynomials. However, we leave this task for future research as it extends beyond the scope of
this thesis.

We now present two methods to monitor the Euclidean norm of Ç̄k−1(¼)
−1q̄k−1(¼) without perform-

ing an explicit computation. It is worth noting that this norm is equivalent to 1/Ãmin(¼), where Ãmin(¼)
represents the minimum singular value of Ç̄k−1(¼)/q̄k−1(¼).

The ûrst method is to approximate the maximizer of 1/Ãmin(¼), for ¼ ∈W(A), with the maximizer of
the inverse of | det(Ç̄k−1(¼)/q̄k−1(¼))| since the absolute value of the determinant is the product of all
the singular values. From Theorem 2.1.7 it can be noticed that

det(Ç̄k−1(¼)) =
∏

µ∈Λ(Bk−1)

(¼− µ̄),

hence the choice of the new pole reduces to the conjugate of

arg max
¼∈W(A)

∏
À∈ξ

(B)
k−1,À ̸=∞

|¼− À̄|b
∏

µ∈Λ(Bk−1)
|¼− µ̄| . (3.26)

We refer to this pole selection strategy as Adaptive Determinant Minimizaztion (ADM).

Remark 3.2.4. In the context of solving Lyapunov equations, this selection of poles has previously been
proposed in [42] as a potential extension of techniques developed for non-block rational Krylovmethods. This
ûnding not only provides theoretical justiûcation for such a generalization but also extends its applicability
to the solution of Sylvester equations.

To introduce the second method assume Bk−1 diagonalizable. In such case, if we let

Çk−1(z) =

k−1∏

i=1

(zIb − Si),

as described in Theorem 2.1.7, also the matrices Si are diagonalizable, hence

∥∥Ç̄k−1(¼)
−1q̄k−1(¼)

∥∥
2
f |q̄k−1(¼)|

k−1∏

i=1

∥∥(¼Ib − S̄i)
−1
∥∥
2

f |q̄k−1(¼)|
k−1∏

i=1

»(Xi)

|Λmin(¼− S̄i)|
,

(3.27)

where Xi is the matrix of eigenvectors of S̄i and Λmin(¼− S̄i) denotes the smallest modulus eigenvalue
of ¼ − S̄i for each i. From Theorem 2.1.7 we see that the matrices Si can be recovered by an arbitrary
eigendecomposition of the matrix Bk−1, in particular for a ûxed ¼ we can construct Si using an ordered
eigendecomposition of Bk−1, where the eigenvalues {µi} of Bk−1 are ordered such that |¼̄ − µ1| f
|¼̄−µ2| f · · · f |¼̄−µk−1|. With this construction the eigenvalues ofSi areµ(i−1)b+1, µ(i−1)b+2, . . . , µib

and (3.27) can be rewritten as

∥∥Ç̄B(¼)
−1q̄k−1(¼)

∥∥
2
f
(

k−1∏

i=1

»(Xi)

)
|q̄B(¼)|

(
k−1∏

i=1

(|¼− µ̄(i−1)b+1|)−1

)
.

This suggests a new method to choose the next shift: Àk can be taken as the conjugate of

arg max
¼∈W(A)


 ∏

À∈ξB ,À ̸=∞

|¼− À̄|
k−1∏

i=1

(|¼− µ̄(i−1)b+1|)−1


 , (3.28)
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where µi are the eigenvalues of Bk−1 ordered as described before.
We refer to this pole selection strategy as subsampled Adaptive Determinant Minimizaztion (sADM).

Remark 3.2.5. The main advantage of this choice of poles with respect to the previous one is that we have
to maximize a rational function with a much smaller degree.

3.3 Numerical experiments

In this section we provide some numerical experiment to show the convergence of the block rational Arnoldi
algorithm (Algorithm 1) using poles determined in Section 3.2.2: throughout the section, the algorithms that
chooses poles accordingly to (3.26) and (3.28) are denoted by ADM and sADM, respectively. The pole À0 is
always chosen equal to inûnity, and the techniques developed in Section 2.2.1 are employed to guarantee
the last pole equal to inûnity at each step. This allows computing the residual as described in Section 3.1
avoiding extra computational costs. The implementation of block rational Arnoldi algorithms is based on
the rktoolbox for MATLAB, developed in [19].

The numerical simulations have been run on a Intel(R) Core(TM) i5-8250U CPU processor running
Ubuntu and MATLAB R2022b.

The experiments only involve real matrices hence, if a nonreal pole is employed, the subsequent is
chosen as its conjugate, this allows us to avoid complex matrices. We refer the reader to [109] for a more
complete discussion.

In the ûrst experiment, we compute the approximate solution of the Poisson equation
{
−∆u = f in Ω

u ≡ 0 on ∂Ω
, Ω = [0, 1]2.

We discretize the domain with a uniformly spaced grid with n = 4096 points in each direction, and the
operator ∆ by ûnite differences, which yields the Lyapunov equation

AX +XA = F, with A =
1

h2




−2 1

1 −2 . . .
. . .

. . . 1
1 −2




where h = 1
n+1 is the distance between the grid points and F is the matrix obtained evaluating f on the

grid points. If the function f is a smooth bivariate function, the matrix F is numerically low-rank, that is
it can be approximated by a low-rank matrix C1C

H
2 where C1, C2 ∈ C

n×b for an appropriate b j n, see
e.g. [65, Section 2.7].

Figure 3.1 shows the behavior of the normalized residual Rk,k/
∥∥C1C

H
2

∥∥
F
, for the solution of the Pois-

son equation with f(x, y) = 1/(1+x+y)with the two proposed choices of poles. In this case, the matrix
F has numerical rank 8. We also compared the results with the extended Krylov proposed in [120], which is
a block rational Krylov method that alternates a pole equal to zero and a pole equal to inûnity. We remark
that the iterations of the extended Krylov method are usually faster than a generic block rational Krylov
method since in the iterations associated with poles equal to inûnity the linear systems are replaced by
matrix products and the iterations associated with poles equal to zero are improved using a factorization
of the matrix. Table 3.1 contains times and number of iterations required to reach a relative norm of the
residual less than 10−8 for the solution of discretized Poisson equation with block rational Krylov methods
with different choices of poles.

The second experiment is the computation of an approximate solution for the convection-diffusion
partial differential equation

{
−ϵ∆u+w · ∇u = f in Ω

u ≡ 0 on ∂Ω
, Ω = [0, 1]2,
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Figure 3.1: Behavior of the residual produced by solving the Poisson equation with block rational Krylov
methods, with different choices of poles.

poles iter residual time (s)
ADM 21 8.82e− 09 0.92
sADM 20 9.19e− 09 1.10
ext 53 9.30e− 09 5.91

Table 3.1: Iterations and time needed to reach a relative norm of the residual less than 10−8 for the solution
of discretized Poisson equation with block rational Krylov methods with different choices of poles.

where ϵ ∈ R+ is the viscosity parameter and w is the convection vector. Assuming w = (Φ(x),Ψ(y)),
and discretizing the domain with a uniformly spaced grid as before, we obtain the Sylvester equation

(ϵA+ΦB)X +X(ϵA+BHΨ) = F

where A and F are deûned as in the ûrst experiment,

Φ =




Φ(h)
Φ(2h)

. . .

Φ(nh)


 , Ψ =




Ψ(h)
Ψ(2h)

. . .

Ψ(nh)




and

B =
1

2h




0 1

−1 . . .
. . .

. . .
. . . 1
−1 0




is the discretization by centered ûnite differences of the ûrst-order derivative in each direction.
Figure 3.2 shows the behavior of the normalized residual for the solution of the convection-diffusion

equation with ϵ = 0.0083, f(x, y) = 1/(1+x+y),w = (1+ (x+1)2

4 , 12y) with the two proposed choices
of poles and the extended Krylov method. Table 3.2 contains times and number of iterations required to
reach a relative norm of the residual less than 10−8 for the solution of discretized confection-diffusion
equation with block rational Krylov methods with different choices of poles.
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Figure 3.2: Behavior of the residual produced by solving the convection-diffusion equation with block ra-
tional Krylov methods, with different choices of poles.

poles iter residual time (s)
ADM 32 2.18e− 09 2.12
sADM 31 9.38e− 09 2.05
ext 54 7.55e− 09 7.42

Table 3.2: Iterations and time needed to reach a relative norm of the residual less than 10−8 for the solution
of discretized convection-diffusion equation with block rational Krylov methods with different choices of
poles.
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Chapter 4

Tensor Sylvester equations

The material presented in this chapter is the result of the work described in [24].
We generalize the techniques developed in Chapter 3 to approximate the solution of the tensor Sylvester

equation
X ×1 A1 + X ×2 A2 + · · ·+ X ×d Ad = C, (4.1)

where ×i denotes the ith mode product for tensors [81] and Ai ∈ C
ni×ni are square matrices for each

i = 1, . . . , d, the unknown X and the right-hand side C are d-dimensional tensors of size n1 × · · · × nd

and C is low rank in Tucker or tensor train format. Tensor Sylvester equations arise, for instance, in the
numerical solution of discretized d-dimensional PDEs on tensorized domains [52, 63, 123]. The problem is
equivalent to solving the linear system

Ax = c (4.2)

where

x =




X (1,1,...,1)
X (2,1,...,1)

...
X (n1,...,nd−1,nd)


 ∈ C

n1···nd and c =




C(1,1,...,1)
C(2,1,...,1)

...
C(n1,...,nd−1,nd)


 ∈ C

n1···nd

are vectorizations of X and C respectively, and

A =
d∑

i=1

Ind
¹ · · · ¹ Ini+1 ¹Ai ¹ Ini−1 ¹ · · · ¹ In1 . (4.3)

However, for large d, employing standard computational methods to solve the linear system becomes un-
feasible due to the exponential growth in the size of the involved matrix. To address this issue, several
algorithms have been developed for solving linear systems involving tensors [2, 4, 6, 36, 37, 80]. In partic-
ular, Kressner and Tobler [83] studied the solution of tensor Sylvester equations with a right-hand side of
rank one by projecting onto tensorized polynomial Krylov subspaces. This work extends those techniques
to equations with a more general low-rank right-hand side, employing rational Krylov subspaces, which
provide more üexibility in the choice of projection subspaces through pole selection.

4.1 Low rank tensors

In this section we brieüy recall basic concepts about tensors, focusing on the representation of low-rank
tensors in Tucker and tensor train formats. A broader treatment of the topic can be found in [65, 81, 101].

The simplest way to deûne the rank of a d-dimensional tensor X ∈ C
n1×n2×···×nd , is the minimum

number of “rank one” tensors whose sum equals to X . Denoting by x a vectorization of X , the CP rank is
given by the smallest integer k such that

x =
k∑

i=1

ui,1 ¹ ui,2 ¹ · · · ¹ ui,d, with ui,j ∈ C
nj for each i, j,

47
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where¹ denotes the Kronecker product. The above representation of a tensor is called Canonical Polyadic
decomposition (usually denoted by CP). The main issue of this decomposition is that determining the CP
rank of a given tensor is a NP-hard problem [72]. To overcome this issue, several alternative deûnitions
of rank have been introduced. Before introducing them, we need to discuss a couple of basic concepts
regarding tensors.

Let X ∈ C
n1×···×nd . For each i = 1, . . . , d, the mode-i ûbers of X are the column vectors of ni

components that contain all the entries ofX obtained by ûxing all the indices except for the ith. Moreover,
the mode-i unfolding of X is the matrix of size ni × (n1 · · ·ni−1 · ni+1 · · ·nd) containing all the mode-i
ûbers of X in its columns. For a broader discussion, see [81, Section 2.4].

Deûnition 4.1.1. The multilinear rank of a tensor X is deûned as the vector k = (k1, . . . , kd), where for
each i = 1, . . . , d, ki is the rank of the mode-i unfolding X(i).

Similarly to how the CP rank is related to the CP decomposition, the multilinear rank can also be as-
sociated with a tensor decomposition introduced by Tucker in [126], which decomposes a tensor X ∈
C
n1×n2×···×nd into a core tensor G ∈ C

k1×k2×···×kd multiplied by tall and skinny matrices Ui ∈ C
ni×ki

with orthonormal columns along each mode i, that is,

X = G ×1 U1 ×2 U2 ×3 · · · ×d Ud. (4.4)

The generators of a Tucker decomposition are usually denoted by JG;U1, . . . , UdK.

Remark 4.1.1. As described in [81, Section 4], the mode-i unfolding of the tensor (4.4) can be written as

X(i) = UiG(i)(Ud ¹ · · · ¹ Ui+1 ¹ Ui−1 ¹ · · · ¹ U1). (4.5)

Note that if ki j ni, for each i, the Tucker decomposition allows us to signiûcantly compress the data.
For a given tensor, an approximant in Tucker format can be computed by repeatedly truncating the mode-i
unfoldings. This procedure is usually known as multilinear SVD, or high-order SVD (HOSVD), see [35].

We remark that the memory needed to store a tensor in Tucker format isO(k1 · · · kd + k1n1 + · · ·+
kdnd), which is a great beneût with respect to storing the full tensor. However, the needed storage is ex-
ponential in the dimension of the tensor, so this representation becomes unfeasible if d is too large. To
overcome this problem other low-rank representations have been developed, such as tensor trains intro-
duced by Oseledets in [101].

Given a tensorX ∈ C
n1×···×nd , a tensor train decomposition (also called TT decomposition) consists

in a sequence of tensors G1 ∈ C
n1×r1 ,G2 ∈ C

r1×n2×r2 , . . . ,Gd−1 ∈ C
rd−2×nd−1×rd−1 ,Gd ∈ C

rd−1×nd ,
called carriages, such that

X(i1,...,id) =
∑

s1,...,sd−1

G1(i1,s1)G2(s1,i2,s2) · · · Gd−1(sd−2,id−1,sd−1)
Gd(sd−1, id).

for each (i1, . . . , id) f (n1, . . . , nd). The numbers r1, . . . , rd−1 are called ranks of the decomposition.
For each i = 1, . . . , d− 1, let X{i} ∈ C

n1···ni×ni+1···nd be the matrix obtained by grouping the ûrst i
indices of a tensor X as row indices, and the remaining ones as column indices. The TT rank of a tensor
is deûned as follows.

Deûnition 4.1.2. Given a tensor X ∈ C
n1×···×nd , the vector (r1, . . . , rd−1), where ri is the rank of X{i},

is called tensor train rank (sometimes denoted by TT rank) of X .

The deûnition of TT rank and TT decomposition are closely related, in particular for each tensor there
exists a tensor train decomposition with ranks component-wise smaller than or equal to its tensor train
rank (see [101, Theorem 2.1]). In practice, for any ϵ > 0, every tensor Y can be approximated by a tensor
X in TT format with relative accuracy ϵ, i.e.,

∥X − Y∥F f ϵ ∥Y∥F ,
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employing the TT-SVD algorithm. We refer to [101] for further details.
We conclude this section deriving a low rank representation for X(i), where X is a tensor in TT format

with carriages {G1, . . . ,Gd}. First of all, we notice that any entry of X can be written as

X(i1,...,id) = a(i1,...,ij−1)Gj(ij)b(ij+1,...,id),

or equivalently

X(i1,...,id) =
(
bT
(ij+1,...,id)

¹ a(i1,...,ij−1)

)
vec(Gj(ij)), (4.6)

where a(i1,...,ij−1) and b(ij+1,...,id), are a row and a column vector, respectively, deûned as

(a(i1,...,ij−1))h =

{∑
s1,...,sj−2

G1(i1,s1)G2(s1,i2,s2) · · · Gj−1(sj−2,ij−1,h)
for j > 1,

1 otherwise,

(b(ij+1,...,id))k =

{∑
sj+1,...,sd−1

Gj+1(k,ij+1,sj+1)
· · · Gd−1(sd−2,id−1,sd−1)

Gd(sd−1, id) for j < d,

1 otherwise

and Gj(ij) is a matrix deûned as

Gj(ij)h,k =





G1(i1, k) if j = 1,

Gd(h, id) if j = d,

Gj(h, ij , k) otherwise.

Noting that 


vec(Gj(1))
T

vec(Gj(2))
T

...
vec(Gj(nj))

T


 =

{
G1 if j = 1,

(Gj)(2) otherwise,

from (4.6) we have

X(j) =

{
G1c if j = 1,

(Gj)(2)c otherwise,
(4.7)

where c is the block row that has as cloumns the vectors b(ij+1,...,id) ¹ aT(i1,...,ij−1)
, ordered lexicographi-

cally with respect to (i1, · · · , id).

4.2 Tensorized Krylov methods

Employed by Kressner and Tobler in [83] for solving the tensor Sylvester equation (4.1) with C of CP rank
one, i.e.,

vec(C) = c1 ¹ c2 ¹ · · · ¹ cd, with ci ∈ C
ni ,

tensorized Krylov subspaces are deûned as

K¹
k
({Ai}di=1, {ci}di=1) = span(Kk1(A1, c1)¹Kk2(A2, c2)¹ · · · ¹ Kkd(Ad, cd)), (4.8)

where k = (k1, . . . , kd).

Similarly to classical Sylvester equations, an approximate solution of a tensor Sylvester equation with
rank one right-hand side is given by

Xk = Yk ×1 V1 ×2 V2 ×3 · · · ×d Vd, (4.9)
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where Yk is the solution of the projected problem onto the tensorized Krylov subspace, that is,

Yk ×1 A
(k1)
1 + · · ·+ Yk ×d A

(kd)
d = Ck, (4.10)

with A
(ki)
i = V H

i AiVi for each i = 1, . . . , d and Ck = C ×1 V
H
1 ×2 · · · ×d V

H
d , where, for each i, Vi is

an orthonormal basis of Kki(Ai, Ci).
Tensorized Krylov subspaces can be also described using multivariate polynomials, as it is stated in

the next lemma ( [83, Lemma 3.2]).

Lemma 4.2.1. Let Pk(C) be the space of multivariate polynomials with degree bounded by k. We have

K¹
k
({Ai}di=1, {ci}di=1) = {p(A1, ..., Ad)(c1 ¹ · · · ¹ cd), for p ∈ Pk(C)},

where for each p(x1, . . . , xd) =
∑

I=(i1,...,id)fk
µIx

i1 · · ·xid ∈ Pk(C),

p(A1, . . . , Ad) =
∑

I=(i1,...,id)fk

µIA
i1
1 ¹ · · · ¹Aid

d .

The authors have also proven that the solution of a tensor Sylvester equation can be well approximated
by a low-rank tensor, relating the norm of the error with the approximation of the function 1

x1s+x2···+xd
with

a sum of separable multivariate functions, see [83, Theorem 2.5]. Moreover, they also analyzed the effects
of using extended Krylov subspaces (i.e., Qki(Ai, ci, ξki), where ξki is given by alternating 0 and∞), in
the construction of tensorized Krylov subspaces.

In the next sections, we generalize the procedure described above to the solution of the tensor Sylvester
equation (4.1) for C with low multilinear or TT rank employing as Vi, an orthonormal basis for the block
rational Krylov subspacesQki(Ai, Ci) with appropriate block vectors Ci, for i = 1, . . . , d.

4.2.1 Tensorized block rational Krylov methods

One of the novelties of this thesis is to analyze the use of block rational Krylov subspaces in tensorized
Krylov methods for solving the tensor Sylvester equation (4.1). On one hand, the use of block Krylov sub-
spaces allows us to easily treat the case of Ci with more than one column, on the other hand, the use of
rational Krylov subspaces gives usmore freedom in the choice of the projection subspace, through the pole
selection.

Deûnition 4.2.1. For each i = 1, . . . d, let Ai ∈ C
ni×ni and Ci ∈ C

ni×bi . Let k = (k1, . . . , kd), with
ki ∈ N and for each i = 1, . . . , d, let ξi ¦ C̄ be a sequence of ki poles that are not eigenvalues of Ai. We
deûne the tensorized block rational Krylov subspace associated with {Ai}di=1, {Ci}di=1 and {ξi}di=1 as

Q¹
k
({Ai}, {Ci}, {ξi}) =

{
s∑

i=1

ZiΓi, for s ∈ N, Zi ∈ W,Γi ∈ C
b1···bd×b1···bd for each i

}
,

withW = Qk1(A1, C1, ξ1)¹Qk2(A2, C2, ξ2)¹ · · · ¹ Qkd(Ad, Cd, ξd).

For simplicity of notation, we sometimes omit poles, denoting a tensorized block rational Krylov sub-
space just by Q¹

k
({Ai}di=1, {Ci}di=1). The relation between rational Krylov subspaces and rational func-

tions can be extended also in the case of tensorized block rational Krylov spaces. First of all, we deûne an
extension of the operator ◦ to multivariate polynomials.

Deûnition 4.2.2. Let

P =
∑

I=(i1,...,id)fk

ΓIx
i1
1 · xi22 · · ·x

id
d ∈ Pk(Cb1···bd×b1···bd),
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and let Ai ∈ C
ni×ni , Ci ∈ C

ni×bi for i = 1, . . . , d. We deûne

P (A1, . . . , Ad) ◦ (C1, . . . , Cd) =
∑

I=(i1,...,id)fk

(Ai1
1 C1 ¹Ai2

2 C2 ¹ · · · ¹Aid
d Cd)ΓI .

Moreover, if R(x1, . . . , xd) = P (x1, . . . , xd)/q1(x1) · · · qd(xd) with qi ∈ P(C) for each i, we deûne

R(A1, . . . , Ad) ◦ (C1, . . . , Cd) = q1(A1)
−1 ¹ · · · ¹ qd(Ad)

−1 · (P (A1, . . . , Ad) ◦ (C1, . . . , Cd)).

Now we can state the following lemma.

Lemma 4.2.2. It holds

Q¹
k
({Ai}, {Ci}, {ξi}) = {R(A1, . . . , Ad) ◦ (C1, . . . , Cd) : R ∈ Pk(Cb1···bd×b1···bd)/q},

where q(x1, . . . , xd) := q1(x1) · · · qd(xd), with qi(x) =
∏

À∈ξi,À ̸=∞(x− À) for each i.

Proof. Let Z ∈ {Qk1(A1, C1, ξ1)¹Qk2(A2, C2, ξ2)¹ · · · ¹ Qkd(Ad, Cd, ξd)}. For each i there exists

a univariate rational function Ri(x) = Pi(x)/qi(x) with Pi =
∑ki

j=0 Γ
(i)
j xj ∈ Pki(Cbi×bi), such that

Z = R1(A1) ◦ C1 ¹R2(A2) ◦ C2 ¹ · · · ¹Rd(Ad) ◦ Cd.

Denoting by RZ(x1, . . . , xd) =
∑

Ifk
ΓIx

i1
1 · · ·x

id
d /q1(x1) · · · qd(xd), where ΓI = Γ

(1)
i1
¹ Γ

(2)
i2
¹ · · · ¹

Γ
(d)
id

, with I = (i1, . . . , id), we have

RZ(A1, A2, . . . , Ad) ◦ (C1, C2, . . . , Cd)

= q1(A1)
−1 ¹ · · · ¹ qd(Ad)

−1
∑

I=(i1,...,id)fk

(Ai1
1 C1 ¹Ai2

2 C2 ¹ · · · ¹Aid
d Cd)ΓI .

= R1(A1) ◦ C1 ¹R2(A2) ◦ C2 ¹ · · · ¹Rd(Ad) ◦ Cd

= Z.

Hence, if Z =
∑s

i=1Wi∆i, with Wi ∈ {Qk1(A1, C1, ξ1)¹Qk2(A2, C2, ξ2)¹ · · · ¹ Qkd(Ad, Cd, ξd)}
and ∆i ∈ C

b1···bd×b1···bd for each i, then letting

RZ =

s∑

i=1

∆iRWi
∈ Pk(Cb1···bd×b1···bd)/q(x1) · · · q(xd),

we have
Z = RZ(A1, A2, . . . , Ad) ◦ (C1, C2, . . . , Cd).

To prove the other inclusion let R(x1, . . . , xd) = P (x1, . . . , xd)/q1(x1) · · · qd(xd), where the numer-
ator is deûned as P =

∑
Ifk

ΓIx
i1
1 · · ·x

id
d ∈ Pk(Cb1···bd×b1···bd). Since every matrix in C

b1···bd×b1···bd

can be written as a linear combination of matrices with only one nonzero entry, in particular, it holds

span{Cb1×b1 ¹ C
b2×b2 ¹ · · · ¹ C

bd×bd} = C
b1···bd×b1···bd ,

therefore, each ΓI can be written as

ΓI =

tI∑

j=1

³j,IΓ
(1)
j,I ¹ Γ

(2)
j,I ¹ · · · ¹ Γ

(d)
j,I ,

for ³j,I ∈ C and Γ
(s)
j,I ∈ C

bs×bs for each s, hence R(A1, . . . , Ad) ◦ (C1, . . . , Cd) equals to

∑

I=(i1,...,id)fk

tI∑

j=1

³j,Iq1(A1)
−1Ai1

1 C1Γ
(1)
j,I ¹ q2(A2)

−1Ai2
2 C2Γ

(2)
j,I ¹ · · · ¹ qd(Ad)

−1Aid
d CdΓ

(d)
j,I ,

that is a linear combination of elements in {Qk1(A1, C1, ξ1)¹Qk2(A2, C2, ξ2)¹· · ·¹Qkd(Ad, Cd, ξd)}.
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Similarly to the polynomial Krylov case, tensorized block rational Krylov subspaces can be employed
for approximating the solution of (4.1) by the tensor Xk deûned in (4.9), where, for each i, the matrix Vi

is an orthonormal basis ofQki(Ai, Ci, ξi) for an appropriate choice of the block vectors Ci that depends
on the low-rank representation of C. This aspect is discussed in Section 4.2.3 and Section 4.2.4 for C in
Tucker and tensor train format, respectively.

Remark 4.2.1. The solvability of (4.1) does not guarantee the solvability of the projected equations (4.10).
A sufûcient condition to avoid this issue is to require

0 /∈W(·d
i=1Ai) = W(A1) +W(A2) + · · ·+W(Ad).

However, this condition can be hard to verify. In practice, if a projected equation is not solvable, we can just
change the projection space, for instance, using different poles.

4.2.2 Convergence analysis

In the following, we combine the results provided by Beckermann, Kressner and Tobler in [11] with the out-
comes of Chapter 3 to analyze the convergence of tensorized block rational Krylovmethods. The theoretical
results of this section are fundamental in developing efûcient ways to adaptively determine poles for the
method and to compute the residual, topics that are extensively discussed in Sections 4.3 and 4.4.

To easily apply the results of [11], we consider the tensor Sylvester equation in vectorized form, (4.3);
we deûne V = Vd ¹ Vd−1 ¹ · · · ¹ V1, and for each i = 1, . . . , d,

Vi = Ind
¹ · · · ¹ Ini+1 ¹ Vi ¹ Ini−1 ¹ · · · ¹ In1 ,

Vi = Vd ¹ · · · ¹ Vi+1 ¹ Ini
¹ Vi−1 ¹ · · · ¹ V1.

We denote by r(V, A1, . . . , Ad, c), sometimes abbreviated by r, the residual c − AVy, where y is the
vectorization of the tensor Yk that solves the projected equation (4.10). Analogously,

r(Vi, A
(k1)
1 , . . . , A

(ki−1)
i−1 , Ai, A

(ki+1)
i+1 , . . . , A

(kd)
d ,V

H
i c),

is deûned as

V
H
i c−

(
A

(kd)
d ¹ · · · ¹A

(ki+1)
i+1 ¹Ai ¹A

(ki−1)
i−1 ¹ · · · ¹A

(k1)
1

)
Viy.

To describe a representation of the residual that depends on the poles of the rational Krylov subspaces,
we start by considering Proposition 2.2 of [11].

Proposition 4.2.3 ( [11]). With the notation introduced above, the following statements hold:

1. The residual r = c−Ay can be represented as

r =

d∑

i=1

Vir(Vi, A
(k1)
1 , . . . A

(ki−1)
i−1 , Ai, A

(ki+1)
i+1 , . . . , A

(kd)
d ,V

H
i c) + ĉ,

where the remainder term ĉ = (
∏d

i=1(I −ViV
H
i ))c vanishes for c ∈ span(V);

2. The vectors ĉ and ViV
H
i r = Vir(Vi, A

(k1)
1 , . . . A

(ki−1)
i−1 , Ai, A

(ki+1)
i+1 , . . . , A

(kd)
d ,V

H
i c), for i =

1, . . . , d are mutually orthogonal. In particular, this implies

∥r∥22 =
d∑

i=1

∥∥∥r(Vi, A
(k1)
1 , . . . , A

(ki−1)
i−1 , Ai, A

(ki+1)
i+1 , . . . , A

(kd)
d ,V

H
i c)

∥∥∥
2

2
+ ∥ĉ∥22 .



4.2. TENSORIZED KRYLOV METHODS 53

Thanks to the previous proposition, to monitor the norm of the residual it is sufûcient to control the

norms of ĉ and V
H
i r. For each i, the partial residual V

H
i r is the vectorization of the tensor

Ri = Ci −Y i
k ×1 A

(k1)
1 − · · · − Y i

k ×i−1 A
(ki−1)
i−1 −Y i

k ×i Ai −Y i
k ×i+1 A

(ki+1)
i+1 − · · · − Y i

k ×d A
(kd)
d ,

where Ci = C ×1 V
H
1 ×2 · · · ×i−1 V

H
i−1×i+1 V

H
i+1×i+2 · · · ×d V

H
d and Y i

k = Yk×i Vi. In particular, the

Euclidean norm of V
H
i r equals to the Frobenius norm of the mode-i unfolding

(Ri)(i) = (Ci)(i) −Ai(Y i
k)(i) − (Y i

k)(i)Bi, (4.11)

where

Bi =
i−1∑

j=1

Ikd ¹ · · · ¹ Iki+1
¹ Iki−1

¹ · · · ¹ Ikj+1
¹Aj

(kj) ¹ Ikj−1
¹ · · · ¹ Iki1

+

d∑

j=i+1

Ikd ¹ · · · ¹ Ikj+1
¹Aj

(kj) ¹ Ikj−1
¹ · · · ¹ Iki+1

¹ Iki−1
¹ · · · ¹ Iki1 .

(4.12)

Remark 4.2.2. The matrix (Ri)(i) is the residual of the Sylvester equation AiX −XBi = (Ci)(i), solved
projecting Ai into the block rational Krylov subspaceQki(A,Ci).

Summarizing, we have the following corollary of Proposition 4.2.3.

Corollary 4.2.4. The squared Euclidean norm of the residual r(V, A1, . . . , Ad, C) can be written as

∥r(V, A1, . . . , Ad, c)∥22 =
d∑

i=1

∥∥(Ri)(i)
∥∥2
F
+ ∥ĉ∥22 ,

where the remainder term ĉ vanishes for c ∈ span(V).

4.2.3 RHS in Tucker format

In this section we assume that the right-hand side C of (4.1) is given in Tucker format, generated by
JG, U1, . . . , UdK, with G ∈ C

bi×···×bd and Ui ∈ C
ni×bi for each i = 1, . . . , d. For each i, a Tucker

representation of the tensor Ci is generated by

JG, V H
1 U1, . . . , V

H
i−1Ui−1, Ui, V

H
i+1Ui+1 . . . , V

H
d UdK,

hence, from (4.5), we have that the matrix (Ci)(i) admits the low rank representation (Ci)(i) = UiZ
H ,

for an appropriate block vector Z. From Corollary 4.2.4, the convergence of projection methods based on
tensorized block rational Krylov subspaces is related to the norms of the matrices (Ri)(i). By Remark 4.2.2

we are implicitly solving the Sylvester equation AiX − XBi = UiZ
H , by projecting Ai into the block

rational Krylov subspaceQki(A,Ci). Hence, the natural choice of the block vector for the construction of
the ith block rational Krylov subspace is Ci = Ui.

Assume now we know V1, . . . , Vd orthonormal basis forQk1(A1, U1), . . . ,Qkd(Ad, Ud), respectively,

and the projected matricesA
(ki)
i = V H

i AiVi and we want to solve the projected tensor equation (4.10). It
is reasonable that the right-hand side Ck ∈ C

b1k1×···×bdkd , can be fully stored and the solution Yk of the
projected equation can be computed by a direct method such as the one presented by Chan and Kressner
in [30]. A Tucker decomposition of the approximate solution Xk related with the tensorized block rational
Krylov subspace is generated by JYk, V1, . . . , VdK.
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4.2.4 RHS in tensor train format

Themain advantage of having C ∈ C
n1×···×nd in TT format is the possibility of handlingmore summands in

the tensor Sylvester equation since thememory storage in this format increases only linearly with d. Clearly,
in such a case it is necessary to produce an approximate solution tensorXk in TT format as well. Assume
that the tensor C is represented in TT format with carriages {G1, . . . ,Gd}. For each i, a TT representation
of the tensor Ci is given by the carriages

{G1 ×1 V
H
1 ,G2 ×2 V

H
2 , . . . ,Gi−1 ×2 V

H
i−1,Gi,Gi+1 ×2 V

H
i+1, . . . ,Gd ×2 V

H
d }

and from (4.7) we have that the matrix (Ci)(i) admits the low rank representation

(Ci)(i) =
{
G1ZH if i = 1,

(Gi)(2)ZH otherwise,

for an appropriate block vector Z. With the same argument of the Tucker case, we have that the natural
choice of the block vector for the construction of the ith block rational Krylov subspace is

Ci =

{
G1 if i = 1,

(Gi)(2) otherwise.

Assuming to know V1, . . . , Vd orthonormal bases for Qk1(A1, C1), . . . ,Qkd(Ad, Cd), respectively,

and the projected matrices A
(ki)
i = V H

i AiVi, we want to solve the projected equation (4.10). We remark
that in this case it is not guaranteed that the tensor Ck can be fully stored since its size grows exponentially
with d. A way to overcome this issue is to use an algorithm for the solution of the projected tensor Sylvester
equation that keeps the solution in TT format, such as the AMEn algorithm described in [37].

4.3 Pole selection

In this section we derive techniques for pole selection, employing a representation of the residual that
involves the poles of the block rational Krylov subspaces. Thanks to Corollary 4.2.4 and (4.11), the analysis
can be reduced to the problem of minimizing the norms of the residuals (Ri)(i) of the Sylvester equations

AiX − XBi = (Ci)(i), solved projecting Ai into the block rational Krylov subspace Qki(A,Ci). Since
this work is devoted to studying the case of C in Tucker or tensor train format, we also assume that the
matrices (Ci)(i) admit a low-rank representation (Ci)(i) = CiZ

H
i , as it has been shown in Sections 4.2.3

and 4.2.4. To represent the norm of the matrices (Ri)(i) with a formulation that involves the chosen poles
we can use a simpliûed version of Theorem 3.2.1.

Theorem 4.3.1. Let A ∈ C
n×n, B ∈ C

m×m be matrices with disjoint spectra and let C ∈ C
n×b and

Z ∈ C
m×b. Let V ∈ C

n×bk be a matrix with orthonormal columns that spans Qk(A,C, ξ
(A)
k ) and let

Ak = V HAV . Assuming thatAk andB have disjoint spectra, letXk = V HYk where Yk is the solution of
the Sylvester equation

AkYk − YkB = C(k)ZH ,

where C(k) = V HC. Let Ç ∈ Pk(Cb×b) be a monic block characteristic polynomial of Ak with respect to

C(k). Deûne RG(x) = Ç(x)
q(x) , where

q(x) =
∏

À∈ξ
(A)
k

,À ̸=∞

(x− À).

Then the residual matrix is equal to

(
RG(A) ◦ C

)
(RGH

(B) ◦−1 Z)H .
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Proof. It is sufûcient to consider Theorem 3.2.1 with ξ
(B)
k consisting of m inûnity poles. In such a case,

an orthonormal basis ofQk(B
H , C2, ξ

(B)
k ) can be chosen as the identity matrix of size m×m.

From now on we assume that for each i, the ûrst pole in ξi is equal to inûnity, that is, the ûrst block
column of Vi is an orthonormal basis of the space spanned by the columns of Ci. The ûrst consequence
of this hypothesis is that the term ĉ vanishes in the formulation of the residual given by Corollary 4.2.4,
hence the convergence can be monitored just by the Frobenius norms of the matrices (Ri)(i). Notice that,
thanks to Theorem 4.3.1, we have

(Ri)(i) =
(
RG

i (Ai) ◦ Ci

)
(RG

i
H
(−Bi) ◦−1 Zi)

H , with RG
i (z) = Çi(z)/qi(z), (4.13)

where Çi(z) is a monic block characteristic polynomial of A
(ki)
i with respect to V H

i Ci and

qi(z) =
∏

À∈ξi,À ̸=∞

(z − À).

As it has been established in Section 3.2.2, to keep the Frobenius norm of (4.13) small it is sufûcient
to choose poles that minimize the norm of RG

i (z)
−1 for every x in the ûeld of values of −Bi. A way to

approximatively minimize such norm is to adaptively choose the next pole for ξi accordingly with one of
the techniques described in Section 3.2.2.

Remark 4.3.1. The ûeld of values of the matrix−Bi is the sum of the ûeld of values of the matrices−A(kj)
j ,

for j ̸= i. In general, the determinationW(−A(kj)
j ) is not easy. What we do in practice is to use the convex

hull of the set obtained by taking the union of the eigenvalues of the matrices −A(s)
j for s f kj as an

approximation of W(−A(kj)
j ).

4.4 Computation of the residual

The explicit computation of the residual to monitor the convergence of the algorithm is usually expensive;
to overcome this issue we can compute the norms of the matrices (Ri)(i) and then recover the norm of
the residual using the result of Corollary 4.2.4. If the last pole is equal to inûnity, the norms of the partial
residuals can be cheaply computed thanks to the following lemma.

Lemma 4.4.1. Let A ∈ C
n×n, B ∈ C

m×m, C ∈ C
n×b, Z ∈ C

m×b and let ξ = {À0, . . . , Àk+1} ¦ C with
À0 = Àk+1 = ∞ be a set of poles that are not eigenvalues of A. Let Vk+1 be a block orthonormal basis
of Qk+1(A,C, ξ), and let Hk,Kk be the matrices that satisfy the block rational Arnoldi relation given by
Deûnition 2.2.1. Denoting by Vk the matrix obtained by removing from Vk+1 the last b columns and by Rk the
residual

Rk = AVkYk + VkYkB − CZH , (4.14)

where Yk solves
(V H

k AVk)Yk + YkB − V H
k CZH = 0, (4.15)

we have
Rk = Vk+1Ek+1E

H
k+1HkK

−1
k Yk and ∥Rk∥F =

∥∥EH
k+1HkK

−1
k Yk

∥∥
F
.

where Ek+1 = [0, Ib]
H ∈ C

(k+1)b×b, and Kk is the leading principal bk × bk submatrix of Kk.

Proof. From (4.15) follows that

YkB = −(V H
k AVk)Yk + V H

k CZH ,

hence (4.14) can be rewritten as

Rk = AVkYk − Vk(V
H
k AVk)Yk + VkV

H
k CZH − CZH .
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Since À0 =∞, we have C ∈ Qk(A,C, ξ), then VkV
H
k C = C. In particular, we have

Rk = AVkYk − Vk(V
H
k AVk)Yk.

Note now that since Àk =∞, Vk+1V
H
k+1AVk = AVk , hence

Rk = Vk+1

(
V H
k+1A−

[
V H
k

0

]
A

)
VkYk = Vk+1Ek+1E

H
k+1V

H
k+1AVkYk. (4.16)

Moreover, as shown in Section 2.2, we have that AVk = Vk+1HkK
−1
k and since the columns of Vk+1 are

orthonormal we have

Rk = Vk+1Ek+1E
H
k+1HkK

−1
k Yk and ∥Rk∥F =

∥∥EH
k+1HkK

−1
k Yk

∥∥
F
.

To avoid the multiplication by the (possibly large) matrices Ai, we can use block rational Krylov meth-
ods that start with a pole equal to inûnity and after each step swap the last two poles guaranteeing that
the last pole is always equal to inûnity, as illustrated in Section 2.2.1.

Summarizing, if we perform a tensorized block rational Krylov method where, for each block rational
Krylov subspace, we have À0 =∞ and we guarantee that the last pole is equal to inûnity, we can write the
norm of the residual as

∥r(V, A1, . . . , Ad, C)∥2 =

√√√√
d∑

i=1

∥∥∥Yk ×i EH
ki+1H

(i)
ki
(K

(i)
ki
)−1
∥∥∥
2

F
,

whereYk is the solution of the projected equation (4.10), for each iwehaveEki+1 = [0, Ib]
H ∈ C

b(ki+1)×b,

and H
(i)
ki
,K

(i)
ki

are generated by the block rational Arnoldi algorithm associated withQki(Ai, Ci).

4.5 Numerical experiments

In this section, we provide numerical results on the convergence of the presented algorithms, for the so-
lution of tensor Sylvester equations with right-hand side represented in Tucker or tensor train format. The
MATLAB code of the algorithms used for solving tensor Sylvester equations has been made freely available
at https://github.com/numpi/TBRK-Sylvester.

Generalizing what was done in Section 3.3, as a test problem, we compute the approximate solution of
the convection-diffusion partial differential equation

{
−ϵ∆u+w · ∇u = f in Ω

u ≡ 0 on ∂Ω

on the d-dimensional hypercube Ω = [0, 1]d, where ϵ > 0 is the viscosity parameter and w is the con-
vection vector. Assuming w = (Φ1(x1),Φ2(x2), . . . ,Φd(xd)), discretizing the domain with a uniformly
spaced grid with n points in each direction yields the tensor Sylvester equation

X ×1 (ϵA+Φ1B) + · · ·+ X ×d (ϵA+ΦdB) = F ,
where

A =
1

h2




2 −1
−1 2

. . .
. . .

. . . −1
−1 2




and B =
1

2h




0 1

−1 . . .
. . .

. . .
. . . 1
−1 0



,
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with h = 1
n+1 , are the discretizations of the operators∆ and∇, respectively, by centered ûnite differences,

Φi =




Φi(h)
Φi(2h)

. . .

Φi(nh)




for i = 1, . . . , d and F is the tensor given by sampling f on the grid points. If the function f is a smooth
multivariate function, the tensorF is numerically low-rank, that is, it can be approximated by a lowmultilin-
ear or TT rank tensor, see [118]. Different choices of w are used in the experiments, in particular choosing
w as the zero vector yields a Hermitian test problem, indicated as Poisson equation (in such a case we
also set ϵ = 1).

The numerical simulations have been run on a server with two Intel(R) Xeon(R) E5-2650v4 CPU run-
ning at 2.20 GHz and 256 GB of RAM, using MATLAB R2021a with the Intel(R) Math Kernel Library Version
2019.0.3. All the experiments are made in double precision, real arithmetic. In particular, if a nonreal pole is
employed during a Krylov method, the subsequent is chosen as its conjugate allowing to keep the matrices
and the tensors real; we refer the reader to [109] for a more complete discussion. This artiûcial addition of
poles can produce Krylov subspaces of different dimensions. For the experiments several pole selection
strategies are employed: we denote by poly the use of all poles equal to inûnity and by ext the case in
which the poles are chosen alternating 0 and inûnity, moreover, we indicate by ADM and sADM the poles de-
scribed in (3.26) and (3.28), respectively, that are computed using the same implementation employed in
Section 3.3, which solves the involved maximization problems by maximizing the functions on a sampling
of the boundary of the set described in Remark 4.3.1. For the computation of rational Krylov subspaces we
employ the rktoolbox described in [19].

4.5.1 Tucker format

In this section, we provide numerical results for the case of right-hand side in Tucker format employing the
algorithm described in Section 4.2.3, denoted by Tuck-TBRK. The projected tensor equations are solved
by the algorithm developed in [30].

In Figure 4.1 we show the behavior of the relative norm of the residual by varying the number of Arnoldi
iterations, for the solution of discretized convection-diffusion equations using different choices of poles;
in particular in Figure 4.1a and Figure 4.1b we consider the problem with ϵ = 1 and w = (0, 0, 0) and the

non-Hermitian problem with ϵ = 0.1 andw = (1+ (x1+1)2

4 , 0, 0), respectively. For the latter test problem,
the number of Arnoldi iterations needed to reach a relative norm of the residual less than 10−6 are shown
in Table 4.1; the table also contains execution time of the algorithms and the total time needed to solve
the projected equations. We observe that most of the computational timing is employed for solving the
small-size equations, stressing the importance of a good pole selection strategy. We also notice that the
procedure that employs polynomial Krylov subspaces has been stopped after 41 iteration without reaching
the desired accuracy.

In Figure 4.2 the behavior of the relative norm of the residual is compared for different sizes of the
discretization grid for solving a 3-dimensional Poisson equation. Note that, by the results developed in [118,
Section 4.3], the minimum integer k such that there exists a tensor with multilinear rank (b1k, b2k, b3k)
that solves the discretized Poisson equation with a relative accuracy ϵ, satisûes

k f (log(16µ)) log(4
√
3/ϵ)

Ã2
,

where µ depends quadratically on n. Hence, we expect that a good pole selection strategy produces a
logarithmical growth of the number of iterations in terms of n.
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(a) Discretized Poisson equation with d = 4,
f = 1/((1 + x1 + x2)(1 + x3 + x4)).
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(b) Discretized convection-diffusion equation with d =
3, f = 1/((1 + x1 + x2 + x3)), ϵ = 0.1, w = (1 +
(x1+1)2

4 , 0, 0).

Figure 4.1: Behavior of the relative norm of the residual produced by solving discretized convection-
diffusion equation employing Tuck-TBRK methods, comparing different choices of poles. The parameter
n is set to 1024.

poles iterations time (s) residual time proj (s)
ADM 14 24 24 7.88 4.55e− 07 6.10
sADM 14 24 24 7.84 3.75e− 07 5.87
ext 26 26 26 24.59 1.82e− 07 22.43
poly 41 41 41 196.61 5.21e− 02 187.27

Table 4.1: Iterations (i.e., number of Arnoldi iterations performed in the three different Krylov subspaces)
and time needed to reach a relative norm of the residual less than 10−6 for the solution of discretized
convection-diffusion equation of dimension d = 3 and n = 1024, with f = 1/((1 + x1 + x2 + x3)),

ϵ = 0.1 and w = (1 + (x1+1)2

4 , 0, 0), employing Tuck-TBRK methods, with different choices of poles.
The last column describes the total time needed for solving projected problems.
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Figure 4.2: Behavior of the relative norm of the residual produced by solving the discretized Poisson equa-
tion of dimension d = 3 with f = 1/(1 + x1 + x2 + x3) employing Tuck-TBRK methods, with poles
chosen accordingly to ADM for different sizes of the discretization grid.
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(a) Discretized Poisson equation with d = 6.
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(b) Discretized convection-diffusion equation with d = 5,

ϵ = 0.1, w = (1 + (x1+1)2

4 , (1+x2)
2 , 0, 0, 0).

Figure 4.3: Behavior of the relative norm of the residual produced by solving discretized convection-
diffusion equations with random right-hand side of TT rank (2, 2, . . . , 2), employing TT-TBRK methods,
with different choices of poles. The parameter n is set to 4096.

4.5.2 Tensor train format

In this section, we provide numerical results for the case of right-hand side in tensor train format, employ-
ing the algorithm described in Section 4.2.4, denoted by TT-TBRK. We have implemented the TT-TBRK

methods in MATLAB, using the TT-Toolbox version 2.2 [101] to manage tensors in TT format, in particular
the projected problems are solved using the routine amen solve2.

In Figure 4.3 we show the behavior of the relative norm of the residual by varying the number of Arnoldi
iterations, for the solution of discretized convection-diffusion equations using different choices of poles.
Despite the Tucker case, it seems that the method based on polynomial Krylov subspaces converges quite
fast for the ûrst iterations, however, if a high accuracy is required methods based on rational Krylov sub-
spaces seem to be faster. In Figure 4.4 the behavior of the relative norm of the residual is compared
for different sizes of the discretization grid for solving a 6-dimensional Poisson equation; as described
in [118, Section 4.5.2], we expect that the number of iterations grows logarithmically with n. In Table 4.2 we
compare the execution time of TT-TBRK and AMEn, to reach a relative norm of the residual less than 10−8

for the solution of a d-dimensional Poisson equation for different values of d. We remark that in the ûrst
two cases AMEn does not reach the required accuracy. In Table 4.3 we report the time and the number of
Arnoldi iterations employed by TT-TBRK for the computation of the solution of high dimensional Poisson
equations with a relative norm of the residual less than 10−6. From the results, it appears that the number
of iterations does not grow when the space dimension d increases. On the other hand for large values of
d, the more than linear increase of the computational time is due to the pole selection strategy, which is
based on the maximization of a rational function on the ûeld of values of the matricesBis deûned in (4.12).
To manage this trade-off between good poles and low computational time, other maximization strategies
could be employed by exploiting, for instance, theoretical information about the ûeld of values of Bi.
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Figure 4.4: Behavior of the relative norm of the residual produced by solving the discretized Poisson equa-
tion of dimension d = 6with random right-hand side of TT rank (2, 2, . . . , 2), employing TT-TBRKmethods,
with poles chosen accordingly to ADM for different sizes of the discretization grid.

d residual time (s)

TT-TBRK 3 5.42e− 09 20.27
AMEn 3 3.06e− 07 2098.17

TT-TBRK 4 5.73e− 09 52.34
AMEn 4 4.39e− 08 5418.22

TT-TBRK 5 6.31e− 09 74.59
AMEn 5 5.24e− 09 4558.16

Table 4.2: Comparison of execution time and accuracy between TT-TBRK with poles chosen accordingly
with ADM and AMEn to reach relative norm of the residual less than 10−8 for the solution of a d-dimensional
Poisson equation for different values of d. The parameter n is set to 1024.

d residual Arnoldi iterations time (s) time AMEn (s) time poles (s)
5 1.79e− 08 26 13.21 11.23 0.84
10 9.29e− 07 26 19.07 14.10 2.72
15 4.59e− 07 26 158.75 33.30 121.88
20 1.75e− 07 22 4163.33 40.38 4119.03

Table 4.3: Time, accuracy and number of Arnoldi iterations of TT-TBRK with poles chosen accordingly
with ADM required to reach relative norm of the residual less than 10−6 for the solution of a d-dimensional
Poisson equation for large values of d. The last two columns contain the time employed for solving all the
projected problems by the AMEn method and the time needed for the computation of poles. The parameter
n is set to 1024.



Chapter 5

Computing functions of Hermitian HSS
Matrices

In earlier chapters, we employed block rational Krylov methods to address matrix equations. Moving for-
ward, our focus shifts toward matrix functions. The material presented in this chapter is the outcome of
collaboration with Daniel Kressner and Leonardo Robol, which has led to [25].

Consider a Hermitian matrix A ∈ C
n×n. When A is of moderate size, f(A) can simply be computed

according to its deûnition, via computing the spectral decomposition of A, or using a more specialized
algorithm such as the scaling-and-squaring method for the matrix exponential [75]. These methods typi-
cally require O(n2) memory and O(n3) operations, and thus become infeasible for larger n. As we will
extensively discuss in Chapter 6, if only the computation of f(A)C for a block vector C is needed, block
(rational) Krylov subspace methods are well suited whenA is large and (data) sparse; see [66,93] and the
references therein.

The task of approximating the whole matrix function f(A) for a large-scale matrixA is rather challeng-
ing and certainly requires additional assumptions on the data sparsity structure of A. For example, if A is
a banded matrix and f can be well approximated by a low-degree polynomial on the spectrum of A, then
f(A) can also be well approximated by a banded matrix [17], leading to fast algorithms, such as the ones
described in [33, 56, 105]. If, on the other hand, f does not admit good polynomial approximations then
f(A) usually does not admit a good approximation by a banded or, more generally, by a sparse matrix even
whenA is banded. Examples include the (inverse) square root or the sign function whenA has eigenvalues
that are close to zero relative to the width of the spectrum. For these examples, f still admits good rational
approximations and the approximation of f(A) can potentially be addressed using hierarchical low-rank
techniques [70].

A matrix A is said to be hierarchically off-diagonal low-rank (HODLR) if it can be recursively block par-
titioned in a matrix with low-rank off-diagonal blocks, more speciûcally, there exists a block partitioning

A =

[
A11 A12

A21 A22

]

such that A12 and A21 are of low rank and A11 and A22 are square matrices that can be recursively parti-
tioned in the sameway (until aminimal size of the diagonal blocks is reached). Hierarchically semiseparable
(HSS) matrices additionally impose that the low-rank factors representing the off-diagonal blocks on the
different levels of the recursion are nested; see Section 5.1 for the precise deûnition. Hierarchical matrices,
such as HODLR and HSS, admit data-sparse representations and cover a wide variety of matrix structures,
including banded matrices and rational functions thereof. In particular, they can be used to approximate
f(A)whenA is banded or, more generally, HSSwhenever f admits a good rational approximation [33]. This
property has been exploited to develop iterate-and-truncate methods using hierarchical matrices [64, 85]
as well as a divide-and-conquer procedure based on low-rank updates and rational Krylov subspaces [33].
While numerical experiments in [33] show that the latter method is often preferable in terms of efûciency,

61
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it only exploits HODLR structure even when the matrix is HSS, and therefore does not fully beneût from the
nestedness of low-rank factors in the HSS format.

To fully beneût from HSS structure, we will represent an HSS matrix in an unconventional way, via a
telescopic decomposition. Such a decomposition was used by Levitt and Martinsson [90] to compute an
HSS approximation of a matrixA from a few random matrix-vector products.1 For the purpose of this work,
we consider a more general telescopic decomposition (see Section 5.2), based on representing an HSS
matrix A as

A = UÃVH +D, (5.1)

where U and V are block diagonal, orthonormal matrices with tall and skinny diagonal blocks, D is a
block diagonal matrix and Ã is a (smaller) square matrix recursively decomposed in the same fashion. This
representation is not unique and includes the one from [90]. We also show how to convert such telescopic
decompositions into the standard representation of HSS matrices.

Themain contribution of this work is to design a new algorithm that returns a telescopic decomposition
for an HSS approximation of f(A), whereA is a Hermitian HSSmatrix and f admits a good rational approxi-
mation. Unlike the divide-and-conquer method described in [33], our algorithm fully exploits the nestedness
relations of the HSS format and, in turn, only needs to build rational Krylov subspaces for small-sized matri-
ces. This translates into reduced complexity and, in many cases, signiûcantly lower execution times. Using
telescopic decompositions, our new algorithm combines well with the method by Levitt and Martinsson.
This combination allows one to extract an approximation to f(A) from the product ofAwith a few random
vectors.

Note that for most of Sections 5.1 to 5.2, we will not assume thatA is Hermitian. Imposing Hermiticity
would not simplify the exposition and our considerations on telescopic decompositions in Section 5.2might
be of independent interest. In Section 5.2.4, we will discuss the consequences of A being Hermitian.

5.1 Hierarchically semiseparable matrices

To deûne hierarchically semiseparable (HSS) matrices we need to introduce a way to recursively split row
and column indices of a matrix. Given a vector of indices I = [1, 2, . . . , n], we use a perfect binary tree
T , called cluster tree, to deûne subsets of indices obtained by subdividing I . The root µ of the tree is
associated with the full vector I ; the rest of the tree is recursively deûned in the following way: given a
non-leaf node Ä associated with an index vector IÄ , its children ³, ´, are associated with two vectors of
consecutive indices I³, I´ , such that IÄ is the concatenation of I³ and I´ . The depth of a node is deûned
as the distance from the root of the tree. The depth of the tree is denoted by L. We observe that T is
uniquely deûned by the index vectors associated with the nodes and, hence, cluster trees can be deûned by
simply specifying the indices associated with the leaf nodes. For each leaf node ³, we use |³| to denote
the length of the vector of indices associated with ³. We assume that the leaf nodes are “small”, that is,
for some prescribed threshold size t it holds that |³| f t for every leaf ³.

Given a matrix A ∈ C
n×n, we let AÄ,Ä ′ denote the submatrix of A obtained by selecting the row and

column indices associated with nodes Ä and Ä ′, respectively. In particular, we will consider diagonal blocks
(Ä = Ä ′) and sub/supdiagonal blocks (Ä and Ä ′ are siblings, i.e., children of the same node). We are now
ready to state the deûnition of an HSS matrix following [94, Section 3.3].

Deûnition 5.1.1. Given a cluster tree T for the indices [1, . . . , n], a matrix A ∈ C
n×n is called an HSS

matrix of HSS rank r if:

1. for each pair of sibling nodes Ä, Ä ′ ∈ T , there exist matrices U
(big)
Ä ∈ C

|Ä |×r , V
(big)
Ä ′ ∈ C

|Ä ′|×r with

orthonormal columns and ÃÄ,Ä ′ ∈ C
r×r , such that

AÄ,Ä ′ = U (big)
Ä ÃÄ,Ä ′(V

(big)
Ä ′ )H .

1It is worth mentioning that another method for approximating HSSmatrices from randommatrix-vector products was recently
presented by Halikias and Townsend [71], but this algorithm is not based on the telescopic decompositions considered in this work.
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2. for each non-leaf node Ä ∈ T with children ³ and ´ there exist UÄ , VÄ ∈ C
2r×r with orthonormal

columns, such that

U (big)
Ä =

[
U

(big)
³

U
(big)
´

]
UÄ and V (big)

Ä =

[
V

(big)
³

V
(big)
´

]
VÄ . (5.2)

Remark 5.1.1. Point 1 of Deûnition 5.1.1 implies that every sub/supdiagonal blockAÄ,Ä ′ has rank at most r.
To optimize storage, one could allow for different values of r for different Ä, Ä ′. To simplify the description,
we will work with a constant rank bound r in this paper. On the other hand, our software implementation
allows for non-constant ranks.

Deûnition 5.1.1 corresponds to the usual way of storing an HSS matrixA [97,129]. For each leaf node Ä ,

the matrices UÄ := U
(big)
Ä , VÄ := V

(big)
Ä and for each non-leaf node Ä the matrices UÄ , VÄ from (5.2) are

stored. The latter pair of matrices are usually called translation operators. The nestedness relation (5.2)

allows us to recursively recover U
(big)
³ and V

(big)
³ for any ³ ∈ T from the (small) matrices UÄ , VÄ . We

only need to additionally store the r × r matrices ÃÄ,Ä ′ for every pair of sibling nodes Ä, Ä ′ and the small
diagonal blocksAÄ,Ä (of size at most t) for every leaf Ä in order to recover the whole matrixA. To see this,
let ³ and ´ denote the children of the root µ. Then

A = Aµ,µ =

[
A³,³ U

(big)
³ Ã³,´(V

(big)
´ )H

U
(big)
´ Ã´,³(V

(big)
³ )H , A´,´

]
. (5.3)

If³ and´ are non-leaf nodes, thematricesA³,³ andA´,´ can be recursively recovered in the same fashion.
Otherwise, if ³ and ´ are leaves, these matrices are stored explicitly. In summary, the matrices

{UÄ , VÄ : Ä ∈ T }, {ÃÄ,Ä ′ : Ä, Ä
′ sibling nodes}, {A³,³ : ³ leaf node} (5.4)

deûne a data-sparse representation of an HSS matrix A.

Remark 5.1.2. There is no need to impose orthonormality on UÄ , VÄ in the representation (5.4). The or-
thogonality properties required in Deûnition 5.1.1 can always be ensured by the orthogonalization procedure
described in [94, Section 4.2], without changing thematrixA represented by (5.4) through the recursion (5.3).

5.1.1 Block diagonal matrices and depth reduction

To simplify notation, we make use of the following form of block diagonal matrices. Let {CÄ}Ä∈T be a set
of matrices for a cluster tree T . Then

C(ℓ) := blkdiag(CÄ : Ä ∈ T , depth(Ä) = ℓ) (5.5)

denotes the block diagonal matrix with the diagonal blocks consisting of all matrices CÄ for which Ä has
depth equal to ℓ.

For example, given the data-sparse representation (5.4) of an HSS matrix A, the matrices U(L) and
V(L) are block diagonal matrices containing the orthonormal matrices U³ and V³, respectively, for every
leaf ³ ∈ T as diagonal blocks. When considering the product

Â :=
(
U(L)

)H
AV(L),

the representation (5.4) is affected as follows:

{UÄ , VÄ : depth(Ä) f L− 1}, {UH
³ U³, V

H
³ V³ : ³ leaf node},

{ÃÄ,Ä ′ : Ä, Ä
′ sibling nodes}, {A³,³ : ³ leaf node}. (5.6)

This representation allows us to reconstruct thematrix Â by a recursion analogous to (5.3). SinceUH
³ U³ =

I and V H
³ V³ = I , the orthogonality properties of Deûnition 5.1.1 are satisûed as well. However, the size

of Â is 2Lm, which is generally different from n and requires the cluster tree T to be adjusted accordingly.
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Deûnition 5.1.2. Given integers m and L, consider the index vector [1, 2, . . . , 2Lm]. Then T (L)
m denotes

the corresponding balanced cluster tree of depth L, having leaves associated with [(i− 1)m+ 1, . . . , im]
for i = 1, . . . , 2L.

In particular, the matrix Â deûned above is an HSS matrix associated with the cluster tree T (L)
m . When

dropping the leaves, one obtains the balanced cluster tree T (L−1)
2m of depth L− 1. The matrix Â is still an

HSS matrix associated with T (L−1)
2m but its parametrization (5.6) reduces to

{UÄ , VÄ : Ä ∈ T (L−1)
2m }, {ÃÄ,Ä ′ : Ä, Ä

′ siblings in T (L−1)
2m }, {AÄ,Ä : ³ leaf in T (L−1)

2m },

which matches the form of (5.4).

5.2 Telescopic decompositions

To develop a randomized algorithm for recovering an HSS matrix from matrix-vector products, Levitt and
Martinsson [90] replaced the classical data-sparse representation (5.4) with a certain type of telescopic
decomposition. As we will see in Section 5.2.2, the data-sparse representation (5.4) is directly linked to
a similar but different type of telescopic decomposition. In Section 5.2.1, we introduce a general class of
telescopic decompositions that includes both types. We also discuss how to convert between these types
of telescopic decompositions.

5.2.1 A general telescopic decomposition

We start with a generalization of the construction from [90], recursively deûning a telescopic decomposi-
tion.

Deûnition 5.2.1. Let T be a cluster tree of depth L for the indices [1, . . . , n]. A matrix A ∈ C
n×n is in

telescopic decomposition of telescopic rank r if there are real matrices

{UÄ , VÄ : Ä ∈ T , 1 f depth(Ä)} and {DÄ : Ä ∈ T }

for brevity denoted by {UÄ , VÄ , DÄ}Ä∈T or simply {UÄ , VÄ , DÄ}, with the following properties:

1. DÄ is of size |Ä | × |Ä | if depth(Ä) = L and 2r × 2r otherwise;

2. UÄ , VÄ have orthonormal columns; they are of size |Ä | × r if depth(Ä) = L and 2r × r otherwise;

3. if L = 0 (i.e., T consists only of the root µ) then A = Dµ ;

4. if L g 1 then

A = D(L) +U(L)A(L−1)(V(L))H , (5.7)

where U(L),V(L), D(L) are the block diagonal matrices deûned by UÄ , VÄ , DÄ as in (5.5), and the
matrix

A(L−1) := (U(L))H(A−D(L))V(L) (5.8)

has the telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T (L−1)
2r

, where T (L−1)
2r denotes a balanced cluster

tree of depth L− 1 (see Deûnition 5.1.2).

As we will see in the following, Deûnition 5.2.1 offers signiûcant freedom in the choice of diagonal
blocks DÄ , giving rise to different types of telescopic decompositions. A simple procedure to explicitly
reconstruct the matrix A from a telescopic decomposition is described in Algorithm 2.
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Algorithm 2 Recovering A from a telescopic decomposition.

Input: {UÄ , VÄ , DÄ}Ä∈T telescopic decomposition of A for cluster tree T of depth L,
Output: A

1: A← Dµ where µ is the root of T
2: for ℓ = 1, . . . , L do

3: A← D(ℓ) +U(ℓ)A(V(ℓ))H ▷ with D(ℓ),U(ℓ), V(ℓ) deûned as in (5.5)
4: end for

5.2.2 From HSS matrices to telescopic decompositions

The following proposition provides a construction that turns any HSS matrix into a telescopic decomposi-
tion of the same rank.

Proposition 5.2.1. Let

{UÄ , VÄ , ÃÄ,Ä ′ : Ä, Ä
′ sibling nodes} and {AÄ,Ä : Ä leaf node}

be the data-sparse representation deûning an HSS matrix A of HSS rank r for a cluster tree T of depth L.
For each node Ä ∈ T , deûne

DÄ :=





AÄ,Ä if Ä is a leaf node[
0 Ã³,´

Ã´,³ 0

]
if Ä has children³ and´.

Then {UÄ , VÄ , DÄ} is a telescopic decomposition of A of telescopic rank r associated with T .

Proof. We proceed by induction on L. If L = 0, the tree only consists of the root µ and the statement
trivially holds because of Dµ = A.

Let us now assume that L g 1 and consider the matrices U
(big)
Ä and V

(big)
Ä from Deûnition 5.1.1.

Because of the recursion (5.2), we have

U(L)(U(L))H

[
U

(big)
³

U
(big)
´

]
=

[
U

(big)
³

U
(big)
´

]
,

and

V(L)(V(L))H

[
V

(big)
³

V
(big)
´

]
=

[
V

(big)
³

V
(big)
´

]
,

where ³, ´ are the children of the root µ and U(L), V(L) are the block diagonal matrices employed in
Deûnition 5.2.1. Combined with the HSS recursion (5.3), this shows that

A−
[
A³,³

A´,´

]
= U(L)(U(L))H

(
A−

[
A³,³

A´,´

])
V(L)(V(L))H . (5.9)

Noting thatA³,³ andA´,´ are HSSmatrices associated with trees of depthL−1, we can apply induction to
conclude that they are both in telescopic decomposition. This means that relations of the form (5.7)3(5.8)
hold for both matrices or, equivalently,

[
A³,³

A´,´

]
−D(L) = U(L)(U(L))H

([
A³,³

A´,´

]
−D(L)

)
V(L)(V(L))H .

Adding this equation to (5.9) gives

A = D(L) +U(L)A(L−1) (V(L))H , where A(L−1) = (U(L))H
(
A−D(L)

)
V(L).
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Together with the discussion from Section 5.1.1, it follows that A(L−1) is an HSS matrix associated with

T (L−1)
2r and deûned by the data-sparse representation

{UÄ , VÄ : Ä ∈ T (L−1)
2r }, {ÃÄ,Ä ′ : Ä, Ä

′ siblings in T (L−1)
2r }, {A(L−1)

Ä,Ä : Ä leaf in T (L−1)
2r }.

If A
(L−1)
Ä,Ä = DÄ , this completes the proof by induction: the assumptions of this theorem are satisûed

for the level-(L − 1) HSS matrix A(L−1) and thus {UÄ , VÄ , DÄ}depth(Ä)fL−1 is a telescopic decomposi-

tion of A(L−1). In turn, all conditions of Deûnition 5.2.1 are satisûed and {UÄ , VÄ , DÄ} is a telescopic
decomposition for A.

It remains to show that A
(L−1)
Ä,Ä = DÄ holds for any node Ä of depth L− 1. For this purpose, let ³, ´

denote its children, which are leaves in T . Using that D³ = A³,³ and D´ = A´,´ , we indeed obtain that

A(L−1)
Ä,Ä =

[
UH
³

UH
´

](
AÄ,Ä −

[
D³

D´

])[
V³

V´

]
=

[
0 UH

³ A³,´V´

UH
´ A´,³V³ 0

]
= DÄ .

where the last equality follows from Deûnition 5.1.1.

The proof of Proposition 5.2.1 shows that thematrixA(L−1) generated by the telescopic decomposition

{UÄ , VÄ , DÄ}Ä∈T (L−1)
2r

satisûes (A(L−1))Ä,Ä = DÄ for every leaf Ä of T (L−1)
2r . Letting T (ℓ)

2r denote a

balanced cluster tree of depth ℓ f L− 1, we can apply this property recursively and obtain

(A(ℓ))Ä,Ä = DÄ for every leaf Ä of T (ℓ)
2r for all 1 f ℓ f L− 1, (5.10)

where A(ℓ) denotes the matrix generated by the telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T (ℓ)
2r

. It follows

from Proposition 5.2.1 and Proposition 5.2.2 below that telescopic decompositions with this property are
in a simple one-to-one correspondence with HSS matrices, which justiûes the following deûnition.

Deûnition 5.2.2. A telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T of a matrix A is called standard if DÄ =
AÄ,Ä for each leaf node Ä and (5.10) holds.

Proposition 5.2.2. Let T be a cluster tree of depth L and let A be the matrix generated by a standard
telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T of telescopic rank r. Then, for each nonleaf node Ä with children
³, ´, there exist matrices Ã³,´ , Ã´,³ ∈ C

kb×kb such that

DÄ =

[
0 Ã³,´

Ã´,³ 0

]
. (5.11)

Moreover, A is an HSS matrix of HSS rank r with the data-sparse representation

{UÄ , VÄ : Ä ∈ T }, {ÃÄ,Ä ′ : Ä, Ä
′ sibling nodes}, {A³,³ : ³ leaf node}.

Proof. We proceed by induction on L. For L = 0, the result trivially holds. Suppose now that L g 1. By
Deûnition 5.2.1, the matrix generated by the standard telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T (L−1)

2r

is

the matrixA(L−1) deûned in (5.8). Therefore, if Ä is a node of depthL−1 with children ³ and ´, it follows
from (5.10) that

DÄ = A(L−1)
Ä,Ä =

[
0 UH

³ A³,´V´

UH
´ A´,³V³ 0

]
=

[
0 Ã³,´

Ã´,³ 0

]
,

where we set Ã³,´ = UH
³ A³,´V´ and Ã´,³ = UH

´ A´,³V³. This proves (5.11).

It remains to establish the HSS property of A, that is, Point 1 of Deûnition 5.1.1 (note that Point 2 is
satisûed by construction). Combining (5.11) with the telescopic relation (5.7), we obtain that

AÄ,Ä =

[
D³

D´

]
+

[
U³

U´

]
DÄ

[
V³

V´

]
=

[
D³ U³Ã³,´V

H
´

U´Ã´,³V
H
³ D´

]
.
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In particular,A³,´ = U³Ã³,´V
H
³ , which establishes Point 1 of Deûnition 5.1.1 for two sibling leaves Ä = ³,

Ä ′ = ´. To show the corresponding property for two siblings Ä and Ä ′ of depth ℓ < L, let ³1, . . . , ³2L−ℓ

and³′
1, . . . , ³

′
2L−ℓ denote the leaf nodes in the corresponding subtrees. Using (5.7), the proof is completed

by noting that

AÄ,Ä ′ = blkdiag(U³i
)A

(L−1)
Ä,Ä ′ blkdiag(V³′

i
)H

= blkdiag(U³i
)blkdiag(U³i

)HU (big)
Ä ÃÄ,Ä ′

(
V

(big)
Ä ′

)H
blkdiag(V³′

i
)blkdiag(V³′

i
)H

= U (big)
Ä ÃÄ,Ä ′(V

(big)
Ä ′ )H ,

where the second equality uses induction: A(L−1) is an HSSmatrix and satisûes a relation of the form (5.3)
for the parent µ of Ä, Ä ′.

5.2.3 Converting a general telescopic decomposition into a standard one

In the following, we describe a procedure that turns an arbitrary telescopic decomposition {UÄ , VÄ , DÄ}
of a matrix A into a standard telescopic decomposition {UÄ , VÄ , CÄ}. By the results of Section 5.2.2,
this implies the equivalence between HSS matrices of HSS rank r and matrices that admit a telescopic
decomposition of telescopic rank r. For this purpose, it is crucial to understand how we can recover the
principal submatrices A³,³ for leaf nodes ³, since these matrices correspond to the matrices C³ in the
standard telescopic decomposition.

Proposition 5.2.3. For a cluster treeT of depthL, letA be amatrix in telescopic decomposition {UÄ , VÄ , DÄ}
of telescopic rank r. Then the following holds:

1. if L = 0 (i.e., T consists only of the root µ) then Aµ,µ = Dµ ;

2. if L g 1, any pair of sibling leaf nodes ³, ´ with parent Ä satisûes

[
A³,³

A´,´

]
=

[
D³

D´

]
+

[
U³

[
(A

(L−1)
Ä,Ä )1,1

]
V H
³

U´

[
(A

(L−1)
Ä,Ä )2,2

]
V H
´

]
, (5.12)

with the matrix A(L−1) from Deûnition 5.2.1, and (A
(L−1)
Ä,Ä )1,1 and (A

(L−1)
Ä,Ä )2,2 denoting the (1,1) and

(2,2) diagonal blocks of A
(L−1)
Ä,Ä ∈ C

2r×2r , respectively.

Proof. Point 1 follows directly from the deûnition of Dµ . To prove Point 2, we observe that (5.7) implies

[
A³,³ ∗
∗ A´,´

]
= AÄ,Ä =

[
D³

D´

]
+

[
U³

U´

]
A(L−1)

Ä,Ä

[
V H
³

V H
´

]
.

Therefore, taking the diagonal blocks concludes the proof.

The previous proposition combined with the fact that a telescopic decomposition of the matrixA(L−1)

employed in (5.12) is given by {UÄ , VÄ , DÄ}depth(Ä)fL−1 (see Deûniton 5.2.1), results in a practical way to
compute the matrices A³,³ for all leaves ³; see Algorithm 3.

To satisfy condition (5.10) of a standard telescopic decomposition on the leaf level, we need to set

C³ := A³,³

for each leaf node ³. Moreover, if L g 1, for each node Ä of depth L− 1 the matrixCÄ is given byA
(L−1)
Ä,Ä ,

where A(L−1) is now deûned as

A(L−1) := (U(L))H
(
A−C(L)

)
V(L) = (U(L))H

(
A−D(L)

)
V(L) + (U(L))H

(
D(L) −C(L)

)
V(L),
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Algorithm 3 Computation of principal submatrices of A given in telescopic decomposition

Input: Matrix A in telescopic decomposition {UÄ , VÄ , DÄ} for cluster tree T of depth L
Output: {A³,³ : ³ leaf node}

1: Âµ,µ ← Dµ for root µ of T
2: for ℓ = 0, . . . , L− 1 do

3: for each node Ä of depth ℓ do

4: Denoting by ³, ´ the children of Ä and deûning (ÂÄ,Ä )1,1, (ÂÄ,Ä )2,2 as in Proposition 5.2.3

5:

[
Â³,³

Â´,´

]
←
[
D³

D´

]
+

[
U³

[
(ÂÄ,Ä )1,1

]
V H
³

U´

[
(ÂÄ,Ä )2,2

]
V H
´

]

6: end for

7: end for

8: for each leaf node ³ do

9: A³,³ ← Â³,³

10: end for

with the block diagonal matrices U(L),V(L),D(L) and C(L) deûned from {UÄ}, {VÄ}, {DÄ} and {CÄ},
respectively, according to (5.5). By Deûnition 5.2.1, the matrix (U(L))H

(
A−D(L)

)
V(L) is generated by

the telescopic decomposition {UÄ , VÄ , DÄ}depth(Ä)fL−1, hence deûning

D̂Ä :=




DÄ −

[
UH
³ (D³ − C³)V³

UH
´ (D´ − C´)V´

]
if Ä has depthL− 1 and children³, ´;

DÄ otherwise;

the matrix A(L−1) is generated by the telescopic decomposition {UÄ , VÄ , D̂Ä}depth(Ä)fL−1. Therefore a
standard decomposition ofA can be computed by iterating Algorithm 3, as summarized in Algorithm 4. In
particular, the computational complexity of transforming a telescopic decomposition into a standard one
isO(r32L) where r is the telescopic rank ofA. Assuming the threshold size and the telescopic rank to be
constant, this shows linear complexity in the size of A.

Algorithm 4 Computation of a standard telescopic decomposition of A given in telescopic factors.

Input: Matrix A in telescopic decomposition {UÄ , VÄ , DÄ} for cluster tree T of depth L
Output: Standard telescopic decomposition {UÄ , VÄ , CÄ} of A

1: {C³ : ³ leaf node} ← Algorithm 3 applied to {UÄ , VÄ , DÄ}
2: for each node Ä do

3: D̂Ä ← DÄ

4: end for

5: for ℓ = L− 1, . . . , 0 do

6: for each node Ä of depth ℓ do

7: Denoting by ³, ´ the children of Ä

8: D̂Ä ← D̂Ä −
[
UH
³ (D̂³ − C³)V³

UH
´ (D̂´ − C´)V´

]

9: end for

10: {CÄ : Ä ∈ T of depth ℓ} ← Algorithm 3 applied to {UÄ , VÄ , D̂Ä}depth(Ä)fl

11: end for

5.2.4 Hermitian telescopic decompositions

For a Hermitian matrix, the deûnition of a telescopic decomposition can be adjusted to reüect symmetry.
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Deûnition 5.2.3. A telescopic decomposition {UÄ , VÄ , DÄ}Ä∈T is said to be Hermitian if VÄ = UÄ and
DH

Ä = DÄ hold for every Ä ∈ T . In analogy to the non-Hermitian case, we employ the term standard if
DÄ = AÄ,Ä for each leaf node Ä and (5.10) is satisûed. For simplicity, a Hermitian telescopic decomposition
is denoted by {UÄ , DÄ}Ä∈T , avoiding the repetition of UÄ .

IfA is Hermitian and hasHSS rank r, there exist data-sparse representations of the form (5.4), for which
UÄ = VÄ have r columns and ÃH

Ä,Ä ′ = ÃÄ ′,Ä holds for each pair of sibling nodes Ä, Ä ′ (see [94, Section 4.1]).
Therefore, Proposition 5.2.1 implies thatA admits a Hermitian telescopic decomposition of rank r. We also
recall that the procedure described in Section 5.2.3 converts a telescopic decomposition {UÄ , VÄ , DÄ}
into a standard one, without changing the matrices UÄ , VÄ . In turn, the same procedure can be employed
to convert a Hermitian telescopic decomposition into a standard Hermitian telescopic decomposition.

5.3 Computing telescopic decompositions for functions of Hermitian HSSma-

trices

If A is a Hermitian HSS matrix with spectrum contained in [¼min, ¼max] and the function f is analytic on
[¼min, ¼max], then f(A) can usually be well approximated by an HSS matrix. While this has been observed
before [33, Section 3], it is nontrivial to develop an algorithm that fully exploits this property. In this section,
we derive such an algorithm that computes a telescopic decomposition for an HSS approximation of f(A)
starting from a standard Hermitian telescopic decomposition of A. If needed, this can be converted into
a standard telescopic decomposition, employing the results of Section 5.2.3, and therefore into an HSS
data-sparse representation (5.4). If f is a rational function of a certain degree, we show that such an
approximation is exact and, otherwise, the approximation error is bounded using a rational approximation
of f on [¼min, ¼max].

We will apply Theorem 2.4.1 recursively to telescopic decompositions. In order to do so conveniently,
we slightly loosen our assumptions on a standard telescopic decomposition. Given a cluster tree T asso-
ciated with [1, . . . , n] we assume that a matrix A ∈ C

n×n can be written as

A = D̃(L) + Z(L)A(L−1)(Z(L))H , (5.13)

where:

• A(L−1) admits a standard Hermitian telescopic decomposition {UÄ , DÄ}Ä∈T (L−1)
2r

;

• D̃(L) = blkdiag(D̃Ä : Ä leafnode in T ), and D̃Ä = AÄÄ ;

• Z(L) = blkdiag(ZÄ : Ä leafnode in T ), with ZÄ ∈ R
|Ä |×r.

The key difference to assuming that A has a standard Hermitian telescopic decomposition is that no or-
thogonality is enforced onZ(L), the factors on the leaf level. The key advantage of (5.13) is that it remains
unaffected when multiplying with certain block diagonal matrices. The following proposition additionally
shows how to move one level up.

Proposition 5.3.1. LetA be ann×nmatrix admitting the decomposition (5.13), andW(L) = blkdiag(WÄ :
Ä leaf node) with WÄ ∈ C

|Ä |×m. Then,

(W(L))HAW(L) = D̃(L−1) + Z(L−1)A(L−2)(Z(L−1))H ,

with the block diagonal matrices

D̃(L−1) = blkdiag(D̃Ä : depth(Ä) = L− 1), Z(L−1) = blkdiag(ZÄ : depth(Ä) = L− 1)
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containing the diagonal blocks

ZÄ =

[
WH

³ Z´

WH
³ Z´

]
UÄ ∈ C

2m×r,

D̃Ä =

[
WH

³ D̃³W³

WH
´ D̃´W´

]
+

[
WH

³ Z³

WH
´ Z´

]
DÄ

[
WH

³ Z³

WH
´ Z´

]H
∈ C

2m×2m,

and the matrix A(L−2) generated by the standard telescopic decomposition {UÄ , DÄ}Ä∈T (L−2)
2r

, where the

matrices UÄ and DÄ stem from the telescopic decomposition of A(L−1). Moreover, D̃Ä = AÄ,Ä holds for

each leaf node Ä ∈ T (L−1)
2m .

Proof. Considering (5.13) and applying the telescopic decomposition (5.7) of the matrix A(L−1) we get

(W(L))HAW(L) = (W(L))H
(
D̃(L) + Z(L)(D(L−1) +U(L−1)A(L−2)(U(L−1)))H(Z(L))H

)
W(L)

= D̃(L−1) + Z(L−1)A(L−2)(Z(L−1))H

withD(L−1),U(L−1) deûned from {DÄ}, {UÄ}, in accordancewith (5.5). Moreover, because {UÄ , DÄ}Ä∈T (L−1)
2r

is a standard decomposition ofA(L−1), the relation D̃Ä = AÄ,Ä holds for each leaf node Ä ∈ T (L−1)
2m .

To approximate f(A) for a matrix A admitting the decomposition (5.13), we use the construction of
Theorem 2.4.1 with B = D̃(L) and C = Z(L), which yields the approximation

f(A) ≈ f(D̃(L)) +W(L)
[
f
(
(W(L))HAW(L)

)
− f

(
(W(L))HD̃(L)W(L)

)]
(W(L))H , (5.14)

where W(L) is an orthogonal basis for Qk(D̃
(L),Z(L), ξk). Note that the three evaluations of f are all

well deûned because D̃(L) contains diagonal blocks ofA and (W(L))HD̃(L)W(L), (W(L))HAW(L) are
orthogonal compressions. By eigenvalue interlacing, the spectra of these three matrices are contained in
[¼min, ¼max]. We now make two observations:

(i) Proposition 2.3.3 implies that the n× 2Lrk matrix W(L) takes the form

W(L) = blkdiag(WÄ : Ä leaf of T ),

withWÄ ∈ C
|Ä |×rk orthonormal basis ofQk(D̃Ä , ZÄ , ξk).

(ii) Proposition 5.3.1 implies that B(L−1) := (W(L))HAW(L) admits the decomposition

B(L−1) = D̃(L−1) + Z(L−1)A(L−2)(Z(L−1))H . (5.15)

In (5.14), the function f needs to be evaluated for threematrices. This requires low computational effort
for D̃(L) and (W(L))HD̃(L)W(L) because these matrices are block diagonal with small diagonal blocks,
for which the evaluation of f is computed explicitly. The expensive part is the evaluation of f forB(L−1) =
(W(L))HAW(L). For this purpose, we use the decomposition (5.15) and apply the approximation (5.14)
again:

f(B(L−1)) ≈ f(D̃(L−1)) +W(L−1)
[
f(B(L−2))− f((W(L−1))HD̃(L−1)W(L−1))

]
(W(L−1))H ,

where B(L−2) := (W(L−1))HB(L−1)W(L−1) and

W(L−1) = blkdiag(WÄ : Ä leaf of T (L−1)
2rk ), withWÄ orthonormal basis ofQk(D̃Ä , ZÄ , ξk).

Since D̃(L−1) contains diagonal blocks of B(L−1), the three evaluations of f are again well deûned.
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The procedure described above is repeated recursively until reaching a tree of depth 0, and at that point
one simply computes the matrix function of the corresponding dense matrix of size 2rk × 2rk explicitly.
The ith step of the recursive procedure proceeds as follows: one assumes a decomposition of the form

B(L−i) = D̃(L−i) + Z(L−i)A(L−i−1)(Z(L−i))H , (5.16)

where D̃(L−i),Z(L−i) are block diagonal matrices deûned from {D̃Ä}, {ZÄ}, in accordance with (5.5), and
A(L−i−1) admits a standard Hermitian telescopic decomposition {UÄ , DÄ}Ä∈T (L−i−1)

2r

. Then f(B(L−i))

is approximated by

f(D̃(L−i)) +W(L−i)
[
f(B(L−i−1))− f((W(L−i))HD̃(L−i)W(L−i))

]
(W(L−i))H , (5.17)

where B(L−i−1) := (W(L−i))HB(L−i)W(L−i) and

W(L−i) = blkdiag(WÄ : Ä leaf of T (L−i)
2rk ), withWÄ orthonormal basis ofQk(D̃Ä , ZÄ , ξk),

explicitly computing f(D̃(L−i)), f((W(L−i))HD̃(L−i)W(L−i)) and recursively approximating f(B(L−i−1)).
In particular, the procedure can be iterated considering the decomposition

B(L−i−1) = D̃(L−i−1) + Z(L−i−1)A(L−i−2)(Z(L−i−1))H ,

given by Proposition 5.3.1.
Assuming that A admits a standard (Hermitian) telescopic decomposition {UÄ , DÄ}, the described

procedure starts by taking ZÄ = UÄ and D̃Ä = DÄ for each leaf node Ä . It results in a telescopic decom-
position for an approximation of f(A), with generators {WÄ , CÄ}; the generators WÄ are deûned by the
rational Krylov subspaces constructed throughout the process, whereas CÄ takes the form

CÄ :=

{
f(D̃Ä ) if Ä is the root node

f(D̃Ä )−WÄf(W
H
Ä D̃ÄWÄ )W

H
Ä otherwise.

The procedure is summarized in Algorithm 5.
Let us emphasize that even if the decomposition(5.13) is used in the course of the algorithm, the û-

nal result has a Hermitian telescopic decomposition in the sense of Deûnition 5.2.3. The non-orthogonal
factors Z(ℓ) are only needed to represent intermediate stages.

To discuss the complexity of Algorithm 5, let r denote the HSS/telescopic rank of A, assume that

n = 2Lt, with the threshold size t ∼ kr, and that the cluster tree is balanced: T = T (L)
t . On the leaf level

L, the computation of allWÄ andCÄ requiresO(2L(t3+krt2)) = O(nk2r2) operations. On level ℓ < L,
the complexity isO(2ℓk3r3) = O(2−(L−ℓ)nk2r2). This gives a total complexity of

O(nk2r2), (5.18)

which is linear in n if both r and k are considered constant.
We conclude this sectionwith a result that bounds the approximation error of Algorithm 5 by the rational

approximation error of f on [¼min, ¼max].

Theorem 5.3.2. Let A be a Hermitian HSS matrix associated with a cluster tree T of depth L and let ξk =
{À0, . . . , Àk−1} ¦ C, be a sequence of poles closed under complex conjugation. Let f be a function analytic
on an interval [¼min, ¼max] containing the eigenvalues of A. Letting E(f) denote the difference between
f(A) and the ouput of Algorithm 5 applied to a standard decomposition of A, it holds that

∥E(f)∥2 f 4L min
r∈Pk/qk

∥f − r∥∞ .
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Algorithm 5 Computation of f(A) for Hermitian HSS matrix A in telescopic decomposition.

Input: {UÄ , DÄ} standard Hermitian telescopic decomposition of matrixA, function f , sequence of poles
ξk = {À0, . . . , Àk−1} ¦ C closed under complex conjugation

Output: {WÄ , CÄ} telescopic factorization of an approximation to f(A)
1: for ℓ = L,L− 1, . . . , 0 do

2: for each node Ä of depth ℓ do

3: if ℓ = L then

4: ZÄ ← UÄ

5: D̃Ä ← DÄ

6: else

7: Let ³ and ´ be the children of Ä

8: ZÄ ←
[
WH

³ Z³

WH
´

Z´

]
UÄ

9: D̃Ä ←
[
WH

³ D̃³W³

WH
´

D̃´W´

]
+
[
WH

³ Z³

WH
´

Z´

]
DÄ

[
ZH
³ W³

ZH
´
W´

]

10: end if

11: if ℓ = 0 then

12: CÄ ← f(D̃Ä )
13: else

14: WÄ ← orthonormal basis ofQk(D̃Ä , ZÄ , ξk)
15: CÄ ← f(D̃Ä )−WÄf(W

H
Ä D̃ÄWÄ )W

H
Ä

16: end if

17: end for

18: end for

Proof. Let {WÄ , CÄ}Ä∈T be the telescopic decomposition returned by Algorithm 5 applied to a standard
Hermitian telescopic decomposition {UÄ , DÄ}Ä∈T . For each 1 f i f L − 1 let B(L−i) be the matrices

deûned in (5.16), and for each leaf node Ä ∈ T (L−i)
2rk , let D̃Ä = B

(L−i)
Ä,Ä . Moreover, to streamline the

notation, we let B(L) := A and D̃Ä := DÄ for each leaf node Ä ∈ T . For each i, let E(L−i)(f) be the
difference between f(B(L−i)) and its approximation (5.17). Since [¼min, ¼max] contains the eigenvalues
of B(L−i) and D̃Ä for each Ä , Theorem 2.4.1 implies

∥∥∥E(L−i)(f)
∥∥∥
2
f 4 min

r∈Pk/qk
∥f − r∥∞ . (5.19)

Denoting by F (L−i) the matrix generated by the Hermitian telescopic decomposition {WÄ , CÄ}Ä∈T L−i
2rk

for

0 f i f L, we have

f(B(L−i))− F (L−i) =

{
0 if i = L;

f(B(L−i))−C(L−i) −W(L−i)F (L−i−1)(W(L−i−1))H otherwise,

whereC(L−i), W(L−i) are the block diagonal matrices deûned by {CÄ}, {WÄ}, in accordance with (5.5).
For i < L we observe that

f(B(L−i))−C(L−i) = W(L−i)f(B(L−i−1))(W(L−i))H + E(L−i)(f),

and, hence,

f(B(L−i))− F (L−i) = W(L−i)
(
f(B(L−i−1))− F (L−i−1)

)
(W(L−i))H + E(L−i)(f).

Using that that the matrices W(L−i) have orthonormal columns, this implies

∥E(f)∥2 =
∥∥∥f(B(L))− F (L)

∥∥∥
2
f

L−1∑

i=0

∥∥∥E(L−i)(f)
∥∥∥
2
,

which concludes the proof after applying the inequality (5.19).
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5.4 Pole selection

Theorem 5.3.2 shows that the choice of poles in the rational Krylov subspacesQk(D̃Ä , ZÄ , ξk) is critical
to the convergence of Algorithm 5. Normally, repeated poles are preferred to reduce the cost of solving the
shifted linear systems needed for constructing a basis of the subspace [67]. However, such considerations
do not apply to Algorithm 5; solving linear systems with the small matrix D̃Ä (shifted by a pole) is cheap.

By Theorem 5.3.2, if f is an analytic function on an interval [a, b] that contains the eigenvalues of A
and the sequence of poles ξk satisûes

min
r∈Pk/qk

∥f − r∥∞ f
ϵ

4L
(5.20)

then Algorithm 5 returns an approximation of f(A) within an error bounded by a user-speciûed tolerance
ϵ > 0. In the following, we describe explicit pole selection strategies that ensure (5.20) for two important
classes of functions. For general f , general rational approximation methods, like the AAA algorithm [100],
can be used to select the poles.

5.4.1 Exponential function

In the context of the matrix exponential, it is not uncommon to use polynomial approximations, that is,
all poles are inûnite. However, the corresponding (polynomial) Krylov subspace methods often converge
poorly when the spectrum is wide, that is, aj b; see [12,76] for theoretical results. As their computational
overhead is small in our setting, it is preferable to use rational approximations/Krylov subspaces. Assuming
b f 0 (which can always be attained by shifting thematrix), it is well known [62] that for every k there exists
a sequence of poles ξk and a (universal) constant C such that

min
r∈Pk/qk

∥f − r∥∞ f CK−k
e , Ke ≈ 9.289.

In turn, this means that it sufûces to choose

k g log
(
4LCϵ−1

)/
log(Ke)

such that Algorithm 5 applied to a Hermitian negative semi-deûnite HSSmatrixA, returns an approximation
with an error ϵ. In particular, note that these estimates are independent of the width of the spectrum.
Following (5.18), this gives a complexity of

O(n(log log n+ log ϵ−1)2r2),

where r is the telescopic/HSS rank of A. For example, this implies that the ûxed-accuracy approximation
to the exponential of any tridiagonal Hermitian negative semi-deûnite matrixA has nearly linear complexity
O(n(log log n)2). We are not aware of any other algorithm that can achieve this.

5.4.2 Markov functions

Following the exposition in [10], we discuss pole selection for Markov functions, i.e., functions that can be
represented as

f(z) =

∫ ´

³

dµ(x)

z − x
(5.21)

for some positive measure µ(x) and −∞ f ³ < ´ < ∞. Important examples of functions in this class
are

log(1 + z)

z
=

∫ −1

−∞

−1/x
z − x

dx and zµ =
sin(Ãµ)

Ã

∫ 0

−∞

|x|µ
z − x

dx,

with−1 < µ < 0.
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Now, let f be a Markov function (5.21) and let A be a Hermitian HSS matrix whose eigenvalues are
enclosed in an interval [a, b]with a > ´. The quasi-optimal rational approximation of f has been discussed
in, e.g., [12, Section 6.2], which for every k provides a sequence of poles ξk such that

min
r∈Pk/qk

∥f − r∥∞ f 4 ∥f∥∞ exp

(
−k Ã2

log(16(b− ´)/(a− ´))

)
.

Hence, to achieve a relative accuracy ϵ in Algorithm 5, one can choose

k g log

(
16L

ϵ

)
log(16(b− ´)/(a− ´))

Ã2
, (5.22)

Assuming a polynomial growth of (b − ´)/(a − ´) (that depends on the condition number of the matrix
A − ´I) with respect to n, the complexity of the algorithm for Markov functions is, according to (5.18),
given by

O(n log2 n(log log n+ log ϵ−1 + log ∥f∥∞)2r2).

5.5 Numerical experiments

We have implemented Algorithm 5 in MATLAB and have made the code freely accessible at https://
github.com/numpi/HSS-matfun; this implementation will be denoted by TelFun in the following. In
our implementation, we allow for variable HSS/telescopic ranks (see Remark 5.1.1) and employ deüation
criteria in the computation of orthonormal bases for rational Krylov subspaces, removing vectors that after
the orthogonalization step have a norm smaller than a prescribed tolerance, proportional to the required
accuracy. The threshold size t of the employedHSSmatrices is ûxed at 256. In our experiments, all standard
operations with HSS matrices, such as matrix-vector products, have been performed using the hm-toolbox
[97]. In the tables presented in this section, columns with the caption “err” denote the relative error in the
Frobenius norm, compared with the result computed by a standard dense solver. Columns with the caption
“time” report the observed execution time in seconds. All experiments have been executed on a server with
two Intel(R) Xeon(R) E5-2650v4 CPU running at 2.20 GHz and 256 GB of RAM, using MATLAB R2021a with
the Intel(R) Math Kernel Library Version 2019.0.3.

The main competitor, denoted by CKM, is the algorithm developed in [33], in which the authors use the
HSS structure of A to perform a divide and conquer method for the computation of f(A). The algorithm
computes rational Krylov subspaces associated with (possibly large) HSS matrices, exploiting the struc-
ture in solving linear systems. The algorithm can also monitor the variation of the norm of the solution
when a new pole is employed; this quantity can be used to stop the procedure if the desired accuracy is
reached. We utilized an implementation of this algorithm available at https://github.com/Alice94/
MatrixFunctions-Banded-HSS.

5.5.1 Computation of the inverse

Algorithm 5 is an attractive method for computing the inverse of a Hermitian positive deûnite HSS matrix.
By Theorem 5.3.2, this algorithm returns the exact inverse (at least in exact arithmetic) when employing
only one zero pole. We have tested TelFun in this situation for two different matrices. In Table 5.1, we
report the results for the inversion of the discretized Laplacian, that is,

A = − 1

h2




−2 1

1
. . .

. . .
. . .

. . . 1
1 −2



∈ C

n×n, (5.23)
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where h = 1
n+1 . In Table 5.2, we show the results obtained when inverting a more general HSS matrix

(which is not banded) given by the Grünwald-Letnikov ûnite difference discretization of the symmetric frac-
tional derivative operator L³ := ∂³

∂x³ [98] for ³ = 1.5. In contrast to (5.23), this ûnite difference approx-
imation does not yield a sparse matrix, coherently with the non-local properties of fractional differential
operators. It can be proven that the matrix can be approximated in the HSS format [95] with an HSS rank
O(log n).

Additionally to CKM, we also compare to the randomized algorithm introduced by Levitt and Martinsson
in [90] (denoted by LM) based on the solution of a small number of linear systems involving A and the
inv procedure for HSS matrices implemented in the hm-toolbox which is based on the ULV factorization
described in [29] and explained in [97, Section 4.3]. The HSS ranks are calculated using the hssrank

command from [97], employing the default tolerance of 10−12.

size time TelFun time CKM time LM time ULV time Dense
1024 0.09 0.89 0.30 0.32 0.02
2048 0.11 1.21 0.33 0.35 0.08
4096 0.14 2.72 0.71 0.63 0.30
8192 0.27 6.94 2.03 0.91 1.12
16384 0.66 16.59 4.84 1.84
32768 1.18 37.91 11.98 4.20

size err TelFun err CKM err LM err ULV
1024 7.56e-13 7.74e-12 7.98e-12 8.03e-12
2048 6.15e-13 2.75e-12 7.29e-12 7.26e-12
4096 9.47e-12 5.86e-12 3.43e-12 3.99e-12
8192 8.15e-12 9.59e-11 1.58e-10 1.58e-10

Table 5.1: Comparison of the newly proposed algorithm TelFun with CKM, LM, and the inv command of
the hm-toolbox based on the ULV decomposition, for computing A−1, where A is the discretized Lapla-
cian (5.23).

Although not speciûcally designed for matrix inversion, TelFun is always the fastest among the meth-
ods that exploit HSS structure, while attaining a comparable level of accuracy. Even the closest competitor
ULV is signiûcantly slower, by up to a factor 334.

5.5.2 Computation of the exponential function

To show the effectiveness of rational approximation of the exponential function, in Table 5.3 we compute
the matrix exponential of a tridiagonal matrixA, whose eigenvalues are uniformly distributed in [−10a, 0],
for different values of a. For the computation, we compare the presented method with optimal poles and
CKM with both optimal and inûnity poles, in the latter case the built-in stopping criteria are employed. In
Table 5.4 we also report the comparison between the presented method and the expm function imple-
mented in the hm-toolbox for the computation of exp(A) based on the Padè approximant, where A is the
discretized Laplacian deûned in (5.23).

Again, our newly proposed method TelFun is signiûcantly faster than the competitors, while resulting
in comparable accuracy. Note that CKM Poly appears to not use the correct stopping criterion for larger a,
resulting in an unacceptably large error.

5.5.3 Computation of the inverse square root

To test the presented algorithm for the computation of the inverse square root of an HSS matrix, we con-
sider the problem of sampling from a Gaussian Markov random ûeld (see [33, Section 4.2]) which reduces



76 CHAPTER 5. COMPUTING FUNCTIONS OF HERMITIAN HSS MATRICES

size HSS rank A time TelFun time CKM time LM time ULV time Dense
1024 29 0.11 0.65 0.31 0.26 0.08
2048 32 0.21 0.84 0.44 0.38 0.37
4096 35 0.36 2.17 1.06 0.63 1.72
8192 37 0.62 5.48 2.14 1.41 11.20

size HSS rank A err TelFun err CKM err LM err ULV
1024 29 5.50e-13 1.11e-12 4.16e-13 7.24e-12
2048 32 4.78e-13 3.26e-12 1.18e-12 2.11e-11
4096 35 2.08e-12 2.75e-11 2.53e-12 6.81e-11
8192 37 4.99e-12 4.36e-11 9.68e-12 1.75e-10

Table 5.2: Comparison of the newly proposed algorithm TelFun with CKM, LM, and the inv command of
the hm-toolbox based on the ULV decomposition, for computing A−1, where A is the Grünwald-Letnikov
ûnite difference discretization of the fractional derivative of order ³ = 1.5 [95, 98].

a time TelFun time CKM Poly time CKM Rat err TelFun err CKM Poly err CKM Rat
0 0.82 1.38 13.06 1.04e-11 2.16e-10 1.52e-10
2 0.67 1.31 11.15 2.89e-10 1.75e-07 6.11e-09
4 0.76 0.48 10.32 2.50e-12 1.05e-03 1.20e-08
6 0.52 0.52 10.13 2.84e-10 1.03e-02 4.69e-11
8 0.53 0.48 10.14 3.36e-08 1.21e+01 5.28e-08

Table 5.3: Computation of the matrix exponential of a matrix of size 4096, whose eigenvalues are uniformly
distributed in [−10a, 0], for different values of a. The accuracy is set to 10−8.

to the computation of the inverse of the square root of a banded matrix. In Table 5.5 we compare our al-
gorithm with optimal poles, with CKM with extended poles (i.e., alternating 0 and∞); the latter choice of
poles is the one made by the authors of CKM for solving the presented problem: since the algorithm needs
to solve possibly large linear systems, the choice of using mutually different poles can often not be the
most advantageous strategy. The number of poles to employ in our method is given by (5.22) (which is in
practice very pessimistic) and the accuracy is only used in the determination of the deüation tolerance. The
termination of CKM is due to the built-in stopping criteria. For completeness, we also approximate f(A)
by explicitly evaluating a rational approximation of f : the poles and the residuals of the rational approx-
imation have been derived using the AAA algorithm [100], and for the evaluation, the HSS structure has
been exploited using the hm-toolbox [97]. In all the cases reported, the degree of the rational approximant
constructed by AAA is 12. While TelFun is still faster than CKM for sufûciently large n, its advantage in
terms of speed is less evident for this example. Note, however, that its error is signiûcantly lower.

We also show a comparison between TelFun and CKM, both with (quasi-)optimal poles, for the ap-
proximation of the fractional Laplacian i.e., the computation of (−A)−1/2, whereA is deûned in (5.23). In
Table 5.6 we compare the timing and the relative error between the presented algorithm and CKM using in
both cases 50 optimal poles and varying the size of A.

5.5.4 Computation of the sign function

In this section, we compute f(A) where f is the sign function, i.e.,

f(z) =

{
1 z > 0,

−1 z f 0.

Assuming thatA has both positive and negative eigenvalues (otherwise the computation of f(A) is trivial)
the discontinuity of the function does not allow for a reasonable rational approximation on an interval
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size time TelFun time expm err TelFun err expm
1024 0.33 2.12 4.58e-10 5.35e-04
2048 0.59 3.45 2.01e-09 2.14e-03
4096 1.02 7.01 6.16e-09 8.52e-03
8192 2.03 14.87 2.75e-08 3.37e-02

Table 5.4: Computation of exp(A) where A is the discretization of the Laplacian deûned in (5.23) of n
using the presented method and the routine expm of the hm-toolbox. The accuracy is set to 10−8.

size HSS rank A time TelFun time CKM time Rat time Dense
512 22 0.13 0.22 1.28 0.03
1024 20 0.29 0.30 2.38 0.23
2048 21 0.57 0.73 5.09 0.87
4096 21 1.24 1.55 12.82 7.04
8192 23 3.36 4.07 27.32 63.07
16384 25 6.90 9.17
32768 28 13.83 20.05
65536 24 27.21 44.85
131072 27 54.50 104.01

size HSS rank A err TelFun err CKM err Rat
512 22 6.67e-14 2.02e-09 1.87e-09
1024 20 1.32e-13 2.70e-09 6.52e-09
2048 21 6.00e-11 3.64e-09 3.73e-09
4096 21 1.99e-13 3.39e-09 4.34e-09
8192 23 1.11e-13 3.72e-09 5.52e-09

Table 5.5: Comparison of the newly proposed algorithm TelFun (using optimal poles), CKM with extended
Krylov subspaces, and the evaluation of a rational approximation, for the computation of f(A) with accu-
racy of 10−8, where f(z) = 1/

√
z, and A is the sampling from a Gaussian Markov random ûeld.

containing the eigenvalues of A. In particular, our convergence result from Theorem 5.3.2 does not apply.
On the other hand, if the eigenvalues of A are contained in E = [−b,−a] ∪ [a, b], with a, b,> 0, then
the best rational approximation of the sign function on E is explicitly known in terms of elliptic functions,
see [106, Section 4.3]. In Table 5.7, we test the time and the accuracy of the proposedmethod on tridiagonal
matrices whose positive eigenvalues are logarithmically distributed in the interval [10a, 1] and the negative
ones are given by the symmetrization with respect to the imaginary axis. We compare the results with the
ones obtained by running CKM with optimal poles and with the evaluation of the rational approximation
given by the AAA algorithm [100], using the routines contained in the hm-toolbox [97].

While not covered by the theory, TelFun is clearly the best method and attains good accuracy until
a = −7. For a = −9, the accuracy of all methods suffers from the fact that the eigenvalues get too close
to zero.
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size time TelFun time CKM time Dense err TelFun err CKM
1024 1.44 7.15 0.19 1.32e-11 2.04e-11
2048 1.71 15.95 1.05 1.13e-11 4.68e-11
4096 4.68 41.94 7.96 1.31e-10 1.77e-10
8192 7.87 91.89
16384 16.30 223.16

Table 5.6: Comparison of the newly proposed algorithm TelFun with CKM, for the computation of f(A)
where f(z) = 1/

√
z, and A is the discretization of the Laplacian. In both algorithms 50 quasi-optimal

poles have been employed.

a time TelFun time CKM time Rat err TelFun err CKM err Rat
-1 1.73 20.55 50.28 3.75e-10 3.72e-10 1.73e-09
-3 4.13 38.46 128.93 2.60e-10 4.10e-08 1.51e-08
-5 9.72 57.99 121.76 2.70e-10 2.12e-06 7.49e-08
-7 18.24 78.37 137.72 2.99e-08 1.79e-08 1.51e-05
-9 14.08 43.04 139.65 7.45e-02 7.83e-02 3.98e-02

Table 5.7: Computation of sign(A), whereA is a tridiagonal matrix of size 4096with logarithmically spaced
eigenvalues, symmetric with respect to the imaginary axis contained in [−1,−10a] ∪ [10a, 1].



Chapter 6

Block Lanczos method with rational Krylov
compression

The material presented in this chapter is a slight adjustment of the joint work with Igor Simunec described
in [28].

A fundamental problem in numerical linear algebra is the approximation of the action of a matrix func-
tion f(A) on a block vector C , where A ∈ C

n×n is a matrix that is typically large and sparse, C ∈ C
n×b

is a block vector and f is a function deûned on the spectrum ofA. In this work, we focus on the case ofA
Hermitian.

Popular methods for the approximation of f(A)C are (block) polynomial [54, 57, 69, 77, 92, 111] and
rational Krylov methods [1, 18, 40, 67, 99]. The former only accesses A via matrix-vector products, while
the latter requires the solution of shifted linear systems with A. When the linear systems can be solved
efûciently, rational Krylovmethods can bemore effective than polynomial Krylovmethods since they usually
require much fewer iterations to converge. However, there are several situations in which rational Krylov
methods are not applicable, either because the matrix A is only available implicitly via a function that
computes matrix-vector products, or whenA is very large and the solution of linear systems is prohibitively
expensive.

WhenA is Hermitian, the core component of a block polynomial Krylov method is the block Lanczos al-
gorithm [112], which constructs an orthonormal basisQm = [Q(1) . . . Q(m)] of the block polynomial Krylov
subspaceKm(A,C) by exploiting a short term recurrence. The product f(A)C can then be approximated
by the Lanczos approximation

Fm := Qmf(Tm)E1Θ, Tm := QH
mAQm, (6.1)

where E1 = [Ib, 0]
H ∈ C

mb×b and C = Q(1)Θ, with Θ ∈ C
b×b is a thin QR factorization of C.

The block Lanczos algorithm uses a short-term recurrence in the orthogonalization step, so each new
block vector is orthogonalized only against the last two block columns of the orthonormal basis, and only
three block vectors need to be kept in memory to compute the basis Qm. Although the basis Qm and the
projected matrixTm can be computed by using the short-term recurrence, which only requires the storage
of the last three block columns of the basis, forming the approximate solution Fm still requires the full
basisQm. When the matrixA is very large, there may be a limit on the maximum number of block vectors
that can be stored, so with a straightforward implementation of the block Lanczos method there is a limit
on the number of iterations that can be performed and hence on the attainable accuracy. In the literature,
several strategies have been proposed to deal with low memory issues. See the recent surveys [68,69] for
a comparison of several low-memory methods.

A simple but effective approach is the two-pass Lanczos method [21,57]. With this approach, the block
Lanczos method is ûrst run once to determine the projected matrix Tm and compute the short vector
Zm = f(Tm)E1Θ. After Zm has been computed, the block Lanczos method is run for a second time to
form the product Fm = QmZm as the columns of Qm are computed. This method requires doubling the

79
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number of matrix-vector products withA with respect to standard block Lanczos, but it requires storage of
only three block vectors simultaneously.

Another possibility is the multi-shift conjugate gradient method [55, 127]. This method is based on an
explicit approximation of f with a rational function r expressed in partial fraction form. Then, f(A)C ≈
r(A)C is approximated by using the conjugate gradient method to solve each of the linear systems that
appear in the partial fraction representation of r(A)C. This can be done efûciently by exploiting the shift
invariance of Krylov subspaces, i.e., the fact thatKm(A,C) = Km(A+ ¹I, C) for any ¹ ∈ R, in order to
use a single Krylov subspace to approximate solutions to all the linear systems simultaneously. Compared
to Lanczos, thismethod requires performing additional vector operations and storing vectors proportionally
to the number of poles of the rational approximant r.

When f is a Stieltjes function, it is possible to use a restarting strategy that is similar to the restarted
Krylov subspace methods for linear systems [43, 53, 54]. By exploiting the Stieltjes integral representation
of the function f , we can write the error after a certain number of Lanczos iterations as f(A)C − Fm =
fm(A)Qm+1, where fm is still a Stieltjes function that depends on f and Tm. This property makes it
possible to restart the Lanczosmethod after a certain number of iterations, and then iteratively approximate
the error using the same method.

Recently, a low-memory method has been proposed to compute an approximation from a Krylov sub-
space to f(A)C when f is a rational function [31]. This approximation is optimal in a norm that depends on
the denominator of the rational function. If d is the degree of the denominator of f , the approximation from
Kk(A,C) can be computed with (k + d)b matrix-vector products with A, while storing approximately 2d
block vectors. This method can be extended to non-rational functions f by means of rational approxima-
tions, and it often produces approximations that are comparable or better than the Lanczos approximation.

In this chapter, we propose a new low-memory algorithm for the approximation of f(A)C. Our method
combines outer block Lanczos iterations with inner block rational Krylov subspaces, which are used to
compress the outer Krylov basis whenever it reaches a certain size. Similarly to the procedure described in
Section 5.3, the inner block rational Krylov subspace does not involve thematrixA, but only small matrices.
This is a key observation since constructing a basis of the inner subspace does not require the solution of
linear systems withA, and hence it is cheap compared to the cost of the outer block Lanczos iteration. The
approximate solutions computed by our algorithm coincide with the ones constructed by the block Lanczos
method when f is a rational function, and for a general function they differ by a quantity that depends on
the best rational approximant of f with the poles used in the inner block rational Krylov subspace. In order
to obtain a meaningful advantage when compressing the basis, the algorithm that we propose should be
used when the block Lanczos method requires several iterations to converge.

If the outer Krylov basis is compressed everym iterations and the inner block rational Krylov subspace
has k poles, our approach requires storing approximately m + k block vectors. Additionally, due to the
basis compression, our approximation requires computing functions of matrices of size at most (m +
k)b × (m + k)b, so the cost does not grow with the number of iterations. This represents an important
advantage with respect to the block Lanczos method, since when the number of iterations is very large the
evaluation of f on the projected matrix can become quite expensive.

6.1 Block Lanczos algorithm

When the Arnoldi algorithm is employed for the computation of an orthonormal basisQk ofKk(A,C), the
orthogonalization steps can signiûcantly slow down the procedure for large k. If A is Hermitian, orthogo-
nalizing only with respect two block vectors at each orthogonalization step (theoretically) guarantees the
orthogonality of the Krylov basis. This variant of the Arnoldi algorithm is commonly known as the block
Lanczos algorithm see [112] or [61, Section 10.3.6]. After the kth step, the block Lanczos algorithm com-
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Algorithm 6 Block Lanczos Algorithm

Input: A ∈ C
n×n, C ∈ C

n×b, k ∈ N

Output: Qk ∈ C
n×kb,∆1, . . . ,∆k−1,Γ1, . . .Γk−1,∈ C

b×b

1: [Q(1), R]← qr(C) ▷ where qr is a thin QR factorization
2: for j = 1, . . . , k − 1 do

3: [Q(j+1),∆j ,Γj ]← Algorithm 7(A,Q(j−1), Q(j),Γj−1)
4: end for

5: Qk ← [Q(1), . . . , Q(k)]

Algorithm 7 Single iteration of block Lanczos

Input: A ∈ C
n×n, Q(1), Q(2) ∈ C

n×b,Γ1 ∈ C
b×b

Output: Q(3) ∈ C
n×b,∆2,Γ2 ∈ C

b×b

1: Z ← AQ(2) −Q(1)ΓH
1

2: ∆2 ← (Q(2))HZ
3: Z ← Z −Q(2)∆2

4: [Q(3),Γ2]← qr(Z) ▷ where qr is a thin QR factorization

putes the block columns of Qk , the block tridiagonal matrix

Tk−1 = QH
k−1AQk−1 =




∆1 ΓH
1

Γ1 ∆2
. . .

. . .
. . . ΓH

k−2

Γk−2 ∆k−1




with Γi,∆i ∈ C
b×b and the matrix Γk−1 := (Q(k))HAQ(k−1) ∈ C

b×b, where Q(k) and Q(k−1) are the
last and second-to-last block columns ofQk , respectively, as summarized in Algorithm 6. As in the Arnoldi
algorithm, if Qk is computed by the block Lanczos algorithm, its ûrst i block columns span Ki(A,C)
for each i f k. It has been observed that the block Lanczos algorithm can produce a numerical loss of
orthogonality in the columns of Qk in ûnite precision arithmetic, see [61, Section 10.3] for more details.

Given a function f well deûned on the spectrum of A, approximating f(A)C by projection onto the
Krylov subspace Kk−1(A,C), employing (6.1) requires the computation of the ûrst block column of the
matrix f(Tk−1). The following lemma describes how to exploit the block tridiagonal structure of Tk−1

when f is a rational function.

Lemma 6.1.1. Let r = p/q be a rational function with complex conjugate roots and poles, and denote by ξk
the sequence of cardinality k := max{deg(p) + 1, deg(q)} that contains the poles of r and inûnity in the
remaining elements. Let A ∈ C

n×n be a Hermitian matrix, partitioned as

A =

[
A11

A22

]
+

[
A12

AH
12

]
,

with A11 ∈ C
m×m. Assume that A12 = BCH , where B ∈ C

m×b and C ∈ C
(n−m)×b. Then

r(A) =

[
r(A11)

r(A22)

]
+

[
Uk

I

]
Xk(r)

[
UH
k

I

]
, (6.2)

where Uk is an orthonormal basis ofQk(A11, B, ξk), I is the (n−m)× (n−m) identity matrix and

Xk(r) = r

([
UH
k A11Uk UH

k BCH

CBHUk A22

])
−
[
r(UH

k A11Uk)
r(A22)

]
. (6.3)
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In particular, for any block vector of the form

[
V
0

]
where V ∈ C

m×b, we have

r(A)

[
V
0

]
=

[
Y
0

]
+

[
Z
0

]
+R, (6.4)

where
Y = r(A11)V, Z = −Ukr(U

H
k A11Uk)U

H
k V

and

R =

[
Uk

I

]
r

([
UH
k A11Uk UH

k BCH

CBHUk A22

])[
UH
k V
0

]
.

Proof. We can write [
A12

AH
12

]
=

[
B

C

] [
0 Ib
Ib 0

] [
BH

CH

]
.

Due to Proposition 2.3.3, we have

Qk

([
A11

A22

]
,

[
B

C

]
, ξk

)
= span

([
Uk

Vk

])
,

where Vk is an orthonormal basis ofQk(A22, C, ξk). Since

span

([
Uk

Vk

])
¦ span

([
Uk

In−m

])
,

we can use Proposition 2.4.2 to obtain (6.2), and (6.4) as an immediate consequence.

In particular, Lemma 6.1.1 shows that if f is a rational function, the block vector f(Tk−1)E1 can be
computed as the sum of the three terms given by (6.4), where the ûrst two terms only involve a sumbatrix
of Tk−1 that can be taken as the projection of A onto Kj(A,C), for j < k − 1 and the second term is
recoursively deûned as the product between the evaluation of f on a smaller matrix and a block vector.
This will be the key idea for the development of the algorithm described in Section 6.2

6.2 Algorithm description

In this section, we present a low-memory implementation of a Krylov subspacemethod for the computation
of f(A)C for a Hermitian matrixA and a block vectorC. On a high level, we use an outer block polynomial
Krylov subspace, combined with an inner rational Krylov subspace that is employed to compress the outer
Krylov subspace basis and reduce memory usage. The inner Krylov subspace is constructed using the
projection ofA on the outer Krylov subspace, so it does not involve any expensive operationswith thematrix
A. This approach is designed for scenarios where the (outer) Lanczos method requires a large number of
iterations to converge, in order to take full advantage of the basis compressions. The Lanczos iterations
should be cheaper than the solution of shifted linear systems involving A and the poles employed in the
inner Krylov method, otherwise it would bemore efûcient to simply use a rational Krylov method associated
with the inner poles directly on the matrix A.

The algorithm is composed of s cycles, with each cycle consisting inm iterations of the block Lanczos
method (except for the initial cycle where we performm+k iterations), and a subsequent compression of
the basis to k block vectors. At any givenmoment, the algorithm keeps inmemory atmostm+k basis block
vectors and some additional quantities (whose storage is not dependent on n), such as projected matrices
of size (m + k)b. In total, the algorithm performs M = k +ms iterations of the outer Lanczos method,
and the approximation computed at the end of each cycle coincides with the approximation computed by
a standard implementation of the block Lanczos method, up to an error due to the rational approximation
done in the inner Krylov subspace, which is usually negligible. This error is zero in the case where f is a
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rational function of type (k − 1, k), so for simplicity we start by describing the algorithm in this special
case.

Let r be a rational function of type (k − 1, k), i.e., r(z) = p(z)/q(z) with p and q polynomials of
degrees at most k − 1 and k, respectively. We assume that r has complex conjugate roots and poles.
We let ξk be the sequence of poles {À0, . . . , Àk−1} containing the roots of q and inûnity in the remaining
entries in the case deg(q) < k. These poles will be used for the inner rational Krylov iteration. Our goal is
to construct an approximation of r(A)C from the outer Krylov subspaceKM (A,C), whereM = k+ms.
Throughout this section, we are going to denote by Qj , and Tj the matrices associated with the outer
Krylov subspace Kj(A,C), according to the notation used in Section 6.1.

We also introduce some additional notation for the matrices associated with the outer Krylov subspace
KM (A,C), in order to simplify the exposition in this section. We denote by Q̂ := QM the orthonormal
basis of KM (A,C) and by T̂ := Q̂HAQ̂ = TM .

We denote the approximation (6.1) to r(A)C from KM (A,C) by

Ŷ := Q̂ r(T̂ )E1Θ, (6.5)

whereE1 = e1¹ Ib ∈ C
Mb×b andΘ ∈ C

b×b sathisûes Q̂HC = E1Θ.We split Q̂ = [Q1, Q2, . . . , Qs],
with Q1 ∈ C

n×(k+m)b and Qi ∈ C
n×mb for i = 2, . . . , s. We also use the notation Q̂i = [Qi, . . . , Qs],

so that we have Q̂i = [Qi, Q̂i+1] for i = 1, . . . , s− 1.
We introduce a similar notation for the matrix T̂ . We denote by Ti the ith diagonal block of T̂ , with

T1 ∈ C
(k+m)b×(k+m)b and Ti ∈ C

mb×mb for i = 2, . . . , s, and by T̂i+1 ∈ C
(s−i)mb×(s−i)mb the trailing

block on the diagonal after Ti. So we have

T̂ =

[
T1 B1E

H
1

E1B
H
1 T̂2

]
, T̂i =

[
Ti BiE

H
1

E1B
H
i T̂i+1

]
, 2 f i f s− 1,

whereB1 ∈ C
(m+k)b×b,Bi ∈ C

mb×b for i = 1, . . . , s−1,E1 is the block vector [Ib, 0]
H of the appropriate

dimension, and T̂s = Ts. The block structure of T̂ results from its block tridiagonal form.

6.2.1 First cycle

We have

T̂ =

[
T1

T̂2

]
+

[
B1E

H
1

E1B
H
1

]
.

Let U1 ∈ C
(m+k)b×kb be an orthonormal basis of the block rational Krylov subspace Qk(T1, B1, ξk).

Using Lemma 6.1.1, we can write

r

([
T1 B1E

H
1

E1B
H
1 T̂2

])[
E1Θ
0

]
=

[
Ỹ1
0

]
+

[
W̃1

0

]
+ R̃1

where
Ỹ1 = r(T1)E1Θ, W̃1 = −U1r(U

H
1 T1U1)U

H
1 E1Θ,

and

R̃1 =

[
U1

I

]
r

([
UH
1 T1U1 UH

1 B1E
H
1

E1B
H
1 U1 T̂2

])[
UH
1 E1Θ
0

]
.

Recalling the notation introduced above, we have

Q̂r(T̂ )E1Θ =
[
Q1 Q̂2

]([
Ỹ1
0

]
+

[
W̃1

0

]
+ R̃1

)
= Q1Ỹ1 +Q1W̃1 +

[
Q1 Q̂2

]
R̃1.

To summarize, we have obtained

Ŷ = Q̂ r(T̂ )E1Θ = Y1 +W1 +R1 (6.6)
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where
Y1 = Q1r(T1)E1Θ

is the approximation (6.1) to r(A)C from Kk+m(A,C),

W1 = −Q1U1r(U
H
1 T1U1)U

H
1 E1Θ

and

R1 =
[
Q1U1 Q̂2

]
r

([
UH
1 T1U1 UH

1 B1E
H
1

E1B
H
1 U1 T̂2

])[
UH
1 E1Θ
0

]
. (6.7)

After the ûrst k +m iterations of the outer Krylov subspace method, we can compute Y1 and W1, but
the remainder R1 still involves Q̂2 and T̂2, which have not been computed yet. A crucial observation that
allows us to save memory is that in (6.7) the basisQ1 only appears in the productQ1U1, so from now it is
not necessary to keep in memory the whole matrix Q1.

Introducing the notation V1 := Q1, S1 := T1, Z1 := E1Θ and B̃1 := B1, we can write

R1 =
[
V1U1 Q̂2

]
r

([
UH
1 S1U1 UH

1 B̃1E
H
1

E1B̃
H
1 U1 T̂2

])[
UH
1 Z1

0

]
. (6.8)

The notation introduced for (6.8) sets us up for describing the i−th cycle of the algorithm.

6.2.2 i−th cycle

At the beginning of the ith cycle, with 2 f i f s− 1, our task is to compute the remainder Ri−1 from the
previous cycle, which is given by

Ri−1 =
[
Vi−1Ui−1 Q̂i

]
r

([
UH
i−1Si−1Ui−1 UH

i−1B̃i−1E
H
1

E1B̃
H
i−1Ui−1 T̂i

])[
UH
i−1Zi−1

0

]
. (6.9)

Note that (6.8) coincides with (6.9) with i = 2.
Expanding T̂i in terms of Ti, Bi and T̂i+1, we have

[
UH
i−1Si−1Ui−1 UH

i−1B̃i−1E
H
1

E1B̃
H
i−1Ui−1 T̂i

]
=



UH
i−1Si−1Ui−1 UH

i−1B̃i−1E
H
1

E1B̃
H
i−1Ui−1 Ti BiE

H
1

E1B
H
i T̂i+1


 .

Introducing the notation Vi :=
[
Vi−1Ui−1 Qi

]
∈ C

n×(k+m)b, Zi :=

[
UH
i−1Zi−1

0

]
∈ C

(k+m)b, B̃i :=
[
0
Bi

]
∈ C

(k+m)b and

Si =

[
UH
i−1Si−1Ui−1 UH

i−1B̃i−1E
H
1

E1B̃
H
i−1Ui−1 Ti

]
,

we can rewrite (6.9) as

Ri−1 =
[
Vi Q̂i+1

]
r

([
Si B̃iE

H
1

E1B̃
H
i T̂i+1

])[
Zi

0

]
. (6.10)

The right-hand side of (6.10) can be computed with the same strategy that was used in the ûrst cycle to
compute Q̂r(T̂ )E1Θ. Letting Ui ∈ C

(k+m)b×kb be an orthonormal basis of Qk(Si, B̃i, ξk), we can use
Lemma 6.1.1 once again to obtain

r

([
Si B̃iE

H
1

E1B̃
H
i T̂i+1

])[
Zi

0

]
=

[
Ỹi
0

]
+

[
W̃i

0

]
+ R̂i
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where
Ỹi = r(Si)Zi, W̃i = −Uir(U

H
i SiUi)U

H
i Zi

and

R̂i =

[
Ui

I

]
r

([
UH
i SiUi UH

i B̃iE
H
1

E1B̃
H
i Ui T̂i+1

])[
UH
i Zi

0

]
.

From this, we easily obtain

Ri−1 = ViỸi + ViW̃i + [Vi Q̂i+1]R̂i = Vir(Si)Zi +Wi +Ri, (6.11)

where
Wi = −ViUir(U

H
i SiUi)U

H
i Zi

and

Ri =
[
Vi Q̂i+1

]
R̂i =

[
ViUi Q̂i+1

]
r

([
UH
i SiUi UH

i B̃iE
H
1

E1B̃
H
i Ui T̂i+1

])[
UH
i Zi

0

]
. (6.12)

Note that if we replace i with i−1 in (6.12) we obtain (6.9), i.e., we have written the remainderRi in a form
that is ready for the (i+ 1)th cycle.

The approximate solution to r(A)C is updated with the identity

Yi = Yi−1 +Wi−1 + Vir(Si)Zi. (6.13)

Recalling (6.6), in the ûrst cycle we have Ŷ = Y1+W1+R1. It is easy to prove by induction that a similar
identity holds in all subsequent cycles. Indeed, assuming that Ŷ = Yi−1 +Wi−1 +Ri−1, we have

Ŷ = Yi−1 +Wi−1 + Vir(Si)Zi +Wi +Ri = Yi +Wi +Ri,

where we have used (6.11) and (6.13). Note that, similarly to the ûrst cycle, in (6.12) the matrix Vi only
appears multiplied by Ui, so after computing Yi and Wi it is no longer necessary to store the whole basis
Vi.

6.2.3 Final cycle

The ûnal cycle is slightly simpler since we can compute the remainder directly instead of using the low-rank
update formula. Indeed, at the beginning of the sth cycle the remainder Rs−1 can be computed directly
from (6.12), that reads

Rs−1 =
[
Vs−1Us−1 Qs

]
r

([
UH
s−1Ss−1Us−1 UH

s−1B̃s−1E
H
1

E1B̃
H
s−1Us−1 Ts

])[
UH
s−1Zs−1

0

]
.

Using the same notation introduced in previous cycles, we deûne Vs :=
[
Vs−1Us−1 Qs

]
,

Zs :=

[
UH
s−1Zs−1

0

]
and Ss :=

[
UH
s−1Ss−1Us−1 UH

s−1B̃s−1E
H
1

E1B̃
H
s−1Us−1 Ts

]
,

so we have
Rs−1 = Vsr(Ss)Zs,

and the ûnal approximation to r(A)C is obtained as

Ys = Ys−1 +Ws−1 + Vsr(Ss)Zs. (6.14)

Note that (6.14) coincides with (6.13) where i has been replaced by s, so in the ûnal cycle of the algorithm
we compute the same update as in the other cycles, even though the derivation is different.

Since in the (s − 1)th cycle we have Ŷ = Ys−1 + Ws−1 + Rs−1, it follows that Ys = Ŷ , i.e., in the
last cycle the algorithm that we described computes the same approximation to r(A)C as M = k + sm
iterations of the outer Lanczos method. We are going to show in Proposition 6.3.1 that the same approxi-
mations as Lanczos are computed also in the intermediate cycles. The resulting algorithm is summarized
in Algorithm 8.
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Algorithm 8 RK-Compressed Lanczos for f(A)C

Input: A ∈ C
n×n, C ∈ C

n×b, k, s,m ∈ N, ξk = {À0, . . . , Àk−1}.
Output: Ys ≈ f(A)C , such that Ys ∈ Kk+sm(A,C)

▷ First outer cycle:
1: Runm+ k+ 1 iterations of the block Lanczos algorithm taking as inputA and C , to computeQ1, T1

and B1

2: Compute the ûrst approximation Y1 = Q1f(T1)E1Θ, where E1Θ = QH
1 C

3: Deûne S1 := T1, V1 := Q1, Z1 := E1Θ and B̃1 := B1

▷ Other outer cycles:
4: for i = 2, . . . , s do

5: Construct the basis Ui−1 of the rational Krylov subspace Qk(Si−1, B̃i−1, ξk) employing the
Arnoldi algorithm

6: Compute the correction Wi−1 = −Vi−1Ui−1f(U
H
i−1Si−1Ui−1)U

H
i−1Zi−1

7: Run m additional iterations of the block Lanczos algorithm to compute Qi, Ti and B̃i

8: Deûne Vi :=
[
Vi−1Ui−1 Qi

]
, Zi =

[
UH
i−1Zi−1

0

]
, Si =

[
UH
i−1Si−1Ui−1 UH

i−1B̃i−1E
H
1

E1B̃
H
i−1Ui−1 Ti

]
.

9: Update the approximation Yi = Yi−1 +Wi−1 + Vif(Si)Zi

10: end for

6.3 Analysis and comparison with existing algorithms

In this section, we analyze Algorithm 8 from both a theoretical and computational point of view, and we
compare it with other low-memory methods from the literature.

6.3.1 Theoretical results

We start by showing that the iterates computed by Algorithm 8 coincide with iterates of the Lanczosmethod
when f is a rational function.

Proposition 6.3.1. When f is a rational function of type (k − 1, k) with poles given by ξk , the approxima-
tions {Yi}si=1 computed by Algorithm 8 coincide with the approximations given by (6.1) with a block Krylov
subspace of the appropriate dimension. Precisely, for any i = 1, . . . , s we have

Yi = Qk+imf(Tk+im)E1Θ, Tk+im = QH
k+imAQk+im,

where Qk+im is the orthonormal basis ofKk(A,C) generated by the block Lanczos algorithm.

Proof. We have already observed that Y1 coincides with the approximation (6.1) from the Krylov subspace
Kk+m(A,C), and we have shown at the end of Section 6.2.3 that Ys coincides with the approximation Ŷ
computed by the outer Krylov method after M = k + sm iterations. To show that this also holds for all
other cycles, let us ûx 1 < i < s and suppose that we run a variant of Algorithm 8 with s replaced by
s′ = i and M replaced by M ′ = k + im. It is easy to see that this variant of the algorithm performs
exactly the same operations as the original one up to the (i − 1)th cycle, and hence computes the same
approximate solutions Y1, . . . , Yi−1. The only difference from the original algorithm is that the ith iteration
is carried out by directly computing the residualRi−1 as described in Section 6.2.3, instead of performing
the low-rank update with Lemma 6.1.1. However, as shown in Section 6.2.3 for the ûnal iteration of the
original algorithm, the update formula (6.14) for the ûnal approximation to r(A)C coincides with (6.13),
so this algorithm variant also computes the same approximation Yi as the original one. Since the ûnal
approximation computed by the variant of the algorithm coincides with the approximation generated by the
outer Krylov subspace Kk+im(A,C) after M ′ = k + im iterations, we conclude that this also holds for
the approximation Yi computed in the ith cycle of the original algorithm.
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When Algorithm 8 is applied to a general function f , we have to use Proposition 2.4.2 instead of
Lemma 6.1.1, so in each cycle we introduce an error that depends on the approximation error of f with
rational functions. The following proposition provides a bound on the error of Algorithm 8 with respect to
the Lanczos algorithm in the general case.

Proposition 6.3.2. Denoting by ¼min and ¼max the extrema eigenvalues of A, assume that Algorithm 8
with s cycles is applied to a function f that is analytic on [¼min, ¼max], using inner poles ξk. The error of
Algorithm 8 with respect to the block Lanczos algorithm is bounded by

∥∥∥Ŷ − Ys

∥∥∥
F
f 4(s− 1) ∥C∥F min

r∈Πk−1/q
∥f − r∥∞ , (6.15)

where q is a polynomial with roots given by the ûnite elements of ξk and ∥·∥∞ denotes the supremum norm
on [¼min, ¼max].

Proof. For convenience, we introduce the notation S̃i =

[
Si B̃iE

H
1

E1B̃
H
i T̂i+1

]
. Wheneverwe use Lemma6.1.1

in the ith cycle of Algorithm 8, in the expression for f(S̃i) we have an additional error term Ei(f), that by
Proposition 2.4.2 satisûes

∥Ei(f)∥2 f 4 min
r∈Πk−1/q

∥f − r∥∞ .

Note that for all i, the spectrum of S̃i is contained in the interval [¼min, ¼max]. Including the error term, the
expression for Ri−1 becomes

Ri−1 = Vif(Si)Zi +Wi +Ri + ϵi,

where

ϵi =
[
Vi Q̂i+1

]
Ei(f)

[
Zi

0

]
.

Since Vi and Q̃i+1 have orthonormal columns, and ∥Zi∥F f ∥C∥F , we have1

∥ϵi∥F f ∥Ei(f)∥2 ∥C∥F f 4 ∥C∥F min
r∈Πk−1/q

∥f − r∥∞ .

It is easy to see that, using the update formula (6.13) for Yi as in the rational function case, the approxima-
tion in the ith cycle satisûes the identity

Ŷ = Yi +Wi +Ri +

i∑

ℓ=1

ϵℓ.

Since in the ûnal cycle the remainderRs−1 is computed directly, the total error of Algorithm 8 with respect
to the Lanczos algorithm is thus

∥∥∥Ŷ − Ys

∥∥∥
F
f

s−1∑

ℓ=1

ϵi f 4(s− 1) ∥C∥F min
r∈Πk−1/q

∥f − r∥∞ .

Proposition 6.3.2 shows that if we take ξk as the poles of a high accuracy rational approximant of f ,
the iterates Yi generated by Algorithm 8 essentially coincide with the corresponding approximation com-
puted by the Lanczos algorithm, since the error in (6.15) is going to be negligible compared to the error∥∥∥f(A)C − Ŷ

∥∥∥
F

of the outer block Lanczos method.

1We recall that for any couple of matrices A,B of compatible size, it holds ∥AB∥F f ∥A∥
2
∥B∥F .
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6.3.2 Computational discussion

In its ith cycle, Algorithm 8 has to keep in memory the last two block columns of Qi−1 required to run
the short recurrence for the computation of Qi, the compressed basis Vi ∈ C

n×(k+m)b and the projected
matrix Si ∈ C

(k+m)b×(k+m)b, as well as the vectors Yi−1, Wi−1, Vi and B̃i.
It is important to note that Algorithm 8 only computes functions of matrices of size kb× kb and (k +

m)b × (k + m)b, that is independent of the number of cycles s, so the cost of computing functions of
projected matrices does not increase with the iteration number, in contrast with the Lanczos method. This
can lead to signiûcant computational savings when the number of iterations is very large.

In each cycle, Algorithm 8 also has to construct a k-dimensional block rational Krylov subspace asso-
ciated with a (k +m)b × (k +m)b matrix. Since k, b and m are typically much smaller than n, the cost
of operations with matrices and vectors of size (m + k)b is usually negligible with respect to the cost of
operations with vectors of size n, so we expect that the construction of the inner rational Krylov subspace
will not have a signiûcant impact on the overall performance of the method.

In addition to the parameter k, which determines the accuracy of the inner rational approximation, and
hence the highest accuracy attainable by the method, we also have to choose the parameter m, which de-
termines the number of block vectors that are added to the basis between two consecutive compressions.
This parameter should be chosen according to the available memory. Taking m small decreases memory
requirements but increases the frequency of computations with (k +m)b× (k +m)b matrices.

Note that in the pseudocode of Algorithm 8, our method only computes the approximate solutions Yi
once everym iterations. However, the algorithm can be easily adapted to compute an approximate solution
in every outer iteration, using the same update formula as in line 9 of Algorithm 8 but with a smaller matrix
Si. Note that the only difference with respect to the deûnition of Si in line 8 is in the Ti block and in the size
of the off-diagonal blocks, so the only additional operation required to compute an approximate solution
is the computation of a matrix function of size at most (k + m)b × (k + m)b. It is easy to see that an
approximate solution computed in this way also coincides with the one constructed in the corresponding
iteration of the outer Lanczos method, via the same argument used in the proof of Proposition 6.3.1.

Instead of running the method for a ûxed number of cycles, in practice it is desirable to run it until we
obtain a solution with a certain accuracy. A commonly used stopping criterion that can be employed for
this purpose is the norm of the difference of two consecutive approximations. This simple criterion offers
no guarantee on the ûnal error and it may underestimate it in practice, especially when convergence is slow,
but we found it to be accurate enough for our purposes. Observe that in order to check the convergence
condition it is not necessary to form the approximate solutions Yi of length n, but it is enough to compute
differences of short vectors. Indeed, we have

Yi − Yi−1 = Wi−1 + Vif(Si)Zi

=
[
Vi−1Ui−1 Qi

]([f(UH
i−1Si−1Ui−1)U

H
i−1Zi−1

0

]
+ f(Si)Zi

)
,

and since Vi has orthonormal columns we conclude that

∥Yi − Yi−1∥F =

∥∥∥∥
[
f(UH

i−1Si−1Ui−1)U
H
i−1Zi−1

0

]
+ f(Si)Zi

∥∥∥∥
F

.

This formulation allows us to check if the stopping criterion is satisûed without performing operations
with vectors of length n, which results in some computational savings. Our implementation of Algorithm 8
employs this expression in its stopping criterion.

6.3.3 Comparison with other low-memory Krylov methods

In this section we brieüy compare our method with other low-memory Krylov subspace methods from the
literature, highlighting advantages and disadvantages of each method. As all comparison methods are tai-
lored for computing the action of amatrix function on a vector, within this section, we adopt the assumption
that b is equal to 1.
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Similarly to multishift CG [55], Algorithm 8 is based on a rational approximant, so the attainable ac-
curacy is ultimately limited by the available memory since the number of vectors that must be stored is
proportional to the number of poles used in the rational approximation. However, while multishift CG re-
quires an explicit rational approximant in partial fraction form, our method only needs the poles of the
rational function. This makes Algorithm 8 easier to use, and less susceptible to numerical errors caused
by the representation of the rational function.

Given the similarities between Algorithm 8 and multishift CG, it is useful to compare the cost of the
two methods in more detail. For this purpose, we employ the simple computational model used in [69,
Experiment 5.3], in which operations on vectors of length n such as scaling or addition are counted as
one unit of work, denoted by 1V , and operations with vectors or matrices of size independent of n are
not counted. As discussed in [69], when the underlying rational approximant has k poles the multishift
CG algorithm must store 2k vectors of length n and perform approximately 5kV operations in addition to
the standard Lanczos algorithm. Algorithm 8 with k inner poles and compression everym outer iterations
must store k + m vectors of length n, and the only operation that involves vectors of length n outside
of the standard Lanczos algorithm is in the compression step (line 8 in Algorithm 8), where the product
Vi−1Ui−1 has to be computed for a cost of 2k(k + m)V every m iterations, that on average amounts
to 2km−1(k +m)V at each iteration. If we take m = k, so that Algorithm 8 and multishift CG have the
same memory requirements and the same attainable accuracy, the cost of Algorithm 7 is 4kV per iteration,
which is smaller than the 5kV cost of multishift CG. However, note that the efûciency of multishift CG can
be improved by removing converged linear systems, i.e., by no longer updating the approximate solutions
of linear systems when the residual becomes smaller than the requested tolerance [127, Section 5.3]. This
can signiûcantly reduce the cost of the method since linear systems associated with different poles often
have substantially different convergence rates.

In contrast with Algorithm 8 and multishift CG, the memory requirements of the two-pass Lanczos
method [21] are independent of the target accuracy, with the exception of the projected matrix, which grows
in size at each iteration. When many iterations are needed to reach convergence, the computation of func-
tions of projected matrices of increasing size can have a signiûcant impact on the performance of the
method, although this can be mitigated by only computing the approximate solution once every d > 1
iterations. For the same number of Lanczos iterations, the two-pass version requires twice the number of
matrix-vector products withA compared to the other methods. However, in practice the cost is usually less
than doubled, because in the second pass it is only necessary to recompute the Krylov basis vectors, and
the orthogonalization coefûcients have already been computed in the ûrst pass.

The restarted Krylov method for Stieltjes matrix functions [53,54] requires storing a number of vectors
proportional to the restart length. Although the amount of memory available does not inüuence the accu-
racy attainable by this method, a shorter restart length can cause delays in the convergence, similarly to
what happens when restarting Krylov subspace methods for the solution of linear systems. The conver-
gence delay can be mitigated by employing deüation techniques [44]. We note that this restarted method
explicitly requires the expression of the integrand function in the Stieltjes representation of f . The restarted
method can also be applied to a function that is not Stieltjes by using a different integral representation,
such as one based on the Cauchy integral formula. This was done in [54, Section 4.3] for the exponential
function.

6.4 Numerical experiments

In this section, we compare Algorithm 8, which we denote by RKcompress, with other Krylov subspace
methods for the computation of the action of a matrix function on a vector. For all methods, we monitor
the relative norm of the difference between two consecutive computed solutions and stop when it becomes
smaller than a requested tolerance.

The MATLAB code to reproduce the experiments in this section is available on GitHub at https:
//github.com/casulli/ratkrylov-compress-matfun. We use our own implementation of Algo-
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Table 6.1: Number of iterations and ûnal relative error for all the methods in Figure 6.1, using relative toler-
ance 10−10.

t 10−5 10−4 10−3 10−2 10−1

iter 26 70 212 631 1131
err 3.91e-12 6.92e-11 2.45e-10 1.03e-09 2.07e-09

rithm 8, two-pass Lanczos and multishift CG, while for the restarted Arnoldi for Stieltjes matrix functions
we use the funm quad implementation [54,117]. Although our implementation of Algorithm 8 has no exter-
nal dependencies, to compute the rational approximant in partial fraction form employed in the multishift
CG algorithm we use the implementation of the AAA algorithm [100] from the chebfun package [38]. All the
experiments were performed with MATLAB R2021b on a laptop running Ubuntu 20.04, with 32 GB of RAM
and an Intel Core i5-10300H CPU with clock rate 2.5 GHz, using a single thread.

6.4.1 Exponential function

As a ûrst test problem, we consider the computation of e−tAC , where the matrix A ∈ C
n2×n2

is the
discretization of the 2D Laplace operator with zero Dirichlet boundary conditions using centered ûnite dif-
ferences with n+ 2 points in each direction, that is

A = B ¹ I + I ¹B, where B =
1

h2




2 −1

−1
. . .

. . .
. . .

. . . −1
−1 2


 ∈ C

n×n, (6.16)

where h = 1
n+1 and C = C1 ¹ C2 is the Kronecker product of two random block vectors of size n × b.

We compare the accuracy and timing of different methods based on Krylov subspaces using as a reference
solution e−tBC1 ¹ e−tBC2, where the involved exponentials are computed using the MATLAB command
expm. We set n = 500 (therefore the size ofA is on the order of 105×105) and choose different values of
t. As t increases, the eigenvalues of the matrix −tA of which we compute the exponential become more
spread out, so we expect an increasing number of iterations for the convergence of polynomial Krylov
subspace methods (see, e.g., [12, Section 4]).

We use Algorithm 8 with k = 25 inner poles of the form described in [23], which guarantee a rational
approximation of ex for x ∈ (−∞, 0] with an absolute error of the order of machine precision. In par-
ticular, assuming that the involved matrix has no positive eigenvalues, the inner poles are independent of
the spectrum of the matrix. We compare our RKcompress method with the standard Lanczos algorithm
(lanczos), the two-pass version of Lanczos (lanczos-2p) and the Arnoldi algorithm with full orthogo-
nalization (arnoldi). Note that both lanczos and arnoldi require storing the whole Krylov basis.

In Figure 6.1, we report the time needed to compute e−tAC with the different methods for different
values of t, using a relative tolerance of 10−10 in the stopping criterion. For any ûxed value of t, all the
employed methods converge in the same number of iterations, which is reported in table 6.1 along with the
ûnal relative error attained. All the methods stop at the same iteration and produce the same approximate
solution, conûrming that Algorithm 8 is reproducing the convergence of the Lanczos algorithm (up to the
error in the approximation of ex with a rational function, which is negligible in this case). As the required
number of iterations increases, our RKcompress method appears to be the fastest. This is mainly due to
the fact that in Algorithm 8 the size of the matrix functions computed during the execution of the algorithm
does not increase with the size of the Krylov subspace, in contrast with the other methods.
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Figure 6.1: Time needed for the computation of e−tAC with accuracy of 10−10, for different values of t and
employing different methods.

6.4.2 Markov functions

As already shown in Section 5.4.2, an important class of functions for which rational approximations have
been already described in the literature [12] is given by Markov functions, which can be represented as

f(z) =

∫ ´

³

dµ(x)

z − x
, (6.17)

where µ(x) is a positive measure and−∞ f ³ < ´ <∞. If f is deûned as in (6.17) andA is a Hermitian
matrix with eigenvalues greater than ´, we can use the approach in [12] to choose quasi-optimal inner poles
for RKcompress. In particular, to obtain a rational approximation of f on an interval [a, b] with a > ´ with
relative error norm bounded by ϵ it is sufûcient to use k poles where

k g log

(
4

ϵ

)
log(16(b− ´)/(a− ´))

Ã2
, (6.18)

therefore the number of poles needed in RKcompress depends logarithmically on the condition number of
A− ´I. We refer to [12, Section 6.2] for more details regarding the choice of poles.

In the experiment that follows, we compute A−1/21, where A ∈ C
n2×n2

is a discretization of the 2D
Laplace operator (6.16) and 1 ∈ C

n2

is the vector of all ones, with increasing n = 200, 400, . . . , 1000,
comparing several low-memory Krylov subspace methods, using a relative tolerance of 10−8. The refer-
ence solution is computed by diagonalizing A, exploiting the Kronecker sum structure. We compare Al-
gorithm 8 (RKcompress) with the two-pass Lanczos method (lanczos-2p), the standard multishift CG
method (msCG), a more efûcient implementation of multishift CG with removal of converged linear sys-
tems (msCG-rem), and the restarted Krylov method for Stieltjes functions, both with and without deüation,
denoted by restart-defl and restart, respectively.

For Algorithm 8, we use inner poles from [12] with k given by (6.18) andm = k. For a tolerance of 10−8,
the values of k range from k = 23 to k = 29 for the different matrix sizes. The rational approximant for
multishift CG is obtained by running the AAA algorithm [100] with tolerance 10−12 on a discretization of the
spectral interval ofA; this produces a rational approximant with 18 poles for all matrix sizes, that are fewer
than the ones obtained using (6.18), but it does not provide any theoretical guarantee on the approximation
error. For the restarted Krylov method for Stieltjes functions, we set a restart length equal to 2k (so that
the memory requirement is the same as RKcompress) and we use the default options in funm quad; we
retain 5 Ritz vectors in the variant with deüation.
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Figure 6.2: Time needed for the computation of A−1/21 with relative tolerance 10−8, where A ∈ C
n2×n2

is a discretization of the 2D Laplace operator for increasing n, employing different low-memory methods.

Table 6.2: Final relative errors for the experiment in Figure 6.2.

size(A) RKcompress lanczos-2p msCG msCG-rem restart restart-defl

40000 9.01e-08 9.01e-08 7.81e-09 7.82e-09 9.75e-09 2.43e-11
160000 1.29e-07 1.29e-07 6.49e-09 6.50e-09 4.22e-08 1.20e-09
360000 1.70e-07 1.70e-07 2.69e-05 2.69e-05 4.53e-05 1.69e-09
640000 2.47e-07 2.47e-07 3.86e-06 3.86e-06 1.39e-03 4.50e-09

1000000 3.86e-07 3.86e-07 1.29e-06 1.29e-06 7.67e-03 2.34e-08

Table 6.3: Number of iterations for the experiment in Figure 6.2.

size(A) RKcompress lanczos-2p msCG msCG-rem restart restart-defl

40000 282 282 379 379 2760 460
160000 554 554 747 747 9050 900
360000 823 823 1122 1122 10 800 1512
640000 1085 1085 1497 1497 11 200 2184

1000000 1336 1336 1872 1872 11 600 3016
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We report the times in Figure 6.2, the ûnal errors in table 6.2 and the number of iterations in table 6.3.
The methods with the shortest runtime are RKcompress, msCG-rem and restart-defl. Observe that
restarted-defl requires signiûcantly more iterations compared to the methods without restarting, so it
would performworse in a situation inwhichmatrix-vector productswithA aremore expensive. Observe that
for n g 600 the ûnal error of multishift CG is signiûcantly larger than the requested tolerance, suggesting
that the rational approximant given by AAA is not accurate enough. However, it turns out that running
RKcompress with inner poles given by the AAA approximant has approximately the same error as with the
poles from [12], implying that the error in multishift CG should be mainly attributed to the explicit partial
fraction representation of the rational function.

We note that the ûnal error of restart-defl is smaller compared to the errors of RKcompress and
lanczos-2p, since in the funm quad implementation the approximate solutions are computed and com-
pared only at the end of each restart cycle, hence the stopping criterion is more reliable and less likely
to underestimate the error. The restarted Krylov method without deüation was unable to converge to the
requested accuracy within 200 restart cycles for n g 600.

6.4.3 Numerical loss of orthogonality

In order to investigate the behavior of Algorithm 8 in ûnite precision arithmetic, we compute eAC , where
A ∈ C

2000×2000 is a tridiagonal matrix with logspaced eigenvalues in the interval [−104,−10−4], and C
is a random vector with unit normal entries. The convergence of RKcompress, lanczos and arnoldi are
compared in Figure 6.3. Both lanczos and RKcompress exhibit a delay in convergence due to the loss of
orthogonality in the Krylov basis and they are essentially indistinguishable, so it appears that Algorithm 8
also reproduces the ûnite precision behavior of the Lanczos algorithm.
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Figure 6.3: Effect of numerical loss of orthogonality in the computation of eAC , where A ∈ C
2000×2000

has logspaced eigenvalues in [−104,−10−4] and C is a random vector.
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Chapter 7

Conclusion

In this dissertation, we have extended the basic attributes of rational Krylov methods to encompass their
block counterpart. We have employed block rational Krylov methods to address Sylvester and tensor
Sylvester equations, investigating the convergence of projection methods. Additionally, we have explored
matrix function computations, aiming to develop a more innovative methodology.

We have proposed amethod for solving low-rank Sylvester equations bymeans of projection onto block
rational Krylov subspaces. The key advantage of the method with respect to state-of-the-art techniques is
the possibility of exploiting the reordering of poles to maintain the “last” pole of the space equal to inûnity.
This choice makes the residual of the large-scale equation easily computable in the projected one, without
the need to artiûcially increase the size of the subspace by introducing unnecessary poles at inûnity. We
have also reconsidered the convergence analysis for Krylov solvers for Sylvester equations of [9], extending
it to block rational Krylov subspaces employing the theoretical tools used in [93] for the polynomial case.
The analysis allows to design new strategies for adaptive pole selection, obtained by minimizing the norm
of a small b× b rational matrix, where b is the block size. The minimization problem can be made simpler
by replacing the norm with a surrogate function that is easier to evaluate. In [42] the authors propose a
heuristic for the pole selection in block rational Krylov methods, based on their analysis of the non-block
case. Choosing the determinant as surrogate function yields exactly this heuristic, and it gives a solid
theoretical justiûcation for this approach. Other choices, instead, yield completely novel strategies. One
of these, called sADM in the thesis, has comparable or better performances than the state-of-the-art on the
considered examples.

We expect that these results will facilitate the development of additional pole selection strategies and
convergence analyses in block rational Krylov methods.

In the setting of tensor Sylvester equations, we have provided a characterization of tensorized block ra-
tional Krylov subspaces using multivariate rational functions and we have developed a method for solving
tensor Sylvester equations with low multilinear or tensor train rank, based on projection onto a tensorized
block rational Krylov subspace, providing a convergence analysis. Extending the ûndings established in
the Sylvester case, we have devised approaches for pole selection and streamlined methods for comput-
ing the residual through pole reordering. Moreover, numerical tests have demonstrated the efûciency of
this approach when compared with more traditional strategies based on polynomial and extended Krylov
subspaces. Speciûcally, the presented method enables the handling of tensor Sylvester equations with a
greater number of summands.

We expect that tensorized block rational Krylov subspaces can be used for solving more general high-
dimensional tensor problems, such as the computation of functions of matrices with multiterm Kronecker
structures.

In the context of matrix functions, we have developed an algorithm based on block rational Krylov
subspaces for the computation of f(A) for a Hermitian HSS matrix A. By generalizing the deûnition of
telescopic decompositions, we have linked various representations of HSS matrices used in the literature
and provided methods for converting between them. This new representation has allowed us to exploit the
nested low-rank structure of telescopic decompositions for the computation of an approximation of f(A).

95
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Our convergence results imply nearly linear complexity for matrix exponentials and linear-polylogarithmic
complexity for inverse square roots in situations of practical relevance. This favorable complexity is at-
tained by using block rational Krylov subspaces that involve small-sizedmatrices only, avoiding the solution
of potentially large linear systems usually associated with rational Krylov subspace techniques. Several nu-
merical experiments show that our newly proposed algorithm is faster than existing algorithms for a variety
of examples previously reported in the literature. Somewhat surprisingly, it even appears to be the method
of choice for computing inverses of Hermitian HSSmatrices. Several questions remain open. This includes
the extension to non Hermitian matrices as well as a theoretical explanation of the good results obtained
for the sign function.

Finally, we have presented a memory-efûcient method for the computation of f(A)C for a Hermitian
matrixA. The method combines an outer block Lanczos method with inner block rational Krylov iterations,
that are used to compress the Lanczos basis and reduce memory requirements. The construction of the
inner block rational Krylov basis only involves operations with small projected matrices and it does not
require any operation with the matrixA. We have proved that our algorithm coincides with the outer Krylov
method when f is a rational function. In the general case, the error depends on a rational approximation
of f . Our numerical experiments show that the proposed algorithm is competitive with other low-memory
methods based on Krylov subspaces. The possibility of extending the proposed approach to non-Hermitian
matrices remains an open problem.
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