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1 Introduction

Quantum mechanical models have been, and still are, an ideal playground to understand
the nature of perturbation theory. Thanks to the Schrödinger equation we have easy access
to perturbative terms at large orders. Starting from the seminal papers by Bender and
Wu [1, 2], this allowed us to get accurate estimates of large order behaviours of pertur-
bative asymptotic series. Famously, the Schrödinger equation can also be studied using
a Wentzel-Kramers-Brillouin (WKB) approximation [3–5] which in fact played a key role
also in [1, 2]. The proper use of the WKB approximation was found much later [6, 7]
using Borel resummation and resurgence techniques [8]. In particular, building on previ-
ous works [9, 10], Voros upgraded the WKB approximation into an exact method, exact
WKB (EWKB), which was further developed and laid on solid mathematical foundation
in [11–15]. In EWKB, energy eigenvalues of a quantum mechanical system are determined
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by exact quantization conditions (EQCs) defined in terms of so called Voros symbols aγi ,
where γi are the associated periods in complexified space between the turning points of the
classical potential. In certain quantum mechanical models EQCs were guessed based on
truncated transseries in multi-instantons computations [16], and then rigorously established
using EWKB [13]. In general, EQCs involve both classically allowed (perturbative) and
disallowed (non-perturbative) periods and generally give rise to transseries in ℏ, exp(−1/ℏ)
and possibly log ℏ.

Several connections between EWKB and other subjects have been worked out. These
include connections with N = 2 supersymmetric gauge theories [17, 18], topological
strings [19, 20], thermodynamic Bethe ansatz [21] via the ordinary differential equa-
tions/integrable models (ODE/IM) correspondence [22], generalizations in terms of the
geometry of quantum periods [23] and so on. It is fair to say that EWKB represents one
of the most interesting and established applications of resurgence in theoretical physics.
How to unpack the EQCs to efficiently write transseries for energy eigenvalues or other ob-
servables, and their relation to transseries coming from multi-intantons in a path integral
approach, has also been the subject of some activity in the last years, see e.g. [24–28].

Independently of EWKB it has been shown that several one-dimensional quantum me-
chanical models with a discrete spectrum admit (in general infinite) ℏ0-deformations (the
original system is recovered by setting ℏ0 = ℏ) such that the path integral is exactly de-
termined by a single saddle-point [29, 30]. If we Borel resum the ℏ0-deformed perturbative
series in ℏ at fixed ℏ0 and after we set ℏ0 = ℏ, the exact result is recovered. The “exact
perturbation theory” (EPT) in the ℏ0-model is then able to capture the full result in mod-
els which are known to receive instanton corrections, such as the (supersymmetric) double
well. This somewhat surprising and powerful result was obtained using path integrals and
steepest-descent methods (Lefschetz thimbles).

The aim of this paper is to understand how EPT emerges from an EWKB analysis.
We start in section 2 with a brief review on EWKB, with an emphasis on how to

determine EQCs. In general, EQCs are a constraint of the form

F [aγi(E)] = 0 , (1.1)

where
aγi = exp

(1
ℏ

∮
γi

Peven(z)dz
)

(1.2)

are the Voros symbols associated to the different cycles connecting classical turning points,
and Peven is the Borel resummation of the ℏ series starting with the classical contribu-
tion

√
2(V − E) followed by quantum corrections. At fixed parameters of the potential V ,

the Voros symbols depend only on the energy E entering the Schrödinger equation (2.1).
Energy eigenvalues can be determined exactly as those values for which (1.1) is satis-
fied. However, if one is interested in determining their associated asymptotic series (or
transseries) in ℏ, (1.1) should be “downgraded” to its formal power series form F̃ . In F̃ we
replace E by a transseries Ẽ which is determined by demanding F̃ = 0 order by order in
ℏ, and possibly in the transseries parameters exp(−1/ℏ) and log ℏ. Importantly, EQCs are
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not uniquely determined and depend on E and arg ℏ, because Voros symbols are subject
to Stokes jumps.

In section 3 we study in some detail the EQCs in the quartic anharmonic oscillator as
a function of arg ℏ and uncover a Stokes jump occurring for small arg ℏ when two turning
points approach each other in the limit E → 0. Because of this discontinuity, the limits
arg ℏ → 0 and E → 0 do not commute. By taking E → 0 first, we get the simple EQC

aγ = −1 , (1.3)

where γ is the perturbative cycle, which is shown to be Borel resummable and to lead to
Borel resummable energy eigenvalues for sufficiently small ℏ, reproducing in this way a re-
sult of [13] but bypassing the complications related to double turning points. This analysis
is then generalized to more general anharmonic potentials of the form (3.27) in section 3.4.

Using EPT, which we briefly review in 4.1, any bounded polynomial potential can
be reduced to the form (3.27) plus a quantum potential which includes the remaining
terms. We then prove in sections 4.2 and 4.3 that energy eigenvalues of an arbitrary
quantum mechanical model with a bounded polynomial potential admit ℏ0-deformed EPT
series which are Borel resummable with EQC given by (1.3). We conclude in section 5. We
report in appendices A and B the derivation of so called connection matrices for simple and
double turning points, which are important ingredients to determine EQCs. In appendix C
we discuss the transseries associated to the energy eigenvalues in the pure quartic model
(with no use of EPT) and prove that the radius of convergence of the partial series of
exponential corrections is finite.

A note on notation. We carefully distinguish actual functions from their formal asymp-
totic power series expression by putting a tilde on the latter. A hat denotes the associated
Borel function:

f̃ =
∑
n=0

cnℏn , f̂ =
∑
n=0

cn

n! t
n . (1.4)

If f̃ is a Gevrey-1 series (i.e. cn ∼ (n!)1 for large n), then f̂ is analytic in the Borel t-plane
in a disc around the origin and is analytically continuable in the Borel plane. We define
the Laplace transform in the direction θ as

fθ(ℏ) = sθ(f̃) =
1
ℏ

∫ eiθ∞

0
dt f̂(t)e−

t
ℏ . (1.5)

If |f̂(teiθ)| ≤ eat for any t ≥ 0, then fθ(ℏ) is analytic for Re(eiθℏ−1) > a. If the ray θ = 0
is not a Stokes line, then f0 is well-defined and might reconstruct the original function f .
In the complex ℏ-plane we often have wedges, delimited by Stokes lines, labelled by roman
numbers I, II, . . .. We then write

fN = fθ , θ ∈ wedge N, N = I,II, . . . . (1.6)

2 Exact WKB basics

In this section we briefly review basics of EWKB. As mentioned in the introduction, the
spectrum of a given quantum mechanical system is encoded in the Voros symbols (1.2) and
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energy eigenvalues are given by the solutions of the EQC of the form (1.1). Wave functions
do not enter in EQCs, but the determination of the latter requires an understanding of the
former. We then review the EWKB rules to derive EQCs. We discuss the ansatz for the
wave function ψ(z) in section 2.1, review how the z-plane splits into so called Stokes region
and how Voros symbols and wave functions jump in section 2.2, and finally the rules of
how to determine EQCs for an arbitrary polynomial potential in the case in which all its
zeros are simple in section 2.3. We report in appendix A the computation of connection
matrices for pure monomial potentials. Determining EQCs in presence of higher order
zeros is more complicated and there are no general rules as for simple turning points.
Nevertheless we report in appendix B the connection matrices for a deformed quadratic
turning point, which will be useful in our considerations. There are no new results in this
section, which contains standard material, though some emphasis might differ with respect
to other presentations. More details on EWKB can be found e.g. in [31]. For a more
elementary textbook presentation see [32].

2.1 Ansatz for the wave function

The starting point of a WKB analysis is the (complexified) Schrödinger equation

−ℏ2
d2ψ(z)
dz2

+Q(z)ψ(z) = 0 , (2.1)

where ℏ, z ∈ C and
Q(z) = 2(V (z)− E) . (2.2)

For simplicity we assume in the following a potential V given by an entire function, where
the only singularity is at z = ∞. In general the potential V could be a quantum potential,
namely it can depend on ℏ:

Q(z, ℏ) =
∞∑

n=0
Qn(z)ℏn . (2.3)

The fundamental WKB ansatz is

ψ(z) = ce
1
ℏ

∫ z

z0
P (w,ℏ)dw

, (2.4)

where c is a constant, which could be reabsorbed in the definition of z0, but we prefer to
keep it explicitly. Plugging (2.4) in (2.1) gives rise to a Riccati equation for P :

(ℏP ′ + P 2 −Q) = 0 , (2.5)

where f ′ ≡ df/dz. We look for asymptotic solutions of P in the form

P̃ =
∞∑

n=0
Pnℏn . (2.6)

The coefficient functions Pn(z) satisfy the following recursion relations:

2P0Pn+1 = Qn+1 − P ′
n −

n∑
k=1

PkPn+1−k , n ≥ 0 . (2.7)
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Once P0 is found, the whole series is fixed by (2.7). We then get two series, depending on
which classical term P0 is selected:

P η
0 = ±

√
Q0 , η = ±1 . (2.8)

The first two terms beyond P η
0 read

P η
1 = − Q′

0
4Q0

+ η
Q1

2
√
Q0

, (2.9)

P η
2 = η

32Q
5
2
0

(
− 5Q′2

0 + 4Q0Q
′′
0 − 4Q0Q

2
1 + 16Q2

0Q2
)
+ Q1Q

′
0 −Q0Q

′
1

4Q2
0

.

When Q = Q0 (classical potential only) we have

P−
2n+1 = P+

2n+1 , P−
2n = −P+

2n , n ≥ 0 . (2.10)

For now let us assume Q = Q0 and write

P̃even = P̃+ − P̃−

2 =
∞∑

n=0
ℏ2nP2n , (Q = Q0)

P̃odd = P̃+ + P̃−

2 =
∞∑

n=0
ℏ2n+1P2n+1 , (Q = Q0)

(2.11)

We plug (2.11) in (2.5) and split even and odd terms in ℏ:

ℏP̃ ′
even + 2P̃evenP̃odd = 0 , (2.12)

ℏP̃ ′
odd + P̃ 2

even + P̃ 2
odd −Q0 = 0 . (2.13)

The first equation gives

P̃odd = −ℏ
2
d log P̃even

dz
, (2.14)

and hence

ψ̃± = c

√√√√ P̃even(z0)
P̃even(z)

e
± 1

ℏ

∫ z

z0
P̃evendw

. (2.15)

For generic Q, (2.10) does not apply, but we can still define P̃even and P̃odd as

P̃even = P̃+ − P̃−

2 =
∞∑

n=0
ℏnPeven,n ,

P̃odd = P̃+ + P̃−

2 =
∞∑

n=1
ℏnPodd,n .

(2.16)

They can no longer be expressed as even and odd powers of ℏ, respectively, but they still
satisfy (2.14). Indeed, the Riccati equations (ℏP̃ ′± + (P̃±)2 −Q) = 0 turn into

ℏP̃ ′
even + ℏP̃ ′

odd + (P̃even + P̃odd)2 −Q = 0 ,
−ℏP̃ ′

even + ℏP̃ ′
odd + (P̃even − P̃odd)2 −Q = 0 , (2.17)
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and the difference between the two equations gives (2.14). We then learn that (2.15) applies
also for general quantum potentials Q. We will generally choose z0 to be a (simple) turning
point and

c = 1√
P̃even(z0)

, (2.18)

so that
ψ̃±(z) =

1√
P̃even(z)

e
± 1

ℏ

∫ z

z0
P̃even(w)dw

. (2.19)

2.2 Stokes lines and periods

The solutions (2.19) of the Schrödinger equation are only formal asymptotic series which
require resummation. In general we cannot have a unique resummation which applies
globally. This can be seen by noting that while the actual solution has to be single valued
in the z-plane for sufficiently regular potentials with a lower bound, in general (2.19) are
not. Stokes phenomena occur and we have to determine the relations between the Borel
resummations of (2.19) in different sectors of the complex plane. As we will see, such
relations are encoded in 2× 2 connection matrices. Stokes phenomena are determined by
the zeroes and poles of Q0. We mostly focus on polynomial potentials where the only pole
is at infinity, while we can have simple or higher-order zeros named turning points. Let us
consider the generic situation of a point in moduli space (parameters of the potential and
the energy E) where Q0 has only simple turning points. The complex z-plane is divided
in sectors delimited by Stokes lines defined as

Im
{1
ℏ

∫ z

A

√
Q0(w)dw

}
= 0 , (2.20)

where A denotes a simple turning point of Q0. Stokes lines are denoted regular if they
start at point A and end at infinity, and singular if they start at A and end at another
turning point B.1 Configurations with singular Stokes lines lead to ambiguities and should
be avoided by a proper deformation. We will generally avoid singular Stokes lines by
assigning a phase to ℏ.

The key objects in EWKB are the so called periods, which are integrals between two
turning points A and B. The various turning points of the potential makes generally the
plane z into a Riemann surface M of genus g (depending on the potential). The contours
around turning points are non-trivial cycles in H1(M,C). The classical period is defined as

Π0,AB = 2
∫ B

A

√
Q0(z)dz =

∮
γ

√
Q0(z)dz , (2.21)

where γ is a cycle encircling the points A and B.2 The quantum periods are defined as

ΠAB = s
(
Π̃AB

)
, Π̃AB = 2

∫ B

A
P̃even(z)dz =

∮
γ
P̃even(z)dz , (2.22)

1When Q0 has poles (in addition to the one at infinity) more Stokes trajectories are possible. See e.g. [31]
for a clear exposition.

2As it is evident from (2.21), a square root branch-cut emanates from a simple turning point, so the
contour integral does not vanish.
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where s denotes Borel resummation in the appropriate wedge of the complex plane where
γ sits. For each period we define the Voros symbol

aAB = e
1
ℏΠAB = a−1

BA . (2.23)

Sometimes we use the notation Πγ and aγ instead of ΠAB and aAB. Note that the defini-
tion of periods is done unambiguously in the Riemann surface, but the labelling of periods
through the turning points pressuposes a choice of principal sheet to specify the orientation.

If the Stokes lines are all regular, all the quantum periods ΠAB are Borel resummable
and well-defined.3 As we vary the phase of ℏ, or move in moduli space, singular Stokes lines
can emerge and lead to a change of configurations of Stokes lines in the z-plane. Singular
Stokes lines can be seen as periods themselves as they start and end at simple turning
points. Let γ be the cycle associated to a singular Stokes line and α be the phase of the
associated classical period:

α ≡ argΠγ,0 = arg
∮

γ

√
Q0(z)dz . (2.24)

According to (2.20), the period (2.24) can correspond to a (singular) Stokes line only for
ℏ = |ℏ|eiα. We can deform from the singular configuration by changing the phase of ℏ
as α → α± = α ± ϵ, with 0 < ϵ ≪ 1. The Voros symbols aλ of a cycle λ computed
in the configurations α− and α+ are not the same, but related through the celebrated
Dillinger-Delabaere-Pham (DDP) formula [12, 14]

sα−(ãλ) =
∏

argΠγi,0=α

(
1 + sα+(ã−1

γi
)
)−⟨γi,λ⟩

sα+(ãλ). (2.25)

In (2.25) the product runs over all possible singular cycles with associated classical period
of phase α and ⟨γi, λ⟩ denotes the intersection number of the two cycles.4 If γ is a singular
Stokes line at α, the opposite cycle is a singular Stokes line at π + α:

argΠγ−1,0 = argΠγ,0 + π . (2.27)

The jump of aλ is different, because in the r.h.s. of (2.25) ã−1
γi

→ ãγi and ⟨γi, λ⟩ → −⟨γi, λ⟩.
Without loss of generality we can then restrict the range of α in (2.25) to −π/2 < α ≤ π/2.
Note that the ãγi appear as purely non-perturbative corrections since ã−1

γ ∼ e− 1
ℏΠγ,0(1+· · · )

and 1
ℏΠγ,0 is positive and real. Moreover, unless a singular Stokes cycle γ is non-trivially

linked with another singular cycle, (2.25) implies that sα+(ãγ) = sα−(ãγ), since ⟨γ, γ⟩ = 0.
We will make extensive use of (2.25) in this paper.

3If a given period happens to cross a regular Stokes line, we can decompose it in terms of products of
periods defined in wedges without Stokes lines intersection.

4The intersection number is topological and thus rotational invariant, anti-symmetric between the two
cycles and swaps sign if the orientation of a cycle is reversed. We take

⟨→, ↑⟩ = +1, ⟨←, ↑⟩ = −1, ⟨→, ↓⟩ = −1, ⟨←, ↓⟩ = +1. (2.26)

– 7 –



J
H
E
P
1
1
(
2
0
2
3
)
1
2
4

Figure 1. Stokes lines and their orientation for the Airy function. The wavy black line represents
the branch-cut.

Whenever we cross a Stokes line, either ψ+ or ψ− undergoes a jump. The connection
matrices for the wave-functions were found by Voros for a pure quartic potential [6]. His
analysis has been further generalized and formalized in [11–14]. For simple turning points
the full connection matrices can be split into “local” connection matrices which encode the
Stokes automorphisms around a given simple turning point and the Voros symbols (1.2),
which connect wave functions in “distant” regions, associated to different turning points.
The local connection matrices around a simple turning point coincide with those given
by the Airy differential equation, (A.1) with q = 1. See appendix A for the explicit
computation. In the Airy case, the complex z-plane splits in three equal wedges, as depicted
in figure 1. An arrow entering (exiting) the turning point corresponds to Stokes lines where
ψ+ (ψ−) jumps. It is also convenient not to talk about the jump of the solutions ψ± but
of the jump of their coefficients. Namely we write

ψI = cI
+ψ+ + cI

−ψ− , ψII = cII
+ψ+ + cII

−ψ− , (2.28)

where ψ± are the wave-functions in a chosen reference wedge.5 The local connection
matrices as we pass a Stokes line or a branch-cut can be expressed as 2 × 2 matrices
acting on the coefficients (cN+, cN−) as follows

cII = AcI , cN ≡
(
cN+
cN−

)
, (2.29)

where A is any of the 2× 2 matrices below (see figure 2):

S+ =
(
1 i

0 1

)
, S− =

(
1 0
i 1

)
, B =

(
0 −i
−i 0

)
. (2.30)

The relations (2.30) apply locally around an arbitrary simple turning point.
Voros symbols connect wave functions associated to different turning points. If A and

B are two simple turning points, from (2.23) we have

ψ
(B)
± (z) = ψ

(A)
± (z)a∓

1
2

AB , (2.31)
5Unless specified otherwise, we take this reference wedge to be the one containing the asymptotic positive

real axis, or its upper part, if the latter is on a Stokes line.
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= S− , = S+

= S−1
− , = S−1

+ = B−1

= B

Figure 2. Local connection matrices as we pass an oriented Stokes line (straight lines with arrows)
or a branch-cut (wavy lines) for a simple turning point.

where ψ(A,B)
± are the Borel resummations (in the appropriate wedge of the complex plane)

of the formal wave functions (2.19) normalized at z0 = A,B. It is useful to define the Voros
connection matrix Vγ as

Vγ =

 a 1
2
γ 0
0 a

− 1
2

γ

 . (2.32)

A similar relation is used to define the corresponding formal power series Ṽγ .

2.3 Rules to determine EQCs

Exact quantization conditions are conditions that we impose on a combination of ψ± in
order to have a well-defined physical system. For bounded polynomial potentials with
a stable discrete spectrum, the case considered in this paper, EQCs are determined by
demanding that the wave functions are square integrable over the real axis.

Given a potential Q(z) with only simple turning points, we start by determining all
the Stokes lines using the definition (2.20). Possible singular Stokes lines are avoided
by assigning a phase to ℏ. The determination of the exact wave functions ψ±(z), Borel
resummation of the formal series (2.19), follow from the matrices (2.30) and (2.32). Let us
denote by ψ(P) = c

(P)
+ ψ+ + c

(P)
− ψ− and ψ(N) = c

(N)
+ ψ+ + c

(N)
− ψ− the wave functions in the

wedges containing the positive (P) and negative (N) real axis. If any of them is a Stokes
line, we can infinitesimally shift the point above or below in the z-plane. The ending result
does not depend on which shift we choose to make. We define c(N) = Mc(P), where

M =
(
m11 m12
m21 m22

)
(2.33)

is the total monodromy matrix along a given path connecting a point in the asymptotic
positive real axis and a point in the negative asymptotic real axis. For real potentials
square integrability requires that c(P)

+ = 0, which determines the EQCs. Depending on
the potential and in which Riemann sheet we end up when moving along the path, the
requirement is

m12 = 0 or m22 = 0 . (2.34)

Since the coefficients mij are products of the matrices (2.30) and (2.32), we see that even-
tually EQCs depend on Voros symbols only. A good sanity check for the correctness of the
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AB AB A

B

(a) (b) (c)

Figure 3. Three arbitrary choices of branch-cuts and connecting paths (blue lines) to determine
EQCs in the harmonic oscillator. The total monodromy around the red circles are given in (2.36),
the EQCs in (2.37).

procedure is to consider a closed path in the z-plane, in which case the connection matrix
should reduce to the identity, given that wave functions are single-valued.

It is useful to consider a simple example, the harmonic oscillator. Setting m = ω = 1,
we have

Q0 = z2 − 2E , (2.35)

where E ≥ 0. For E ̸= 0, we get two turning points at A =
√
2E and B = −

√
2E. We

report in figure 3 the decomposition of the z-plane in the different Stokes regions delimited
by regular Stokes lines. Three possible choices of branch-cuts (wavy lines) and connection
path (blue line) are shown.

As a first check, let us verify that the total monodromy is trivial. Starting from the
region above the positive real axis in figure 3, we verify in the three cases (to be read from
right to left as we move along the arrow)

(a) : S−BS−V−1
γ S−BS−S+VγS+ = I ,

(b) : B2S−S+VγS+S−S+VγS+ = I , (2.36)
(c) : S−BS−V−1

γ S−S+BS+VγS+ = I .

We determine the EQC associated to the three blue paths in figure 3. In the region slightly
above the positive real axis the normalizable wave function is ψ−. So, we start with cP

+ = 0
and proceed along the blue curve towards the negative real axis, slightly above or below
it. Demanding convergence of the wave function requires that cN

+ = 0 in cases (a) and (b),
while in case (c) we require cN

− = 0. We have

(a) : (S+VγS+)12 = 0 ,
(b) : (S+VγS+)12 = 0 , (2.37)
(c) : (S−1

− VγS+)22 = 0 .

The EQCs above are all equivalent to

aγ = −1 . (2.38)

At a first sight it seems that the computation of aγ requires to consider the full expansion
of Peven in ℏ, but, luckily enough, all terms but one vanish (after all, this is expected since

– 10 –



J
H
E
P
1
1
(
2
0
2
3
)
1
2
4

the harmonic oscillator is exactly solvable!). A simple way to show this is to blow up the
contour γ to a parametrically large circle in the z-plane. Since P0 ∝ z, we see from the
recursion relation (2.7) and the form of the first coefficients (2.9) that P2n ∝ z1−4n for
large z. Hence all contributions, but P0, vanish. The integral over P0 is elementary and
gives the correct energy eigenvalues:

aγ = e
2iπE

ℏ =⇒ En = ℏ
(
n+ 1

2

)
, n ∈ N . (2.39)

A few comments are in order.

1. The wave-function that jumps over the positive real axis is ψ+ and this fixes the arrow
in the Stokes line as in the Airy case. All other arrows follow. Two nearby Stokes
lines emanating from a simple turning point have equal (opposite) orientation if a
branch-cut (does not) divides them. Asymptotic Stokes lines in the same direction
must have the same orientation.

2. Branch-cuts can be inserted between turning points or go at infinity. As far as periods
are concerned both options are equivalent, since the branch-cuts are of square root
type. For wave functions, however, this is not the case, because of the extra factor
P̃

−1/2
even in (2.19), which is not automatically taken into account when the branch-cuts

are inserted between turning points. In the harmonic oscillator, P−1/2
even ∼ z−1/2 for

large z, and hence we have a total monodromy around infinity given by B2 = −I.
This explains the origin of the B2 factor in case (b) of (2.36).

3. The (asymptotic) positive and negative real axis are Stokes lines. The orientation
of the Stokes line in the negative real axis determines the EQC. We have c12 = 0 or
c22 = 0 if ψ+ or ψ− respectively jump over the real negative axis. The same applies for
more general potentials with real parameters for which the real axis is on Stokes lines.

4. Whenever the cycle between A and B does not have a branch-cut, the integral from
A to B is opposite to the one from B to A, while it is equal if there is a branch-cut
and the path circles through the opposite side of it. That is why in (2.36) we have
Vγ and V−1

γ in (a) and (c), but only Vγ in (b).

We also have
S±B = BS∓ , BVγ = V−1

γ B . (2.40)

We will make extensive use of these rules to derive EQCs in the next sections.
As anticipated in the introduction, there are at least two ways to make use of EQCs

in exact WKB to determine the energy spectrum En of the system:

1. We can directly determine En as those values of E for which (1.1) is satisfied. In
this approach E is taken to be of O(1), and aγi are determined from (2.22) and (1.2).
Typically such En are found numerically.
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2. We can consider the “downgraded” form

F [ãγi(E)] = 0 , (2.41)

where we undo the Borel resummation and Voros symbols in (1.1) are replaced by
their formal power series. In (2.41) we then replace E → Ẽn, where Ẽn are in gen-
eral transseries which are obtained by demanding (2.41) order by order in ℏ and
exp(−1/ℏ). The final energy spectrum is obtained by an appropriate Borel resum-
mation of Ẽn: En = s(Ẽn).

Since we are interested in the series expansion of energy eigenvalues, approach 2. is the
one which will be mostly considered in this paper. However it is worth noting that there
are systems, such as the anharmonic oscillator with no mass term, whose spectrum does
not possess a transseries representation in ℏ, which makes approach 2. fail.6 Appendix C
studies such a system in detail.

3 Anharmonic oscillators

In this section we analyze EQCs for anharmonic oscillators in some detail. We mostly
focus on the quartic case, and then generalize to higher order anharmonic oscillators. We
show that, at fixed moduli of the quartic anahamornic potential, there exist eight EQCs
in different wedges in the ℏ complex plane.7 They include a “sweet spot” region where
the EQC is particularly simple. We show how the Borel summability of the asymptotic
series associated to the energy eigenvalues Ẽn follows from the existence of this “sweet
spot” region in the limit where two simple turning points collapse to a double turning
point. More specifically, we show how Borel summability of Ẽn can be established without
making direct use of connection matrices for double turning points, as done in [13]. We
then generalize our findings to higher order potentials.

3.1 The quartic anharmonic potential in the ℏ complex plane

We fix the moduli of the quartic anharmonic potential and take in (2.2)

V (z) = 1
2
(
z2 + z4

)
, (3.1)

and E real and positive. For any E > 0 we have four simple turning points, two reals and
two purely imaginary. We report in figure 4 the four phases of −π/2 < arg ℏ ≤ π/2 for
which singular Stokes lines appear. Four mirror phases are present for π/2 ≤ |arg ℏ| ≤ π, as
given by (2.27). The turning points are labelled as in figure 4. We have the “perturbative

6By this we mean within ordinary perturbation theory. As we will see, approach 2 within EPT works
also in these cases.

7Among other things, a classification of the different EQCs for the quartic oscillator already appeared
in [33] (see in particular figure 5 there). The perspective in [33] was however a bit different as they were
mostly interested on the ramifications of the energy eigenvalues as the (complex) moduli of the potential
are varied. Here the moduli are held fixed and we classify the regions depending on the values of the energy
and the phase of ℏ. The two analysis are however not totally independent.
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A
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C

D

(a) arg ℏ = −α.

AB

C

D

(b) arg ℏ = 0.

AB

C

D

(c) arg ℏ = α.

AB

C

D

(d) arg ℏ = π/2.

Figure 4. Phases of ℏ with −π/2 < arg ℏ ≤ π/2 for which critical Stokes lines appear in the
anharmonic oscillator (3.1) with E > 0.

period” aAB, the “non-perturbative period” aDC , and four “diagonal” periods. Putting our
branch cuts from the turning point to infinity as in figure 4, we have

argΠBA = π

2 , argΠCD = 0,

argΠCA = argΠBD = − argΠAD = − argΠCB = α(E) .
(3.2)

The angle α(E) will play an important role in our analysis. We do not report its full
analytic expression, which is complicated. As far as our analysis is concerned, what really
matters is its expansion for small E > 0, which reads

α(E) = arctan
(

Π0,BA(E)
iΠ0,CD(E)

)
≈ 3π

8 E +O
(
E2
)
. (3.3)

The key feature, which crucially relies on the mass term in the potential, is that α(E →
0) = 0.

The eight singular Stokes line configurations define corresponding eight wedges, or
regions, in the complex ℏ plane, reported in figure 5. In each wedge, we can vary freely the
argument of ℏ without any Stokes jump. In the upper half plane we label

• Region I: 0 < arg ℏ < α(E),

• Region II: α(E) < arg ℏ < π
2 ,

• Region III: π
2 < arg ℏ < π − α(E),

• Region IV: π − α(E) < arg ℏ < π.

The reflections of these regions in the lower half plane are labeled by bars, as in figure 5.
It is useful to report the Stokes jumps of some relevant periods, derived using the DDP
formula (2.25). The perturbative cycle is subject to the following jumps:

aIIAB = (1 + aIAC)−1(1 + aIDB)−1aIAB ,

aIAB = (1 + aI
DC)−2aI

AB ,

aI
AB = (1 + aII

DA)−1(1 + aII
BC)−1aII

AB .

(3.4)
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Figure 5. The eight regions delimited by singular Stokes lines in the complex ℏ plane for E > 0.

We also have that
aIDB = (1 + aI

DC)−1aI
DB,

aIAC = (1 + aI
DC)−1aI

AC ,
(3.5)

and
aIII

DC = (1 + aIIAB)2aIIDC . (3.6)

The Stokes jumps for other cycles can be obtained from the ones above by composition of
periods and geometric properties of intersection numbers. Stokes jumps occurring in the
regions with Re ℏ < 0 are determined using (2.27). For example, from the first relation
in (3.4) we get

aIII
AB = (1 + aIV

CA)(1 + aIV
BD)aIV

AB , (3.7)

and similarly for the other cases.

3.2 Exact quantization conditions

We can now use the techniques of section 2 to find the EQCs for the anharmonic oscillator.
The associated connection paths in the z plane are reported as blue lines in figure 6 in the
various regions. In regions II and II the EQCs are quite simple. We have

(S+VABS+S−)12 = 0 ⇒ aIIAB + 1 = 0,

(S−S+VABS+)12 = 0 ⇒ aIIAB + 1 = 0.
(3.8)

This is similar to the purely perturbative quantization condition of the harmonic oscillator.
In regions I and I we obtain more complicated expressions, namely(
S+VDBS+VCDS

−1
− VACS+

)
12

= 0 ⇒ 1 + aIAC + aIDB + aIAC(1 + aICD)aIDB = 0 ,(
S+VCBS

−1
− VDCS+VADS+

)
12

= 0 ⇒ 1 + (1 + aI
AD)(1 + aI

CB)aI
DC = 0 .

(3.9)

By geometrically composing the periods we can rewrite (3.9) as

1 + (1 + aIAC)−1(1 + aIDB)−1aIAB = 0,

1 + (1 + aI
DA)(1 + aI

BC)aI
AB = 0 .

(3.10)
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(a) Region II.

AB
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(b) Region I.

AB

C

D

(c) Region I.

AB

C

D

(d) Region II.

Figure 6. EQCs and connection paths (blue lines) for the anharmonic oscillator (3.1) with E > 0
for the four regions with Re ℏ > 0.

Alternatively, the EQCs can be written in terms of a choice of only two periods, though this
results in a less compact form. In the form (3.10) it is manifest that the EQCs in region I/I
are compatible with those in region II/II as long as one accounts for the Stokes jumps listed
in (3.4). On can further check that they are also compatible with each other through (3.5).

We then note that the wedges II and II are “sweet spot” regions where we get a simple
EQC involving only the perturbative Voros symbol. This region is somehow hidden by the
fact that, for any finite E > 0, the limit arg ℏ → 0 leads us to region I. The EQCs in this
region include non-perturbative corrections, which might at first seem puzzling, due to the
long known Borel summability of the ℏ expansion of the anharmonic potential [34]. If we
determine the spectrum using EWKB as discussed in point 1. below (2.40), the exact spec-
trum is in fact determined by (3.10) where the non-perturbative cycles should be included.

On the other hand, if we want to relate EQCs with the asymptotic series of energy
eigenvalues, we should consider the approach in point 2. below (2.40). We undo the Borel
resummation implicit in the above EQCs, and turn them into formal power series equations,
with

E → Ẽ = ẼP + ẼNP , ẼP = e0 +
∞∑

k=1
ekℏk (3.11)

and ẼNP the non-perturbative transseries terms. Independently of the region we start in,
the first result one obtains when asymptotically solving the EQCs is e0 = 0, i.e. ẼP ∼ O(ℏ).
At fixed argument of ℏ, the limit e0 → 0 forces us to be in regions II/II/III/III, respectively,
since α(0) = 0. See figure 7 for an illustration of the complex ℏ plane in this limit. Thus, the
EQCs with non-perturbative terms are never realized unless one takes some very unnatural
limit. The absence of non-perturbative Voros symbols in the EQCs in the surviving regions
implies that we can have solutions where ẼNP = 0, i.e. perturbative asymptotic series with
no associated transseries. In fact, for e0 → 0 the two turning points A and B collapse to
a double turning point at z0 = 0 and the EQC (3.8) applies in the entire ℏ complex plane
with the exception of the real axis. However, as we will see, the EQCs derived before are
smooth in the limit e0 → 0 and there is no need to derive EQCs where double turning
points are present to start with, as done in [13].
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Figure 7. The regions of the complex ℏ plane in the limit e0 → 0.

We parametrise the Voros cycle aAB as

aAB ≡ e−2πi(t+ 1
2) . (3.12)

The downgraded version of the EQC (3.8) for e0 → 0 reads then

t̃(Ẽ; ℏ) = n , n ∈ N. (3.13)

Equation (3.13) allows us to determine the asymptotic series for the energy eigenvalues.
Starting from finite E, we compute the period Π̃AB perturbatively, and then replace E as
in (3.11). For the potential (3.1) we get8

t̃ =
(
e1−

1
2

)
+ℏ

(
e2−

3
16(1+4e21)

)
+ℏ2

(
e3−

3
2e2e1+

5
64e1(17+28e21)

)
+O(ℏ3) . (3.14)

Demanding (3.13) order by order in ℏ fixes all energy coefficients ek and allows us to
determine all the asymptotic series Ẽn at once for any n:

Ẽn =
(
n+ 1

2

)
+ 3
16

(
1+4

(
n+ 1

2

)2)
ℏ− 1

64

(
n+ 1

2

)(
68
(
n+ 1

2

)2
+67

)
ℏ2+O(ℏ3) . (3.15)

Since only the perturbative cycle ãAB is involved, no non-perturbative terms appear. Prov-
ing the Borel summability of the series Ẽn requires a further analysis of the ℏ ∈ R+ case,
which is discussed next.

3.3 Borel summability

Borel summability of the energy eigenvalues Ẽn requires that

s0+(Ẽn) = s0−(Ẽn) . (3.16)

By means of (A.22) and (A.24), this is equivalent to show that

∆̇AẼn = 0, ∀A ∈ R+ , (3.17)
8As shown in [13], by taking e0 = 0 directly, the series (3.14) can also be determined by looking at the

residue of the simple pole in P̃ (z) at z = 0.
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where ∆̇A is the dotted alien derivative defined in (A.24). Applying ∆̇A to (3.13) and,
using simple alien calculus rules,9 we have [13]

0 = ∆̇At̃(Ẽn(ℏ); ℏ) = ∆̇At̃(e1; ℏ)|e1=Ẽn
+ (∆̇AẼn) ∂e1 t̃(e1; ℏ)

∣∣∣
e1=Ẽn

, (3.18)

where t̃(e1; ℏ) is the asymptotic series (3.14) where all ek but e1 are set to zero. The
condition e1 = Ẽn means replacing e1 with the asymptotic series Ẽn, solution of (3.13),
whose first order terms are given in (3.15). As explained before, for e0 → 0 regions II and
II cover the whole cut complex plane. Since ∂e1 t̃(e1; ℏ) can never vanish, establishing (3.17)
is equivalent to establish ∆̇At̃ = 0, namely

(s0+ − s0−)t̃(e1; ℏ)|e1=Ẽn
= lim

e0→0
(tII(e0 + ℏe1; ℏ)− tII(e0 + ℏe1; ℏ))|e1=Ẽn

= 0 . (3.19)

The relation between tII and tII can be derived by combining the jumps at arg ℏ = −α, 0, α
between regions II and II determined in the previous section. We get

aII
AB =

(
1 + aII

DA

(
1 + aII

AB

)) (
1 + aII

BC

(
1 + aII

AB

))
aII

AB. (3.20)

Taking the logarithm, we write

lim
e0→0

(
tII− tII

)
= lim

e0→0

1
2πi

{
log

(
1+aIIDA

(
1 + aIIAB

) )
+log

(
1+aIIBC

(
1 + aIIAB

) )}
, (3.21)

Since the potential is even, V (z) = V (−z), one can further simplify

lim
e0→0

(
tII − tII

)
= lim

e0→0

1
πi

log
(
1 +

√
aII

DC

aII
AB

(
1 + aII

AB

))
. (3.22)

When the EQC (3.8) is imposed, the right hand side of (3.22) vanishes unless aDC is
singular. The regularity of aDC , for sufficiently small ℏ, has been formally proven in [14].
It is however useful to work out ãDC to one loop level. It is convenient to determine aDC

in terms of the perturbative cycle aAB, which amounts to changing variables from E to t.
To leading order, inverting the relation E as a function of t is merely

Ẽ(t; ℏ) = µℏ+O
(
ℏ2
)
, µ ≡ t+ 1

2 . (3.23)

Assuming finite E, we calculate first the series for the non-perturbative period.10 Then we
replace E by (3.23) to find

Π̃DC (E(t; ℏ); ℏ) =
(
−4
3 + 2µℏ log

(ℏ
8

)
+ 2µℏ (log (µ)− 1) +O

(
ℏ2
))

+
(
− ℏ
12µ +O

(
ℏ2
))

+
( 7ℏ
1440µ3 +O

(
ℏ2
))

+
(
− 31ℏ
20160µ5 +O

(
ℏ2
))

+ · · · .
(3.24)

9For a physics oriented introduction to alien calculus see e.g. the pedagogical reviews [35, 36], while for
a more mathematics oriented presentation see e.g. [37].

10This series can be obtained to high order using, for example, the differential operator method introduced
in [38], see e.g. appendix C of [39] for a concrete implementation in a similar case.
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(a) z6 + z2, arg[ℏ] = 0.
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C

D

(b) z8 + z2, arg[ℏ] = 0.

A
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C

D

(c) z8 + z2, arg[ℏ] = 0.2.

Figure 8. Stokes graphs for higher order anharmonic potentials when E is small.

We note that, in terms of µ, all orders in ℏ of Π̃DC (E; ℏ) contribute at 1-loop order. The
resummation of these terms leads to11

ãII
DC(t; ℏ) = e−

4
3ℏ

[Γ (t+ 1)√
2π

]2 (8
ℏ

)−2(t+ 1
2)

(1 +O(ℏ)) . (3.25)

Using (3.25), we can expand the “symbol” controlling the jump at arg ℏ = 0 in (3.22).
We find √

ãII
DC

ãII
AB

(
1 + ãII

AB

)
= e−

2
3ℏ

√
2π

Γ(−t)

(8
ℏ

)−(t+ 1
2)

(1 +O(ℏ)) . (3.26)

Theorem 4.1.1 and Lemma 4.1.3 of [14] imply that the resummation of the formal power
series given by the (1 + O(ℏ)) terms in (3.26) gives rise to a bounded function in ℏ for
sufficiently small ℏ, regular when t is a positive integer. The results of [14] apply close to
a double turning point of general potentials, in particular generic polynomial potentials.
In this way we have shown that the right hand side of (3.22) vanish when the EQCs are
imposed and (3.17) is verified. Borel summability of the energy eigenvalues is then proven
for sufficiently small ℏ. Our proof has the same structure of the one in [13] but uses only
single turning point techniques. Equation (3.26) corresponds to what is denoted a[L] in [13].

3.4 Higher order potentials

The considerations made for the quartic anharmonic potentials are easily generalizable to
higher order potentials. As long as the potential is bounded with a single global minimum
z0 there exist regions where the EQCs read as (3.8), with aAB the perturbative cycle. If
we normalize the potential such that V (z0) = 0, the “sweet spot” is found in the region
where Arg ℏ ≳ ce0 for some model dependent constant c. For concreteness, we discuss the
class of anharmonic potentials of the form

V (z) = 1
2
(
z2 + z2q

)
, q > 2 . (3.27)

The analysis is different for q = even and q = odd. For q = odd the potentials (3.27)
cannot have purely imaginary turning points which lead to singular Stokes line crossing
the perturbative cycle aAB at the origin z0 = 0. For sufficiently small e0 and real ℏ, in fact

11This value can also be obtained by working directly with double turning points, as reviewed in ap-
pendix B.
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no singular Stokes line crosses the cycle aAB. Furthermore, there are no arg ℏ = 0 periods
connecting to aAB and thus no Stokes jump. We are then automatically in region II where
EQCs read as (3.8) and Borel summability of aAB is guaranteed. See figure 8, panel (a),
for an illustration of the Stokes line configurations for q = 3.

For q = even the analysis is similar to the one of the quartic oscillator. For real
ℏ, the non-perturbative cycle aDC turns into a singular Stokes line crossing aAB. See
figure 8, panel (b), for the q = 4 case. The complex ℏ plane splits in several wedges with
different EQCs. Crucially, we still have a region II like in the quartic case where the EQC
reads (3.8). This region is adjacent to region I as in figure 5, while the additional regions
appear between regions II and III in figure 5. This implies that the combined Stokes jumps
between regions II and II is as in section 3.3, and (3.22) applies. The specific form of the
series for the period Π̃DC changes, but we still have√

ãII
DC

ãII
AB

(
1 + ãII

AB

)
= e−

c1
ℏ

√
2π

Γ(−t)

(
c2
ℏ

)−(t+ 1
2)

(1 +O(ℏ)) , (3.28)

where c1 and c2 are two model-dependent parameters. They are entirely determined from
the leading and next to leading terms of the classical period. For the potentials (3.27), we
have

c1 =
√
π

q + 1
Γ
(

1
q−1

)
Γ
(
1
2 + 1

q−1

) , c2 = 2
q+1
q−1 . (3.29)

Note that (3.28) applies for any potential with a unique global minimum, not only for those
of the kind (3.27). The universality of the factor

√
2π

Γ(−t)ℏ
t+ 1

2 (3.30)

is easily established in the strict double turning point limit e0 = 0, where the factor (3.30)
appears in connection matrices of certain Stokes jump in double turning points [13, 14].
See appendix B for its derivation. The right hand side of (3.22) then vanish when the
EQCs are imposed and (3.17) is verified. The analysis can be generalized for an arbitrary
polynomial potential with a unique global minimum. Borel summability of the energy
eigenvalues is then proven for sufficiently small ℏ.

4 How EPT Borel summability emerges from EWKB

In this section we show how to get Borel resummable series for energy eigenvalues of
a general polynomial potential even in the cases where we would expect a transseries
expansion. We briefly review in section 4.1 the results of [29, 30] and then show how
the “sweet spot” regions for the anharmonic oscillators (3.27) allows us to reproduce the
findings of [29, 30] in EWKB. We finally discuss the leading large order behaviour of the
EPT asymptotic series.
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4.1 Exact perturbation theory (EPT)

It has been shown in [29, 30] that for an arbitrary one-dimensional bounded polynomial po-
tential V we can define a perturbative expansion such that all energy eigenvalues (and other
observables as well) are reconstructable from a single Borel resummable perturbative series,
dubbed EPT in [29, 30]. The idea is extremely simple and powerful at the same time. Let

V = V0 +∆V (4.1)

be the sum of two potentials V0 and ∆V such that V0 has a single non-degenerate minimum
and

lim
|x|→∞

∆V
V0

= 0 . (4.2)

We take min(V ) = min(V0) = 0. Consider then the auxiliary potential

VEPT = V0 +
ℏ
ℏ0

∆V ≡ V0 + ℏV1 , (4.3)

where ℏ0 is an arbitrary positive constant. Using path integral methods and Lefschetz
thimbles it has been shown in [30] that the ℏ expansion in the deformed quantum
mechanical model with potential VEPT, at fixed ℏ0, is Borel resummable. Note that the
condition (4.2) guarantees that the asymptotic behaviour of the wave function in the
deformed model is the same as that in the original model. Let ẼEPT

n (ℏ, ℏ0) be the EPT
asymptotic series of the energy eigenvalues of the deformed model. Then the original
energy eigenvalues En can be computed as

En(ℏ) = s0
(
ẼEPT

n (ℏ, ℏ0)
)
ℏ0=ℏ

. (4.4)

The decomposition (4.1) is generally far from being unique. EPT is defined as an
expansion around the minimum of V0, which does not need to be a minimum of the
original potential V . The number of interaction terms present in EPT depends on the
particular decomposition performed. Any choice of EPT is theoretically equivalent to any
other, though in numerical computations with truncated series some choices might lead to
more accurate results than others. EPT can also be used when the ordinary ℏ expansion
is Borel resummable, in order to improve the efficiency of the resummation at strong
coupling. Its more dramatic consequences however apply for quantum mechanical systems
where, due to instanton configurations, energy eigenvalues are expected to be given by the
Borel resummation of a transseries in ℏ, exp(−1/ℏ) and possibly log ℏ.

The numerical efficacy of EPT has been extensively discussed in [29, 30] (see also [40],
and [41] for an application in 2d QFT) and will not be further considered in this paper,
where we focus more on analytical aspects. For this reason, we will consider a specific
decomposition (4.3) for concreteness. Given an arbitrary polynomial potential V of the
form V =∑2q

i=2 vix
i, normalized so that v2q = 1/2, we take V0 as in (3.27):

V0(z) =
1
2
(
z2 + z2q

)
, q > 1 . (4.5)
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In order to see how (4.4) follows from an EWKB analysis requires a slight generalization of
the results of section 3 to quantum deformed potentials V1. Note that all possible moduli
of the original potential V are encoded in V1. The analysis in this section extends to non-
polynomial V1 as long it is polynomially bounded at infinity and regular on a infinitesimal
neighbourhood of the interval [−i, i]. One such example is z/ cosh(z). This naturally
extends the applicability of EPT by broadening the class of original potentials V .

4.2 Anharmonic oscillators in the presence of a quantum potential

We assume that the quantum potential is a generic polynomial of degree strictly less than
2q, so that condition (4.2) is satisfied. Since the pattern of Stokes lines and jumps is deter-
mined from the classical potential, the analysis made in section 3 applies. In particular the
EQC in region II is still given by (3.8). The discussion of Borel summability also carries
over almost entirely from 3. The quantum periods are however affected by the quantum de-
formed potentials and hence we should verify that (3.21) vanishes when the EQC is imposed.

For even quantum potentials, at one-loop (3.21) simplifies to (3.22), so we should
determine the leading order form of ãIIDC only. We get

ãII
DC(t; ℏ) = e−

2c1
ℏ e2c3

[Γ (t+ 1)√
2π

]2 (c2
ℏ

)−2(t+ 1
2)

(1 +O(ℏ)) , (4.6)

where c1 and c2 are given by (3.29) and are unaffected by V1, while the new real parameter
c3 in (4.6) reads

c3 =
1
2 lim

e0→0

∮
γDC

Peven,1(z)dz = i

∫ 1

−1

V1(it)√
Q0(it)

∣∣∣∣∣
E=0

dt , (4.7)

and is governed by V1. For an arbitrary polynomial potential V1, the integral in (4.7) is
finite and |c3| is bounded. Hence Borel summability is not affected. For non-even quantum
potentials, one obtains instead (3.21). A calculation similar to the one leading to (3.25)
applies for the diagonal periods, such as

ãII
DA(t; ℏ) ≈ eiπ(t+ 1

2)e−
c1
ℏ ec3−iπϑΓ (t+ 1)√

2π

(
c2
ℏ

)−(t+ 1
2)

(1 +O(ℏ)) . (4.8)

Here ϑ stands for an additional contribution from non-even quantum potentials,

ϑ = 1
2πi lim

E→0

∮
γAD

{Peven,1(z)− Peven,1(−z)} dz =
1
π

∫ 1

0

V1(it)− V1(−it)√
Q0(it)

∣∣∣∣∣
E=0

dt , (4.9)

where Peven,1 is the next to leading coefficient of P̃even as defined in (2.16) More generally,
we can use the symmetries of the problem to decompose the diagonal periods as

ãCA = ã
− 1

2
DC ã

− 1
2

ABe
−iπϑ̃(ℏ), ãBD = ã

− 1
2

DC ã
− 1

2
ABe

iπϑ̃(ℏ),

ãDA = ã
1
2
DC ã

− 1
2

ABe
−iπϑ̃(ℏ), ãBC = ã

1
2
DC ã

− 1
2

ABe
iπϑ̃(ℏ),

(4.10)

– 21 –



J
H
E
P
1
1
(
2
0
2
3
)
1
2
4

where
ϑ̃(ℏ) = 1

2πiℏ lim
E→0

∫
AD

{
P̃even(z)− P̃even(−z)

}
dz ∼ ϑ+O(ℏ). (4.11)

It can be shown that ϑ̃(ℏ) is real to all orders. Putting everything together, (3.21) gives
rise to

s−1
0 lim

e0→0

(
tII − tII

)
= 1

2πi

{
log

(
1 + e−

c1
ℏ ec3−iπϑ

√
2π

Γ(−t)

(
c2
ℏ

)−(t+ 1
2)

(1 +O(ℏ))
)
+ h.c.

}
,

(4.12)
and vanishes when EQC is imposed, t = n. It then follows from (4.12) that

∆̇AẼ
EPT
n = 0, ∀A ∈ R+ , (4.13)

and hence Borel summability of the EPT series of energy eigenvalues for sufficiently small
ℏ is established.

4.3 Large order behaviour for quartic oscillators with quantum potentials

We discuss in this section the large order behavior of the coefficient terms of the EPT
asymptotic series ẼEPT

n =∑
k e

EPT
k,n ℏk. For simplicity we focus on quartic oscillators. In ab-

sence of a quantum potential V1, the large order behaviour associated to the potential (3.1)
has been famously found long ago by Bender-Wu [2] and more rigorously established using
alien calculus in [13]. As well-known, all Borel singularities are along the negative real axis.
We extend here the analysis of [13] to include a broad class of quantum potentials, so that
the large order behaviour of ẼEPT

n follows.
Like in the analysis of Borel summability, we need to study in more detail what hap-

pens to the non-perturbative periods after applying the EQCs. To obtain the large order
behavior in the e0 → 0 limit we must compare regions III and III, which in the vanishing
limit correspond respectively to sπ− and sπ+. Using (2.25), we derive

aIII
AB =

(
1 + (1 + aIII

AB)aIII
CA

) (
1 + (1 + aIII

AB)aIII
BD

)
aIII

AB. (4.14)

Unlike the jump for arg ℏ = 0 studied in the previous sections where all terms were regular,
here aIII

CA is in fact singular when we replace t by n (equivalently, E1 by Ẽn). To see why,
consider the jump at arg ℏ = π/2,

aIII
CA =

(
1 + aII

AB

)−1
aII

CA. (4.15)

While it is a non-perturbative term when expressed in terms of (E; ℏ), it becomes an overall
coefficient for series parametrized by t. After changing variables in (4.15) from E to t = tII

and then expanding at small ℏ (i.e. “downgrading” it), we find

ãIII
CA(E(t; ℏ); ℏ) =

(
1− e−2πit

)−1
ãII

CA(E(t; ℏ); ℏ). (4.16)

Notice that, due to the change variables from E to t, “perturbative” and “non-perturbative”
are rearranged and the asymptotic series in the different regions differ. In the e0 → 0 limit

– 22 –



J
H
E
P
1
1
(
2
0
2
3
)
1
2
4

we obtain, to leading non-perturbative order,

s−1
π lim

e0→0

(
tIII − tIII

)
= 1

2πi log
( (

1 + ãII
CA

) (
1 + ãII

BD

) )
= cos(πϑ)e

2
3ℏ

√
2π

πiΓ (t+ 1)

(
8eiπ

ℏ

)(t+ 1
2)
e−c3 (1 +O(ℏ)) + · · · ,

(4.17)

from which we can extract the large order behavior:12

eEPT
k,n ∼ (−1)k+1e−c3 cos(πϑ)2

3n+1

π3/2

Γ
(
k + n+ 1

2

)
Γ(n+ 1)

(3
2

)k+n+ 1
2
. (4.18)

In the absence of a quantum potential, formula (4.17) matches the equivalent formula
in [13], where it corresponds to aL in the notation therein, and (4.18) becomes the Bender-
Wu formula.

The quantum potential affects the leading large order behaviour only in modifying the
overall constant factor through the coefficients c3 and θ. Non-perturbative effects in EPT
are hidden in the negative real axis of the Borel plane and are essentially encoded in c3
and θ, as well as higher order corrections, which in general depend on ℏ0. An illustrative
example of the above formula is the EPT model:

V0(z) =
1
2
(
z2 + z4

)
, V1(z) = az − z2

ℏ0
. (4.19)

This model has the anharmonic oscillator as its classical “base”, but can be used to repro-
duce some interesting test cases. For a = 0, at ℏ0 = ℏ it reduces to the symmetric double
well, while at ℏ0 = 2ℏ it becomes the pure quartic potential. Meanwhile if a = 1/2 and
ℏ0 = ℏ it becomes the supersymmetric double well. The perturbative series for the energy
levels is given by

ẼEPT
n =

(
n+ 1

2

)
ℏ+

−a22 −

(
n+ 1

2

)
ℏ0

+ 3
8(2n(n+1)+1)

ℏ2 (4.20)

−
(
(2n+1)

(
−48a2+17n(n+1)+21

)
+ 8
ℏ0

(
4a2−6n(n+1)−3

)
+ 16n+8

32ℏ20

)
ℏ3+ · · · .

In the EPT model (4.19) the coefficients c3 and θ read

e−c3 = e
− 2

ℏ0 , ϑ = a. (4.21)

We explicitly see that when we set ℏ0 = ℏ, the leading singularity at 2/3 becomes multiplied
by the non-perturbative factor e−2/ℏ in the double-well potential and the quartic oscillator.

12This is obtained by expanding both the Stokes automorphism in the left hand side of (4.17) in terms
of dotted alien derivatives using (A.24) and the log in the right hand side of (4.17), matching terms order
by order in exp(2p/(3ℏ)), for p ∈ N. We determine in this way ∆̇AẼEPT

n for A = −2p/3 ∈ R− and then the
large order behaviour (4.18) (as well as higher order terms) follows from standard resurgence relations (see
e.g. [35, 36]).
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As for the supersymmetric potential, we see that even at the level of EPT the value of
a = 1/2 is special, since it puts the leading singularity further away. The next contribution
to the large behavior is

eEPT
k,n ≈ (−1)k+1e

− 4
h0

43n+1

π

Γ(k + 2n+ 1)
Γ(n+ 1)2

(3
4

)k+2n+1
, (4.22)

which follows from (4.17). Consequently, the EPT perturbative series never vanishes, in
contrast with the ordinary perturbative series in supersymmetric quantum mechanics. This
is expected, since the EPT perturbative series must capture the non-perturbative effects
that give rise to En=0 > 0 in the exact case.13

5 Conclusions

We have shown in this paper how the results of [29, 30] about EPT, obtained using path in-
tegral and steepest-descent considerations, nicely fit with resurgence and EWKB methods,
providing an alternative (and more rigorous) proof of the validity of EPT which applies to
all energy eigenvalues at once. EPT in [29, 30] is based on the existence of deformations
for which the Lefschetz thimble decomposition of the path integral trivializes and corre-
spondingly observables can be expressed in terms of a single Borel resummable asymptotic
series. In EWKB, at fixed moduli of the potential, EQCs depend in particular on E and
arg ℏ. In theories where instanton contributions occur, there is no way to get a EQC of the
form (1.3). Non-perturbative cycles necessarily enter the EQCs and in particular take into
account of the instanton contributions. The expansion of an observable in ℏ in this case
is generally given by a transseries. However, the very same deformations above, provided
E is carefully chosen, are able to lead to a trivialization of the EQC and to a single Borel
resummable asymptotic series for energy eigenvalues.

We have focused in this paper to polynomial potentials and it would be interesting to
extend our results to more general potentials. It would also be interesting to see if and to
what extent one can reconstruct the transseries expression for an observable (in terms of
the undeformed model) by unzipping its associated EPT series. As we mentioned in the
introduction, connections between EWKB and several other theoretical subjects have been
worked out. It would be very interesting to see if EPT in EWKB can be extended in this
more general context, in particular in the context of 4d N = 2 gauge theories.
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A Connection matrices for monomial potentials

We compute in this appendix the connection matrices for wave functions as they cross a
regular Stokes line. For simple turning points this connection matrix is given by the Airy
function case with Q(z) = z. Since it is straightforward to generalize to pure monomial
potentials, we report the connection matrices for potentials Q(z) = zq, with q ∈ N. It
should be stressed that such general connection matrices with q > 1 are not directly useful
to determine the connection matrices for higher order turning points in a generic potential.
Determining such matrices is in fact a non-trivial task.

The differential equation reads

ℏ2ψ′′(z) = zqψ(z) , q ∈ N . (A.1)

The leading terms of the expansion are given by a WKB approximation:

ψ̃± ≈ z−
q
4 e±

zα

αℏ , (A.2)

where
α = q + 2

2 . (A.3)

We look for asymptotic solutions of the form

ψ̃± = z−
q
4 e±

zα

αℏ ϕ̃± , ϕ̃± =
∞∑

n=0
c±n (z)ℏn , (A.4)

where c0(z) = 1. We have
c±n (z) = d±n z

−nα , (A.5)

and after some algebra we get the recursion relation satisfied by d±n :

d±n+1 =
±d±n

(n+ 1)(q + 2)

[
q

4

(
q

4 + 1
)
+ n(n+ 1)

(
q

2 + 1
)2]

, (A.6)

whose solution is

d±n = sin
(

πq

2q + 4

)(
± q + 2

4

)nΓ
(
n+ q

2(q+2)

)
Γ
(
n+ q+4

2(q+2)

)
πΓ(n+ 1) . (A.7)
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τ+

C II

I
Figure 9. Hankel contour passing through the singular point τ+. The dashed line delimits the two
adjacent regions II and I in the complex z-plane.

The Borel transforms of ϕ̃± read

ϕ̂±(τ) = 2F1

(
q

4 + 2q ,
4 + q

4 + 2q , 1;±
q + 2
4 τ

)
, τ = t z−α . (A.8)

The actual expansion parameter of the formal series in (A.4) is ℏz−α and correspondingly
τ in (A.8) is the associated Borel variable. The singularities occur at τ+ = 4/(q + 2) for
ϕ̂+(τ) and τ− = −4/(q + 2) for ϕ̂−(τ). If z = |z| exp(iθ), with ℏ and t real and positive,
Stokes lines occur for

θ = 2π
q + 2n , n = 0, 1, . . . , q + 1 , (A.9)

and the complex z-plane splits in q + 2 wedges with opening angle 2π/(q + 2). The Borel
resummation in a generic wedge X is defined as

ϕX
± = sθ(ϕ̂±) , z ∈ X . (A.10)

The expansion of ϕ̂± around τ± equals

ϕ̂±|τ=τ± = − ηq

2π log(τ − τ±)ϕ̂∓|τ=0 + reg , ηq = 2 cos
(

π

q + 2

)
, (A.11)

where reg stands for analytic terms in a neighborhood of τ±. Let ϕI± and ϕII± be the Laplace
transforms of ϕ̂± in two adjacent wedges separated by a Stokes line for ϕ̂+. We have

ϕII
+(z)− ϕI

+(z) =
(
− ηq

2πℏ

)∫
C
e−

t
ℏ log

(
τ − τ+

)
ϕ̂−(τ − τ+) (A.12)

= iηq

ℏ

∫ ∞

τ+
dt e−

t
ℏ ϕ̂−(τ − τ+) = e−

2zα

αℏ
iηq

ℏ

∫ ∞

0
dt e−

t
ℏ ϕ̂−(τ) ,

where C is the Hankel contour shown in figure 9. Hence

ψII
+ − ψI

+ = iηqz
− q

4 e−
zα

αℏ
1
ℏ

∫ ∞

0
dt e−

t
ℏ ϕ̂−(τ) = iηqψ

I
− . (A.13)

Since ψI
− is regular when ψ+ jumps, we have

ψII
− = ψI

− . (A.14)

A similar analysis applies in two adjacent wedges separated by a Stokes line for ϕ̂−. In
that case we get

ψII
− − ψI

− = iηqψ
I
+ ,

ψII
+ = ψI

+ .
(A.15)
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We attach an arrow to Stokes lines to distinguish the two cases. An arrow entering (exiting)
the turning point corresponds to Stokes lines where ψ+ (ψ−) jumps. We have also to take
into account from (A.4) the presence of the branch-cut singularity at z = 0, which is
different depending on whether q is even or odd. In terms of the coefficients defined
in (2.29), we get

B(q) = e−
iπq

2
1
2

(
1 + (−1)q 1− (−1)q

1− (−1)q 1 + (−1)q

)
, (A.16)

whereas the Stokes jumps (A.13)–(A.15) are encoded in the connection matrices

S
(q)
+ =

 1 2i cos
(

π
q+2

)
0 1

 , S
(q)
− =

 1 0
2i cos

(
π

q+2

)
1

 . (A.17)

For integer q, solutions of the differential equations are analytic over the complex plane
and so under a full rotation over the complex z-plane

ψX
±(e2iπz) = ψX

±(z) , (A.18)

where X is the wedge of the complex plane which includes the starting point z. Under a
2π rotation, the total monodromy is given by the product of the q + 2 connection matri-
ces (A.17) and the branch-cut matrix in (A.16). In total we indeed get

(S(q)
+ S

(q)
− )[

q+2
2 ](S(q)

+ )
1−(−1)q

2 B(q) = I , ∀q ∈ N , (A.19)

where [x] is the integer part of x. The result does not depend on the location of the branch
cut. For even q, B(q) = (−1)q/2, while

S
(q)
± B(q) = B(q)S

(q)
∓ , odd q . (A.20)

The most relevant case is q = 1, so for simplicity we define

S+ ≡ S
(1)
+ , S− ≡ S

(1)
− , B ≡ B(1) , (A.21)

which are the matrices (2.30) in the main text.
Define the Stokes automorphism

Sθ ≡ s−1
θ− · sθ+ , (A.22)

where θ± = θ±ϵ, ϵ≪ 1, and sθ± represent the lateral Borel resummations defined in (1.5).
In our case the two non-trivial points where a Stokes jump occurs are τ = τ+ and τ = τ−,
corresponding respectively to θτ+ = 2π(2n)/(q + 2) and θτ− = 2π(2n + 1)/(q + 2) in the
z-plane, with n an integer. In terms of ψ̃±, we get

Sθτ+
ψ̃+ = ψ̃+ + iηq ψ̃− ,

Sθτ−
ψ̃− = ψ̃− + iηq ψ̃+ ,

(A.23)
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so that the connection formulas for the wave functions can be interpreted in terms of Stokes
automorphisms of the associated formal power series. The Stokes automorphism can also
be defined in terms of alien derivatives (dotted and undotted versions):

Sθ ≡ exp
( ∑

{ωθ}
∆̇ωθ

)
, ∆̇ωθ

≡ e−
ωθ
ℏ ∆ωθ

, (A.24)

where {ωθ} are all the possible singularities (just one in our case) along the ray with angle θ.
If ω is an analytic point of the Borel transform associated to an asymptotic series function
f̃(ℏ), then ∆ωf̃(ℏ) = 0. It easily follows from (A.23) that

∆τ+ ϕ̃+ = iηq ϕ̃− , ∆τ+ ϕ̃− = 0 ,
∆τ− ϕ̃+ = 0 , ∆τ− ϕ̃− = iηq ϕ̃+ . (A.25)

B Double turning points

In contrast to simple zeros, whose connection matrices can be reduced to that of the Airy
function, double zeroes are more complicated. Intuitively it is simple to understand the
origin of the complication. A double turning point can be seen as the annihilation of two
simple turning points as we move parameters in the function Q(z). No matter how close the
turning points are, the Voros symbol aγvc associated to the vanishing cycle γvc will in general
be non-vanishing. In contrast to simple turning points, we then expect that the connection
matrices of double turning points cannot be universal but depend on a variable λ defined as

aγvc ≡ e−2iπ(λ+ 1
2 ) . (B.1)

It has been shown in [13, 14] (see also [11, 15]) that the full connection matrices for double
turning points split into a universal and a model-dependent term. The universal term
coincides with the connection matrices for the Weber model defined by the equation

ℏ2ψ′′(z) =
(
z2

4 − ℏ
(
λ+ 1

2

))
ψ(z) . (B.2)

Aim of this appendix is to derive the connection matrices for the Weber model (B.2).
Although this is a known result, we believe it can be useful to report here a comprehensive
and detailed derivation aimed at physicists.14

The leading terms of the WKB expansion are found from (2.9). We have

P η
0 = η

z

2 , P η
1 = 1

2z − η
1 + 2λ
2z , (B.3)

and hence
ψ̃± = z−

1
2∓(λ+ 1

2 )e±
z2
4ℏ ϕ̃± , ϕ̃± =

∞∑
n=0

c±n (z)ℏn , (B.4)

14A similar, but less detailed, derivation appears in [27]. In particular the constraints given by imposing
trivial total monodromy of the wave function are not considered there.
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where c0(z) = 1. It is easy to see that for any integer n

c±n (z) = d±n z
−2n . (B.5)

Plugging the ansatz (B.4) in (B.2) allows us to fix all the coefficients d±n . We get the
following recursion relations for d±n :

d+n+1 =
2d+n
n+ 1

(
n+ λ+ 1

2

)(
n+ λ+ 2

2

)
, d−n+1 = − 2d−n

n+ 1

(
n− λ

2

)(
n− λ− 1

2

)
, (B.6)

which are solved for

d+n = 2n+λ

√
π

Γ
(
n+ λ+1

2

)
Γ
(
n+ λ+2

2

)
Γ(n+ 1)Γ(λ+ 1) , d−n = 2n−λ−1

√
π

(−1)n
Γ
(
n− λ

2

)
Γ
(
n− λ−1

2

)
Γ(n+ 1)Γ(−λ) . (B.7)

We compute the Borel transforms of ϕ̃±. Since the powers of z in front of ψ̃+ and ψ̃−
in the first relation in (B.4) are different, it is useful to define more general Borel-Leroy
transforms:

ϕ̂
a+
+ (τ) =

∞∑
n=0

c+n (z)
Γ(n+ 1 + a+)

tn = 1
Γ(1 + a+) 2F1

(1 + λ

2 ,
2 + λ

2 , 1 + a+; τ
)
,

ϕ̂
a−
− (τ) =

∞∑
n=0

c−n (z)
Γ(n+ 1 + a−)

tn = 1
Γ(1 + a−) 2F1

(1− λ

2 ,−λ2 , 1 + a−;−τ
)
, (B.8)

where
τ = 2t

z2
, (B.9)

and a± are parameters which we conveniently fix as explained below. The only singularities
occur at τ = 1 for ϕ̂+(τ) and τ = −1 for ϕ̂−(τ). When a ̸= 0, (1.5) generalizes to

fθ(ℏ) = 1
ℏ

∫ eiθ∞

0
dt f̂a(t)

(
t

ℏ

)a

e−
t
ℏ . (B.10)

If z = |z| exp(iθ), with ℏ and t real and positive, Stokes lines occur for

θ = 0, π2 , π,
3π
2 . (B.11)

The computation of the discontinuity sθ+ − sθ− is more involved than that for pure mono-
mials. In particular, care should be paid in keeping track of phases. We first consider
(s0+ − s0−)ψ+, with z taken real and positive so that no extra phases appear. In other
words, the discontinuity is expected to be purely imaginary (like in the Airy case) for any
real value of λ. First of all we determine a convenient choice of a± which simplifies the
computation. This is achieved by the use of the hypergeometric identity

2F1(a, b, c, z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b, a+ b+ 1− c, 1− z) (B.12)

+ Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) (1− z)c−a−b

2F1(c− a, c− b, 1 + c− a− b, 1− z) ,

– 29 –



J
H
E
P
1
1
(
2
0
2
3
)
1
2
4

which immediately shows that the non-analytic term of the expansion around z = 1 is
related to the expansion around z = 0 of another hypergeometric function. Demanding
that the non-analytic behaviour of ϕ̂a+

+ around τ = 1 is governed by ϕ̂a−
− around τ = 0 allows

us to uniquely fix the coefficients a± by means of (B.12). We get a+ = 0, a− = −λ− 1/2,
resulting in

ϕ̂+(τ)
∣∣∣
τ=1

= κ(λ)(1− τ)−λ− 1
2 ϕ̂−(τ − 1) + regular , (B.13)

where ϕ̂+ ≡ ϕ̂0+, ϕ̂− ≡ ϕ̂
−λ−1/2
− , and

κ(λ) =
Γ
(
− λ− 1

2

)
Γ
(
− λ+ 1

2

)
Γ
(
1+λ
2

)
Γ
(
2+λ
2

) . (B.14)

Taking
1− τ = e−iπ(τ − 1) , z = ρ ∈ R (B.15)

we have

(s0+ − s0−)ψ̃+ = ρ−λ−1e
ρ2
4ℏ eiπ(λ+ 1

2 )
(
1− e−2iπ(λ+ 1

2 )
)
κ(λ)1

ℏ

∫ ∞

ρ2
2

dt e−
t
ℏ (τ − 1)−λ− 1

2 ϕ̂−(τ − 1)

= ρλe−
ρ2
4ℏ
(
eiπ(λ+ 1

2 ) − e−iπ(λ+ 1
2 )
)
κ(λ)2

−λ− 1
2

ℏ

∫ ∞

0
dt e−

t
ℏ t−λ− 1

2 ϕ̂−(τ)

= i
√
2πℏ−λ− 1

2

Γ(1 + λ) ψ− , z ∈ R+ , (B.16)

where in the second identity the change of variable of integration t → t + ρ2/2 has been
performed.

When z is real negative (B.13) still applies, but now z = ρe±iπ. The choice of phase de-
pends on how we split the Stokes line and the branch-cut for z < 0. Taking z = ρeiπ means
that if we rotate counterclockwise from the positive real axis we first encounter the Stokes
line and then the branch-cut. Viceversa for z = ρe−iπ. For definiteness we choose the first
assignment. With respect to the previous analysis, an extra phase is acquired in rewriting

(ρeiπ)−λ−1ρ2λ+1 = (ρeiπ)λe−2iπ(λ+ 1
2 ) , (B.17)

so that

(s0+ − s0−)ψ̃+ = i
√
2πe−2iπ(λ+ 1

2 )ℏ−λ− 1
2

Γ(1 + λ) ψ− , z ∈ R− . (B.18)

Consider now (sπ+ − sπ−)ψ̃−. We determine again a± by demanding that the non-analytic
behaviour of ϕ̂a−

− around τ = −1 is given by ϕ̂
a+
+ around τ = 0. We find a− = 0,

a+ = λ+ 1/2, resulting in

ϕ̂−(τ)
∣∣∣
τ=−1

= κ̃(λ)(1 + τ)λ+ 1
2 ϕ̂+(τ + 1) + regular , (B.19)

where ϕ̂− ≡ ϕ̂0−, ϕ̂+ ≡ ϕ̂
λ+1/2
+ , and

κ̃(λ) =
Γ
(
− λ− 1

2

)
Γ
(
λ+ 3

2

)
Γ
(
1−λ
2

)
Γ
(
− λ

2

) . (B.20)
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Sr

Sl

Su

Sd

Bλ

Figure 10. Connection matrices (including the branch-cut) for the Weber equation (B.2) (deformed
quadratic turning point).

For z pure imaginary positive, z = ρ exp(iπ
2 ), we get

(sπ+ − sπ−)ψ̃− = zλe−
z2
4ℏ
(
e−iπ(λ+ 1

2 ) − eiπ(λ+ 1
2 )
)
κ̃(λ)1

ℏ

∫ ∞

− z2
2

dt e−
t
ℏ (τ + 1)λ+ 1

2 ϕ̂+(τ + 1)

= (ρei π
2 )λρ−λ−1e+

z2
4ℏ
(
e−iπ(λ+ 1

2 ) − eiπ(λ+ 1
2 )
)
κ̃(λ)1

ℏ

∫ ∞

0
dt e−

t
ℏ tλ+

1
2 ϕ̂+(τ)

= −eiπλ
√
2πℏλ+ 1

2

Γ(−λ) ψ+ , Im z > 0 . (B.21)

When z is pure imaginary negative, z = ρ exp(−iπ
2 ), we get

(sπ+ − sπ−)ψ̃− = e−iπλ
√
2πℏλ+ 1

2

Γ(−λ) ψ+ , Im z < 0 . (B.22)

In total we have 5 different connection matrices, as depicted in figure 10:

Sr =

 1 0
i
√
2πℏ−λ− 1

2
Γ(1+λ) 1

 , Su =

 1 −eiπλ
√
2πℏλ+ 1

2
Γ(−λ)

0 1

 , (B.23)

Sl =

 1 0
− i

√
2πe−2iπλℏ−λ− 1

2
Γ(1+λ) 1

 , Sd =

 1 e−iπλ
√
2πℏλ+ 1

2
Γ(−λ)

0 1

 , Bλ =
(
e−2iπλ 0

0 e2iπλ

)
.

The subscripts r, u, l and d refer to the four Stokes lines in the positive real axis (r), positive
imaginary axis (u), negative real axis (l) and negative imaginary axis (d) respectively. For
simplicity we omit to write their dependence on λ. Bλ is the monodromy matrix due to the
branch-cut at z = 0. Solutions of the differential equations are analytic over the complex
plane and so under a full rotation over the complex z-plane ψ± → ψ±. Indeed we have

SrSdBλSlSu = I . (B.24)

As a sanity check we reproduce the pure case by setting λ = −1/2, in which case we have

Sr = Sl = S
(2)
− , Su = Sd = S

(2)
+ , Bλ = −I , (B.25)
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where S(2)
± are the connection matrices (A.17) for q = 2. Equation (B.24) and the λ = −1/2

match provide a quite non-trivial consistency check of the connection matrices (B.23).
Note that (B.24) depends on the location of the branch-cut. For instance, by changing
the order of the Stokes line and branch-cut for negative z, (B.17) changes in

(ρe−iπ)−λ−1ρ2λ+1 = (ρe−iπ)λe2iπ(λ+ 1
2 ) , (B.26)

and correspondingly

Sl → S′
l =

 1 0
− i

√
2πe2iπλℏ−λ− 1

2
Γ(1+λ) 1

 = BλSlB
−1
λ , (B.27)

so that
SuBλS

′
lSdSr = I . (B.28)

We recognize that the factors
√
2πℏλ+1/2/Γ(−λ) and

√
2πℏ−λ−1/2/Γ(λ+ 1) appearing re-

spectively in Su,d and Sr,l precisely reproduce the similar factors in (3.28) and (4.17), upon
identifying λ with t. In other words, when two simple turning points A and B collapse, the
non-perturbative combination of Voros symbols √

aDC and
√
aDC/aAB(1+ aAB) acquire a

universal model-independent contribution which can be reinterpreted as a factor entering
the connection matrix for the Weber equation (B.2). The remaining model-dependent
terms, parametrized e.g. in the formal power series (3.28) by the constants c1,2 and by the
coefficients of the asymptotic series in ℏ hidden in the O(ℏ) terms, can be fixed by e.g.
using the so called uniform WKB method. This method was introduced back in [42–44]
and more recently reconsidered, see e.g. [45] for anharmonic potentials and [32] for a
pedagogical introduction. In our context it essentially consists in finding a change of
coordinates which brings the original Schrödinger equation (2.1) to the Weber form (B.2).
See also [15, 46] for a closely related way to fix such terms. We will not discuss here how to
determine the model-dependent factors using such techniques, since we can compute them
by working with simple turning points in the limit e0 → 0, as explained in the main text.

C Transseries in the pure quartic anharmonic

In this appendix we discuss in some detail the quartic anharmonic potential with no mass
term as an example of a model where perturbation theory in ℏ is ill-defined. Notably this
is the first model where EWKB has been applied [6, 10]. A simple scaling argument shows
that the energy levels have the form En = ℏ4/3γn, where γn are real numbers independent
of ℏ. Although the ℏ-expansion does not exist, we can consider a semiclassical expansion
in 1/n. We show below that energy eigenvalues En are given by a transseries in 1/n and
exp(−πn), and we study its convergence properties. Since the quartic model can be easily
obtained from EPT, as in (4.19), this also illustrates how an observable can be packaged
in a dramatically different way by EPT.

Like in the massive quartic anharmonic model discussed in the main text, the pure
quartic admit eight different wedges in the ℏ complex plane delimited by Stokes jumps.
Unlike the massive quartic, however, the Stokes jump separating region I from region II is
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independent of E and occurs at arctan
( Π0,BA(E)

iΠ0,CD(E)

)
= π

4 . No sweet spot can be defined and
hence we focus our analysis just on the region I delimiting the real ℏ-axis. The EQC in this
region can be read from the first line of (3.10) and can be written by simple manipulations
of periods as √

aI
BA = ±i−

√
aI

DC , (C.1)

for even/odd levels. The two periods can be written purely as functions of x ≡ ℏ/E3/4 in
terms of a single function R:√

aI
BA = eiR(x),

√
aI

DC = e−iR(ix) . (C.2)

The nontrivial relation between the perturbative and nonperturbative cycle, which allows
us to express both in terms of the same function R(x), can be seen at each order in n

noting that the nonperturbative cycle is obtained from a complex rotation z → iz of the
perturbative one, while the integrand has the form fk(z4) for k even, z2fk(z4) for k odd,
thus picking up a minus sign for odd terms only.

Since the Voros symbol aBA is not Borel resummable, so will be the formal asymptotic
series

R̃ =
∑
k=0

akx
2k−1 (C.3)

associated to R (see [47] for an explicit analysis). Neglecting the nonperturbative contri-
bution given by aI

DC , the EQC (C.1) implies

R̃(x) = ν , ν ≡ π

(
n+ 1

2

)
. (C.4)

Inverting the above formal series, we get

x̃P(ν) = R̃−1(ν) ∼ a0
ν

+ a0a1
ν3

+ . . . . (C.5)

As we will see below, the presence of the nonperturbative cycle turns the asymptotic series
x̃P in (C.5) in a transseries x̃(ν) defined as

x̃ =
∞∑

j,k=0
cj,k

ϵj

ν2k+1 , ϵ ≡ e−(1+i)ν , (C.6)

where c0,0 = a0, c0,1 = a0a1, . . ., from which the resummed energy eigenvalues can be
obtained through Borel resummation as

En = ℏ
4
3 s (x̃)−

4
3 = ℏ

4
3

 ∞∑
j=0

(∓i)je−jπ(n+ 1
2 )s+

 ∞∑
k=0

cj,k(
π(n+ 1

2)
)2k+1




− 4
3

, (C.7)

where s+ indicates a lateral Borel resummation slightly above the positive ℏ real axis (region
I) and ∓ refers respectively to even and odd n. The appearance of imaginary terms in the
physical energy eigenvalues should not surprise. They are there precisely to compensate
imaginary terms arising from the lateral Borel resummation in the spirit of resurgence.
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Naturally, we require that the sum over j results in a finite number. It has been observed in
the literature on resurgence, see e.g. [8, 48], that in many cases the sum over j is convergent
for sufficiently large n, or ν. A related observation is that if we formally reorganise x̃ as

x̃ =
∑
k=0

S̃k

ν2k+1 , S̃k ≡
∞∑

j=0
cj,k e

−j(1+i)ν , (C.8)

the partial sums S̃k can themselves be convergent. For example, in [49] it is shown that
a broad class of non-linear ODEs admit formal solutions in terms of transseries where
the analogous partial series S̃k are all convergent within the radius of convergence of S̃0.
We show below that this also happens with the partial series S̃k in (C.8). We conjecture
that this is evidence of the fact that the transseries (C.6) (i.e. the sum over j in (C.7)) is
convergent in approximately the same region.

We now show that (C.6) applies and study the convergent properties of the factors S̃k

in (C.8). We massage (C.1) into

eiR(x) = eiν
(
1− e−iR(ix)−iν

)
⇒ R(x) = ν − i ln

(
1− eν−iR(ix)e−(1+i)ν

)
, (C.9)

where eν−iR(ix) ∼ O(1) for parametrically small x (or large ν). If we assume that x̃ is known
up to order ϵN and to sufficiently high order in ν−1, then R(ix) and its exponential are
known to O(ϵN ). The additional factor ϵ inside the logarithm then allows us to compute
to order ϵN+1. Iterating the process, (C.9) is satisfied to each order by the transseries
ansatz (C.6).

Let us denote the radius of convergence of S̃k(ϵ) as rk. To obtain it, first notice that
the coefficient of 1/ν2k+1 is determined from the R̃ series up to the term ak. Thus to get
the series S̃0 it is sufficient to truncate R̃(x) to a0

x , neglecting O(x). We leave higher order
terms for later. We replace −iR̃(ix),−R̃(x) → −R and (C.9) gives

w = 1− ϵei lnw, w ≡ ei(R−ν) . (C.10)

Note that the x dependence is now completely implicit. We can see from (C.10) that all
derivatives of w(ϵ) are bounded around the origin and hence analyticity is guaranteed at
ϵ = 0. Due to the logarithm, any ϵ̄ such that w(ϵ̄) = 0, must be at the edge of the radius of
convergence of the series w(ϵ) defined by (C.10). Noting that w(0) = 1, we now consider
all paths γ ∈ Γ, in the complex w plane, going from w = 1 to w = 0 and the corresponding
value of |ϵ| along each path. The radius of convergence will be min

γ∈Γ
max
w∈γ

|ϵ(w)|, because if
it were greater then we could construct the curves ϵ(t), w(ϵ(t)) such that w approaches 0
and ϵ(t) is always in the radius of convergence. Conversely, there are no other singularities
in (C.10) obstructing convergence.

Letting w(t) = L(t)eiθ(t), (C.10) gives

|ϵ|2 = e2θ
(
1 + L2 − 2L cos θ

)
. (C.11)

Any curve that connects w = 0 to w = 1 must pass by the line Re(w) = 1/2, along which
|ϵ|2 has a single global minimum, see figure 11. Since ∇|ϵ|2 vanishes at L = 1√

2 and θ = −π
4 ,
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Figure 11. Level curves of the function |ϵ(w)|2. In black an optimal curve γ∗. The purple dot is
where the maximum value of |ϵ| is achieved.

the minimum value of |ϵ|2 in this line is at w = 1−i
2 , and thus min

γ∈Γ
max
w∈γ

|ϵ(w)| ≥ |ϵ
(
1−i
2

)
|. To

reduce the bound to an equality, consider the curve γ∗ such that L = cos θ; max
w∈γ∗

|ϵ| is easily

computed to be exactly at w = 1−i
2 . Thus, the radius of convergence r0 of the series S̃0(ϵ) is

r0 ≡ max
w∈γ∗

|ϵ| = e−π/4
√
2
, (C.12)

a result we numerically confirmed. Importantly, all quantized values of ν lie inside this
radius.

We now want to extend the result to S̃k>0. Recalling that to determine S̃k we only
need finitely many terms in ν−1, let us truncate x̃ as it is defined in equation (C.8),

x̃(k+1) ≡
k+1∑
k′=0

S̃k′(ϵ)
ν2k′+1 = x̃(k) + S̃k+1

ν2k+3 . (C.13)

Plugging this ansatz for x̃ into R̃(x) (equation (C.3)) and then R̃(x) into equation (C.9), we
obtain S̃k+1. It is expressed as a sum of products of the previously encountered {S̃i(ϵ)}i≤k

so, by Merten’s theorem, the radius of convergence rk+1 of S̃k+1 is rk+1 ≥ min
i≤k

{ri}.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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