
CRITICAL METRICS FOR LOG-DETERMINANT
FUNCTIONALS IN CONFORMAL GEOMETRY

Pierpaolo Esposito & Andrea Malchiodi

Key Words: functional determinants, singular solutions, blow-up
analysis, min-max theory

AMS subject classification: 35G20, 35B44, 35J35, 58J50

Abstract

We consider critical points of a class of functionals on compact
four-dimensional manifolds arising from Regularized Determinants
for conformally covariant operators, whose explicit form was de-
rived in [10], extending Polyakov’s formula. These correspond to
solutions of elliptic equations of Liouville type that are quasilin-
ear, of mixed orders and of critical type. After studying existence,
asymptotic behaviour and uniqueness of fundamental solutions,
we prove a quantization property under blow-up, and then derive
existence results via critical point theory.

1. Introduction

Consider a compact Riemannian manifold (M, g) without boundary
of dimension n, with Laplace-Beltrami operator ∆g. By Weyl’s as-
ymptotic formula it is known that the eigenvalues λj of −∆g obey the

limiting law λj ∼ j2/n as j → ∞. The determinant of −∆g is formally
the product of all its eigenvalues, with a rigorous definition that can be
obtained via holomorphic extension of the zeta function

ζ(s) =
∞∑
j=1

λ−sj .

The behaviour of the λj ’s implies that ζ(s) is analytic for Re(s) > n/2:
it is possible anyway to meromorphically extend ζ so that it becomes
regular near s = 0 (see [48]). From the formal calculation ζ ′(0) =

−
∞∑
j=1

log λj = − log det(−∆g) one then defines

det(−∆g) = e−ζ
′(0).
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Recall that in two dimensions the Laplace-Beltrami operator is con-
formally covariant in the sense that

(1.1) ∆g̃ = e−2w∆g, g̃ = e2wg.

This property, as well as the transformation law for the Gaussian cur-
vature

−∆gw +Kg = Kg̃e
2w,(1.2)

allowed Polyakov in [47] to determine the logarithm of the ratio of
regularized determinants of two conformally-equivalent metrics with the
same area on a compact surface:

log
det(−∆g̃)

det(−∆g)
= − 1

12π

ˆ
Σ

(|∇w|2g + 2Kgw) dvg.(1.3)

The Gaussian curvature Kg appears in the above formula since it is
possible to rewrite the zeta function as an integral of a trace

ζ(s) =
1

Γ(s)

ˆ ∞
0

Tr

(
e∆g t − 1

Areag(Σ)

)
dt,

where Γ(s) is Euler’s Gamma function and e∆g t is the heat kernel on
(Σ, g). The latter kernel, for t small, has the asymptotic profile of
the Euclidean one, with next-order corrections involving the Gaussian
curvature and its covariant derivatives, as shown in [41].

Using (1.2) and Polyakov’s formula it is easy to show that criti-
cal points of the regularized determinant in a given conformal class
give rise to constant Gaussian curvature metrics. In [46, 45] Osgood,
Phillips and Sarnak proved existence of extremals for all given topolo-
gies: uniqueness holds for non-positive Euler characteristic, while in the
positive case there are as many solutions as Möbius maps. The Möbius
action is indeed employed to fix a center of mass gauge, in the spirit
of [5], to exploit an improved Moser-Trudinger type inequality. Still in
[46, 45] the authors used formula (1.3) in order to derive compactness
of isospectral metrics on closed surfaces with a given topology. This re-
sult was then extended to the three-dimensional case in [13], for metrics
within a fixed conformal class.

In four dimension formulas similar to (1.3) were obtained for regular-
ized determinants of operators enjoying covariance properties analogous
to (1.1). More precisely, a differential operator Ag (depending on the
metric) is said to be conformally covariant of bi-degree (a, b) if

Ag̃ψ = e−bwAg(e
awψ), g̃ = e2wg,(1.4)

for each smooth function ψ (or even for a smooth section of a vector
bundle). One such example is the conformal Laplacian in dimension
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n ≥ 3

Lg = −∆g +
(n− 2)

4(n− 1)
Rg,

where Rg is the scalar curvature: this operator satisfies (1.4) with a =
n−2

2 and b = n+2
2 . Other examples include the Dirac operator /Dg, which

satisfies (1.4) with a = n−1
2 , b = n+1

2 , and the Paneitz operator in four
dimensions

(1.5) Pgψ = ∆2
gψ − div

(
2

3
Rg∇ψ − 2Ricg(·,∇ψ)

)
,

that satisfies (1.4) with a = 0 and b = 4.
Branson and Ørsted generalized in [10] Polyakov’s formula to four-

dimensional manifolds (M, g), proving the following result: the logarith-
mic ratio of two regularized determinants is the linear combination of
three universal functionals, with coefficients depending on the specific
operator. More precisely, if A = Ag is conformally covariant and has no
kernel (otherwise, see Remark 1.4), then one has for g̃ = e2wg

FA[w] = log
detAg̃
detAg

= γ1(A)I[w] + γ2(A)II[w] + γ3(A)III[w],(1.6)

where (γ1, γ2, γ3) ∈ R3 and I, II, III are defined as

I[w] = 4

ˆ
M
w|Wg|2g dvg −

( ˆ
M
|Wg|2g dvg

)
log

 
M
e4w dvg

II[w] =

ˆ
M
wPgw dvg + 4

ˆ
M
Qgw dvg −

( ˆ
M
Qg dvg

)
log

 
M
e4w dvg

III[w] = 12

ˆ
M

(∆gw + |∇w|2g)2 dvg − 4

ˆ
M

(w∆gRg +Rg|∇w|2g) dvg.

Here Wg is the Weyl curvature tensor, and Qg the Q-curvature of (M, g)

Qg =
1

12
(−∆gRg +R2

g − 3|Ricg|2g).

The latter quantity is a natural higher-order counterpart of the Gaussian
curvature, and transforms conformally via the Paneitz operator by the
law

Pgw + 2Qg = 2Qg̃e
4w, g̃ = e2wg,

totally analogous to (1.2). The above three functionals are geometrically
natural as their critical points can be characterized by the conditions

g̃ = e2wg is a critical point of I ⇐⇒ |Wg̃|2g̃ = const.

g̃ = e2wg is a critical point of II ⇐⇒ Qg̃ = const.

g̃ = e2wg is a critical point of III ⇐⇒ ∆g̃Rg̃ = 0.

Notice that, since M is compact, the last condition yields a Yamabe
metric, with constant scalar curvature.



4 PIERPAOLO ESPOSITO & ANDREA MALCHIODI

The Euler-Lagrange equation for FA implies constancy of a scalar
quantity Ug, which we call U -curvature, defined as

Ug = γ1|Wg|2g + γ2Qg − γ3∆gRg.(1.7)

In terms of the conformal factor the Euler-Lagrange equation is

(1.8) Ng(w) + Ug = µe4w;

N (w) =
γ2

2
Pgw + 6γ3∆g(∆gw + |∇w|2g)(1.9)

−12γ3div
[
(∆gw + |∇w|2g)∇w

]
+ 2γ3div(Rg∇w),

where

µ = − κA´
M e4wdvg

; κA = −γ1

ˆ
M
|Wg|2g dvg − γ2

ˆ
M
Qg dvg.

We note that kA is a conformal invariant, since
´
M Qg dvg is, and that

the above equation (1.8) corresponds to solving Ug̃ ≡ µ.
For example, one has

γ1(Lg) = 1, γ2(Lg) = −4, γ3(Lg) = −2/3

for the conformal Laplacian and

γ1(/D2
g) = −7, γ2(/D2

g) = −88, γ3(/D2
g) = −14

3

for the square of the Dirac operator /Dg. For the Paneitz operator,
instead, one has

γ1(Pg) = −1

4
, γ2(Pg) = −14, γ3(Pg) = 8/3.

Concerning extremality of functionals that are linear combinations
of I, II and III, as in (1.6), Chang and Yang [14] proved an existence
result (with a sign-reverse notation) under the conditions γ2, γ3 > 0 and
κA < 8π2γ2.

The latter inequality (showed in [30] to hold in positive Yamabe class,
except for manifolds conformal to the round sphere) was used with a
geometric version of a Moser-Trudinger type inequality: in [1] an esti-
mate on the (logarithmic) integral of the exponential of the conformal
factor was derived in terms of the squared norm of the Laplacian, while
in [14] in terms of the quadratic form induced by the Paneitz opera-
tor, which is conformally covariant. Uniqueness was also proved for the
case kA < 0, using the convexity of the functional FA; see also [9] for
the case of the round sphere, where extremals were classified as Möbius
maps (and as unique critical points in [28]). Extremal properties of
the round metric on Sn in general even dimension were studied in [42].
Regularity of arbitrary extremals was proved in [12], and extended in
[55] to other critical points. The existence result in [14] was used in
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[29] to derive optimal bounds on the Weyl functional and to prove some
rigidity results for Kähler-Einstein metrics.

Due to the above results, one has a satisfactory existence theory on
manifolds of positive Yamabe class. It is the aim of this paper to de-
rive it also for manifolds of more general type. One fact that distin-
guishes two and four dimensions from the conformal point of view is
that in the latter case Gauss-Bonnet integrals can be larger than those
on the round sphere of equal dimension. For example, the total in-
tegral of Q-curvature on four-manifolds of negative Yamabe class can
be arbitrarily large. This fact causes the lack of one-side control on
the functional II in terms of the Moser-Trudinger inequality, which
was available in [14]. Nevertheless, in [20] conformal metrics with con-
stant Q-curvature were found as saddle-type critical points of II. The
main tool to produce these was a variational min-max scheme that used
suitable improvements of the Moser-Trudinger inequality for conformal
factors whose volume is macroscopically spread over the underlying man-
ifold M . Such kind of improvement was derived in two dimensions in
[5] for the case of the round sphere (see also [43]) and in [16] for general
surfaces. With improved inequalities at hand, it was then possible in
[20] to characterize low-sublevels of the functional II, showing that if´
M Qgdvg < 8(k + 1)π2 for some k ∈ N, and if II(w) is sufficiently low,

then the conformal volume e4w approaches distributionally a measure
supported on at most k points of M . This geometric characterization
of the Euler-Lagrange functional II allowed to produce Palais-Smale
sequences, namely approximate solutions to the prescribed Q-curvature
equation. Using also a monotonicity argument from [53] one can replace
Palais-Smale sequences by sequences of solutions to approximate equa-
tions, which might carry more information than general Palais-Smale
sequences.

Here comes the other main aspect of the prescribed Q-curvature equa-
tion: compactness. One would like to show that the latter solutions con-
verge to a solution of the original problem. This is actually the result of
the two independent papers [23] and [40]: there it is proved that non-
compact sequences of solutions develop after rescaling a finite number
of bubbles, the conformal factors of the stereographic projection from S4

to R4. Each of them carries 8π2 in Q-curvature, and in the latter work
it is shown that no other residual volume can occur. A contradiction
to loss of compactness is then reached assuming that the initial total
Q-curvature

´
M Qgdvg is not a integer multiple of 8π2.

The first among our results is an analogous compactness property for
log-determinant functionals. Notice that both signs of the coefficients γ2
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and γ3 are allowed, provided that the two coincide (and satisfy further
assumptions).

Theorem 1.1. Suppose M is a compact four-manifold and that γ2, γ3

satisfy γ2, γ3 6= 0, with γ2

γ3
≥ 6. Suppose also that (wn)n is a sequence

of smooth solutions of

Ng(wn) + Ũn = µne
4wn in M,

where Ng is given by (1.9). Assume that
´
M e4wndvg = 1, µn =

´
M Ũndvg

and Ũn → Ug C
1−uniformly in M as n → +∞. Up to a subsequence,

we have one of the following two alternatives:

i) (wn −
ffl
M wn dvg)n is uniformly bounded in C4,α(M)-norm;

ii) (wn)n blows up, i.e. maxM wn → +∞, and
ffl
M wn dvg → −∞ and

µne
4wn ⇀

l∑
i=1

8π2γ2δpi

in the weak sense of distributions for distinct points p1, . . . , pl ∈
M .

As a consequence, solutions stay compact if
´
M Ugdvg /∈ 8π2γ2N.

Remark 1.2. In Theorem 1.1, it is possible to replace the limit of
Ũn by any smooth function Ũ .

Well-known results of the above type were proved for second-order
Liouville equations in [11, 15, 37], in presence of singular sources in [6]
and in the fourth-order case [2, 38, 39, 49, 50, 56]. The counterpart
of Theorem 1.1 for Q-curvature in [23, 40] relied extensively on the
Green’s representation formula for the Paneitz operator, which is linear.
A related quantization result was proved in [25] for a Liouville-type n-
Laplace equation in n−dimensional euclidean domains, the equation
there of second order allowing truncation techniques towards a-priori
estimates (see also [24] for a classification result of entire solutions).
Here, being our operator quasi-linear and of mixed type, none of these
arguments can be applied and we need to devise new arguments.

In Section 2 we derive some uniform control of subcritical type on
blowing-up solutions, followed by a Caccioppoli-type inequality and a
uniform BMO estimate, which is a natural one since blow-up is expected
to occur with a logarithmic profile. In Section 3 we develop a general
linear theory for the operator N in (1.9), solving for arbitrary mea-
sures in the R.H.S.. Solutions will be found by a limiting procedure
with smooth approximations (SOLA: see the terminology there), and
the solvability theory will exploit in a crucial way a nonlinear Hodge
decomposition technique. For a R.H.S. given as a linear combination
of Dirac masses, a corresponding SOLA is referred to as a fundamental
solution and uniqueness in general fails unless γ2 = 6γ3.
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In Section 4 we show however that any fundamental solution satisfies
weighted W 2,2−estimates, allowing via techniques developed in [55] to
prove its logarithmic behaviour near the singularities.

There is a vast literature concerning existence and uniqueness issues
for problems involving the p−Laplace operator, let us just quote [7,
8, 22, 27] and references therein. While for the latter both maximum
principles and truncation arguments are available, it is not the case for
our problem, and we had therefore to rely on different arguments.

With the asymptotics of fundamental solutions at hand, we can fi-
nally pass to the blow-up analysis of (1.8). First, via a Pohozaev type
identity, scaling arguments and an epsilon-regularity result we prove a
quantization for the volume accumulation at blow-up points. After this,
we can then determine that there is no absolutely continuous part in
the limit volume measure, after blow-up, leading to Theorem 1.1. We
collect in an appendix some useful auxiliary results.

As an application of Theorem 1.1 we have the following existence theo-
rem.

Theorem 1.3. Assume γ2, γ3 6= 0 and γ2

γ3
≥ 6. Suppose M is a

compact four-manifold such that
´
M Ugdvg /∈ 8π2γ2N. Then there exists

a conformal metric g̃ with constant U -curvature.

Examples to which the latter theorem applies include (suitable) prod-
ucts of negatively-curved surfaces, hyperbolic manifolds or their pertur-
bations.

Remark 1.4. In case of trivial kernel, both log-determinants of Lg
and /D2

g fit in the assumptions of Theorems 1.1 and 1.3.
In general, if a conformally-covariant operator A has a non-trivial

kernel, some additional quantities appear in (1.6), see Remark 2.2 in
[10]. If A has order 2`, on the R.H.S. of (1.6) one should add the term

(1.10) 2`

ˆ
M

(
w

ˆ 1

0
Φ2
t e

4twdt

)
dvg −

1

2
` q[A] log

´
M e4wdvg

V olg(M)
.

Here q[A] stands for the dimension of the kernel of A, while Φ2
t (x) =

q[A]∑
j=1

ϕ2
j,t(x), with (ϕj,t)j an orthonormal basis of elements of the kernel

with respect to the metric e2twg.
For example if A = L, the conformal Laplacian, and if the kernel is

one-dimensional, denote by ϕ1 an element of the kernel normalized in
L2 with respect to dvg. Then, recalling that (1.4) holds with a = 1, we
find that

Φ2
t (x) =

e−2tw(x)ϕ2
1(x)´

M e2tw(y)ϕ2
1(y)dvg(y)

.
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Therefore, the extra-term in (1.10) becomes

2

ˆ
M

(ˆ 1

0

(
e2tw(x)ϕ2

1(x)w(x)´
M e2tw(y)ϕ2

1(y)dvg(y)

)
dt

)
dvg(x)− 1

2
log

´
M e4wdvg

V olg(M)
.

Noticing that

2

ˆ
M

(
e2tw(x)ϕ2

1(x)w(x)´
M e2tw(y)ϕ2

1(y)dvg(y)

)
dvg(x) =

d

dt
log

ˆ
M
e2tw(x)ϕ2

1(x)dvg(x),

the expression in (1.10) finally becomes

log

ˆ
M
e2w(x)ϕ2

1(x)dvg(x)− 1

2
log

´
M e4wdvg

V olg(M)
.

We will not analyze this term in the present paper.

The proof of Theorem 1.3, given in Section 6 is variational and mainly
inspired from [14, 20], where the Q-curvature problem was treated.
First, using the results in Section 2, one can obtain a sharp Moser-
Trudinger inequality involving combinations of the functionals I, II
and III. The latter is then improved under suitable conditions on
the distribution of conformal volume. This allows to apply a general
min-max scheme, relying also on the construction of test functions with
low energy and a prescribed (multiple) concentration behaviour of the
conformal volume.

An interesting perspective would be to analyze situations where the
total U -curvature is an integer multiple of 8π2γ2. A possible approach
could be to apply the above results to the equation with perturbed co-
efficients and perform a detailed blow-up analysis, possibly employing
the fundamental solutions constructed in Section 4 to produce asymp-
totically and U -flat metrics and use some more geometric insight. It
would be also worth considering on general manifolds cases with γ’s
of opposite signs, like for the determinant of the Paneitz operator (see
[17], IV.4.γ). This issue is quite hard, as the two main terms in the
nonlinear operator have competing effects. It is indeed studied so far
only in particular cases with ODE techniques, see for example [31].

Notation. We will work on a compact four-dimensional Riemannian
manifold M without boundary endowed with a background metric g.
When considering this metric, the index g relative to it will be omitted
in symbols like ∆g, Pg, dvg, etc. Spaces of Lp functions with respect to
dvg will be simply denoted by Lp, p ≥ 1, with norm ‖ · ‖p, and similarly
for Sobolev spaces. When the domain of integration is omitted, we mean
that it coincides with the whole M . The injectivity radius of (M, g) will
be denoted by i0 and Br will denote a generic geodesic ball in M . The
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symbols w, wA and wr will stand for
ffl
M w dvg,

ffl
Aw dvg and

ffl
Br
w dvg,

respectively.

Acknowledgments. A.M. has been supported by the project Geo-
metric problems with loss of compactness and Finanziamento a sup-
porto della ricerca di base from Scuola Normale Superiore and by MIUR
Bando PRIN 2015 2015KB9WPT001. P.E. has been supported by MIUR
Bando PRIN 2015 2015KB9WPT008. As members, they are both par-
tially supported by GNAMPA as part of INdAM.

2. Some basic estimates

In this section we will derive some uniform estimates for smooth so-
lutions of (1.8) with a general R.H.S. by just assuming γ2

γ3
> 3

2 . To

this aim, recall the definition of the quasilinear differential operator
N in (1.9). Integrating by parts, notice that the main order term in
〈N (w), w〉 has the form

(
γ2

2
+ 6γ3)

ˆ
(∆w)2dv + 18γ3

ˆ
∆w|∇w|2dv + 12γ3

ˆ
|∇w|4dv,

which can be easily seen to have a sign by a squares completion provided
γ2

γ3
> 3

2 . In the next section, we will further strengthen the a-priori

estimates when γ2

γ3
≥ 6 and deduce uniqueness properties when γ2

γ3
= 6.

In order to include also local estimates, test (1.9) against ϕ = χ4ψ(w−
c), where c ∈ R, ψ ∈ C2(R) (bounded, and with bounded first- and
second-order derivatives) and χ ∈ C∞(M), to get

〈N (w), ϕ〉 = (
γ2

2
+ 6γ3)

ˆ
χ4ψ′(∆w)2dv + 6γ3

ˆ
χ4(2ψ′ + ψ′′)|∇w|4dv

+

ˆ
χ4[18γ3ψ

′ + (
γ2

2
+ 6γ3)ψ′′]∆w|∇w|2dv(2.1)

+

ˆ
χ4ψ′[(

γ2

3
− 2γ3)R|∇w|2 − γ2Ric(∇w,∇w)]dv +R,

with

R =

ˆ
[(
γ2

2
+ 6γ3)∆w + 6γ3|∇w|2][ψ∆χ4 + 2ψ′〈∇χ4,∇w〉]dv

+12γ3

ˆ
(∆w + |∇w|2)ψ〈∇w,∇χ4〉dv

+

ˆ
ψ[(

γ2

3
− 2γ3)R〈∇w,∇χ4〉 − γ2Ric(∇w,∇χ4)]dv,

where the argument of ψ has been omitted for simplicity.

Remark 2.1. When ∂M 6= ∅, (2.1) still holds for χ ∈ C∞0 (M): this
will be useful in Section 5.
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The first use of (2.1) concerns global bounds for weighted W 2,2−norms
in M :

Theorem 2.2. Let γ2

γ3
> 3

2 . Assume f = 0 and ‖f‖1 ≤ C0 for some

C0 > 0. Then there exists C > 0 so that

(2.2)

ˆ
(∆w)2 + |∇w|4

[1 + (w − w)2]
2
3

dv ≤ C

for every smooth solution w of N (w) = f in M . Moreover, given 1 ≤
q < 2 there exists C > 0 so that

(2.3) ‖w − w‖W 2,q ≤ C
for any such solution w.

Proof. Let χ ≡ 1, c = w and ψ ∈ C2(R) be so that 2ψ′ + ψ′′ > 0.
Then R = 0 and by a squares completion the (re-normalized) main
order term in (2.1) satisfies, thanks to β = γ2

γ3
> 3

2 , the inequality

(β + 12)

ˆ
ψ′(∆w)2dv +

ˆ
[36ψ′ + (β + 12)ψ′′]∆w|∇w|2dv(2.4)

+12

ˆ
(2ψ′ + ψ′′)|∇w|4dv

≥
ˆ

48[2β − 3− 2δ(β + 12)](ψ′)2 − 24(1 + 2δ)(β + 12)ψ′ψ′′

48(1− δ)(2ψ′ + ψ′′)
(∆w)2dv

−
ˆ

(β + 12)2(ψ′′)2

48(1− δ)(2ψ′ + ψ′′)
(∆w)2dv + 12δ

ˆ
(2ψ′ + ψ′′)|∇w|4dv

for any 0 < δ < 1, in view of the positivity ofˆ
[

36ψ′ + (β + 12)ψ′′√
48(1− δ)(2ψ′ + ψ′′)

∆w +
√

12(1− δ)(2ψ′ + ψ′′)|∇w|2]2 dv.

Set ψ(t) =
´ t
−∞

ds

(M0+s2)
2
3

, M0 ≥ 1. Since

(2.5) |ψ
′′

ψ′
| = 4

3

|t|
M0 + t2

≤ 2

3
√
M0

,

for any 0 < δ < 2β−3
4(β+12) we can find M0 ≥ 1 large so that

(2.6)
48[2β−3−2δ(β+12)](ψ′)2−24(1+2δ)(β+12)ψ′ψ′′−(β+12)2(ψ′′)2

48(1−δ)(2ψ′+ψ′′) ≥ δ2ψ′;

12δ(2ψ′ + ψ′′) ≥ δ2ψ′.

Thanks to (2.6) we have that

(β + 12)

ˆ
ψ′(∆w)2dv +

ˆ
[36ψ′ + (β + 12)ψ′′]∆w|∇w|2dv

+12

ˆ
(2ψ′ + ψ′′)|∇w|4dv ≥ δ2

ˆ
ψ′[(∆w)2 + |∇w|4]dv,
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and thenˆ
(∆w)2 + |∇w|4

[1 + (w − w)2]
2
3

dv ≤ C1

(
‖f‖1 +

ˆ
|∇w|2dv

)
(2.7)

for some C1 > 0 in view of M
− 2

3
0 (1 + t2)−

2
3 ≤ ψ′ ≤ 1 and 0 ≤ ψ ≤´

R
ds

(1+s2)
2
3

. From (2.7) and Hölder’s inequality we obtain

ˆ
|∇w|2dv ≤

ˆ
[1 + |w − w|

2
3 ]

|∇w|2

[1 + (w − w)2]
1
3

dv

≤ ‖1 + |w − w|
2
3 ‖2

(ˆ
|∇w|4

[1 + (w − w)2]
2
3

dv

) 1
2

≤ C
1
2
1

(
|M |

1
2 + ‖w − w‖

2
3
4
3

)(
‖f‖1 +

ˆ
|∇w|2dv

) 1
2

≤ C2(1 +

ˆ
|∇w|2dv)

5
6

for some C2 > 0 in view of Poincaré-Wirtinger inequality on w−w. By
Young’s inequality we then have

´
|∇w|2dv ≤ C for some C > 0, and

in turn by (2.7) we deduce the validity of (2.2).

Similarly, since W 2,q(M) embeds continuously into L
4q

3(2−q) (M) by
Sobolev’s Theorem, for any 1 ≤ q < 2 there holdsˆ

|∆w|qdv ≤
ˆ

[1 + |w − w|
2q
3 ]

|∆w|q

[1 + (w − w)2]
q
3

dv

≤ ‖1 + |w − w|
2q
3 ‖ 2

2−q

(ˆ
(∆w)2

[1 + (w − w)2]
2
3

dv

) q
2

≤ C3

(
1 + ‖w − w‖

2q
3

W 2,q

)
for some C3 > 0 in view of (2.2). Since (

´
|∆w|qdv)

1
q is equivalent to the

W 2,q−norm on the functions in W 2,q(M) with zero average, by Young’s
inequality we then have the validity of (2.3) for some uniform C > 0.

Once global bounds on W 2,q−norms have been derived for 1 ≤ q < 2, we
will make use once more of (2.1) to establish Caccioppoli-type estimates:

Theorem 2.3. Let γ2

γ3
> 3

2 . There exist C > 0 and k0 > 0 so thatˆ
{|w−c|<k}∩Bρ

[(∆w)2 + |∇w|4]dv ≤ C

(r − ρ)4

ˆ
Br\Bρ

(1 + (w − c)4) dv

+Ck

ˆ
Br

|f | dv(2.8)
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for any 0 < ρ < r < i0, c ∈ R, k ≥ k0 and any smooth solution w of
N (w) = f in M with f = 0. Here Bρ and Br are centered at the same
point.

Proof. Let χ ∈ C∞0 (Br) be so that 0 ≤ χ ≤ 1, χ = 1 in Bρ and

(2.9) (r − ρ)|∇χ|+ (r − ρ)2|∆χ| ≤ C.

Letting Ψ be the odd extension to R of

Ψ(s) =

{
s if 0 ≤ s ≤ 1

8− 9s−
1
3 + 2s−1 if s > 1,

we have that Ψ ∈ C2(R) satisfies |Ψ′′| ≤ 4Ψ′, 0 < Ψ′ ≤ 1, Ψ2 ≤ 82s2Ψ′

and Ψ4 ≤ 84s4(Ψ′)3 in R. Hence, ψ(s) = kΨ( sk ) is a C2−function so
that 0 < ψ′ ≤ 1,

(2.10) sup
s∈R

|ψ′′(s)|
ψ′(s)

≤ 4

k

and

(2.11) sup
s∈R

ψ2(s)

s2ψ′(s)
≤ 82, sup

s∈R

ψ4(s)

s4(ψ′(s))3
≤ 84.

By Young’s inequality we have thatˆ
[|∆w|+ |∇w|2]|ψ||∆χ4| dv ≤ C

(r − ρ)2

ˆ
Br\Bρ

[|∆w|+ |∇w|2]χ2|ψ|

≤ ε

ˆ
ψ′χ4[(∆w)2 + |∇w|4]dv

+
Cε

(r − ρ)4

ˆ
Br\Bρ

|w − c|2 dv

in view of (2.9) and (2.11), where ψ stands for ψ(w−c). Similarly, there
holds ˆ

[|∆w|+ |∇w|2](ψ′ + |ψ|)|∇χ4||∇w|dv

≤ C

r − ρ

ˆ
Br\Bρ

[|∆w|+ |∇w|2](ψ′ + |ψ|)χ3|∇w|dv

≤ ε
ˆ
ψ′χ4[(∆w)2 + |∇w|4]dv + ε

ˆ
ψ′χ4|∇w|4dv

+
C ′ε

(r − ρ)4

ˆ
Br\Bρ

(ψ′ + |ψ|)4

(ψ′)3
dv

≤ 2ε

ˆ
ψ′χ4[(∆w)2 + |∇w|4]dv +

Cε
(r − ρ)4

ˆ
Br\Bρ

(1 + (w − c)4)dv,
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andˆ
|ψ||∇w||∇χ4|dv ≤ C

r − ρ

ˆ
Br\Bρ

|ψ||∇w|χ3dv ≤ ε
ˆ
ψ′χ4|∇w|4dv

+
Cε

(r − ρ)4

ˆ
Br\Bρ

(w − c)4dv + Cε

in view of (2.9) and (2.11). In conclusion, for all ε > 0 there exists
Cε > 0 so that R in (2.1) satisfies

|R| ≤ Cε

ˆ
ψ′χ4[(∆w)2 + |∇w|4]dv(2.12)

+
Cε

(r − ρ)4

ˆ
Br\Bρ

(1 + (w − c)4)dv

for some C > 0. Since |ψ
′′(s)|
ψ′(s) can be made as small as we need for k

large thanks to (2.10), we are in the same situation as with (2.5) and,
arguing as in the proof of Theorem 2.2, there exists k0 > 0 large so that∣∣∣(γ2

2
+ 6γ3)

ˆ
χ4ψ′(∆w)2dv + 6γ3

ˆ
χ4(2ψ′ + ψ′′)|∇w|4dv

+

ˆ
χ4[18γ3ψ

′ + (
γ2

2
+ 6γ3)ψ′′]∆w|∇w|2dv

∣∣∣(2.13)

≥ δ2

ˆ
ψ′χ4[(∆w)2 + |∇w|4]dv

for some δ > 0 and all k ≥ k0. Since
´
ψ′χ4|∇w|2dv ≤ ε

´
ψ′χ4|∇w|4dv+

Cε and |
´
fχ4ψ dv| ≤ 8k

´
Br
|f | dv, by inserting (2.12)-(2.14) into (2.1)

for ε > 0 small we deduce the validity of (2.8) for all k ≥ k0 in view of
χ4ψ′(w − c) ≥ χ{|w−c|<k}∩Bρ .

The aim is now to control the mean oscillation

[w]BMO =

(
sup

0<r<i0

 
Br

(w − wr)4dv

) 1
4

of a solution w. Our approach in this step heavily relies on the ideas
developed in [22], where Caccioppoli-type estimates like in Theorem 2.3
were crucial to establish BMO-bounds. We believe that L4,∞−estimates
on ∇w are still true as in [22] but it is not clear which are the optimal
bounds for ∆w. We will not pursue more this line since the following
BMO-estimates are enough for our purposes.

Theorem 2.4. Let γ2

γ3
> 3

2 . Assume f = 0 and ‖f‖1 ≤ C0 for some

C0 > 0. There exists C > 0 such that for any smooth solution w of
N (w) = f in M one has

(2.14) [w]BMO ≤ C.
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Proof. If (2.14) does not hold, we can find smooth solutions wn of
N (wn) = fn so that [wn]BMO → +∞ as n → +∞, with fn = 0 and
‖fn‖1 ≤ C0. By definition we can find 0 < rn < i0, xn ∈M so that

(2.15)

 
Brn (xn)

(wn − wrnn )4 dv ≥ 1

2
[wn]4BMO.

Since [wn]BMO → +∞ as n→ +∞, up to a subsequence we can assume
that rn → 0 as n→ +∞ in view of

sup
n∈N

sup
δ<r<i0

 
Br

(wn − wrn)4dv < +∞

for all 0 < δ ≤ i0, as it follows by the Poincaré-Sobolev’s embedding(ˆ
Br

|wn − wrn|4dv
) 1

4

≤ C
(ˆ

Br

|∇wn|2dv
) 1

2

and Theorem 2.2. Letting expxn : Bi0(0) → Bi0(xn) be the exponen-
tial map at xn, for |y| < i0

rn
introduce the rescaled metric gn(y) =

g(expxn(rny)) and the rescaled functions

un(y) =
wn(expxn(rny))− wrnn

[wn]BMO
.

We have that

(2.16)

´
B1(0) un dvgn = 0,

´
B1(0) u

4
n dvgn ≥

vol(Brn (xn))
2r4
n

,´
Br(0)(un − u

r
n)4 dvgn ≤

vol(Brrn (xn))
r4
n

for all r < i0
rn

in view of (2.15), where urn =
ffl
Br(0) un dvgn is the average

of un on Br(0) w.r.t. gn. Neglecting the term involving the Laplacian,
we can rewrite the estimate (2.8) in terms of un asˆ

{|un−c|<k}∩Bρ(0)
|∇un|4gndvgn ≤

Ck‖fn‖1
[wn]3BMO

(2.17)

+
C

(r − ρ)4

ˆ
Br(0)\Bρ(0)

[
1

[wn]4BMO

+ (un − c)4

]
dvgn

for any 0 < ρ < r < i0
rn

, c ∈ R and k ≥ k0
[wn]BMO

. Since vol(Brrn(xn)) ≤
C(rrn)4 for all 0 < r < i0

rn
there holds

(2.18)

ˆ
Br(0)

(un − urn)4 dvgn ≤ Cr4 ∀ 0 < r <
i0
rn

thanks to (2.16), and we can apply (2.17) with ρ = r
2 and c = urn to get

(2.19)

ˆ
{|un−urn|<k}∩B r

2
(0)
|∇un|4gndvgn ≤ C(

1

[wn]4BMO

+ 1) +
Ck‖fn‖1
[wn]3BMO
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in view of (2.18). Since

|urn|
ˆ
B1(0)

dvgn = ±urn
ˆ
B1(0)

dvgn = ∓
ˆ
B1(0)

[un − urn]dvgn

≤
ˆ
B1(0)

|un − urn| dvgn

≤ C

(ˆ
Br(0)

(un − urn)4 dvgn

) 1
4
(ˆ

B1(0)
dvgn

) 3
4

≤ C0r

ˆ
B1(0)

dvgn

for all 1 ≤ r < i0
rn

in view of (2.16) and (2.18), we have that {|un| <
k} ⊂ {|un − urn| < 2k} and then

(2.20)

ˆ
{|un|<k}∩B r

2
(0)
|∇un|4gndvgn ≤ C

(
1 +

k‖fn‖1
[wn]3BMO

)

for all 1 ≤ r < i0
rn

and k > C0r in view of (2.19). From (2.20) and´
B1(0) un dvgn = 0 it is rather classical to derive that un is uniformly

bounded in W 1,q
loc (R4) for all 1 ≤ q < 4, see for example Lemma 2.3 in

[22] and the proof of Lemma 10 in [21]. Up to a subsequence, we

can assume that un ⇀ u in W 1,q
loc (R4) for all 1 ≤ q < 4. Letting

ϕk ∈ C∞0 (−k, k) so that ϕk(s) = s for s ∈ [−k
2 ,

k
2 ], by |ϕ′k| ≤ Ck

and (2.17) we deduce that

ˆ
Bρ(0)

|∇ϕk(un − c)|4dx(2.21)

≤ C

(r − ρ)4

ˆ
Br(0)\Bρ(0)

[
1

[wn]4BMO

+ (un − c)4

]
dx+

Ck‖fn‖1
[wn]3BMO

for any 0 < ρ < r < i0
rn

, c ∈ R and k ≥ k0
[wn]BMO

. Since ∇ϕk(un − c) ⇀
∇ϕk(u − c) in L4

loc(R4) in view of un → u in Lqloc(R
4) for all q ≥ 1 as

n → +∞, by weak lower semi-continuity of the L4−norm we can let
n→ +∞ in (2.21) to get

ˆ
{|u−c|< k

2
}∩Bρ(0)

|∇u|4dx ≤ C

(r − ρ)4

ˆ
Br(0)\Bρ(0)

(u− c)4 dx

and then by the Monotone Convergence Theorem as k → +∞

(2.22)

ˆ
Bρ(0)

|∇u|4dx ≤ C

(r − ρ)4

ˆ
Br(0)\Bρ(0)

(u− c)4 dx
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for any 0 < ρ < r, c ∈ R and k > 0. Similarly, by letting n→ +∞ into
(2.20) we deduce thatˆ

{|u|< k
2
}∩B r

2
(0)
|∇u|4dx ≤ C

for all r ≥ 1 and k > C0r, and then by the Monotone Convergence
Theorem we get

´
R4 |∇u|4dx < +∞ as k, r → +∞. Taking ρ = r

2
and c =

ffl
Br(0)\B r

2
(0) u dx in (2.22), by Poincaré’s inequality one finally

deduces ˆ
B r

2
(0)
|∇u|4dx ≤ C

r4

ˆ
Br(0)\B r

2
(0)

(u− c)4 dx

≤ C ′
ˆ
Br(0)\B r

2
(0)
|∇u|4dx→ 0

as r → +∞ in view of
´
R4 |∇u|4dx < +∞, leading to ∇u = 0 a.e.

in R4. By (2.16) and gn → δeucl locally uniformly as n → +∞ we
have that u = 0 a.e. in view

´
B1(0) u dx = 0, in contradiction with´

B1(0) u
4dx ≥ ω4

6 . q.e.d.

3. General “linear” theory

We aim to develop a comprehensive theory for the operator N in (1.9)
when γ2

γ3
≥ 6. In this section we are interested in existence issues for a

general Radon measure µ and Solutions will be Obtained as Limits of
smooth Approximations, from now on referred to as SOLA (see [7, 8]).
On the other hand since, as we will see, blow-up sequences give rise in
the limit to a solution with a linear combination µs of Dirac masses as
R.H.S., it will be crucial to establish in the next section the logarithmic
behaviour of any of such singular solutions, referred to as a fundamental
solution of N corresponding to µs. We will guarantee that SOLA’s will
be unique just when γ2 = 6γ3.

The assumption γ2

γ3
≥ 6 is crucial to have some monotonicity property

on N , expressed by a sign for the main order term in expressions of the
form 〈N (w1)−N (w2), w1 −w2〉. When γ2 = 6γ3 the lower-order terms
cancel out and uniqueness is in order, as already noticed in [14]. The
operator N (w) in (1.9) is considered here in the following distributional
sense:

〈N (w), ϕ〉 =
γ2

2

ˆ
∆w∆ϕdv − γ2

ˆ
Ric(∇w,∇ϕ)dv

+6γ3

ˆ
(∆w + |∇w|2)∆ϕdv

+12γ3

ˆ
(∆w + |∇w|2)〈∇w,∇ϕ〉dv + (

γ2

3
− 2γ3)

ˆ
R〈∇w,∇ϕ〉dv
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for all ϕ ∈ C∞(M), provided ∇w ∈ L3 and ∇2w ∈ L
3
2 . We have the

following result.

Proposition 3.1. There holds

〈N (w1)−N (w2), ϕ〉(3.1)

= 3γ3

ˆ
∆ĝp ∆ĝϕdvĝ + 6γ3

ˆ
〈∇2

ĝp,∇2
ĝϕ〉ĝdvĝ

+3γ3

ˆ
|∇p|2ĝ〈∇p,∇ϕ〉ĝdvĝ + (

γ2

2
− 3γ3)

ˆ
∆p∆ϕdv

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇ϕ)−R〈∇p,∇ϕ〉]dv

for all ϕ ∈ C∞(M) provided N (w1) and N (w2) exist in a distributional
sense, where p = w1 − w2, q = w1 + w2 and ĝ = eqg.

Proof. Notice that when w1 = w2, q = 2wi and hence our notation
for the conformal metric ĝ = eqg is consistent with out previous one.
Since ĝ = eqg has derivatives in a weak sense up to order two, the
Riemann tensor of ĝ and all the geometric quantities which involve at
most second-order derivatives make sense. One can easily check that

dvĝ = e2qdv, eq∆ĝw = ∆w + 〈∇q,∇w〉, e2q|∇w|4ĝ = |∇w|4,(3.2)

∇2
ĝw = ∇2w − 1

2
dw ⊗ dq − 1

2
dq ⊗ dw +

1

2
〈∇q,∇w〉g.(3.3)

Since w1 = p+q
2 and w2 = q−p

2 we have that

ˆ
[(∆w1 + |∇w1|2)− (∆w2 + |∇w2|2)]∆ϕdv(3.4)

=

ˆ
(∆p+ 〈∇p,∇q〉)∆ϕdv,

and

ˆ
〈(∆w1 + |∇w1|2)∇w1 − (∆w2 + |∇w2|2)∇w2,∇ϕ〉dv

=
1

2

ˆ
(∆p+ 〈∇p,∇q〉)〈∇q,∇ϕ〉dv(3.5)

+
1

4

ˆ
(2∆q + |∇p|2 + |∇q|2)〈∇p,∇ϕ〉dv.
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By (3.4)-(3.5) we deduce that

2

ˆ
〈(∆w1 + |∇w1|2)∇w1 − (∆w2 + |∇w2|2)∇w2,∇ϕ〉dv(3.6)

+

ˆ
[(∆w1 + |∇w1|2)− (∆w2 + |∇w2|2)]∆ϕdv

=
1

2

ˆ
∆p∆ϕdv −

ˆ
〈∇2p,∇2ϕ〉dv +

1

2

ˆ
∆ĝp∆ĝϕdvĝ

+

ˆ
〈∇2

ĝp,∇2
ĝϕ〉ĝdvĝ +

1

2

ˆ
|∇p|2ĝ〈∇p,∇ϕ〉ĝdvĝ,

in view of (3.2)-(3.3) and the formulaˆ
〈∇2

ĝp,∇2
ĝϕ〉ĝdvĝ −

ˆ
〈∇2p,∇2ϕ〉dv(3.7)

=

ˆ
〈∇2

ĝp,∇2
ĝϕ〉dv −

ˆ
〈∇2p,∇2ϕ〉dv

=

ˆ [
∆q〈∇p,∇ϕ〉+

1

2
∆p〈∇q,∇ϕ〉+

1

2
〈∇p,∇q〉〈∇q,∇ϕ〉

+
1

2
|∇q|2〈∇p,∇ϕ〉+

1

2
〈∇p,∇q〉∆ϕ

]
dv.

To establish (3.7) we simply use (3.3) and an integration by parts to getˆ [
∇2p(∇q,∇ϕ) +∇2ϕ(∇q,∇p)

]
dv(3.8)

=

ˆ
〈∇q,∇〈∇p,∇ϕ〉)dv = −

ˆ
∆q〈∇p,∇ϕ〉dv

for all ϕ ∈ C∞(M), in view of ∇p,∇q ∈ L3 and ∇2p,∇2q ∈ L
3
2 . Thanks

to Bochner’s identity

Ric(∇p,∇p) = −〈∇p,∇∆p〉 − |∇2p|2 +
1

2
∆(|∇p|2), p ∈ C3(M),

an integration by parts gives
´

Ric(∇p,∇p)dv =
´

(∆p)2dv−
´
|∇2p|2dv

and by differentiationˆ
Ric(∇p,∇ϕ)dv =

ˆ
∆p∆ϕdv −

ˆ
〈∇2p,∇2ϕ〉dv(3.9)

for all ϕ ∈ C∞(M), where by density it is enough to assume ∇p, ∇2p ∈
L1. By inserting (3.9) into (3.6), we then deduce the validity of (3.1).

Remark 3.2. When ∂M 6= ∅ notice that the integrations by parts
in (3.8)-(3.9) and then (3.1) are still valid for ϕ ∈ C∞0 (M) as long as
N (u), N (v) exist in a distributional sense.
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The usefulness of assumption γ2

γ3
≥ 6 becomes apparent from the choice

ϕ = p in (3.1) since it guarantees that the first four terms in the R.H.S.
of (3.1) have all the same sign. When γ2 = 6γ3 there are no lower-
order terms and uniqueness is expected. Since in general p is not an
admissible function in (3.1), we will follow the strategy in [27, 34, 32]
via a Hodge decomposition to build up admissible approximations of p
to be used in (3.1).

Letting w1 and w2 be smooth functions, consider the pointwise Hodge
decomposition

(3.10)
∇p

(δ2 + |∇p|2 + |∇q|2)2ε
= ∇ϕ+ h,

where ε > 0, 0 < δ ≤ 1 and ϕ, h satisfy ∆ div h = 0 and ϕ = 0. Notice
that

∆ϕ =
∆p

(δ2 + |∇p|2 + |∇q|2)2ε
− 4ε

∇2p(∇p,∇p) +∇2q(∇p,∇q)
(δ2 + |∇p|2 + |∇q|2)2ε+1

−div h.(3.11)

Even if div h = c when ∂M = ∅, we prefer to keep this term in order to
include later the case ∂M 6= ∅. The function ϕ is uniquely determined
as the smooth solution with ϕ = 0 of

∆2ϕ = ∆

[
∆p

(δ2 + |∇p|2 + |∇q|2)2ε
− 4ε

∇2p(∇p,∇p) +∇2q(∇p,∇q)
(δ2 + |∇p|2 + |∇q|2)2ε+1

]
,

in view of (3.11), and then h is simply defined as h = ∇p
(δ2+|∇p|2+|∇q|2)2ε −

∇ϕ.

Let us now consider the case that one between the functions wi, say
w2, is a singular function. Given distinct points p1, . . . , pl ∈ M and
α1, . . . , αl ∈ R, assume that w2 ∈ C∞(M \ {p1, . . . , pl}) and

(3.12) lim
x→0
|x|k|∇(k)(w2 − αi log |x|)| = 0, k = 1, 2, 3,

holds in geodesic coordinates near each pi. Let us justify (3.10) more in
general (i.e. for w1 smooth and w2 singular) by introducing the Green’s
function G(x, y) of ∆2 in M , i.e. the solution of{

∆2G(x, ·) = δx − 1
|M | in M´

G(x, y)dv(y) = 0.

For all F ∈ C∞(M,TM) the solution of ∆2ϕ = ∆div F in M , ϕ = 0,
takes the form

ϕ(x) =

ˆ
G(x, y)∆div F(y)dv(y) = −

ˆ
〈∇y∆yG(x, y),F(y)〉 dv(y).
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Hence ∇ϕ can be expressed as the singular integral (to be understood
as a principal value)

∇ϕ(x) = −
( ˆ
∇xy∆yG(x, y)[F(y)]dv(y)

)]
= K(F),

where ] stands for the sharp musical isomorphism. Since M is a smooth
manifold, by the theory of singular integrals the operator K extends
from C∞(M,TM) to Ls(M,TM) and ∇ϕ = K(F), h = F − K(F)
provide for the vector field F the Hodge decomposition F = ∇ϕ + h
with

(3.13) ‖∇ϕ‖s + ‖h‖s ≤ C(s)‖F‖s

for all s > 1. Notice that by construction

∆ div h = ∆ div[F −K(F)] = ∆ divF −∆2ϕ = 0.

The interested reader can be found more details about the Hodge de-
composition for example in the second section of [34]. The key point
is that C(s) is locally uniformly bounded in (1,+∞), see for example
[33].

Since w1 is smooth and w2 satisfies (3.12), in geodesic coordinates near
each pi there holds

|x|2(δ2 + |∇p|2 + |∇q|2) = 2α2
i + o(1), |∆p|+ |∇2p|+ |∇2q| = O(

1

|x|2
)

as x→ 0, and then F = ∇p
(δ2+|∇p|2+|∇q|2)2ε satisfies div F = O( 1

|x|2(1−2ε) )

as x→ 0. Since w2 is smooth away from p1, . . . , pl, we have that div F ∈
L2(1+2ε)(M) and then by elliptic regularity theory the solution ϕ of

∆2ϕ = ∆div F in M , ϕ = 0, is in W 2,2(1+2ε)(M). The Hodge decompo-

sition (3.10) does hold with h = ∇p
(δ2+|∇p|2+|∇q|2)2ε −∇ϕ ∈W 1,2(1+2ε)(M)

and by (3.13) ϕ satisfies

(3.14) ‖∇ϕ‖ 4(1−ε)
1−4ε

≤ K‖ ∇p
(δ2 + |∇p|2 + |∇q|2)2ε

‖ 4(1−ε)
1−4ε

≤ K‖∇p‖1−4ε
4(1−ε).

To show the smallness of h in (3.10) for ε small, we follow the ap-
proach introduced in [34] based on a general estimate for commutators
in Lebesgue spaces. For the sake of completeness we include it in the
Appendix and we just make use here of the following estimate:

(3.15) ‖h‖ 4(1−ε)
1−4ε

≤ Kε
(
δ1−4ε + ‖∇p‖1−4ε

4(1−ε) + ‖∇q‖1−4ε
4(1−ε)

)
for all 0 < ε ≤ ε0 and 0 < δ ≤ 1, for some K > 0 and ε0 > 0 small.
Thanks to the Hodge decomposition (3.10) we are now ready to show
the following result.
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Proposition 3.3. Let γ2

γ3
≥ 6 and set

(3.16) η = |γ2 − 6γ3| sup
M

(|R|+ ‖Ric‖).

There exist ε0 > 0 and C > 0 so thatˆ |∇2
ĝp|2ĝ + |∇p|4ĝ

(|∇p|2 + |∇q|2)2ε
dvĝ ≤ C(‖F1 − F2‖

4(1−ε)
3

4(1−ε)
3

+ η‖∇p‖2−4ε
2−4ε

+ε
4
3 ‖F1‖

4(1−ε)
3

4(1−ε)
3

+ ε
4
3 ‖F2‖

4(1−ε)
3

4(1−ε)
3

+ ε
2
3 )(3.17)

for all 0 < ε ≤ ε0 and all distributional solutions wi of N (wi) = div Fi,
i = 1, 2, provided that w1 is smooth and either w2 is smooth or satisfies
(3.12). Here p = w1 − w2, q = w1 + w2 and ĝ = eqg.

Proof. In the proof below, when relevant, we keep track of the de-
pendence for the estimates in ε and δ in order to get in the end the
validity of (3.17), by taking the limit as δ → 0+. As already observed,

we have that ϕ ∈W 1,
4(1−ε)
1−4ε (M) ∩W 2,2(1+2ε)(M). Letting ϕk ∈ C∞(M)

so that ϕk → ϕ in W 1,
4(1−ε)
1−4ε (M) ∩W 2,2(1+2ε)(M) as k → +∞, we can

use (3.1) with ϕk: thanks to (3.2)-(3.3) and

|∇p|2 + |∇q|2 + |∆p|+ |∇2p| ∈
⋂

1≤q<2

Lq(M),

let k → +∞ to get the validity of

3γ3

ˆ
∆ĝp ∆ĝϕdvĝ + 6γ3

ˆ
〈∇2

ĝp,∇2
ĝϕ〉ĝdvĝ(3.18)

+3γ3

ˆ
|∇p|2ĝ〈∇p,∇ϕ〉ĝdvĝ + (

γ2

2
− 3γ3)

ˆ
∆p∆ϕdv

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇ϕ)−R〈∇p,∇ϕ〉]dv

= −
ˆ
〈F1 − F2,∇ϕ〉 dv.

Notice that such a Sobolev regularity of ϕ might fail for a general so-
lution w2 ∈ W θ,2,2)(M), see the definition in (3.36), and this explains

why, even tough SOLA lie in W θ,2,2)(M), in Theorem 3.6 we will not
prove uniqueness in such a grand Sobolev space.

Setting ρ = (δ2 + |∇p|2 + |∇q|2)−ε, by (3.10)-(3.11) we deduce that

|∆ĝϕ− (ρ2∆ĝp− e−qdivh)|+ |∇2
ĝϕ− (ρ2∇2

ĝp−∇h[)|ĝ =(3.19)

= ερ2O
(
|∇p|ĝ|∇q|ĝ + |∇q|2ĝ + |∇2

ĝp|ĝ + |∇2
ĝq|ĝ

)
+O (|∇q|ĝ|h|ĝ)

and

|∆ϕ− (ρ2∆p− divh)|(3.20)

= ερ2O
(
|∇p||∇q|+ |∇q|2 + |∇2

ĝp|+ |∇2
ĝq|
)
,
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in view of (3.2)-(3.3), where [ stands for the flat musical isomorphism.
By (3.10) and (3.19)-(3.20) let us re-write (3.18) as

3γ3

ˆ
ρ2(∆ĝp)

2dvĝ + 6γ3

ˆ
ρ2|∇2

ĝp|2ĝdvĝ(3.21)

+3γ3

ˆ
ρ2|∇p|4ĝdvĝ + (

γ2

2
− 3γ3)

ˆ
ρ2(∆p)2dv

−3γ3

ˆ
e−q∆ĝp divh dvĝ − 6γ3

ˆ
〈∇2

ĝp,∇h[〉ĝdvĝ

−(
γ2

2
− 3γ3)

ˆ
∆pdivh dv = −

ˆ
〈F1 − F2,∇ϕ〉dv + R,

where by (3.2)-(3.3) and Hölder’s inequality R satisfies

R = ε

(
‖ρ∇2

ĝp‖2,ĝ + (

ˆ
ρ2|∇p|4ĝdvĝ)

1
4 (

ˆ
ρ2|∇q|4ĝdvĝ)

1
4

)
(3.22)

×O
[
(

ˆ
ρ2|∇p|4ĝdvĝ)

1
4 (

ˆ
ρ2|∇q|4ĝdvĝ)

1
4

+(

ˆ
ρ2|∇q|4ĝdvĝ)

1
2 + ‖ρ∇2

ĝp‖2,ĝ + ‖ρ∇2
ĝq‖2,ĝ

]
+O
(ˆ

[|∇2
ĝp||∇q|+ |∇p|3]|h|dv

)
+O

(
η

ˆ
[|∇p|2−4ε + |∇p||h|]dv

)
.

Notice that by (3.2) and Hölder’s inequality

ˆ
[|∇2

ĝp||∇q|+ |∇p|3]|h|dv(3.23)

= O
(
‖ρ∇2

ĝp‖2,ĝ(
ˆ
ρ2|∇q|4ĝdvĝ)

1
4 + (

ˆ
ρ2|∇p|4ĝdvĝ)

3
4

)
×‖ρ−1‖

3
2
2(1−ε)
ε

‖h‖ 4(1−ε)
1−4ε

= εO
(
‖ρ∇2

ĝp‖2,ĝ(
ˆ
ρ2|∇q|4ĝdvĝ)

1
4 + (

ˆ
ρ2|∇p|4ĝdvĝ)

3
4

)
×(δ1−ε + ‖∇p‖1−ε4(1−ε) + ‖∇q‖1−ε4(1−ε)),

thanks to (3.15) and

‖ρ−1‖ 2(1−ε)
ε

≤ ‖δ + |∇p|+ |∇q|‖2ε4(1−ε)(3.24)

= O(δ2ε + ‖∇p‖2ε4(1−ε) + ‖∇q‖2ε4(1−ε)).
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The difficult term to handle is

3γ3

ˆ
e−q∆ĝp divh dvĝ + 6γ3

ˆ
〈∇2

ĝp,∇h[〉ĝdvĝ(3.25)

+(
γ2

2
− 3γ3)

ˆ
∆p divh dv = 3γ3

ˆ
〈∇q,∇p〉divh dv

+6γ3

ˆ
〈∇2

ĝp,∇h[〉dv +
γ2

2

ˆ
∆p divh dv

in view of (3.2)-(3.3). For smooth functions w1 and w2, integrating by
parts we have that

3γ3

ˆ
〈∇q,∇p〉divh dv +

γ2

2

ˆ
∆p divh dv(3.26)

= −3γ3

ˆ
〈∇〈∇q,∇p〉, h〉 dv +

γ2

2

ˆ
∆pdivh dv,

and

ˆ
〈∇2

ĝp,∇h[〉dv = −
ˆ
gijhk(∇2

ĝp)kj;i dv(3.27)

= −
ˆ

[〈h,∇∆p〉+ Ric (h,∇p)]dv +
1

2

ˆ
[∆p〈∇q, h〉+ ∆q〈∇p, h〉]dv

=

ˆ
[∆pdivh− Ric (h,∇p) +

1

2
∆p〈∇q, h〉+

1

2
∆q〈∇p, h〉]dv

in view of (3.3) and

gijhkp;jki = gijhkp;jik +Rskh
k(∇p)s = 〈h,∇∆p〉+ Ric (h,∇p).
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Since ∆ div h = 0, recalling (3.25), by Hölder’s inequality and (3.26)-
(3.27) we then have

3γ3

ˆ
e−q∆ĝpdivh dvĝ + 6γ3

ˆ
〈∇2

ĝp,∇h[〉ĝdvĝ(3.28)

+(
γ2

2
− 3γ3)

ˆ
∆p divh dv

= O
(ˆ
|h||∇p|dv +

ˆ
[|∇2

ĝp||∇q|+ |∇2
ĝq||∇p|+ |∇q|2|∇p|]|h|dv

)
= O

(
‖∇p‖ 4(1−ε)

3

‖h‖ 4(1−ε)
1−4ε

)
+O
(
‖ρ∇2

ĝq‖2,ĝ(
ˆ
ρ2|∇p|4ĝdvĝ)

1
4 ‖ρ−1‖

3
2
2(1−ε)
ε

‖h‖ 4(1−ε)
1−4ε

)
+O
(
‖ρ∇2

ĝp‖2,ĝ + (

ˆ
ρ2|∇p|4ĝdvĝ)

1
4 (

ˆ
ρ2|∇q|4ĝdvĝ)

1
4

)
×
( ˆ

ρ2|∇q|4ĝdvĝ
) 1

4 ‖ρ−1‖
3
2
2(1−ε)
ε

‖h‖ 4(1−ε)
1−4ε

= εO(δ2−4ε + ‖∇p‖2−4ε
4(1−ε) + ‖∇q‖2−4ε

4(1−ε))

+ε(δ1−ε + ‖∇p‖1−ε4(1−ε) + ‖∇q‖1−ε4(1−ε))O

[
‖ρ∇2

ĝq‖2,ĝ(
ˆ
ρ2|∇p|4ĝdvĝ)

1
4

+‖ρ∇2
ĝp‖2,ĝ(

ˆ
ρ2|∇q|4ĝdvĝ)

1
4 + (

ˆ
ρ2|∇p|4ĝdvĝ)

1
4 (

ˆ
ρ2|∇q|4ĝdvĝ)

1
2

]
in view of (3.2)-(3.3), (3.15) and (3.24). When w2 satisfies (3.12), notice

that p, q ∈
⋂

1≤q<2

W 2,q(M) and h ∈ L
4(1−ε)
1−4ε (M) ∩W 1,2(1+2ε)(M). By an

approximation argument we see that (3.26)-(3.27) and
´

∆p divh dv = 0
still hold for p, q and h also in this case, and then (3.28) again follows.

As

‖∇ϕ‖
4(1−ε)
1−4ε

4(1−ε)
1−4ε

= O

(ˆ
(ρ2|∇p|)

4(1−ε)
1−4ε dv

)
= O

(ˆ
ρ2|∇p|4(

|∇p|2

δ2 + |∇p|2 + |∇q|2
)

6ε
1−4εdv

)
= O(

ˆ
ρ2|∇p|4ĝdvĝ)

in view of (3.14), notice that ˆ
〈F1 − F2,∇ϕ〉dv(3.29)

= O

(
‖F1 − F2‖ 4(1−ε)

3

(

ˆ
ρ2|∇p|4ĝdvĝ)

1−4ε
4(1−ε)

)
.

Since

η

ˆ
|∇p||h|dv = O(η2−4ε‖∇p‖2−4ε

2−4ε + ε
8
3 +

1

ε
8
3

‖h‖
4(1−ε)
1−4ε

4(1−ε)
1−4ε

),



CRITICAL METRICS FOR LOG-DETERMINANT FUNCTIONALS 25

inserting (3.22)-(3.23) and (3.28)-(3.29) into (3.21), by Young’s inequal-
ity and (3.15) one finally gets that

ˆ
ρ2
[
|∇2

ĝp|2ĝ + |∇p|4ĝ
]
dvĝ = O

(
‖F1 − F2‖

4(1−ε)
3

4(1−ε)
3

+ η‖∇p‖2−4ε
2−4ε

)
+ε

4
3O
(
‖ρ∇2

ĝq‖22,ĝ + ‖∇p‖4−4ε
4(1−ε) + ‖∇q‖4−4ε

4(1−ε) + ε−
2
3
)

(3.30)

for all 0 < ε ≤ ε0 and 0 < δ ≤ 1, for some ε0 > 0 small.

Since (3.30) holds for any smooth functions w1 and w2, if we choose
w2 = F2 = 0 then w1 = p = q satisfies

ˆ |∇2
g̃w1|2g̃ + |∇w1|4g̃

(δ2 + |∇w1|2)2ε
dvg̃(3.31)

= O
(
‖F1‖

4(1−ε)
3

4(1−ε)
3

+ ‖∇w1‖2−4ε
2−4ε + ε

4
3 ‖∇w1‖4−4ε

4(1−ε) + ε
2
3

)
for all 0 < ε ≤ ε0 and 0 < δ ≤ 1, where g̃ = ew1g. Letting δ → 0+ in
(3.31), by Fatou’s Lemma we deduce that

ˆ |∇2
g̃w1|2g̃ + |∇w1|4g̃
|∇w1|4ε

dvg̃ = O
(
‖F1‖

4(1−ε)
3

4(1−ε)
3

+‖∇w1‖2−4ε
2−4ε+ε

4
3 ‖∇w1‖4−4ε

4(1−ε)+ε
2
3

)
for all 0 < ε ≤ ε0. Since

´ |∇w1|4g̃
|∇w1|4εdvg̃ =

´
|∇w1|4(1−ε)dv, by Young’s

inequality we obtain that

(3.32)

ˆ |∇2
g̃w1|2g̃

|∇w1|4ε
dvg̃ + ‖∇w1‖4(1−ε)

4(1−ε) = O(‖F1‖
4(1−ε)

3
4(1−ε)

3

+ 1).

If w2 is either smooth or satisfies (3.12), we can still apply (3.30) with
w1 = F1 = 0 and get

(3.33)

ˆ |∇2
g#w2|2g#

|∇w2|4ε
dvg# + ‖∇w2‖4(1−ε)

4(1−ε) = O(‖F2‖
4(1−ε)

3
4(1−ε)

3

+ 1)

for all 0 < ε ≤ ε0, where g# = ew2g. Since ρ ≤ |∇w1|−2ε, |∇w2|−2ε and

e2q[|∇2
ĝp|2ĝ + |∇2

ĝq|2ĝ] = 2e2w1 |∇2
g̃w1|2g̃ + 2e2w2 |∇2

g#w2|2g#

+|dw1 ⊗ dw2 + dw2 ⊗ dw1 − 〈∇w1,∇w2〉g|2

−2〈∇2
g̃w1 +∇2

g#w2, dw1 ⊗ dw2 + dw2 ⊗ dw1 − 〈∇w1,∇w2〉g〉

in view of (3.2)-(3.3), by (3.32)-(3.33) we deduce that

‖∇p‖4(1−ε)
4(1−ε) + ‖∇q‖4(1−ε)

4(1−ε) = O(‖∇w1‖4(1−ε)
4(1−ε) + ‖∇w2‖4(1−ε)

4(1−ε))

= O(‖F1‖
4(1−ε)

3
4(1−ε)

3

+ ‖F2‖
4(1−ε)

3
4(1−ε)

3

+ 1)(3.34)
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and

‖ρ∇2
ĝp‖22,ĝ + ‖ρ∇2

ĝq‖22,ĝ(3.35)

= O
( ˆ |∇2

g̃w1|2g̃
|∇w1|4ε

dvg̃ +

ˆ |∇2
g#w2|2g#

|∇w2|4ε
dvg#

+

ˆ
|∇w1|2−2ε|∇w2|2−2εdv

)
= O(‖F1‖

4(1−ε)
3

4(1−ε)
3

+ ‖F2‖
4(1−ε)

3
4(1−ε)

3

+ 1)

for all 0 < ε ≤ ε0. Inserting (3.34)-(3.35) into (3.30) and letting δ → 0+,
estimate (3.17) follows by Fatou’s Lemma for some ε0 > 0 small.

Remark 3.4. When ∂M 6= ∅, re-consider G(x, y) as the Green func-
tion of ∆2 in M with boundary conditions G(x, ·) = ∂νG(x, ·) = 0 on

∂M . The Hodge decomposition (3.10) does hold with ϕ ∈W 2,2(1+2ε)
0 (M)

and h ∈ W
1,2(1+2ε)
0 (M). Letting ϕk ∈ C∞0 (M) so that ϕk → ϕ in

W
1,

4(1−ε)
1−4ε

0 (M) ∩W 2,2(1+2ε)
0 (M) as k → +∞, thanks to Remark 3.2 we

can use (3.1) with ϕk and let k → +∞ to get the validity of (3.18)
for ϕ. The integrations by parts (3.26)-(3.27) are still valid since h ∈
W

1,2(1+2ε)
0 (M), while

´
∆p divh dv = 0 does hold provided w1 − w2 ∈

W 2,1
0 (M). Hence, Proposition 3.3 does hold when ∂M 6= ∅ provided that

we assume w1 − w2 ∈W 2,1
0 (M).

According to the terminology in [27], let Lθ,q)(M,TM) be the grand

Lebesgue space of all vector fields F ∈
⋃

1≤q̃<q
Lq̃(M,TM) with

‖F‖θ,q) = sup
0<ε≤ε0

ε
θ
q ‖F‖q(1−ε) < +∞

and W θ,2,2) be the grand Sobolev space

W θ,2,2) = {w ∈W 2,1(M) : w = 0, ‖w‖W θ,2,2) := ‖∆w‖θ,2)

+‖∇w‖θ,4) < +∞}.(3.36)

Let M = {µ Radon measure in M : µ(M) = 0}. For µ ∈ M we
say that a distributional solution w of N (w) = µ in M is a SOLA if
w = lim

n→+∞
wn a.e., where wn are smooth solutions of N (wn) = fn with

fn ∈ C∞(M), wn = fn = 0 and fndv ⇀ µ as n → +∞. We argue as
in section 4 in [27]: letting G2 be the Green’s function of ∆ in M , for
µ ∈M the function

H(µ) =

ˆ
∇xG2(x, y)dµ(y)



CRITICAL METRICS FOR LOG-DETERMINANT FUNCTIONALS 27

makes sense in Lq(M) for all 1 ≤ q < 4
3 and satisfies

ε
3
4 ‖H(µ)‖ 4(1−ε)

3

≤ ε
3
4 |dµ| sup

y∈M

(ˆ
|∇xG2(x, y)|

4(1−ε)
3 dv(x)

) 3
4(1−ε)

≤ C|dµ|(3.37)

for all 0 < ε ≤ ε0, in view of(ˆ
[

ˆ
|∇xG2(x, y)|dµ(y)]

4(1−ε)
3 dv(x)

) 3
4(1−ε)

≤ |dµ|
(ˆ

dµ

|dµ|
(y)

ˆ
|∇xG2(x, y)|

4(1−ε)
3 dv(x)

) 3
4(1−ε)

by Jensen’s inequality. Therefore, we have thatH :M→ L1, 4
3

)(M,TM)
is a linear bounded operator satisfying the property µ = div H(µ), and
we can now re-phrase Proposition 3.3 as the following main a-priori
estimate.

Proposition 3.5. Let γ2

γ3
≥ 6, 2

3 ≤ θ <
4
3 and η be given as in (3.16).

There exists C > 0 such that

‖w1 − w2‖W θ,2,2) ≤ C‖F1 − F2‖
4−3θ

6

θ, 4
3

)
(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

θ
2

+C‖F1 − F2‖
4−3θ

12

θ, 4
3

)
(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

4+3θ
12(3.38)

+η(‖F1‖θ, 4
3

) + ‖F2‖θ, 4
3

) + 1)
1
3 O(‖∇(w1 − w2)‖2 + ‖∇(w1 − w2)‖

1
4
2 )

for all SOLA’s w1, w2 of N (w1) = µ1 ∈ M, N (w2) = µ2 ∈ M, where
F1 = H(µ1) and F2 = H(µ2). Estimate (3.38) holds even if w2 is a
distributional solution which satisfies (3.12).

Proof. Since w1 is a SOLA, by definition let f1,n be the corresponding
approximating sequence of µ1 = divF1. Letting u1,n be the smooth
solution of ∆u1,n = f1,n in M , u1,n = 0, we have that u1,n is pre-
compact in W 1,q(M) for all 1 ≤ q < 4

3 , see for example Lemma 1 in [8]
in the Euclidean context, and then the following property does hold:

(3.39) sup
n
‖f1,n‖1 < +∞ ⇒ H(f1,ndv) pre-compact in Lq(M)

for all 1 ≤ q < 4
3 in view of H(f1,ndv) = ∇u1,n. Up to a subsequence,

we have that u1,n → u1 in W 1,q(M) for all 1 ≤ q < 4
3 , where u1 is

a distributional solution of ∆u1 = µ1 in M , u1 = 0. By uniqueness
∇u1 = H(µ1) and therefore w1 = lim

n→+∞
w1,n a.e., where N (w1,n) =

divF1,n with F1,n = ∇u1,n → F1 in Lq(M) for all 1 ≤ q < 4
3 .

Assume that w2 is either a SOLA or a distributional solution satisfying
(3.12) of N (w2) = µ2 = divF2. In the first case, let f2,n and F2,n be
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the corresponding sequences for w2 so that w2 = lim
n→+∞

w2,n a.e., where

N (w2,n) = divF2,n with F2,n → F2 in Lq(M) for all 1 ≤ q < 4
3 . In the

second case, consider w2,n = w2 for all n ∈ N. Apply (3.17) to w1,n and
w2,n to get by (3.34)

ˆ |∇2
ĝn
pn|2ĝn + |∇pn|4ĝn

(|∇pn|2 + |∇qn|2)2ε
dvĝn ≤ C

in terms of pn = w1,n − w2,n, qn = w1,n + w2,n and ĝn = eqng. Notice
that for 1 ≤ q < 2 by Hölder’s estimate there holds

ˆ
|∆pn|qdv ≤ C

(ˆ
(∆ĝnpn)2 + |∇qn|2ĝn |∇pn|

2
ĝn

(|∇pn|2 + |∇qn|2)2ε
dvĝn

) q
2

×
(ˆ

(|∇pn|2 + |∇qn|2)
2εq
2−q dv

) 2−q
2

in view of (3.2), and then pn is uniformly bounded in W 2,q(M) for all
1 ≤ q < 2 thanks to (3.34). By Rellich’s Theorem we deduce that
pn → w1 − w2 in W 1,q(M) for all 1 ≤ q < 4. Letting n → +∞ into
(3.17) applied to w1,n and w2,n, by Fatou’s Lemma we get the validity
of

ˆ |∇2
ĝp|2ĝ + |∇p|4ĝ

(|∇p|2 + |∇q|2)2ε
dvĝ ≤ C(‖F1 − F2‖

4(1−ε)
3

4(1−ε)
3

(3.40)

+η‖∇p‖2−4ε
2−4ε + ε

4
3 ‖F1‖

4(1−ε)
3

4(1−ε)
3

+ ε
4
3 ‖F2‖

4(1−ε)
3

4(1−ε)
3

+ ε
2
3 )

for all 0 < ε ≤ ε0 and for all distributional solutions wi of N (wi) =
divFi, i = 1, 2, provided w1 is a SOLA and w2 is either a SOLA or
satisfies (3.12), where p = w1 − w2, q = w1 + w2 and ĝ = eqg. Re-
written (3.40) as

ˆ
(∆p+ 〈∇q,∇p〉)2 + |∇p|4

(|∇p|2 + |∇q|2)2ε
dv

≤ C(ε−θ‖F1 − F2‖
4(1−ε)

3

θ, 4
3

)
+ η‖∇p‖2−4ε

2−4ε)

+Cε
4
3
−θ(‖F1‖

4(1−ε)
3

θ, 4
3

)
+ ‖F2‖

4(1−ε)
3

θ, 4
3

)
+ εθ−

2
3 )
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in view of (3.2), by Young’s inequality we deduce that

ˆ
|∆p+ 〈∇q,∇p〉|2(1−ε)dv +

ˆ
|∇p|4(1−ε)dv(3.41)

≤ C
ˆ

[(∆p+ 〈∇q,∇p〉)2 + |∇p|4]1−εdv

= O

(ˆ
(∆p+ 〈∇q,∇p〉)2 + |∇p|4

(|∇p|2 + |∇q|2)2ε
dv

)
+εO

(
‖∇p‖4(1−ε)

4(1−ε) + ‖∇q‖4(1−ε)
4(1−ε)

)
≤ Cη‖∇p‖2−4ε

2−4ε

+Cε−θ‖F1 − F2‖
4(1−ε)

3

θ, 4
3

)
+ Cε

4
3
−θ(‖F1‖

4(1−ε)
3

θ, 4
3

)
+ ‖F2‖

4(1−ε)
3

θ, 4
3

)
+ εθ−

2
3 )

for 0 < ε ≤ ε0 in view of (3.34). If F1 6= F2, let εδ > 0 be defined as

εδ = δ(
‖F1 − F2‖θ, 4

3
)

‖F1‖θ, 4
3

) + ‖F2‖θ, 4
3

) + 1
)

for 0 < δ ≤ ε0. Since 0 < εδ ≤ δ ≤ ε0 and ‖ · ‖q(1−δ) = O(‖ · ‖q(1−εδ)) by
Hölder’s inequality, inserting εδ into (3.41) we deduce that

‖∆p+ 〈∇q,∇p〉‖θ,2) = sup
0<δ≤ε0

δ
θ
2 ‖∆p+ 〈∇q,∇p〉‖2(1−δ)(3.42)

= O( sup
0<δ≤ε0

δ
θ
2 ‖∆p+ 〈∇q,∇p〉‖2(1−εδ))

= ‖F1 − F2‖
4−3θ

6

θ, 4
3

)
O(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

θ
2

+η O(‖∇p‖2 + ‖∇p‖
1
2
2 )

and

‖∇p‖θ,4) = sup
0<δ≤ε0

δ
θ
4 ‖∇p‖4(1−δ) = O( sup

0<δ≤ε0
δ
θ
4 ‖∇p‖4(1−εδ))

= ‖F1 − F2‖
4−3θ

12

θ, 4
3

)
O(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

θ
4(3.43)

+η O(‖∇p‖
1
2
2 + ‖∇p‖

1
4
2 ).

Considering as above the two cases w1 = F1 = 0 and w2 = F2 = 0 by
(3.43) and Young’s inequality we obtain that

‖∇q‖θ,4) = O(‖∇w1‖θ,4) + ‖∇w2‖θ,4)) = O(‖F1‖θ, 4
3

) + ‖F2‖θ, 4
3

) + 1)
1
3 ,
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which inserted into (3.42) by Hölder’s inequality gives

‖∆p‖θ,2) = O(‖∆p+ 〈∇q,∇p〉‖θ,2) + ‖∇p‖θ,4)‖∇q‖θ,4))

= ‖F1 − F2‖
4−3θ

6

θ, 4
3

)
O(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

θ
2

+‖F1 − F2‖
4−3θ

12

θ, 4
3

)
O(‖F1‖θ, 4

3
) + ‖F2‖θ, 4

3
) + 1)

4+3θ
12

+η(‖F1‖θ, 4
3

) + ‖F2‖θ, 4
3

) + 1)
1
3 O(‖∇p‖2 + ‖∇p‖

1
4
2 ).

Therefore (3.38) has been established.

We have the following general result of independent interest.

Theorem 3.6. Let γ2

γ3
≥ 6. For any µ ∈ M there exists a SOLA w

of N (w) = µ in M so that w ∈ W 1,2,2). When γ2 = 6γ3 such a SOLA
is unique.

Proof. Since η = 0 when γ2 = 6γ3, uniqueness directly follows from
estimate (3.38) and we are just concerned with the existence issue.
Letting ρn be a sequence of mollifiers in [0,+∞), define the approxi-
mate measures µn = (fn− fn)dv, where fn(x) =

´
ρn(d(x, y))dµ(y) are

smooth functions. Since µn ⇀ µ, by (3.37) and (3.39) we have that

Fn = H(µn) is uniformly bounded in L1, 4
3

)(M,TM) and is pre-compact
in Lq(M) for all 1 ≤ q < 4

3 . Up to a subsequence, it is easily seen that

Fn is a Cauchy sequence in Lθ,
4
3

)(M,TM) for all θ > 1. In order to

solve N (wn) = fn in M , notice that N (w) = J ′(w)
4 , where

J(w) = γ2

ˆ
(∆w)2dv − 2γ2

ˆ
Ric(∇w,∇w)dv

+12γ3

ˆ
(∆w + |∇w|2)2dv

+(
2

3
γ2 − 4γ3)

ˆ
R|∇w|2dv, w ∈W 2,2(M).

Since by squares completion

β

ˆ
(∆w)2dv + 12

ˆ
(∆w + |∇w|2)2dv

≥ 24 + β −
√

576 + β2

2

ˆ
[(∆w)2 + |∇w|4]dv

with β = γ2

γ3
> 0, the functional J(w)−4

´
fw dv is easily seen to attain

a minimizer in W 2,2(M) ∩ {w = 0} as long as f ∈ Lq(M) for some
q > 1. So we can construct wn ∈ W 2,2(M) solutions of N (wn) = fn in
M , wn = 0, which are smooth thanks to [55]. Estimate (3.43) provides
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by Young’s inequality

‖∇wn‖1,4) = O
(
‖Fn‖

1
12

1, 4
3

)
(‖Fn‖1, 4

3
) + 1)

1
4 + 1

)
.

Therefore, by (3.38) wn is a bounded sequence in W 1,2,2). In particular,
wn is uniformly bounded in W 2,q(M) for all 1 ≤ q < 2 and by Rellich’s
Theorem we deduce that, up to a subsequence, wn → w in W 1,q(M)
for all 1 ≤ q < 4. Since ‖∇(wn − wm)‖2 → 0 as n,m → +∞, we can

use again (3.38) to show that wn is a Cauchy sequence in W θ,2,2) for

1 < θ < 4
3 . Then w is a SOLA of N (w) = µ in M with w ∈ W 1,2,2) by

the boundedness of wn in W 1,2,2).

Remark 3.7. Let ∂M 6= ∅ and Φ ∈ C∞(M). For a Radon measure
µ on M we say that a distributional solution w of N (w) = µ in M ,
w = Φ and ∂νw = ∂νΦ on ∂M , is a SOLA if w = lim

n→+∞
wn a.e.,

where wn are smooth solutions of N (wn) = fn in M , wn = Φ and
∂νwn = ∂νΦ on ∂M , for fn ∈ C∞(M) so that fndv ⇀ µ as n → +∞.
The map H is defined by using as G2(x, y) the Green function of ∆ in
M with zero Dirichlet boundary condition on ∂M . By Remark 3.4 we
have that Proposition 3.5 still holds in this context provided w1 − w2 ∈
W 2,1

0 (M) and Theorem 3.6 does hold providing a SOLA w ∈W 1,2,2)(M)
of N (w) = µ in M , w = Φ and ∂νw = ∂νΦ on ∂M for any Radon
measure µ.

4. Fundamental solutions

Let µs =

l∑
i=1

βiδpi be the purely singular measure given as a linear

combination of Dirac masses centered at distinct points p1, . . . , pl ∈M .
Given U as in (1.7), the parameters β1, . . . , βl 6= 0 are chosen to satisfy

(4.1)
l∑

i=1

βi =

ˆ
Udv.

Since (4.1) guarantees that µs − U ∈ M, for γ2

γ3
≥ 6 we can apply

Theorem 3.6 to find a SOLA ws ∈W 1,2,2)(M) (recall (3.36)) of N (ws) =
l∑

i=1

βiδpi −U in M , referred to as a fundamental solution corresponding

to µs. Unless γ2 = 6γ3, fundamental solutions ws corresponding to µs
are not unique and the aim now is to establish a logarithmic behaviour
of each ws, no matter whether uniqueness holds or not.

Since
d

dx
[(γ2 + 12γ3)x+ 18γ3x

2 + 6γ3x
3] = (γ2 + 12γ3) + 36γ3x+ 18γ3x

2
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has a given sign in view of ∆ = −72γ2
3(γ2

γ3
− 6) ≤ 0, let αi = α(βi) 6= 0

be the unique solution of

(4.2) −4π2[(γ2 + 12γ3)α+ 18γ3α
2 + 6γ3α

3] = βi.

The function

(4.3) w0(x) =
l∑

i=1

αi log d̃(x, pi)

is an approximate solution of N (w) =

l∑
i=1

βiδpi−U in M , where d̃(x, pi)

stands for the distance function smoothed away from pi. Since w0 sat-
isfies (3.12) and N (ws) − N (w0) is sufficiently integrable, we can let
ε→ 0 in estimate (3.40) to obtain W 2,2−estimates w.r.t. ĝ = ews+w0g.
Once re-written as W 2,2−estimates w.r.t. g0 = e2w0g, the argument in
[55] can be adapted to annular regions around the singularities to show
that such weighted W 2,2-estimates imply the validity of (3.12) for ws
too.

Concerning the role of w0 we have the following result.

Lemma 4.1. The function w0 in (4.3) is a distributional solution of

(4.4) N (w0) =

l∑
i=1

βiδpi + f0

with f0 − γ2div[Ric(·,∇w0)]− (2γ3 − γ2

3 )div(R∇w0) ∈ L∞(M).

Proof. w0 is a radial function in a neighbourhood of pi, so in geodesic
coordinates it satisfies

∆w0 =
2αi
|x|2

, |∇w0|2 =
α2
i

|x|2
, (∆w0 + |∇w0|2)∇w0 = (2 + αi)α

2
i

x

|x|4

for all x 6= 0. Since

N (w0) = (
γ2

2
+ 6γ3)∆2w0 + 6γ3∆(|∇w0|2)

−12γ3div[(∆w0 + |∇w0|2)∇w0]

+γ2div[Ric(·,∇w0)] + (2γ3 −
γ2

3
)div(R∇w0)

= γ2div[Ric(·,∇w0)] + (2γ3 −
γ2

3
)div(R∇w0)

near pi and N (w0) is a bounded function away from p1, . . . , pl, we have
that w0 solves N (w0) = f0 in M \ {p1, . . . , pl}, with the right-hand side
satisfying f0 − γ2div[Ric(·,∇w0)]− (2γ3 − γ2

3 )div(R∇w0) ∈ L∞(M).
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Given ε > 0 small and ϕ ∈ C∞(M), we have thatˆ
M\∪li=1Bε(pi)

f0ϕdv =

ˆ
M\∪li=1Bε(pi)

N (w0)ϕdv

= −
l∑

i=1

˛
∂Bε(pi)

[
(
γ2

2
+ 6γ3)∂ν∆w0 + 6γ3∂ν |∇w0|2

−12γ3(∆w0 + |∇w0|2)∂νw0

]
ϕdσ

+

ˆ
M\∪li=1Bε(pi)

[
(
γ2

2
+ 6γ3)∆w0∆ϕ+ 6γ3|∇w0|2∆ϕ

+12γ3(∆w0 + |∇w0|2)〈∇w0,∇ϕ〉
]
dv

−
ˆ
M\∪li=1Bε(pi)

[
γ2Ric(∇w0,∇ϕ) + (2γ3 −

γ2

3
)R〈∇w0,∇ϕ〉

]
dv

+oε(1),

where oε(1)→ 0 as ε→ 0+. Since

∂ν

[
(
γ2

2
+ 6γ3)∆w0 + 6γ3|∇w0|2

]
= −2αi

ε3
[γ2 + 12γ3 + 6αiγ3],

(∆w0 + |∇w0|2)∂νw0 =
2α2

i + α3
i

ε3

on ∂Bε(pi), as ε→ 0+ we get thatˆ
[(
γ2

2
+ 6γ3)∆w0∆ϕ+ 6γ3|∇w0|2∆ϕ

+12γ3(∆w0 + |∇w0|2)〈∇w0,∇ϕ〉]dv

−
ˆ

[γ2Ric(∇w0,∇ϕ) + (2γ3 −
γ2

3
)R〈∇w0,∇ϕ〉]dv

=

l∑
i=1

βiϕ(pi) +

ˆ
f0ϕdv

for all ϕ ∈ C∞(M) in view of (4.2), i.e. w0 is a distributional solution
of (4.4).

Remark 4.2. Let Φ ∈ C∞(Br(pi)), i = 1, . . . , l, so that Φ = 0 near

pi and assume that {p1, . . . , pl} ∩ Br(pi) = {pi}. Letting −4π2[(γ2 +

12γ3)αi+ 18γ3α
2
i + 6γ3α

3
i ] = βi, choose w0(x) = αi log d̃(x, pi) in such a

way that w0 = 0 near ∂Br(pi). We have that w0 + Φ is a distributional
solution of (4.4) in Br(pi) such that f0 − γ2div[Ric(·,∇w0)] − (2γ3 −
γ2

3 )div(R∇w0) ∈ L∞(Br(pi)). Moreover, thanks to Remark 3.7 there
exists a fundamental solution ws corresponding to µs and Φ, namely a
SOLA ws ∈ W 1,2,2)(Br(pi)) of N (ws) = βiδpi − U in Br(pi), ws = Φ
and ∂νws = ∂νΦ on ∂Br(pi).
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The aim now is to show that any fundamental solution ws has a logarith-
mic behaviour near p1, . . . , pl. For problems involving the p−Laplace
operator an extensive study on isolated singularities is available, see
[35, 51, 52] (see also [36] for some fully nonlinear equations in confor-
mal geometry). We adapt the argument in [55] to our situation and in
presence of singularities to show the following result.

Theorem 4.3. Let γ2

γ3
≥ 6. Any fundamental solution ws correspond-

ing to µs satisfies ws ∈ C∞(M \ {p1, . . . , pl}) and (3.12) with αi given
by (4.2).

Proof. Recall that ws is a SOLA of N (ws) = µs − U := divF and
w0 is a distributional solution of N (w0) = µs + f0 := divF0. Since

F, F0 ∈ L1, 4
3

)(M,TM) with div (F − F0) = −(f0 + U) ∈ Lq(M) for all
1 ≤ q < 2 in view of

(4.5) f0 − γ2div[Ric(·,∇w0)]− (2γ3 −
γ2

3
)div(R∇w0) ∈ L∞(M)

by Lemma 4.1, we can let ε → 0+ in (3.40) and by Fatou’s lemma end
up with

ˆ
[|∇2

ĝp|2 + |∇p|4]dv ≤ C(‖F − F0‖
4
3
4
3

+ η‖∇p‖22 + 1) < +∞(4.6)

in view of (3.2), where p = ws−w0 and ĝ = ews+w0g. Setting g0 = e2w0g,
by 2w0 = ws + w0 − p we deduce that ∇2

g0
p = ∇2

ĝp + O(|∇p|2) in view

of (3.3) and then (4.6) re-writes as
ˆ

[|∇2
g0
p|2 + |∇p|4]dv < +∞.(4.7)

Notice that ws and w0 satisfy

(4.8) 〈N (ws)−N (w0), ϕ〉 = −
ˆ

(f0 + U)ϕdv, ϕ ∈ C∞(M),

and it is crucial to properly re-write the L.H.S. in terms of g0 and not
ĝ as in (3.1). We can argue exactly as in Proposition 3.1 to get

〈N (ws)−N (w0), ϕ〉(4.9)

= 3γ3

ˆ
(∆g0p+ 2|∇p|2g0

)∆g0ϕdvg0 + 6γ3

ˆ
〈∇2

g0
p,∇2

g0
ϕ〉g0dvg0

+12γ3

ˆ
(∆g0p+ |∇p|2g0

)〈∇p,∇ϕ〉g0dvg0 + (
γ2

2
− 3γ3)

ˆ
∆p∆ϕdv

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇ϕ)dv −R〈∇p,∇ϕ〉]dv
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for all ϕ ∈ C∞(M). Setting ∆0p = ∆p + 2〈∇w0,∇p〉, by (3.2) we can
re-write (4.8)-(4.9) as

3γ3

ˆ
[∆0p+ 2|∇p|2]∆0ϕdv + 6γ3

ˆ
〈∇2

g0
p,∇2

g0
ϕ〉dv(4.10)

+12γ3

ˆ
[∆0p+ |∇p|2]〈∇p,∇ϕ〉dv + (

γ2

2
− 3γ3)

ˆ
∆p∆ϕdv

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇ϕ)dv −R〈∇p,∇ϕ〉]dv = −

ˆ
(f0 + U)ϕdv

for all ϕ ∈ C∞(M).

Given p = pi, i = 1, . . . , l, set α = αi, A = {x ∈ M : d(x, p) ∈ [ r4 , 8r]},
r > 0 small, and fix 2 ≤ q < 4. Through geodesic coordinates at p and
the change of variable x = ry, notice thatˆ

A
|∆0ϕ|qdv =

ˆ
B8r\B r

4

|∆ϕ+
2α

|x|
∂|x|ϕ|q

√
|g|dx(4.11)

= r4−2q

ˆ
B8\B 1

4

|∆grϕ
r +

2α

|y|
∂|y|ϕ

r|q
√
|gr|dy

≤ Cr4−2q

ˆ
B8\B 1

4

|∆grϕ
r|q
√
|gr|dy = C

ˆ
A
|∆ϕ|qdv

for all ϕ ∈ W 2,q
0 (A), where ϕr(y) = ϕ(expp(ry)) ∈ W 2,q

0 (B8 \ B 1
4
) and

gr(y) = g(expp(ry))→ δeucl C
2−uniformly in B8 \ B 1

4
as r → 0+. We

have used thatˆ
B8\B 1

4

|∇ϕr|q
√
|gr|dy ≤ C

ˆ
B8\B 1

4

|∆grϕ
r|q
√
|gr|dy

in view of Poincaré’s inequality. Arguing in the same way, one can also
show thatˆ

A
|∇2

g0
ϕ|qdv ≤ C ′

ˆ
A
|∇2ϕ|qdv ≤ C

ˆ
A
|∆ϕ|qdv(4.12)

for all ϕ ∈W 2,q
0 (A), and

(4.13)
(
´
A |ψ|

4q
4−q dv)

4−q
4q ≤ C(

´
A |∇ψ|

qdv)
1
q ,

(
´
A |∇ϕ|

4q
4−q dv)

4−q
4q ≤ C(

´
A |∆ϕ|

qdv)
1
q

for all ψ ∈ W 1,q(A) such that either ψ|∂A = 0 or ψ
A

= 0 and for all

ϕ ∈W 2,q
0 (A).

Given χ̃ ∈ C∞0 (1
4 , 8) so that 0 ≤ χ̃ ≤ 1 and χ̃ = 1 on [1

2 , 4], set χ(x) =

χ̃(d(x,p)
r ) and let

(4.14) ε2r =

ˆ
A

(∆0p)
2dv +

ˆ
A
|∇2

g0
p|2dv + (

ˆ
A
|∇p|4dv)

1
2 .
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We can assume that 0 < εr ≤ 1 for r > 0 small since

lim
r→0

εr = 0

in view of (4.7). By (4.12), (4.13) and Hölder’s estimate we have that

|
ˆ

[∆0p+ 2|∇p|2][ϕ∆0χ+ 2〈∇χ,∇ϕ〉]dv|

+|
ˆ

[2〈∇χ,∇p〉(1 + p− pA) + ∆0χ(p− pA)]∆0ϕdv|

≤ C ′εr

r
2(q−2)
q

×[(

ˆ
A
|ϕ|

2q
q−2dv)

q−2
2q + (

ˆ
A
|∇ϕ|

4q
3q−4dv)

3q−4
4q + (

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q ]

≤ Cεr

r
2(q−2)
q

(

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q

for all ϕ ∈W
2, q
q−1

0 (A), taking into account that

|
ˆ
〈∇χ,∇p〉(p− pA)∆0ϕdv|+ |

ˆ
∆0χ(p− pA)∆0ϕdv|

≤ C ′′

r2

[
rεr(

ˆ
A
|p− pA|

4q
4−q dv)

4−q
4q + (

ˆ
A
|p− pA|qdv)

1
q

]
×(

ˆ
A
|∆0ϕ|

q
q−1dv)

q−1
q

≤ C ′

r2

[
rεr(

ˆ
A
|∇p|qdv)

1
q + (

ˆ
A
|∇p|

4q
q+4dv)

q+4
4q

]
(

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q

≤ Cεr

r
2(q−2)
q

(

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q .

Since

(∆0p+ 2|∇p|2)∆0(χϕ)

= (∆0h+ 2〈∇h,∇p〉)∆0ϕ+ (∆0p+ 2|∇p|2)(ϕ∆0χ+ 2〈∇χ,∇ϕ〉)
−[2〈∇χ,∇p〉(1 + p− pA) + ∆0χ(p− pA)]∆0ϕ,

where h = χ(p− pA), we have that for some L1 ∈W−2,q(A):

ˆ
(∆0p+ 2|∇p|2)∆0(χϕ)dv =

ˆ
A

(∆0h+ 2〈∇h,∇p〉)∆0ϕdv + L1,

‖L1‖ ≤
Cεr

r
2(q−2)
q

.(4.15)
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Analogously, there holds

6γ3

ˆ
〈∇2

g0
p,∇2

g0
(χϕ)〉dv + (

γ2

2
− 3γ3)

ˆ
∆p∆(χϕ)dv(4.16)

= 6γ3

ˆ
A
〈∇2

g0
h,∇2

g0
ϕ〉dv

+(
γ2

2
− 3γ3)

ˆ
A

∆h∆ϕdv + L2, ‖L2‖ ≤
Cεr

r
2(q−2)
q

,

thanks to

|
ˆ
〈O(|∇p||∇χ|) +∇2

g0
χ(p− pA),∇2

g0
ϕ〉dv|

+|
ˆ
〈∇2

g0
p, ϕ∇2

g0
χ+O(|∇χ||∇ϕ|)〉dv|

≤ C ′εr

r
2(q−2)
q

×[(

ˆ
A
|ϕ|

2q
q−2dv)

q−2
2q + (

ˆ
A
|∇ϕ|

4q
3q−4dv)

3q−4
4q + (

ˆ
A
|∇2

g0
ϕ|

q
q−1dv)

q−1
q ]

≤ Cεr

r
2(q−2)
q

(

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q

and

〈∇2
g0
p,∇2

g0
(χϕ)〉

= 〈∇2
g0
h− dχ⊗ dp− dp⊗ dχ−∇2

g0
χ(p− pA),∇2

g0
ϕ〉

+〈∇2
g0
p, ϕ∇2

g0
χ+ dχ⊗ dϕ+ dϕ⊗ dχ〉,

in view of (3.3) and (4.12)-(4.13). Since in a similar way

|
ˆ
|∇χ|

(
|∆0p|+ |∇p|2 + 1

)(
|∇ϕ||p− pA|+ |∇p||ϕ|

)
dv|

≤ Cεr

r
2(q−2)
q

(

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q
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for all ϕ ∈W
2, q
q−1

0 (A), there holds

12γ3

ˆ
[∆0p+ |∇p|2]〈∇p,∇(χϕ)〉dv(4.17)

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇(χϕ))dv −R〈∇p,∇(χϕ)〉]dv

= 12γ3

ˆ
A

[∆0p+ |∇p|2]〈∇h,∇ϕ〉dv

+(2γ3 −
γ2

3
)

ˆ
A

[3Ric(∇h,∇ϕ)dv −R〈∇h,∇ϕ〉]dv + L3,

‖L3‖ ≤
Cεr

r
2(q−2)
q

.

Since by density and (4.7) we can use χϕ, ϕ ∈W 2,2
0 (A), into (4.10), by

collecting (4.15)-(4.17) one has that

3γ3

ˆ
A

[∆0h+ 2〈∇h,∇p〉]∆0ϕdv + 6γ3

ˆ
A
〈∇2

g0
h,∇2

g0
ϕ〉dv(4.18)

+12γ3

ˆ
A

[∆0p+ |∇p|2]〈∇h,∇ϕ〉dv + (
γ2

2
− 3γ3)

ˆ
A

∆h∆ϕdv

+(2γ3 −
γ2

3
)

ˆ
A

[3Ric(∇h,∇ϕ)dv −R〈∇h,∇ϕ〉]dv = L(ϕ)

for some L ∈ W−2,2(A), which can also be regarded as L ∈ W−2,q(A)
satisfying

(4.19) ‖L‖ ≤ Cεr

r
2(q−2)
q

+ (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q ,

in view of

|
ˆ

(f0 + U)χϕdv| ≤ (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q (

ˆ
A
|ϕ|

2q
q−2dv)

q−2
2q .

Since

|
ˆ
A
〈∇h̃,∇p〉∆0ϕdv|+ |

ˆ
A

[∆0p+ |∇p|2]〈∇h̃,∇ϕ〉dv|

≤ εr(
ˆ
A
|∇h̃|

4q
4−q dv)

4−q
4q (

ˆ
A
|∆ϕ|

q
q−1dv)

q−1
q

+Cεr(

ˆ
A
|∇h̃|

4q
4−q dv)

4−q
4q (

ˆ
A
|∇ϕ|

4q
3q−4dv)

3q−4
4q

and

|
ˆ
A

[3Ric(∇h̃,∇ϕ)dv −R〈∇h̃,∇ϕ〉]dv|

≤ Cr2(

ˆ
A
|∇h̃|

4q
4−q dv)

4−q
4q (

ˆ
A
|∇ϕ|

4q
3q−4dv)

3q−4
4q
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for all ϕ ∈W
2, q
q−1

0 (A), equation (4.18) written in h̃ is equivalent to

3γ3

ˆ
A

∆0h̃∆0ϕdv + 6γ3

ˆ
A
〈∇2

g0
h̃,∇2

g0
ϕ〉dv

+(
γ2

2
− 3γ3)

ˆ
A

∆h̃∆ϕdv + T [h̃](ϕ) = L(ϕ),

where T : W 2,q
0 (A) → W−2,q(A) is a linear operator which satisfies

‖T‖ ≤ C(εr + r2). The crucial point is that the linear operator ∆2
0 :

W 2,q
0 (A) → W−2,q(A) is an isomorphism with uniformly bounded in-

verse, where

∆2
0h̃(ϕ) =

ˆ
A

∆0h̃∆0ϕdv+2

ˆ
A
〈∇2

g0
h̃,∇2

g0
ϕ〉dv+(

γ2

6γ3
−1)

ˆ
A

∆h̃∆ϕdv.

Since εr + r2 → 0 as r → 0 we have that 3γ3∆2
0 + T : W 2,q

0 (A) →
W−2,q(A) is still an isomorphism with uniformly bounded inverse. Then

3γ3∆2
0h̃+T [h̃] = L is uniquely solvable in W 2,q

0 (A) for all 2 ≤ q < 4 and

such a solution h̃ coincides with h ∈W 2,2
0 (A) by uniqueness in W 2,2

0 (A).
So for all 2 ≤ q < 4 we have shown that

‖h‖
W 2,q

0 (A)
≤ C ′‖L‖W−2,q(A)(4.20)

≤ C

[
εr

r
2(q−2)
q

+ (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q

]

for some C > 0 thanks to (4.19).

In order to show that ∆2
0 : W 2,q

0 (A) → W−2,q(A) is an isomorphism
with uniformly bounded inverse, notice first that

(4.21) δA := inf

{ˆ
A

(∆0h)2dv : h ∈W 2,2
0 (M),

ˆ
A

(∆h)2dv = 1

}
> 0.

Indeed, letting hn be a minimizing sequence in (4.21), we can assume

that hn ⇀ h in W 2,2
0 (A) and hn → h in W 1,2

0 (A) as n→ +∞ thanks to
Sobolev’s embedding Theorem. When h = 0 we have that

´
A(∆0hn)2dv →

1 as n→ +∞ and then δA = 1. If h 6= 0, we need to show that ∆0h 6= 0
since by weak lower semi-continuity δA ≥

´
A(∆0h)2 dv. Observe that

∆0h = ∆h + 2〈∇w0,∇h〉 = 0 has only the trivial solution in W 2,2
0 (A)

as it follows by testing ∆0h against e2w0h and integrating by parts:

0 =

ˆ
A

(∆h+ 2〈∇w0,∇h〉)e2w0hdv = −
ˆ
A
e2w0 |∇h|2dv.
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Since every L ∈W−2,q(A) can be viewed as an element in W−2,2(A) in
view of q

q−1 ≤ 2 and by (4.21) there holds

∆2
0h(h) =

ˆ
A

(∆0h)2dv + 2

ˆ
A
|∇2

g0
h|2dv + (

γ2

6γ3
− 1)(

ˆ
A

∆h)2dv

≥ δA

ˆ
A

(∆h)2dv

due to γ2

γ3
≥ 6, we can minimize 1

2∆2
0h(h)−L(h) in W 2,2

0 (A) and find a

solution h ∈ W 2,2
0 (A) of ∆2

0h = L in W−2,2(A). Thanks to (3.2)-(3.3)
and (3.9) let us now rewrite ∆2

0h(ϕ) as

∆2
0h(ϕ) = (2 +

γ2

6γ3
)

ˆ
A

∆h∆ϕdv + L̃(ϕ),

where L̃ satisfies |L̃(ϕ)| ≤ C
r ‖h‖W 2,2

0 (A)
‖ϕ‖

W
2, 43
0 (A)

. Since L ∈W−2,q(A)

and L̃ ∈ W−2,4(A), we can use elliptic estimates for the bi-Laplacian

operator in [3] to show that h ∈ W 2,q
0 (A). Moreover, by the inverse

mapping theorem we know that ‖∆2
0h‖W−2,q(A) ≥ δ‖h‖W 2,q

0 (A)
for some

δ = δ(r) > 0. To see that δ > 0 can be chosen independent of r > 0,
through geodesic coordinates at p and the change of variable x = ry as
in (4.12) we simply observe that

‖∆2
0h‖W−2,q(A) = r

4−2q
q sup{∆2,r

0 hr(ψ) : ψ ∈W
2, q
q−1

0 (B8 \B 1
4
),ˆ

B8\B 1
4

|∆grψ|
q
q−1dvgr ≤ 1}

and ‖h‖
W 2,q

0 (A)
= r

4−2q
q (

´
B8\B 1

4

|∆grh
r|qdvgr)

1
q , where ∇wr0(y) = αy

|y|2

and

∆2,r
0 hr(ψ)

=

ˆ
B8\B 1

4

(∆grh
r + 2〈∇wr0,∇hr〉gr)(∆grψ + 2〈∇wr0,∇ψ〉gr)dvgr

+2

ˆ
B8\B 1

4

〈∇2
gr0
hr,∇2

gr0
ψ〉grdvgr + (

γ2

6γ3
− 1)

ˆ
B8\B 1

4

∆grh
r∆grψ dvgr .

Since gr(y) = g(ry) → δeucl C
2−uniformly in B8 \ B 1

4
as r → 0+, we

have that

sup{∆2,r
0 h̃(ψ) : ψ ∈W

2, q
q−1

0 (B8 \B 1
4
),

ˆ
B8\B 1

4

|∆grψ|
q
q−1dvgr ≤ 1}

≥ δ(
ˆ
B8\B 1

4

|∆gr h̃|qdvgr)
1
q(4.22)



CRITICAL METRICS FOR LOG-DETERMINANT FUNCTIONALS 41

uniformly in h̃ for some δ > 0, and then ‖∆2
0h‖W−2,q(A) ≥ δ‖h‖

W 2,q
0 (A)

.

We have used that the desired inequality ‖∆2
0,euclh̃‖W−2,q(B8\B 1

4
) ≥

δ‖h̃‖
W 2,q

0 (B8\B 1
4

)
does hold in the euclidean case with some δ > 0 and

the following convergences:

L.H.S. in (4.22) → sup{∆2
0,euclh̃(ψ) : ψ ∈W

2, q
q−1

0 (B8 \B 1
4
),ˆ

B8\B 1
4

|∆ψ|
q
q−1dx ≤ 1}

= ‖∆2
0,euclh̃‖W−2,q(B8\B 1

4
)

and

R.H.S. in (4.22)→ (

ˆ
B8\B 1

4

|∆h̃|qdx)
1
q

as r → 0+ uniformly in h̃.

Set Ã = {x ∈ M : d(x, p) ∈ [ r2 , 4r]}. Notice that by (3.3) and (4.13) it
follows that

(

ˆ
Ã
|∆0p|qdv)

1
q + (

ˆ
Ã
|∇2

g0
p|qdv)

1
q(4.23)

+(

ˆ
Ã
|∇p|

4q
4−q dv)

4−q
4q + r

2(2−q)
q ‖p− pÃ‖∞,Ã

≤ C‖h‖
W 2,q

0 (A)

for some C > 0, in view of (
´
A |∇w0|q|∇h|qdv)

1
q ≤ C(

´
A |∇h|

4q
4−q dv)

4−q
4q

and through geodesic coordinates

‖ψ‖∞,Ã = ‖ψr‖∞,B4\B 1
2

≤ C(

ˆ
B4\B 1

2

|∆grψ
r|q
√
|gr|dy)

1
q(4.24)

= Cr
2(q−2)
q (

ˆ
Ã
|∆ψ|qdv)

1
q

for all ψ ∈ W 1,q(Ã) with ψ
Ã

and for q > 2. To get stronger estimates,
let χ̃ ∈ C∞0 (1

2 , 4) with 0 ≤ χ̃ ≤ 1 and χ̃ = 1 on [1, 2], and define now

χ(x) = χ̃(d(x,p)
r ) and h = χ(p − pÃ). Thanks to (4.20) and (4.23) we

can repeat the above argument and, integrating by parts all the terms
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involving second-order derivatives of ϕ, get that:

|
ˆ

[∆0p+ 2|∇p|2][ϕ∆0χ+ 2〈∇χ,∇ϕ〉]dv|

+|
ˆ

[2〈∇χ,∇p〉(1 + p− pÃ) + ∆0χ(p− pÃ)]∆0ϕdv|

+|
ˆ
〈dχ⊗ dp+ dp⊗ dχ+∇2

g0
χ(p− pÃ),∇2

g0
ϕ〉dv|

+|
ˆ
〈∇2

g0
p, ϕ∇2

g0
χ+ dχ⊗ dϕ+ dϕ⊗ dχ〉dv|

+|
ˆ

∆p[ϕ∆χ+ 2〈∇χ,∇ϕ〉]dv|

+|
ˆ

[2〈∇χ,∇p〉+ ∆χ(p− pÃ)]∆ϕdv|

+

ˆ
|∇χ|(|∆0p|+ |∇p|2 + 1)(|∇ϕ||p− pÃ|+ |∇p||ϕ|)dv|

≤ C

r
[

εr

r
2(q−2)
q

+ (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q ](

ˆ
Ã
|∇ϕ|

q
q−1dv)

q−1
q ,

and

|
ˆ
Ã
〈∇h̃,∇p〉∆0ϕdv|+ |

ˆ
Ã

[∆0p+ |∇p|2]〈∇h̃,∇ϕ〉dv|

+|
ˆ
Ã

[3Ric(∇h̃,∇ϕ)dv −R〈∇h̃,∇ϕ〉]dv|

≤ C(ε̃r + r2)‖h̃‖
W 3,q

0 (Ã)
(

ˆ
Ã
|∇ϕ|

q
q−1dv)

q−1
q

for all ϕ ∈W
2, q
q−1

0 (Ã), where ε̃r is given by (4.14) on Ã. Notice that qua-
dratic or cubic terms in p have been estimated in the above expression
by using (4.23) on p and (4.14) for the remaining powers of p. Hence,

equation (4.18) in h̃ is equivalent to

3γ3∆2
0h̃(ϕ) + T [h̃](ϕ) = L(ϕ),

where T : W 3,q
0 (Ã) → W−1,q(Ã) is a linear operator so that ‖T‖ ≤

C(ε̃r + r2) and L ∈W−1,q(Ã) satisfies

‖L‖ ≤ C

r
[

εr

r
2(q−2)
q

+ (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q ] + (

ˆ
Ã
|f0 + U |

4q
q+4dv)

q+4
4q

in view of

|
ˆ
Ã

(f0 + U)χϕdv| ≤ (

ˆ
Ã
|f0 + U |

4q
q+4dv)

q+4
4q (

ˆ
Ã
|∇ϕ|

q
q−1dv)

q−1
q .

Arguing as before, since the operator ∆2
0 : W 3,q

0 (Ã) → W−1,q(Ã) is

an isomorphism with uniformly bounded inverse, 3γ3∆2
0h̃+ T [h̃] = L is
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uniquely solvable in W 3,q
0 (A), 2 < q < 4, and such a solution h̃ coincides

with h ∈ W 2,2
0 (Ã) by uniqueness in W 2,2

0 (Ã). Then, for all 2 < q < 4
there holds

‖h‖
W 3,q

0 (Ã)
(4.25)

≤ C

[
εr

r
3q−4
q

+
1

r
(

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q + (

ˆ
Ã
|f0 + U |

4q
q+4dv)

q+4
4q

]
for some C > 0. Since arguing as in (4.24) there holds

r‖∇h‖∞,Ã = ‖∇hr‖∞,B4\B 1
2

≤ C(

ˆ
B4\B 1

2

|∆grh
r|

4q
4−q
√
|gr|dy)

4−q
4q

= Cr
3q−4
q (

ˆ
Ã
|∆h|

4q
4−q dv)

4−q
4q

in view of 4q
4−q > 4, by (4.13) and (4.26) for all 2 < q < 4 we finally

deduce that

r‖∇p‖∞,B2r\Br ≤ C

[
εr + r

2(q−2)
q (

ˆ
A
|f0 + U |

2q
q+2dv)

q+2
2q(4.26)

+r
3q−4
q (

ˆ
Ã
|f0 + U |

4q
q+4dv)

q+4
4q

]
for some C > 0. Estimate (4.26) establishes the validity of (3.12) when
k = 1 in view of (4.5). Iterating the argument one shows that (3.12)
does hold for k = 2, 3 too.

When p ∈ M \ {p1, . . . , pl}, there is no need to work on annuli as in
the previous argument, and it is therefore possible to show that w ∈
W 3,q

0 (Br(p)), 2 < q < 4. Then w ∈ C∞(M\{p1, . . . , pl}) by an iteration.

Remark 4.4. According to the terminology in Remark 4.2, any fun-
damental solution corresponding to µs = βiδpi and Φ ∈ C∞(Br(pi))

satisfies the conclusions of Theorem 4.3 in Br(pi).

5. Blow-up analysis

In this section we are concerned with the asymptotic analysis of se-
quences of solutions wn to (1.8). The first issue is to determine a min-
imal volume quantization in the blow-up scenario, as it will follow by
Adams’ inequality and (2.1). The blow-up threshold is not optimal but
it can be sharpened by using a Pohozaev identity along with the loga-
rithmic behaviour of the singular limit for wn − wn. However, it is not
clear whether wn tends to minus infinity or not, determining whether
the limiting measure of µne

4wn is purely concentrated or presents some
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residual L1−part. The latter is usually excluded by comparison with
the purely concentrated case.

In our setting maximum principles are not available for the fourth-
order operator N and a new approach has to be devised, based only
on the scaling invariance of the PDE: we apply asymptotic analysis and
Pohozaev’s identity to a slightly rescaled sequence un for which the
limiting measure is purely concentrated, getting the optimal blow-up
threshold; since the concentrated part is sufficiently strong, the funda-
mental solution in the purely-concentrated case has a low exponential
integrability and, by using W 1,2,2)-bounds to make a comparison, the
same remains true for lim

n→+∞
(wn−wn) when infnwn > −∞, in contrast

to
´
e4wndv = 1 (which is assumed in Theorem 1.1). In order to have

an asymptotic description of un, observe that scaling-invariant uniform
estimates on wn are needed, which is precisely the content of Theorem
2.4.

Let gn be a metric on Br with volume element dvgn , Un ∈ C∞(Br)
and Nn be the operator associated to gn through (1.9). We consider a
sequence of solutions un to

(5.1) Nn(un) + Un = µne
4un in Br.

For a sequence cn ∈ R we assume that µn → µ0,

(5.2) sup
n

ˆ
Br

e4undvgn < +∞, sup
n

ˆ
Br

(un − cn)4dvgn < +∞,

and

(5.3) Un → U∞ in C1(Br), gn → g∞ in C4(Br)

for some U∞ ∈ C∞(Br) and a metric g∞. Notice that (5.2) implies

(5.4) sup
n

ˆ
Br

(un − urn)4dvgn < +∞

in terms of the average urn =
ffl
Br
undvgn of un on Br w.r.t. gn, since by

Hölder’s inequality

|urn − cn| ≤
 
Br

|un − cn|dvgn ≤
C

r
(

ˆ
Br

(un − cn)4dvgn)
1
4 .

We have the following local result on minimal volume quantization.

Proposition 5.1. Let γ2

γ3
> 3

2 . There exists ε0 > 0 so that

(5.5) sup
n

ˆ
B r

2

[(∆gnun)2 + |∇un|4gn ] dvgn < +∞
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provided |µn|
´
Br
e4undvgn ≤ ε0. Moreover, assuming un − cn ⇀ u0 in

W 2,2
g∞ (B r

2
) and γ2

γ3
≥ 6, there exists 0 < r0 ≤ r

4 so that

(5.6) sup
n
‖un − cn‖C4,α(Br0 ) < +∞

for any α ∈ (0, 1).

Proof. By (5.4), it is enough to establish the proposition with cn =
urn. For simplicity we omit the dependence on n and the dependence
of geometric quantities on gn. Let χ ∈ C∞0 (Br) be so that 0 ≤ χ ≤ 1,
χ = 1 in B r

2
and |∆χ|+ |∇χ| = O(1). In view of Remark 2.1, re-write

(2.1) with ψ(s) = s:
ˆ
Br

χ4[µe4u − U ](u− c) dv

=

ˆ
Br

χ4[(
γ2

2
+ 6γ3)(∆u)2 + 18γ3∆u|∇u|2 + 12γ3|∇u|4] dv

+O

(ˆ
Br

[χ4 + χ2|u− c|+ χ3|∇u|(1 + |u− c|)][1 + |∆u|+ |∇u|2] dv

)
.

By Young’s inequality and (5.2) we have that

O(

ˆ
Br

[χ4 + χ2|u− c|+ χ3|∇u|(1 + |u− c|)][1 + |∆u|+ |∇u|2] dv)

≤ ε
ˆ
Br

χ4[(∆u)2 + |∇u|4] dv + Cε

for all ε > 0, with some Cε > 0. Setting β = γ2

γ3
, arguing as in (2.4)

when ψ(s) = s we have that
ˆ
χ4
[
(β + 12)(∆u)2 + 36∆u|∇u|2 + 24|∇u|4

]
dv(5.7)

≥ (β + 12− 27

2(1− δ)
)

ˆ
χ4(∆u)2dv + 24δ

ˆ
χ4|∇u|4dv

≥ 2δ0

|γ3|

ˆ
χ4[(∆u)2 + |∇u|4]dv

for some δ0 > 0, thanks to β > 3
2 and for a suitable choice of δ ∈ (0, 1).

Since ∆[χ2(u− c)] = χ2∆u+O(|∇χ2||∇u|+ |u− c|) and ∇[χ(u− c)] =
χ∇u+O(|u− c|), by Young’s inequality we obtain

ˆ
Br

[∆(χ2(u− c))]2 + |∇(χ(u− c))|4] dv

≤ (1 + ε)

ˆ
Br

χ4[(∆u)2 + |∇u|4] dv + Cε
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for all ε > 0 with some Cε > 0, thanks to (5.2). Re-collecting all the
above estimates we proved thatˆ

Br

[∆(χ2(u− c))]2 + |∇(χ(u− c))|4] dv(5.8)

≤ Cε +
(1 + ε)|µ|
δ0 − ε

ˆ
Br

χ4e4u|u− c| dv

for all 0 < ε < δ0 and some Cε > 0. To estimate the R.H.S. we use the
inequality

χ4|s|es ≤ 2

λ
es + eλχ

4s2

with s = 4(u−c) and λ = π2

‖∆(χ2(u−c))‖2
L2(Br)

, to get by Jensen’s inequality

that ˆ
Br

χ4e4u|u− c|dv ≤
´
Br
e4udv

2π2

ˆ
Br

[∆(χ2(u− c))]2 dv

+

ffl
Br
e4u dv

4

ˆ
Br

e

16π2χ4(u−c)2

‖∆(χ2(u−c))‖2
L2(Br) dv.

Setting ε0 = π2δ0, we can find ε > 0 small so that (1+ε)|µ|
2π2(δ0−ε)

´
Br
e4udv ≤ 3

4

and then (5.8) producesˆ
Br

[∆(χ2(u− c))]2 + |∇(χ(u− c))|4] dv

≤ C + C

 
Br

e4udv

ˆ
Br

e

16π2χ4(u−c)2

‖∆(χ2(u−c))‖2
L2(Br) dv

for some C > 0. Thanks to (5.3) and 16π2 < 32π2 we can apply Adams’
inequality in [1, 26] to χ2(u− c) and finally get the validity of (5.5).

We are now in the case u − c ⇀ u0 in W 2,2
g∞ (B r

2
) and γ2

γ3
≥ 6. By

contradiction, assume that for all 0 < r0 ≤ r
4 there holds, up to a

subsequence,

‖u− c‖C4,α(Br0 ) → +∞
for some α ∈ (0, 1) and c→ c0, where c0 ∈ [−∞,+∞) thanks to Jensen’s
inequality and (5.2). By Adams’ inequality it is straightforward to show
that

(5.9) µe4u → µ0e
4u0+4c0 in Lqg∞(B r

2
), q ≥ 1.

Since the limiting function u0 ∈W 2,2
g∞ (B r

2
) solvesNg∞(u0) = µ0e

4u0+4c0−
U∞ in B r

2
in view of (5.9), by the regularity result in [55] we have that

u0 ∈ C∞(B r
2
) and then N (u0) → µ0e

4u0+4c0 − U∞ holds locally uni-

formly in B r
2

in view of (5.3). We can make use of (3.1) with w1 = u−c,
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w2 = u0 and ϕ ∈ C∞0 (B r
2
) thanks to Remark 3.2. Setting p = u− c−u0

and q = u− c+ u0, (3.1) re-writes as

3γ3

ˆ
(∆p+ 〈∇q,∇p〉)(∆ϕ+ 〈∇q,∇ϕ〉)dv + 6γ3

ˆ
〈∇2

ĝp,∇2
ĝϕ〉dv

+3γ3

ˆ
|∇p|2〈∇p,∇ϕ〉dv + (

γ2

2
− 3γ3)

ˆ
∆p∆ϕdv(5.10)

+(2γ3 −
γ2

3
)

ˆ
[3Ric(∇p,∇ϕ)−R〈∇p,∇ϕ〉]dv

=

ˆ
[µe4u − U −N (u0)]ϕdv

for all ϕ ∈ C∞0 (B r
2
) in view of (3.2), where ĝ = eqg. Take ϕ = χ4p and

χ ∈ C∞0 (B r
2
) in (5.10) to get

ˆ
χ4
[
3γ3(∆p+ 〈∇q,∇p〉)2 + 6γ3|∇2

ĝp|2(5.11)

+3γ3|∇p|4 + (
γ2

2
− 3γ3)(∆p)2

]
dv

= O(

ˆ
B r

2

χ4|µe4u − U −N (u0)||p|dv)

+O
(ˆ

B r
2

|p||∇p|3dv
)

+O
( ˆ

B r
2

(|p|+ |∇p|+ |p||∇q|)(|∇p|+ |∇p||∇q|+ |∇2p|)dv
)
.

Since p ⇀ 0 in W 2,2
g∞ (B r

2
), by (5.3) we have that

(5.12)

´ [
|∇p|4 + |∇q|4 + |∇2p|2

]
dv = O(1),´ [

|p|4 + |∇p|
8
3

]
dv → 0.

Inserting (5.9) and (5.12) into (5.11) we deduce thatˆ
χ4(∆g∞p)

2dvg∞ → 0,

and by taking χ = 1 on B r
4

we end up with u − c → u0 in W 2,2
g∞ (B r

4
).

Since u0 ∈ C∞(B r
2
), for all δ > 0 we can find 0 < r0 ≤ r

4 so that
ˆ
Br0

[(∆u)2 + |∇u|4] dv ≤ δ :

this is the crucial assumption in [55] to derive upper bounds in strong
norms on u which do not depend on g. Then u−c is uniformly bounded
in C4,α(Br0) for any α ∈ (0, 1), which is a contradiction, and the proof
is thereby complete.
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Hereafter we assume γ2

γ3
≥ 6. Let wn be as in Theorem 1.1 and let us

restrict our attention to the case ‖wn−wn‖C4,α(M) → +∞ as n→ +∞
for some α ∈ (0, 1). Thanks to Theorem 2.4 we have that [wn]BMO ≤ C,

which implies the validity of (5.2)-(5.3) for wn with cn = wn, Ũn and
gn ≡ g. Up to a subsequence, assume that e4wn ⇀ µ̂ as n→ +∞ in the
weak sense of distributions on M , where µ̂ is a probability measure on
M . Consider the finite set

S = {p ∈M : |µ0|µ̂(Br(p)) ≥ ε0 ∀ 0 < r ≤ i0},

where ε0 > 0 is given by Proposition 5.1. For any compact set K ⊂
M \ S, by (5.5) we deduce

(5.13) sup
n

ˆ
K

[(∆wn)2 + |∇wn|4] dv < +∞.

By (2.3) and (5.13) we have that wn − wn is uniformly bounded in
W 2,2(K) and then, up to a subsequence and a diagonal process, wn −
wn ⇀ w0 weakly in W 2,2

loc (M \S). For any p ∈M \S by (5.6) we can find
r(p) > 0 small so that ‖wn − wn‖C4,α(Br(p))

≤ C(p). By compactness

wn−wn is uniformly bounded in C4,α
loc (M \S) and then, up to a further

subsequence, wn−wn → w0 in C4
loc(M \S). In particular S 6= ∅, µ0 6= 0

and maxM wn → +∞ as n→ +∞.

Since e4wn ≤ 1
volM

by Jensen’s inequality, up to a subsequence assume

that wn → c ∈ [−∞,+∞) as n → +∞. Since e4wn → e4w0+4c locally
uniformly in M \ S, we have that

e4wn ⇀ e4w0+4cdv +
l∑

i=1

β̃iδpi as n→ +∞

weakly in the sense of measures, where S = {p1, . . . , pl} and β̃i ≥ ε0
|µ0| .

The function w0 is a SOLA of

(5.14) N (w0) = µ0e
4w0+4c +

l∑
i=1

βiδpi − U in M

for βi = µ0β̃i.

We aim to compute the values of the βi’s, and we will prove below a
quantization result in a suitable general form. In particular, it will apply
to the following scaling of wn, Ũn and g:

(5.15)
un(y) = wn[expp(rny)] + log rn, Un(y) = r4

nŨn[expp(rny)],
gn(y) = g[expp(rny)]
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for |y| ≤ i0
rn

, where p ∈ M and rn → 0+. The function un is a solution

of (5.1) for |y| ≤ i0
rn

which satisfiesˆ
B1(0)

|un − u1
n|4dvgn =

1

r4
n

ˆ
Brn (p)

|wn − wrnn |4dv

≤ C ′
 
Brn (p)

|wn − wrnn |4dv ≤ C

in view of [wn]BMO ≤ C. Therefore un satisfies (5.2)-(5.3) on any

Br ⊂ B1(0) with cn = u1
n, Un → 0 in C1(B1(0)) and gn → δeucl in

C4(B1(0)). The result we have is the following.

Lemma 5.2. Let un be a solution of (5.1) which satisfies (5.2)-(5.3)
in B1(0). Suppose that

(5.16) µne
4undvgn ⇀ β δ0

weakly in the sense of measures in B1(0) as n→ +∞, for some β 6= 0.
Then β = 8π2γ2.

Proof. Arguing as we did for wn, we can apply Proposition 5.1 to
un to get that un − u1

n is uniformly bounded in W 2,2
loc (B1 \ {0}) in view

of (5.4). Up to a subsequence and a diagonal process, we have that

un − u1
n ⇀ u0 weakly in W 2,2

loc (B1(0) \ {0}) and in turn

(5.17) un − u1
n → u0 in C4

loc(B1(0) \ {0}), u1
n → −∞,

as n → +∞ in view of (5.16). According to Remark 3.7 u0 is a SOLA
of Ng∞ u0 + U∞ = β δ0 in B 1

2
(0), u0 = Φ and ∂νu0 = ∂νΦ on ∂B 1

2
(0),

where Φ is a smooth extension in B 1
2
(0) of u0

∣∣∣
∂B 1

2
(0)

. We continue the

proof dividing it into the following steps.

Step 1. Up to a subsequence, there exist p1
n, . . . , p

J
n, J ∈ N, such that

p1
n, . . . , p

J
n → 0 as n→ +∞ and

(5.18) dn(y)4e4un ≤ C1 in B1(0)

where dn(y) = min{dgn(y, p1
n), . . . , dgn(y, pJn)}.

To prove (5.18), we first take p1
n → 0 as the maximum point of

un in B1(0). Let z1
n be the scaling of un around p1

n with scale µ1
n =

exp[−un(p1
n)] → 0 in view of un(p1

n) → +∞. Since z1
n ≤ z1

n(0) = 0, by
Proposition 5.1 we deduce that

(5.19) z1
n → z1 in C4

loc(R4).

Given r1
n >> µ1

n we have that the scaling z̃1
n of un around p1

n with scale

r1
n still blows up and by Proposition 5.1 |µn|

´
B1(0) e

4z̃1
ndvg̃n ≥ ε0, where

g̃n = gn(r1
ny + p1

n), or equivalently |µn|
´
B
r1n

(p1
n) e

4undvgn ≥ ε0.

We now proceed as follows. If (5.18) were not valid with dn(y) =
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dgn(y, p1
n), by (5.17) we would find a sequence p2

n → 0 of maximum
points for dgn(y, p1

n)eun in B1(0) so that

(5.20) dgn(p1
n, p

2
n)eun(p2

n) → +∞.

Let z2
n be the scaling of un around p2

n with scale µ2
n = exp[−un(p2

n)]→ 0
in view of (5.20). Thanks to (5.19)-(5.20) we have that

dgn(p1
n, p

2
n)

µ1
n

→ +∞, dgn(p1
n, p

2
n)

µ2
n

→ +∞.

By the maximality property of p2
n, z2

n is bounded from above and then
by Proposition 5.1

z2
n → z2 in C4

loc(R4).

Arguing as above, for r2
n >> µ2

n we have that |µn|
´
B
r2n

(p2
n) e

4undvgn ≥ ε0.

Iterating as long as (5.18) is not valid, we can find points p1
n, . . . , p

J
n → 0

so that

(5.21)
µin + µjn

dgn(pin, p
j
n)
→ 0 ∀ i 6= j

and |µn|
´
B
rin

(pin) e
4undvgn ≥ ε0 for all i = 1, . . . , J , for a choice rin >>

µin. Now we define radii rin by rin = 1
2 min{dgn(pin, p

j
n) : j 6= i}, in such

a way that Brin(pin) ∩ B
rjn

(pjn) for all i 6= j and rin >> µin thanks to

(5.21). Since

|µn|
ˆ
B1(0)

e4undvgn ≥ Jε0,

by |µn|
´
B1(0) e

4undvgn → |β| we have that such an iterative procedure

must stop after J times, and then (5.18) does hold with p1
n, . . . , p

J
n.

Step 2. Assume that dgn(y, pn)4e4un ≤ C1 does hold in B1(0) for some
pn → 0. Then β = 8π2γ2.

To show this, first notice that by Proposition 5.1 and dgn(y, pn)4e4un ≤
C1 in B1(pn) there exists C̃1 > 0 such that for all s ∈ (0, 1/4) one has

(5.22)

ˆ
B2s(pn)\Bs(pn)

[(∆gnun)2 + |∇un|4gn ] dvgn ≤ C̃1

for all n. Since by (5.22) the remainder volume integrals in the Pohozaev
identity (7.14) converge to zero as r → 0 uniformly in n, we can apply
Proposition 7.2 in Br(pn) and letting n→ +∞ get that

−β = Bg0(0, Br(0), u0) + or(1),

in view of (5.3) and (5.16)-(5.17). By Remark 4.4 u0 satisfies (3.12)
at 0, and a straightforward computation for the boundary integrals in
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(7.16) leads as r → 0+ to the identity

−[9γ3α
4 + (γ2 + 12γ3)α2 + 24γ3α

3]2π2

= −β = 4π2[(γ2 + 12γ3)α+ 18γ3α
2 + 6γ3α

3]

in view of (4.2), which has a unique solution in R\{0} given by α = −2.
Hence we have shown that β = 8π2γ2, as claimed.

Since (5.18) does not allow the direct use of Step 2 when J ≥ 2, the
idea is to properly group the points p1

n, . . . , p
J
n in clusters and substi-

tute the corresponding points by a representative in the cluster. Up

to re-ordering, assume that dgn(p1
n, p

2
n) = inf{dgn(pin, p

j
n) : i 6= j} and

dgn(pin, p
j
n) ≤ Cdgn(p1

n, p
2
n) for all i, j = 1, . . . , I, i 6= j, for some C > 0,

where 2 ≤ I ≤ J . Setting sn =
Cdgn (p1

n,p
2
n)

2 , as in the previous step by
(5.18) the remainder volume integrals in (7.14)-(7.15) are well controlled

on the disjoint balls Bsn(pjn), j = 1, . . . , I, leading to

Bgn(pjn, Bsn(pjn), un) = −µn
ˆ
Bsn (pjn)

e4undvgn(5.23)

+
µn
4

˛
∂Bsn (pjn)

e4un(x
n,pjn

)iνidσgn + o(1);

Bgn(pjn, Bsn(pjn), an, un) =
µn
4

˛
∂Bsn (pjn)

e4unainνi dσgn(5.24)

+o(1)

as n→ +∞, for any infinitesimal vector field (ain)i with constant com-

ponents in a gn−geodesic coordinate system (xi
n,pjn

)i centred at pjn. The

key point is to replace p1
n, . . . , p

I
n by the representative p1

n in such a way
that (5.23)-(5.24) continue to hold for p1

n with rn >> dgn(p1
n, p

2
n), as it

follows by Step 3 below.

Step 3. Assume that

dgn(p1
n, p

2
n) ≤ dgn(pin, p

j
n) ≤ Cdgn(p1

n, p
2
n) ∀i, j = 1, . . . , I, i 6= j

for some C > 1 and (5.23)-(5.24) are valid in Bsn(pjn), j = 1, . . . , I,

for sn =
Cdgn (p1

n,p
2
n)

2 . Then (5.23)-(5.24) are valid in Brn(p1
n) for any

rn >> dgn(p1
n, p

2
n) provided (5.18) does hold in An := Brn(p1

n) \ Bn
with dn(y) = min{dgn(y, p1

n), dgn(y, pI+1
n ), . . . , dgn(y, pJn)}, where Bn :=

I⋃
j=1

Bsn(pjn).

To see this, by (5.18) in An with

dn(y) = min{dgn(y, p1
n), dgn(y, pI+1

n ), . . . , dgn(y, pJn)}
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we deduce that the remainder volume integrals in (7.14)-(7.15) tend to
zero in An:

Bgn(p1
n, An, un) = −µn

ˆ
An

e4undvgn(5.25)

+
µn
4

˛
∂An

e4un(xn,p1
n
)iνidσgn + o(1)

Bgn(p1
n, An, an, un) =

µn
4

˛
∂An

e4unainνidσgn + o(1)(5.26)

for any infinitesimal vector field (ain)i which is constant in a gn−geodesic

coordinate system (xin,p1
n
)i centred at p1

n. Letting an,j =
(
xn,p1

n
(pjn)

)i
,

we have that an,j → 0 as n → +∞ and by the validity of (5.23)-(5.24)

in Bsn(pjn), j = 1, . . . , I, we can deduce that

J∑
j=1

[
Bgn(pjn, Bsn(pjn), un) + Bgn(pjn, Bsn(pjn), an,j , un)

]
(5.27)

= −µn
ˆ
Bn

e4undvgn

+
µn
4

J∑
j=1

˛
∂Bsn (pjn)

e4un [ain,j + (xn,pn,j )
i]νidσgn + o(1),

and

J∑
j=1

Bgn(pjn, Bsn(pjn), an, un) =
µn
4

J∑
j=1

˛
∂Bsn (pjn)

e4unainνidσgn

+o(1).(5.28)

It is possible to orient the geodesic coordinates both at p1
n and at pnj

so that the coordinates of y ∈ ∂Bn in these systems satisfy (with exact
equality for the Euclidean metric)

(xn,p1
n
)i(y) = ain,j + (x

n,pjn
)i(y) + o(sn).

By Proposition 5.1 and a scaling argument, there exists C̃ > 0 such that

|∇un| ≤
C̃

sn
; |∇2un| ≤

C̃

s2
n

; |∇3un| ≤
C̃

s3
n

on ∂Bn.

The last two formulas then imply that there is approximate compensa-
tion for the boundary integrals on ∂Bn and on the inner boundaries of
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∂An. More precisely, one has

Bgn(p1
n, An, un)

+
J∑
j=1

[
Bgn(pjn, Bsn(pjn), un) + Bgn(pjn, Bsn(pjn), an,j , un)

]
= Bgn(p1

n, Brn(p1
n), un) + o(1),

and

˛
∂An

e4un(xn,p1
n
)iνidσgn +

J∑
j=1

˛
∂Bsn (pjn)

e4un [ain,j + (xn,pn,j )
i]νidσgn

=

˛
∂Brn (p1

n)
e4un(xn,p1

n
)iνidσgn + o(1).

The latter formulas, together with (5.25) and (5.27), imply the validity
of (5.23) for rn and p1

n. Summing up (5.26) and (5.28), we also deduce
the validity of (5.24) for rn and p1

n.

Conclusion. We arrange the remaining points pI+1
n , . . . , pJn, if any, in

clusters in a similar way and substitute them by a representative. We
continue to arrange the representative points in clusters and to perform
a substitution thanks to Step 3. At the end, we find a unique cluster
which we collapse again to a single point pn, obtaining the validity of
(5.23) for pn and r > 0 with on(1)+or(1) as in Step 2. Letting n→ +∞
and then r → 0+ we get that

−β = −[9γ3α
4 + (γ2 + 12γ3)α2 + 24γ3α

3]2π2.

Comparing with (4.2) we deduce that α = −2 and β = 8π2γ2, complet-
ing the proof of Lemma 5.2.

Remark 5.3. By studying the point-wise limiting behaviour of the
rescaled blowing-up solutions, it should be possible to obtain the spherical
profiles classified in [28]. Even without this information, in Lemma 5.2
we proved that such profiles would exhaust the volume accumulating near
each blow-up point.

We next have the following result.

Lemma 5.4. In the above notation, there holds c = −∞.

Proof. By contradiction assume c > −∞, and fix some p = pi ∈ S,
β̃ = β̃pi . Given 0 < R ≤ min{i0, 1

2dist(pi, pj) : j 6= i}, we have that

e4wn ⇀ e4w0+4cdv + β̃ δp
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weakly in the sense of measures on the ball BR = BR(p) as n → +∞.
Since ˆ

Br

e4wndv →
ˆ
Br

e4w0+4cdv + β̃ > β̃

as n→ +∞ for all 0 < r ≤ R, we can find a sequence rn → 0 so that

(5.29)

ˆ
B
r2n

e4wndv = β̃.

Since
´
Br
e4w0+4cdv → 0 as r → 0 and

0 ≤
ˆ
Brn\Br2n

e4wndv ≤
ˆ
Br

e4wndv − β̃ →
ˆ
Br

e4w0+4cdv

for all r > 0, notice that

(5.30)

ˆ
Brn\Br2n

e4wndv → 0

as n→ +∞. We consider now the scaling un of wn as given by (5.15),
which satisfies, as already observed there, the assumptions (5.2)-(5.3)
in B1(0) with cn = u1

n, U∞ = 0 and g∞ = δeucl. By (5.29)-(5.30) we
have ˆ

B1

e4undvgn =

ˆ
Brn

e4wndv → β̃,

and ˆ
B1

e4unφdvgn

= φ(0)

ˆ
Brn

e4undvgn +

ˆ
Brn

e4un [φ− φ(0)]dvgn +

ˆ
B1\Brn

e4unφdvgn

= φ(0)

ˆ
B
r2n

e4wndv + o(

ˆ
B
r2n

e4wndv) +O(

ˆ
Brn\Br2n

e4wndv)→ β̃φ(0)

for all φ ∈ C(B1) as n→ +∞. Hence we deduce that

e4undvgn ⇀ β̃δ0

weakly in the sense of measures on B1 as n → +∞. We now apply
Lemma 5.2 to deduce that β = µ0β̃ = 8π2γ2, or equivalently α = −2 in
view of (4.2).

Let w0 = lim
n→+∞

wn−c be a SOLA of (5.14). Given 0 < r ≤ i0, thanks to

Remark 4.2 let ws be a fundamental solution in Br(p) corresponding to
µs = βδp and the boundary values as w0, namely ws solves N (ws)+U =
βδp in Br(p), ws = w0 and ∂νws = ∂νw0 on ∂Br(p). In order to compare
w0 and ws, consider the following scaling of w0, ws and g:

w0,r(y) = w0[expp(ry)] + log r, ws,r(y) = ws[expp(ry)] + log r,

gr(y) = g[expp(ry)]
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for |y| ≤ 1. Letting Ur the U−curvature and Nr be the operator asso-
ciated to gr, we have that

Nr(w0,r) + Ur = µ0e
4w0,r+4c + βδp and Nr(ws,r) + Ur = βδp in B1(0)

with w0,r = ws,r and ∂νw0,r = ∂νws,r on ∂B1(0). According to Remark
3.7 we have the validity of (3.38) on w0,r−ws,r, with constants which are

uniform in r in view of gr → δeucl in C4(B1(0)) as r → 0+. The constant
ηr corresponding to gr through (3.16) satisfies ηr → 0 as r → 0+, and
then (3.38) simply reduces to

‖w0,r − ws,r‖W 1,2,2) ≤ C0(‖µ0e
4w0,r+4c‖

1
12
1 + η

4
3
r ) (w.r.t. gr)

for some C0 > 0 in view of (3.37) and
ˆ
B1(0)

e4w0,rdvgr =

ˆ
Br(p)

e4w0dv ≤ C,
ˆ
B1(0)

|Ur| dvgr =

ˆ
Br(p)

|U | dv ≤ C.

In particular, there holds

ε
1
4 (

ˆ
B1(0)

|∇(w0,r − ws,r)|4(1−ε)dvgr)
1

4(1−ε)(5.31)

≤ C0(‖µ0e
4w0,r+4c‖

1
12
1 + η

4
3
r )

for some C0 > 0 and for all 0 < ε ≤ ε0.

In order to derive exponential estimates from (5.31), let us recall the
optimal Euclidean inequality

(5.32) (

ˆ
R4

|U |kdx)
1
k ≤ C(k)(

ˆ
R4

|∇U |
4k

4+k dx)
4+k
4k U ∈ C∞0 (R4)

for all k ≥ 1, where

C(k) = π−
1
2 4−

4+k
4k (

3k − 4

16
)

3k−4
4k

[
Γ(3)Γ(4)

Γ(4+k
k )Γ(15k−20

4k )

] 1
4

see [4, 54]. One has the following behaviour

(5.33)
C(k)

k
3
4

→ C1 =
3

8
π−

1
2 Γ−

1
4 (

15

4
) as k → +∞.

Since w0,r − ws,r ∈ W 1,q
0 (B1(0)) for all 1 ≤ q < 4, we can extend it as

zero outside B1(0) into a function U ∈ D1,q(R4) for all 1 ≤ q < 4. Since
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by density (5.32) does hold for U , by (5.31) we have that
ˆ
B
eq|w0,r−ws,r|dvgr ≤ 2

∞∑
k=0

qk

k!

ˆ
R4

|U |kdx

≤ 2

∞∑
k=0

qkC(k)k

k!
(

ˆ
R4

|∇U |4(1− 4
4+k

)dx)
4+k

4

≤ 4
∞∑
k=0

2
k
4 qkC(k)k

k!

(ˆ
B
|∇(w0,r − ws,r)|4(1− 4

4+k
)dvgr

) 4+k
4

≤ 4
∞∑
k=0

qkC(k)k

k!
(
4 + k

2
)
k
4Ck0 (‖µ0e

4w0,r+4c‖
1
12
1 + η

4
3
r )k

in view of dx
2 ≤ dvgr ≤ 2dx for r > 0 small. Thanks to (5.33) we have

that
C(k)k

k!
(
4 + k

2
)
k
4 ∼ Ck1k

k

2
k
4 k!
∼ ekCk1√

k2
k
4

in view of Stirling’s formula. Then e|w0,r−ws,r| ∈ Lq(B1(0)) w.r.t. gr for
all q < qr, where

qr =
2

1
4

eC0C1(‖µ0e4w0,r+4c‖
1
12
1 + η

4
3
r )
.

Since qr → 0 as r → 0+, we deduce that

(5.34) r−4

ˆ
Br(p)

eq|w0−ws|dv =

ˆ
B
eq|w0,r−ws,r|dvgr < +∞

for all q ≥ 1 provided r > 0 is sufficiently small. Since ws satisfies
(3.12) in Br(p) with α = −2 in view of Remark 4.4, we have that
ws = −2(1 + o(1)) log |x| as x → 0 in geodesic coordinates near p and
then

´
Br(p)

eγwsdv = +∞ for γ > 2. This is in contradiction for γ < 4
to ˆ

Br(p)
eγwsdv =

ˆ
Br(p)

eγ(ws−w0)eγw0dv

≤ (

ˆ
Br(p)

e
4γ

4−γ (ws−w0)
dv)

4−γ
4 (

ˆ
Br(p)

e4w0 , dv)
γ
4 < +∞,

in view of
´
e4w0dv < +∞ and (5.34). This concludes the proof that

c = −∞.

Once we established that c = −∞, we have that

µne
4wn ⇀

l∑
i=1

βiδpi as n→ +∞
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weakly in the sense of measures. We apply Lemma 5.2 near each pi,
ending up with βi = 8π2γ2 for all i = 1, . . . , l. The proof of Theorem
1.1 is now complete.

6. Moser-Trudinger inequalities and existence results

In this section we show first a sharp Moser-Trudinger inequality of
independent interest. We also derive an improved version of Adams’
inequality involving also the functional III, a crucial ingredient for the
existence of critical metrics in Theorem 1.3 via a variational and topo-
logical argument.

6.1. Sharp and improved Moser-Trudinger inequalities. In [14]
(see also [1]), the following inequality was proved

(6.1) log

ˆ
e4wdv ≤ 1

8π2

ˆ
(∆u)2dv+4w+Cg for all w ∈W 2,2(M).

If the Paneitz operator is positive-definite (see (1.5)), the integral of
(∆u)2 in the R.H.S. of the above formula can be replaced by the qua-
dratic form induced by P . We have the following sharp inequality de-
spite of the sign of the Paneitz operator, see also [18, 44] for related
results.

Theorem 6.1. Suppose
´
Udv ≤ 8π2γ2. Then, if Fγ = γ1I + γ2II +

γ3III with γ2, γ3 > 0 and γ2

γ3
> 3

2 , then for all functions w ∈ W 2,2(M)

one has the lower bound
Fγ(w) ≥ −C

for some constant C.

Proof. For ε > 0, consider the following functional

Fε(w) := Fγ(w) + ε log

(ˆ
e4(w−w)dv

)
.

Supposing by contradiction that Fγ is unbounded from below, we then
have that

mε := inf
W 2,2

Fε → −∞ as ε↘ 0.

By (6.1) (and some easy reasoning, exploiting the quartic gradient
terms, if the Paneitz operator has negative eigenvalues) we know that
Fε admits a global minimum, which we call wε. Hence we have that
Fε(wε) = mε → −∞ as ε↘ 0.

Looking at the Euler-Lagrange equation satisfied by wε, by Theorem
2.2 it follows that

´
|∇wε|2dv ≤ C. W.l.o.g., assume also that wε = 0.

Therefore, from the explicit form of Fε and Poincaré’s inequality, we
have that

mε = Fε(wε) ≥ γ2

ˆ
(∆wε)

2dv − (8π2γ2 − ε) log

(ˆ
e4(w−w)dv

)
− C.
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Inequality (6.1) and the last formula imply that Fε(wε) ≥ −2C, which
contradicts Fε(wε)→ −∞ as ε↘ 0.

Next, we show that if e4w has integral bounded from below into (`+ 1)
distinct regions of M , the Moser-Trudinger constant can be basically
divided by (` + 1). When dealing with the functional II only, such an
inequality was proved in [20], relying on some previous argument in
[16].

Lemma 6.2. Suppose γ2, γ3 > 0. For a fixed integer `, let Ω1, . . . ,Ω`+1

be subsets of M satisfying dist(Ωi,Ωj) ≥ δ0 for i 6= j, where δ0 is a pos-

itive real number, and let γ0 ∈
(

0, 1
`+1

)
. Then, for any ε̃ > 0 there

exists a constant C = C(`, ε̃, δ0, γ0) such that

8(`+ 1)π2 log

ˆ
e4(w−w)dv ≤ (1 + ε̃)

(
〈w,Pw〉+

γ3

γ2
III(w)

)
+ C

for all the functions w ∈W 2,2(M) satisfying´
Ωi
e4wdv´
e4wdv

≥ γ0, ∀ i ∈ {1, . . . , `+ 1}.

Proof. Assume without loss of generality that w = 0. With the same
argument as in the proof of Lemma 2.2 in [20], it is possible to show
under the above conditions that

8(`+ 1)π2 log

ˆ
e4(w−w)dv ≤ (1 + ε̃

2)

ˆ
(∆u)2dv + C.

Relabelling C, it is then enough to prove the inequality

(6.2) (1 + ε̃
2)

ˆ
(∆u)2dv ≤ (1 + ε̃)

(
〈w,Pw〉+

γ3

γ2
III(w)

)
+ C.

However, using Poincaré’s inequality and the expressions of P and III
we can write that

〈w,Pw〉+γ3

γ2
III(w) ≥

ˆ
(∆u)2dv+12

γ3

γ2

ˆ
(∆u+|∇u|2)2dv−C

ˆ
|∇w|2−C.

For ς > 0 sufficiently small, one has thatˆ
(∆u)2dv+12

γ3

γ2

ˆ
(∆u+|∇u|2)2dv ≥ (1−2ς)

ˆ
(∆u)2dv+ς

ˆ
|∇u|4dv

Choosing ς small compared to ε̃ and using Young’s inequality, from the
last two formulas we obtain (6.2), yielding the conclusion.

For j ∈ N, we define the family of probability measures

Mj = {µ ∈ P(M) : card(supp(µ)) ≤ j} .
We define the distance of an L1− function f in M from Mj , j ≤ k, as

d(f,Mj) = inf
σ∈Mj

sup

{∣∣∣∣ˆ f ψ dv − 〈σ, ψ〉
∣∣∣∣ : ‖ψ‖C1(M) ≤ 1

}
,
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where 〈σ, ψ〉 stands for the duality product between P(M) and the space
of C1 functions. From Lemma 6.2 and Poincaré’s inequality (to treat
linear terms in w) we deduce immediately the following result.

Proposition 6.3. Suppose that γ2, γ3 > 0 and that
´
Udv < 8(k +

1)γ2π
2 with k ≥ 1. Then for any ε > 0 there exists a large positive

Ξ = Ξ(ε) such that for every w ∈ W 2,2(M) with Fγ(w) ≤ −Ξ and´
e4wdv = 1, we have d( e4w´

e4w
,Mk) ≤ ε.

From the result in Section 3 of [20], one can deduce a further continuity
property from W 2,2(M) into P(M), endowed with the above distance
d.

Proposition 6.4. For γ2, γ3 > 0 and
´
Udv < 8(k+1)γ2π

2 there ex-
ist a large positive number Ξ and a continuous map Ψk : {Fγ ≤ −Ξ} →
Mk such that, if e2wn ⇀ σ ∈Mk, then Ψk(wn) ⇀ σ.

6.2. The topological argument. The proof essentially follows the
lines of Section 4 in [20], so we will mainly recall the principal steps.
We first map Mk into some low sub-levels of Fγ and finally, once we
map back onto Mk using Proposition 6.4, we obtain a map homotopic
to the identity. The main difference with respect to the above reference
is the energy estimate in Lemma 6.6, where we need to estimate the
functional III on suitable test functions. We first recall a topological
characterization of Mk.

Lemma 6.5. ([20]) For any k ≥ 1, the set Mk is a stratified set,
namely union of open manifolds of different dimensions, whose maximal
one is 3k − 1. Furthermore Mk is non-contractible.

For δ > 0 small, consider a smooth non-decreasing cut-off function
χδ : R+ → R such that χδ(t) = t for t ∈ [0, δ]

χδ(t) = 2δ for t ≥ 2δ
χδ(t) ∈ [δ, 2δ] for t ∈ [δ, 2δ].

Then, given σ ∈ Mk

(
i.e. σ =

k∑
i=1

tiδxi

)
and λ > 0, we define the

function ϕλ,σ : M → R as

(6.3) ϕλ,σ(y) =
1

4
log

k∑
i=1

ti

(
2λ

1 + λ2χ2
δ (d(y, xi))

)4

, y ∈M.

We prove next an energy estimate on the above test functions.
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Lemma 6.6. Suppose that γ2, γ3 > 0 and that ϕλ,σ is as in (6.3).
Then as λ→ +∞ one has

Fγ(ϕλ,σ) ≤
(
32kπ2γ2 + oδ(1)

)
log λ+ Cδ

uniformly in σ ∈ Mk, where oδ(1) → 0 as δ → 0 and Cδ is a constant
independent of λ and x1, . . . , xk.

Proof. In [20] it was proven that

〈Pϕλ,σ, ϕλ,σ〉 ≤
(
32kπ2 + oδ(1)

)
log λ+ Cδ

does hold uniformly in σ ∈ Mk, and moreover, as for formula (40) in
[20], one has that∣∣∣∣ˆ U(ϕλ,σ − ϕλ,σ)dv

∣∣∣∣ ≤ oδ(1) log λ+ Cδ.

Therefore it is sufficient to show that the following estimate

(6.4) |III(ϕλ,σ)| = oλ(1) log λ

does hold uniformly in σ ∈ Mk. In order to do this, we can focus on
the term (∆ϕλ,σ + |∇ϕλ,σ|2)2, since the others are shown in [20] to be
of lower order. Setting

Fi(y) :=
2λ

1 + λ2χ2
δ (d(y, xi))

,

we compute explicitly ∆ϕλ,σ + |∇ϕλ,σ|2:

∆ϕλ,σ + |∇ϕλ,σ|2 =

∑
i tiF3

i ∆Fi∑
j tjF4

j

+ 3

∑
i tiF2

i |∇Fi|2∑
j tjF4

j

− 3

∣∣∑
i tiF3

i ∇Fi
∣∣2(∑

j tjF4
j

)2 .

This can be rewritten as

∆ϕλ,σ + |∇ϕλ,σ|2 =

∑
i tiF3

i ∆Fi∑
j tjF4

j

+3

∑
i,k titkF2

i F2
k

(
F2
k |∇Fi|2 −FiFk∇Fi · ∇Fk

)(∑
j tjF4

j

)2 .

At this point, symmetrizing in i, k and playing with elementary inequal-
ities, it is enough to uniformly estimate in terms of oλ(1) log λ the square
L2-norm of the following quantities

(6.5)
∆Fi
Fi

; Gi,k :=
|F2
kFi∇Fi −F2

i Fk∇Fk|2

(F4
i + F4

k )2
.

For the first term, working in normal coordinates y at xi one finds

∆Fi(y) = ∆δeuclFi(y) +O(|y|)|∇Fi|(y) +O(|y|2)|∇2Fi|(y).
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Using also the fact that

∆δeucl

(
1

1 + λ2|x|2

)
= − 8λ2

(1 + λ2|x|2)3 ,

one gets the following bounds

Fi(y) ≥

{
C−1λ d(y, xi) ≤ 1

λ ;
C

λd2(y,xi)
1
λ ≤ d(y, xi) ≤ δ,

|∆Fi(y)| ≤

{
Cλ3 d(y, xi) ≤ 1

λ ;
C

λ3d6(y,xi)
1
λ ≤ d(y, xi) ≤ δ.

These imply
ˆ (

∆Fi
Fi

)2

dv ≤
ˆ
B 1
λ

(xi)
Cλ4 dv+

ˆ
Bδ(xi)\B 1

λ
(xi)

C

λ4d8(y, xi)
dv+C ≤ C.

For the latter quantity in (6.5) we distinguish between two cases.

Case 1: d(xi, xk) ≥ δ
2 . When we integrate near xi, Fk and its gradient

are bounded by Cδ
λ . Using also the fact that

|∇Fi| ≤
Cλ3d(y, xi)

(1 + λ2d2(y, xi))
2 ,

we find the upper boundˆ
B δ

4
(xi)
G2
i,kdv ≤ C

ˆ
B δ

4
(xi)

[
d(y, xi)

4(1 + λ2d2(y, xi))
4

λ8

+
(1 + λ2d2(y, xi))

8

λ16

]
dv ≤ C,

where the latter inequality follows from a change of variable. In the
same way, one finds a similar bound on B δ

4
(xk). In the exterior of these

two balls, it is easily seen that Gi,k is uniformly bounded, and therefore
Gi,k is uniformly bounded also in L2(M). In particular, there holds´
G2
i,kdv = oλ(1) log λ.

Case 2: d(xi, xk) ≤ δ
2 . In this case the functions Fi and Fk can be

simultaneously large at the same point. By symmetry, it is sufficient to
estimate Gi,k in the set

Mi,k := {y ∈M : d(y, xi) ≤ d(y, xk)} .

Set ηi,k = max{ 1
λ , d(xi, xk)}. In (Mi,k ∩Bδ(xi)) \BCηi,k(xi), C ≥ 1, one

has the estimates

Fk = Fi(1 + oC(1)), ∇Fk = ∇Fi + oC(1)|∇Fi|
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with oC(1)→ 0 as C→ +∞, in view of

1 ≤ d(y, xk)

d(y, xi)
≤ 1 +

d(xi, xk)

d(y, xi)
≤ 1 +

1

C
.

Since these estimates imply some cancellations in the numerator of Gi,k,
we have that

G2
i,k ≤

oC(1)

|y − xi|4
in (Mi,k ∩Bδ(xi)) \BCηi,k(xi),

and therefore we find

(6.6)

ˆ
(Mi,k∩Bδ(xi))\BCηi,k(xi)

G2
i,kdv = oC(1) log λ.

In
(
Mi,k ∩Bδ(xi) ∩BCηi,k(xi)

)
\ B 1

λ
(xi) we next have the following in-

equalities

1

λd2(y, xi)
≤ Fi ≤

2

λd2(y, xi)
, |∇Fi| ≤

C

λd3(y, xi)
,

|Fk| ≤
C

λη2
i,k

, |∇Fk| ≤
C

λη3
i,k

in view of

d(y, xk) ≥
{
d(xi, xk)− d(y, xi) ≥ 1

2ηi,k if 1
λ ≤ d(y, xi) ≤ 1

2d(xi, xk)
d(y, xi) ≥ 1

2ηi,k if y ∈Mi,k, d(y, xi) ≥ 1
2ηi,k,

which imply

G2
i,k ≤ C

(
d12(y, xi)

η16
i,k

+
d16(y, xi)

η20
i,k

)
,

and therefore

(6.7)

ˆ
(
Mi,k∩Bδ(xi)∩BCηi,k

(xi)
)
\B 1

λ
(xi)
G2
i,kdv ≤ CC20.

Finally the estimate |∇Fi|Fi + |∇Fk|
Fk ≤ Cλ implies

(6.8)

ˆ
Mi,k∩B 1

λ
(xi)
G2
i,kdv ≤ C.

By first choosing C and then λ large, by (6.6)-(6.8) we have shown that´
Mi,k∩Bδ(xi) G

2
i,kdv = oλ(1) log λ. By the symmetry of Gi,k, exchanging i

and k we also have thatˆ
Mk,i∩B δ

2
(xi)
G2
i,kdv ≤

ˆ
Mk,i∩Bδ(xk)

G2
k,i = oλ(1) log λ,

which combines with ˆ
M\B δ

2
(xi)∪B δ

2
(xk)
G2
i,kdv ≤ C
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to show that also in Case 2 there holds
´
G2
i,kdv = oλ(1) log λ.

The above results can be collected into the following proposition.

Proposition 6.7. Suppose that γ2, γ3 > 0,
´
Udv ∈ (8kγ2π

2, 8(k +
1)γ2π

2), and let ϕλ,σ be defined as in (6.3). Then, as λ → +∞ the
following properties hold true

(i) e4ϕλ,σ ⇀ σ weakly in the sense of distributions;

(ii) Fγ(ϕλ,σ)→ −∞ uniformly in σ ∈Mk;

(iii) if Ψk is given by Proposition 6.4 and if ϕλ,σ is as in (6.3), then for
λ sufficiently large the map σ 7→ Ψk(ϕλ,σ) is homotopic to the identity
on Mk.

We next introduce a variational scheme for obtaining existence of solu-
tions of the Euler-Lagrange equation. Let M̂k be the topological cone
over Mk, which can be represented as M̂k = Mk × [0, 1] with Mk × {0}
identified to a single point. Let first Ξ be so large that Proposition 6.4
applies with Ξ

4 , and then let λ be so large that Fγ(ϕλ,σ) ≤ −Ξ uniformly

for σ ∈ Mk (see Proposition 6.7 (ii)). Fixing this value of λ, we define
the family of continuous maps

(6.9) Πλ =
{
$ : M̂k →W 2,2(M) : $(· × {1}) = ϕλ,· on Mk

}
.

Lemma 6.8. Πλ is non-empty and moreover, letting

Πλ = inf
$∈Πλ

sup
m∈M̂k

Fγ($(m)), one has Πλ > −
Ξ

2
.

Proof. To show that Πλ 6= ∅, it suffices to consider the map

(6.10) $(σ, t) = tϕλ,σ, (σ, t) ∈ M̂k.

Arguing by contradiction, suppose that Πλ ≤ −
Ξ
2 . Then there would

exist a map $ ∈ Πλ with supm∈M̂k
Fγ($(m)) ≤ −3

8Ξ. Since by our

choice of Ξ Proposition 6.4 applies with Ξ
4 , writing m = (σ, t), with

σ ∈Mk, the map

t 7→ Ψ ◦$(·, t)
realizes a homotopy inMk between Ψ◦ϕλ,· and a constant map. However

this cannot be, as Mk is non-contractible (see Lemma 6.5) and since
Ψ ◦ ϕλ,· is homotopic to the identity on Mk, by Proposition 6.7 (iii).

Hence we deduce Πλ > −
Ξ
2 .
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By the statement of Lemma 6.8 and standard variational arguments,
one can find a Palais-Smale sequence (wn)n for Fγ at level Πλ, namely
a sequence for which

Fγ(wn)→ Πλ; ∇Fγ(wn)→ 0.

Unfortunately it is not known whether Palais-Smale sequences converge.
To show this property, from the fact that w 7→ e4w is compact from
W 2,2(M) to L1(M), it would be sufficient to show that any Palais-Smale
sequence is bounded in W 2,2.

This is in fact proven indirectly, following an argument in [53], by
making in the functional Fγ the substitutions

´
Qdv 7→ t

´
Qdv, γ1 7→

tγ1, µ 7→ tµ and II 7→ II − Θ(t − 1)γ2

´
|∇w|2dv for t close to 1,

where Θ is a large positive constant (Θ can be taken zero if P has no
negative eigenvalues). We choose a small t0 > 0, and allow t to vary
in the interval [1 − t0, 1 + t0]. We consider then the functional Fγ for
these values of t, denoting it by (Fγ)t. If t0 is sufficiently small, the
interval

[
(1− t0)

´
Udv, (1 + t0)

´
Udv

]
will be compactly contained in

(8kγ2π
2, 8(k + 1)γ2π

2). Following the previous estimates with minor
changes, one easily checks that the min-max scheme applies uniformly
for t ∈ [1 − t0, 1 + t0] and for λ sufficiently large. Precisely, given any
large Ξ > 0, there exist t0 sufficiently small and λ so large that for
t ∈ [1− t0, 1 + t0]

sup
m∈∂M̂k

(Fγ)t($(m)) < −2 Ξ; Πt := inf
$∈Πλ

sup
m∈M̂k

(Fγ)t($(m)) > −Ξ

2
,

where Πλ is defined in (6.9). Moreover, using for example the test
map (6.10), one shows that for t0 sufficiently small there exists a large
constant Ξ such that

Πt ≤ Ξ for every t ∈ [1− t0, 1 + t0].

If the above constant Θ is chosen large enough (compared to the negative

values of the Paneitz operator), it is easy to show that t 7→ Πt
t is non-

increasing in [1 − t0, 1 + t0]. From this we deduce that the function

t 7→ Πt
t is differentiable almost everywhere, and we obtain the following

corollary.

Corollary 6.9. Let λ and t0 be as above, and let Λ ⊂ [1− t0, 1 + t0]

be the (dense) set of t for which the function Πt
t is differentiable. Then

for t ∈ Λ the functional Fγ possesses a bounded Palais-Smale sequence

(wl)l at level Πt, weakly converging to a solution of

N (w) + 2γ2 Θ (t− 1) ∆w + t U = t µ
e4w´
e4wdv

.
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Proof. The existence of a Palais-Smale sequence (wl)l follows from
Lemma 6.8, and the boundedness is proved exactly as in [19], Lemma
3.2.

We can finally prove our second main result.

Proof of Theorem 1.3. We assume that γ2, γ3 > 0: obvious changes
have to be made for opposite signs. From the above result we obtain a
sequence tn → 1 and a sequence wn solving

N (wn) + 2γ2 Θ (tn − 1) ∆wn + tnU = tnµ
e4wn´
e4wndv

,

which can be chosen to satisfy
´
e4wndv = 1 for all n. Since the ex-

tra term 2γ2 Θ tn ∆wn does not affect the analysis in Theorem 1.1, we
can then pass to the limit using assumption

´
Udv /∈ 8π2γ2N. This

concludes the proof.

7. Appendix

In this appendix we collect a commutator estimate, useful in Section
3, and a Pohozaev-type identity that is used in Section 5.

Given Q ∈ Lr(M,TM) and δ > 0, define Sx as

Sx : Lr(M,TM) → L
r

1−x (M,TM)

F → SxF = ( ‖F‖
2
r+‖Q‖2r

δ2+|F |2+|Q|2 )
x
2F.

We have the following result:

Theorem 7.1. Let r > 1, 0 < ρ < min{1, r−1} and Λ : Ls(M,TM)→
Ls(M,TM), r

1+ρ ≤ s ≤
r

1−ρ , be a linear operator so that

K0 = sup
r

1+ρ
≤s≤ r

1−ρ

‖Λ‖L(Ls) < +∞.

There exists K > 0 so that

(7.11) ‖Λ(SxF )− Sx(ΛF )‖ r
1−x
≤ K|x|

(
δ2 + ‖F‖2r + ‖Q‖2r

) ρ
2 ‖F‖1−ρr

for all |x| ≤ ρ, δ > 0 and Q ∈ Lr(M,TM).

Proof. Let T = {z = x+ iy : |x| ≤ ρ} and rx = r
1−x , qx = r

r−1+x be
conjugate exponents. Set

Rz : F ∈ Lr(M,TM + iTM)→ RzF = (
‖F‖2r + ‖Q‖2r
δ2 + |F |2 + |Q|2

)
z
2F

∈ Lrx(M,TM + iTM)
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and

Qz : G ∈ Lq(M,TM + iTM)→ QzG = (
|G|
‖G‖q

)
z̄
r−1G

∈ Lqx(M,TM + iTM)

for all z ∈ T , where q = r
r−1 . The map Qz satisfies ‖QzG‖qx = ‖G‖q

and is invertible with inverse (Qz)
−1H = ( |H|

‖H‖qx
)−

qxz̄
r H. Given F,G ∈

Lr(M,TM + iTM) define the map φ : T → C as

φ(z) =

ˆ
Re 〈Λ(RzF )−Rz(ΛF ), QzG〉dv.

Notice that φ(z) is a well defined holomorphic function in T in view of
rx ∈ [ r

1+ρ ,
r

1−ρ ]. Since by Hölder’s estimate there holds

‖RzF‖rx = (‖F‖2r + ‖Q‖2r)
x
2 ‖(δ2 + |F |2 + |Q|2)−

x
2 |F |‖rx

≤ (‖F‖2r + ‖Q‖2r)
x
2 ×

{
‖F‖r‖(δ2 + |F |2 + |Q|2)‖−

x
2

r
2

if x < 0

‖F‖1−xr if x > 0,

we have that

‖RzF‖rx ≤

 [ δ2|M |
2
r

‖F‖2r+‖Q‖2r
+ 1]−

x
2 ‖F‖r if x < 0

(1 + ‖Q‖2r
‖F‖2r

)
x
2 ‖F‖r if x > 0

≤ ‖F‖1−ρr

(
δ2|M |

2
r + ‖F‖2r + ‖Q‖2r

) ρ
2
.

Hence we can deduce the following estimate for φ in T :

(7.12) |φ(z)| ≤ 2K0c
ρ
2
0

(
δ2 + ‖F‖2r + ‖Q‖2r

) ρ
2 ‖F‖1−ρr ‖G‖q,

where c0 = max{1,K−2
0 , |M |

2
r , |M |

2
rK−2

0 }. Setting

Λ = 2K0c
ρ
2
0

(
δ2 + ‖F‖2r + ‖Q‖2r

) ρ
2 ‖F‖1−ρr ‖G‖q

and φ̃(z) = φ(ρz)
Λ , we can apply Schwarz’s lemma to φ̃ in view of φ(0) =

0, Bρ(0) ⊂ T and (7.12) to get |φ̃| ≤ |z| in B1(0), or equivalently

|φ(z)| ≤ 2K0c
ρ
2
0

ρ

(
δ2 + ‖F‖2r + ‖Q‖2r

) ρ
2 ‖F‖1−ρr ‖G‖q|z|

for z ∈ Bρ(0), and then

‖Λ(RzF )−Rz(ΛF )‖rx = sup
‖H‖qx≤1

|
ˆ

Re 〈Λ(RzF )−Rz(ΛF ), H〉dv|

= sup
‖G‖q≤1

|
ˆ

Re 〈Λ(RzF )−Rz(ΛF ), QzG〉dv|

≤ 2K0c
ρ
2
0

ρ

(
δ2 + ‖F‖2r + ‖Q‖2r

) ρ
2 ‖F‖1−ρr |z|
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for z ∈ Bρ(0). Setting K = 2K0
ρ max{1,K−2

0 , |M |
2
r , |M |

2
rK−2

0 }
ρ
2 , we

have established the validity of (7.11) for all |x| ≤ ρ in view of Rx = Sx

.

Notice that (3.15) follows by Theorem 7.1 applied with Λ = Id − K,
F = ∇p, Q = ∇q, x = 4ε and r = 4(1 − ε) thanks to (3.13). We next
prove a Pohozaev identity, useful to characterize volume quantization
in Theorem 1.1.

Proposition 7.2. Let p ∈ M and let Ω ⊆ M be contained in a
normal neighbourhood of p. Suppose u solves

(7.13) Ng(u) + Ũ = µ e4u in Ω.

Let (xi)i be a system of geodesic coordinates centred at p, and consider
in these coordinates a vector field a = ai ∂

∂xi
with constant components

(ai)i. Then the following identities hold

Bg(p,Ω, u) = −µ
ˆ

Ω
e4u(1 +O(|x|2))dv +

µ

4

˛
∂Ω
e4uxiνidσ(7.14)

+O(

ˆ
Ω
|∇u|(|x|+ |∇u|)dv)

+O

(ˆ
Ω
|x|(|∇2u| |∇u|+ |∇u|3)dv +

ˆ
Ω
|x|2(|∇2u|2 + |∇u|4)dv

)
and

Bg(p,Ω, a, u) =
µ

4

˛
∂Ω
e4uaiνidσ − µ

ˆ
Ω
e4uO(|x||a|)dv(7.15)

+O(

ˆ
Ω
|x||∇u|(1 + |a||∇u|)dv)

+O

(ˆ
Ω
|a|(|∇2u| |∇u|+ |∇u|3)dv +

ˆ
Ω
|x||a|(|∇2u|2 + |∇u|4)dv

)
,

where

Bg(p,Ω, u)(7.16)

=
(γ2

2
+ 6γ3

)˛
∂Ω

(xiu;i
∂∆u

∂ν
−∆u

∂(xiu;i)

∂ν
+

1

2
(∆u)2xjνj)dσ

−12γ3

˛
∂Ω

(|∇u|2u;kν
kxju;j −

1

4
|∇u|4xjνj)dσ

+6γ3

˛
∂Ω

[
xiu;i

(
∂

∂ν
|∇u|2 − 2∆u

∂u

∂ν

)
+|∇u|2

(
xiνi∆u−

∂u

∂ν
−∇2u[x, ν]

)]
dσ
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and

Bg(p,Ω, a, u)(7.17)

=
(γ2

2
+ 6γ3

)˛
∂Ω

(aiu;i
∂∆u

∂ν
−∆u

∂(aiu;i)

∂ν
+

1

2
(∆u)2ajνj)dσ

−12γ3

˛
∂Ω

(|∇u|2u;kν
kaju;j −

1

4
|∇u|4ajνj)dσ

+6γ3

˛
∂Ω

[
aiu;i

(
∂

∂ν
|∇u|2 − 2∆u

∂u

∂ν

)
+|∇u|2

(
aiνi∆u−∇2u[a, ν]

)]
dσ.

Proof. Multiply (7.13) by xiu;i and integrate by parts: starting with
the bi-Laplacian of u we findˆ

Ω
xiu;i∆

2u dv =

ˆ
Ω

(xiu j
;ij + 2xi;ju

j
;i + xi j;j u;i)∆u dv

+

˛
∂Ω

(xiu;i
∂∆u

∂ν
−∆u

∂(xiu;i)

∂ν
)dσ.

Using the fact that in normal coordinates gij = δij + O(|x|2) one has
that

xj;k = δjk +O(|x|2); xj k
;k = O(|x|); u k

;jk = (∆u)j +O(|∇u|).

From these we deduce that the L.H.S. in the above formula becomes

2

ˆ
Ω

(∆u)2dv +

ˆ
Ω

∆uxj(∆u);jdv +

ˆ
Ω

(
|x|2|∇2u|2 + |x||∇2u||∇u|

)
dv.

Integrating by parts the second term, the whole expression transforms
into ˆ

Ω
xiu;i∆

2u dv =

˛
∂Ω

(xiu;i
∂∆u

∂ν
−∆u

∂(xiu;i)

∂ν

+
1

2
(∆u)2xjνj)dσ +

ˆ
Ω

(
|x|2|∇2u|2 + |x||∇2u||∇u|

)
dv.

Similarly, we obtain thatˆ
Ω

div(|∇u|2∇u)xju;jdv =

˛
∂Ω

(|∇u|2u;kν
kxju;j −

1

4
|∇u|4xjνj)dσ

+

ˆ
Ω
O(|x|2|∇u|4)dv.

On the other hand, we can also multiply the equation by aiu;i and using
the relations

aj;k = O(|x||a|); aj;kk = O(|a|)



CRITICAL METRICS FOR LOG-DETERMINANT FUNCTIONALS 69

we find thatˆ
Ω
aiu;i∆

2udv =

˛
∂Ω

(aiu;i
∂∆u

∂ν
−∆u

∂(aiu;i)

∂ν
+

1

2
(∆u)2ajνj)dσ

+

ˆ
Ω

(
|x||a||∇2u|2 + |a||∇2u||∇u|

)
dv

andˆ
Ω

div(|∇u|2∇u)aju;jdv =

˛
∂Ω

(|∇u|2u;kν
kaju;j −

1

4
|∇u|4ajνj)dσ

+

ˆ
Ω
O(|x||a||∇u|4)dv.

Analogously, we have the following two formulasˆ
Ω
xiu;idiv(∇|∇u|2 − 2∆u∇u)dv =

ˆ
Ω

(|x||∇u|3 + |x|2|∇u|2|∇2u|)dv

+

˛
∂Ω

[
xiu;i

(
∂

∂ν
|∇u|2 − 2∆u

∂u

∂ν

)
+|∇u|2

(
xiνi∆u−

∂u

∂ν
−∇2u[x, ν]

)]
dσ

and ˆ
Ω
aiu;idiv(∇|∇u|2 − 2∆u∇u)dv

=

ˆ
Ω

(|a||∇u||∇2u|+ |a||x||∇u|2|∇2u|)dv

+

˛
∂Ω

[
aiu;i

(
∂

∂ν
|∇u|2 − 2∆u

∂u

∂ν

)
+ |∇u|2

(
aiνi∆u−∇2u[a, ν]

)]
dσ.

Finally, integrating by parts the exponential terms we findˆ
Ω
µe4uxiu;idv =

1

4
µ

˛
∂Ω
xiνie

4udσ − µ
ˆ

Ω
e4u(1 +O(|x|2))dv

and ˆ
Ω
µe4uaiu;idv =

1

4
µ

˛
∂Ω
aiνie

4udσ − µ
ˆ

Ω
e4uO(|x||a|)dv.

Putting together all the above formulas, recalling the expression of the
Paneitz operator and taking into account the lower-order terms, we
obtain the conclusion.
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[41] S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of
the Laplace-operator on Riemannian manifolds, Canadian J. Math. 1 (1949)
242–256, MR0031145, Zbl 0041.42701.
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