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Abstract

We describe a Hopf ring structure, discovered by Strickland and Turner,
on

⊕
n≥0 H

∗ (Σn;Zp), where Σn in the symmetric group of n objects and
p is an odd prime.We also describe an additive basis on which the cup
product is explicitly determined, compute the restriction to modular in-
variants and determine the action of the Steenrod algebra on our Hopf ring
generators. For p = 2 this was achieved in a paper by Giusti, Salvatore
and Sinha, of which this work is an extension.

1 Introduction

Let Σn be the symmetric group of n objects. In [8] Strickland and Turner proved

that, for a multiplicative cohomology theory E, the groupA = E
(∐

n≥0B (Σn)
)

has the structure of a Hopf ring (ie, it admits a coproduct ∆, two products � and
· and an antipode η, which make it a ring object in the category of coalgebras).
Equivalently, the following conditions hold:

• (A,∆, ·) is a bialgebra.

• (A,∆,�, η) is a Hopf algebra.

• If ∆ (x) =
∑
i x
′
i ⊗ x′′i , then this formula holds:

x · (y � z) =
∑
i

[
(−1)dim(x′′i ) dim(y) (x′i · y)� (x′′i · z)

]
Explicitly, the structural maps are defined as follows. The obvious monomor-

phisms in,m : Σn × Σm → Σn+m determine the maps B (Σn) × B (Σm) →
B(Σm+n), homotopy equivalent to finite coverings. Passing to cohomology and
taking their direct sum yields the coproduct ∆. Additionally, in,m also deter-
mines a transfer homomorphism trn,m : H∗ (Σn;Zp)⊗H∗ (Σm;Zp)→ H∗ (Σn+m;Zp).
The product � is given by

⊕
n,m≥0 trn,m. The product · is the usual cup prod-

uct. Finally, η is induced by the additive inverse of the sphere spectrum by
applying the extended power functor and then cohomology (see Strickland and
Turner [8] at pages 140–142).

In [3] Giusti, Salvatore and Sinha have studied this structure for the ordinary
cohomology with coefficients in Z2 and determined the following:
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• An explicit presentation, in terms of generators and relations, of this Hopf
ring.

• An additive basis for the mod 2 cohomology of the symmetric groups in
which the products · and � and the coproduct ∆ defined above can be
computed by an explicit rule.

In this presentation, the relations involve only the � product. For this reason,
all the relations for the cup product in the cohomology of symmetric groups
follow, in the mod 2 case, from Hopf ring distributivity. In addition, the au-
thors calculated the restriction to the Dickson invariants and the action of the
Steenrod algebra on these groups.

The purpose of this paper is the study of the algebraic structure of the
cohomology rings H∗ (Σn;Zp), where p is an odd prime, as well as the derivation
of the mod p analogs of Giusti, Salvatore and Sinha’s results. In particular,
following the paper cited above, we will write a presentation of the Hopf ring

H∗
(∐

n≥0B (Σn) ;Zp
)

.

The generalizations to the mod p case required overcoming some complica-
tions in calculations, especially at odd degrees and when dealing with the more
complicated coefficients arising in the description of the Steenrod algebra action.
The main differences with the mod 2 case are the following:

• To obtain their Hopf ring presentation, Giusti, Salvatore and Sinha needed
to relate the linear duals of ·, � and ∆ to the Dyer–Lashof operations.
Then they used Nakaoka’s description of H∗ (Σn;Z2) and dualized to ob-
tain results in cohomology. In the mod p case the need to treat the Bock-
stein homomorphism separately yields a more complicated structure for
the dual of the Dyer–Lashof algebra, which is not a polynomial algebra
as in the mod 2 case. This forces us, in the presentation of the Hopf ring⊕

nH
∗ (Σn;Zp), to use a bigger number of generators and some non-trivial

relations involving the cup product.

• Consider in the cohomology groups H∗ (Σ2n ;Z2) the linear duals of the
Dyer–Lashof operations with respect to the Nakaoka monomial basis in
homology. It is known that the restriction homomorphism onto the ring

of Dickson invariants Dn = Z2 [x1, . . . , xn]
GLn(Z2)

maps the subalgebra
generated by those dual elements surjectively onto Dn. In [3], the compu-
tation of the restriction of the Hopf ring generators to Dn relies on this
fact. For mod p coefficients this is no longer true; hence, we needed to use
a different technique to achieve this goal.

Apart from this introduction, this paper is organized into three sections. In
the following section, we describe a presentation, with generators and relations,
of the mod p cohomology of the symmetric groups as a Hopf ring, obtaining the
mod p analog of the main theorem in the paper by Giusti, Salvatore and Sinha.
We also obtain an additive basis with a rule for computing the products. In 4
we carry out the calculation of the restriction of our Hopf ring generators to the
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Dickson–Múi invariant algebras. This will be crucial to the computation of the
Steenrod algebra action, which is explained in 5.
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2 Hopf ring structure

In this section, we want to describe A =
⊕

n≥0H
∗ (Σn;Zp) as a Hopf ring.

Theorem 2.1. [8, Theorem 3.2] A, with the coproduct ∆, the two products �
and · and the antipode η described in the introduction, is a Hopf ring.

We need to describe the homology H =
⊕

n≥0H∗ (Σn;Zp), dual to A. In
order to establish the notation, we recall the Dyer–Lashof operations, acting on
the homology of the symmetric groups. A complete treatment of these opera-
tions can be found in May–Cohen–Lada [2], to which we refer for details and
proofs. Given a group G, its classifying space is denoted by B (G) its total space
(ie a contractible topological space with a free G-action) by E (G). Suppose that
X is a space, and we are given a map θ : E (Σp)×ΣpX

p → X, where Σp acts on
Xp by permuting the p factors. Let πp be a cyclic group of order p, considered
a subgroup of Σp in the obvious way. Let W∗ be the standard resolution of Zp
with Zp [πp]-free modules. We can consider the following composition map:

Θ: H∗

(
W∗ ⊗πp C∗ (X)

⊗p
)
→ H∗

(
E (Σp)×Σp X

p;Zp
) θ∗→ H∗ (X;Zp)

For every i ≥ 0 and c ∈ Hd (X;Zp), we define

Qi (c) = Θ
(
ei ⊗πo c⊗

p)
∈ Hi+pd (X;Zp)

where ei is the standard generator of Wi.
When θ arises from an action of an E∞-operad C on X, Qi is different from

0 on Hq (X;Zp) only if i is congruent to q (p− 1) or to q (p− 1) − 1 modulo
2 (p− 1) and Qk(p−1)−1 (x) = βQk(p−1) (x), where β is the homology Bockstein
homomorphism. Hence, by making a change of indexes and defining

Qi = (−1)
i+

q(q−1)(p−1)
4

(
p− 1

2
!

)q
Q(2i−q)(p−1) : Hq (X;Zp)→ Hq+2i(p−1) (X;Zp)

the Qi and βQi generate all the non-trivial operations.
In the category of C-spaces, these operations also satisfy the following prop-

erties (see Cohen–May–Lada [2], Theorem 1.1, page 5):
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• Let ∗ denote the product in the homology of a C-space X. The Qi are
Zp-linear, natural with respect to maps of C-spaces, Q0 (x) = x∗

p

and
Qi
(
1H∗(X;Zp)

)
= 0 for i > 0. Hence the operations Qi can be regarded as

homological derived pth powers.

• The following Cartan formula holds for x ∈ Hq (X;Zp) and y ∈ Hq′ (X;Zp):

Qr (x ∗ y) =
∑
i+j=r

Qi (x) ∗Qj (x)

• The following Adem relations hold:

Qr ◦Qs =
∑
i

(−1)
r+i

(
(p− 1) (i− s)− 1

pi− r

)
Qr+s−i ◦Qi if r > ps

Qr ◦ βQs =
∑
i

(−1)
r+i

(
(p− 1) (i− s)

pi− r

)
βQr+s−i ◦Qi

−
∑
i

(−1)
r+i

(
(p− 1) (i− s)− 1

pi− r − 1

)
Qr+s−i ◦ βQi if r ≥ ps

By using the Adem relations, we can write an arbitrary composition of k op-
erations Qi1 ◦ · · · ◦Qik as a linear combination of sequences Qj1 ◦ · · · ◦Qjk with
non-decreasing jl. Furthermore, when applied to an even-dimensional class,
we can also require that jl =

∑
l<m≤k jm (p− 1) or

∑
l<m≤k jm (p− 1) − 1

mod 2 (p− 1). We call a sequence of non-negative integers J = (j1, . . . , jk)
admissible if it satisfies the previous two conditions. We call it strongly ad-
missible if, in addition, j1 6= 0. To simplify the notation, we write QJ for
Qj1 ◦ · · · ◦Qjk . Note that, if we translate to the upper-indexes notation, a com-
position βε1Qi1◦· · ·◦βεkQik is admissible if and only if pil−εl ≥ il−1 for all l, and

is strongly admissible if and only if, in addition, i1−
∑k
l=2 [2 (p− 1) il − εl] > 0.

The Dyer–Lashof operations completely describe the structure of
⊕

n≥0H∗ (Σn;Zp).

Theorem 2.2. [2, 4.1 at page 40] Let ι ∈ H0 (Σ1;Zp) be the homology class
of any point in B (Σ1). Let H =

⊕
n≥0H∗ (Σn;Zp). Then H, under the prod-

uct ∗ induced by inclusions Σn × Σm → Σn+m, is the free graded commutative
algebra generated (in appropriate dimensions) by QI (ι) with I strongly admis-
sible sequences. Moreover, the action of the operations Qi is determined by the
properties listed above. In other words, it is isomorphic to the free allowable
R-algebra on ι, as defined in [2] in Section I.2.

As a consequence, the basis for this algebra as a Zp-vector space is given by
products of such QI (ι). We call these basis elements Nakaoka monomials.

We now want to define some cohomology classes, which we will prove to be
Hopf-ring generators for A.

Definition 2.3. Let the symbol ∨ denote the linear dual with respect to the
Nakaoka monomial basis of H. Now we define some classes:
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• αj,k =
[
Qp

k−1−pk−1−j ◦ · · · ◦Qpj−1 ◦ βQpj−1 ◦ · · · ◦Qp ◦Q1 (ι)
]∨

• βj,k,m =

[(
βQp

k−1−pk−1−j ◦ · · · ◦Qpj+1−p ◦Qpj−1 ◦ βQpj−1 ◦ · · · ◦Q1 (ι)
)∗m]∨

• γk,m =

[(
Qp

k−1 ◦ · · · ◦Qp ◦Q1 (ι)
)∗m]∨

Note that αj,k is an odd-dimensional homogeneous element of A, while βj,k,m
and γk,m are even dimensional. Note also that we can easily convert the se-
quences of operations that appear in the definition above into the lower-index
notation. For example, γk,m is the linear dual to

(−1)
k
Q◦

k

2(p−1) (ι)
∗m
.

Similarly, the linear duals of αj,k and βj,k,m can be written as non-zero multiples
of the elements in the form

Q◦
k−j

p−1 ◦Q2p−3 ◦Q◦
j−1

2(p−1) (ι)[
Qp−2 ◦Q◦

j−i−1

p−1 ◦Q2p−3 ◦Q◦
i−1

2(p−1) (ι)
]∗m

. and

The structure of A with only the transfer product has a nice description that
can be obtained with essentially the same proof adopted by Giusti, Salvatore
and Sinha in [3], using the fact that the Bockstein homomorphism is a derivation
with respect to the cross product.

Theorem 2.4. [3, Theorem 4.13] For every sequence I of non-negative integers,
∆� (QI (ι)) = QI (ι)⊗ 1 + 1⊗QI (ι). In other words, (H,∆�, ∗), the Hopf dual
of (A,∆,�), is freely generated under ∗ by elements that are primitive under
∆�. Hence (A,�) is the tensor product of a divided power polynomial algebra
and an exterior algebra:

⊗
dim(QI) even

k∈N

Zp[(QI (ι)
pk

)∨](
[(QI (ι)

pk
)∨]p

) ⊗Λ({
QI (ι)

∨}
dim(QI) odd

)

where the QI indexing the tensor products above are the strongly admissible
sequences of Dyer–Lashof operations βε1Qi1◦· · ·◦βεkQik . Moreover the following
relations hold:

1. βi,j,m � βi,j,n =

(
n+m
m

)
βi,j,n+m

2. γk,m � γk,n =

(
n+m
m

)
γk,n+m
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Thus, as far as the transfer product is concerned, we have relations totally
analogous to those described by Sinha, Giusti and Salvatore in the mod 2 case.

However, if the cohomology is taken modulo an odd prime, there are also
non-trivial relations for the cup product of the generators, due to the more
complicated structure of the dual of the Dyer–Lashof algebra. We state them
in the following Lemma.

Lemma 2.5. With the previous notations, the following equalities hold:

3. αi,kαj,k = γk,1βi,j,pk−j if i < j.

4. βi,j,pk−jαl,k = (−1)
ρ
βρ(i),ρ(j),pk−ρ(j)αρ(l),k if i, j, l are pairwise distinct,

where ρ is a permutation of the indexes i, j, l such that ρ (i) < ρ (j), while
βi,j,pk−jαl,k = 0 if i, j, l are not pairwise distinct.

5. βi,j,mβi′,j′,m′ = [(−1)
ρ
]
m
βρ(i),ρ(j),mpj−ρ(j)βρ(i′),ρ(j′),m′pj′−ρ(j′) if we sup-

pose that mpj = m′pj
′

and that i, j, i′, j′ are pairwise distinct, where
ρ is a permutation of the indexes i, j, i′, j′ such that ρ (i) < ρ (j) and
ρ (i′) < ρ (j′), while βi,j,mβi′,j′,m′ = 0 otherwise.

Proof. This is an almost direct consequence of May–Cohen–Lada [2, Theorem
3.7 page 29]. Explicitly, let R be the Dyer–Lashof algebra as defined in [2]. Let
R[k] be its kth component, so that R =

⊕
k≥0R[k]. The evaluation of Dyer–

Lashof operations on ι gives a morphism of coalgebras ϕk : R[k]→ H∗
(
Σpk ;Zp

)
,

which dualizes to a map of algebras ϕ∗k : H∗
(
Σpk ;Zp

)
→ R[k]∗.

Because of the theorem from [2] cited above, by definition these relations
hold in the linear duals of R[k]. We are left to check them on the full set of
Nakaoka monomials. When m is a power of p this follows immediately from the
bialgebra structure of (H, ∗,∆.), where ∆.

Remark. The relations described above can be recalled by the properties of
the Bockstein homomorphism β in the duals, namely β2 = 0 and the fact that
β commutes with the product.

Example. We provide a very simple example to show how the previous relations
work. In H∗

(
Σp2 ;Zp

)
relation (3) reduces to:

α2,1α2,2 = γ2,1β1,2,1

Instead, since we do not have three distinct indexes in {1, 2}, the relations in
form (4) can be written as β1,2,1α1,2 = 0 and β1,2,1α2,2 = 0. Similarly, (5) only
assures that β2

1,2,1 = 0.

For H∗
(
Σp3 ;Zp

)
the relations which can be obtained by 2.5 are:

• α1,3α2,3 = γ3,1β1,2,p, α1,3α3,3 = γ3,1β1,3,1 and α2,3α3,3 = γ3,1β2,3,1.

• β1,2,pα1,3 = β1,2,pα2,3 = β1,3,1α1,3 = β1,3,1α3,3 = β2,3,1α2,3 = β2,3,1α3,3 =
0.
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• β1,2,pα3,3 = −β1,3,1α2,3 = β2,3,1α1,3;

• β2
1,2,p = β1,2,pβ1,3,1 = β1,2,pβ2,3,1 = β2

1,3 = β1,3,1β2,3,1 = β2
2,3 = 0.

We now turn to the coproduct in A. Using the fact that this is dual to the
product of H the following lemma follows from the definitions.

Lemma 2.6. The following equalities hold:

• ∆ (αj,k) = αj,k ⊗ 1 + 1⊗ αj,k

• ∆ (βi,j,m) =
∑m
l=0 (βi,j,l ⊗ βi,j,m−l)

• ∆ (γk,m) =
∑m
l=0 (γk,l ⊗ γk,m−l)

At this point, we have all the ingredients to describe a presentation of A as
a Hopf ring analogous to that of Giusti, Salvatore and Sinha [3, Theorem 1.2].

Theorem 2.7. As a graded commutative Hopf ring, A is generated by the ele-
ments αj,k, βi,j,m and γk,m as defined above (of suitable dimensions) under the
relations (1) to (5) as explained in 2.4 and in 2.5, together with the following:

6. The product · between two generators belonging to different components is
0.

Moreover the value of ∆ on generators is determined by the preceding lemma
and the antipode is the multiplication by (−1)

n
on the component corresponding

to Σn.

Proof. Let B = (B;�B , ·B ,∆B) be the graded commutative Hopf ring generated
by elements αj,k, βi,j,m and γk,m (of suitable degree) with the specified relations.
There is an obvious morphism ψ : B → A.

One can see that using (3) to (5), B is generated under � only by elements
that can be written in one of the two following forms:

∏
j

γkj ,mj ·
r∏
a=1

βi2a−1,i2a,lp−i2a

∏
j

γkj ,mj ·
r∏
a=1

βi2a−1,i2a,pc−i2aβi2a−1,i2a,pc−i2aαi2r+1,c or

Here in the first case 1 ≤ i1 < · · · < i2r, p
i2r ≤ l and pkjmj = l, while in the

second case 1 ≤ i1 < · · · < i2r+1 ≤ c and mjp
kj = pc. We will always suppose

that the kj are arranged in non-increasing order. Borrowing the notation from
[3], we will call these elements gathered blocks or simply blocks. By relations
(3), (4), (5) and (6) these are all the elements that can be obtained from the
generators by applying ·B . We will call Hopf monomials the objects in the form
b1 �B · · · �B bs, where every bj is a gathered block.
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Then, using relations (1), (2) and (6) and Hopf distributivity, one can prove
that for every gathered block b (of even dimension), we have b�

p

= 0. Let us
define an algebra

C =
⊗
d,k≥0

b∈H2d(Σ
pk

;Zp) block

(
Zp[b]
bp

)
⊗Λ

({
b block : b ∈ H2d+1

(
Σpk ;Zp

)
, d, k ≥ 0

})

where Λ(X) indicates the exterior algebra generated by the elements of X (in
appropriate degrees). By virtue of the above property, there is a morphism
χ : C → (B,�). Moreover, notice that, by Hopf distributivity and our coproduct
formula for the generators, the following formula holds:

∏
j

γkj ,mj ·
r∏
a=1

βi2a−1,i2a,lp−i2a �
∏
j

γkj ,m′j ·
r∏
a=1

βi2a−1,i2a,l′p−i2a

=

(
l + l′

l

)∏
j

γkj ,mj+m′j ·
r∏
a=1

βi2a−1,i2a,(l+l′)p−i2a

Hence, every gathered block can be written uniquely as a non-zero multiple of
gathered blocks which lie in components indexed by a power of p. This proves
that χ is surjective. 2.2 and 2.4 imply that the composition ψ ◦ χ : C → (A,�)
is an isomorphism, proving the theorem.

3 Presentation of product structures through an
additive basis

In this section we will observe that the previous theorem allows us to obtain
an additive basis of A as a Zp-vector space, similar to that in [3]. In order to
describe this basis, we need a preliminary definition.

Definition 3.1. Let b = γk1,m1 . . . γks,msβi1,i2,m′1 . . . βi2a−1,i2a,m′a
be an even-

dimensional gathered block and r = 2a. We define the profile of b as the couple
(k, e), where k = (k1, . . . , ks), and we suppose that, as usual, kj is arranged in
non-increasing order, while e = (i1, . . . , ir).

For example, the profile of γ3
2,2γ1,2pβ1,2,2 is (k, e), with k = (2, 2, 2, 1) and

e = (1, 2).
The following result is an easy consequence of the proof of 2.7

Corollary 3.2. Consider the set M of all Hopf monomials
⊙r

i=1 bi with the
property that the gathered blocks bi of even dimension have pairwise distinct
profiles, and the odd-dimensional blocks are pairwise distinct. This is a bigraded
basis for A as a Zp–vector space.

It must be noted that the pairing between this basis in cohomology and
the Nakaoka monomials in homology is not completely understood. Indeed,
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the necessity to apply the Adem relations to describe the coproduct dual to ·
in terms of this basis complicates this pairing. For example, if p = 3, γ4

1,3 =(
Q8 ◦Q4 (ι)

)∨ − (Q9 ◦Q3 (ι)
)∨

, because the formula for the coproduct ∆· of
Q9 ◦Q3 (ι) yields an addend Q3 ◦Q0 (ι)⊗Q6 ◦Q3 (ι), which can be written as
−Q2 ◦Q1 (ι)⊗Q6 ◦Q3 (ι).

It is helpful to give a graphical description of this basis, similar to that
obtained in [3]. First, we describe the generators as rectangles:

• γk,n as a hollow rectangle of width npk and height 2
(
1− p−k

)
.

• βj,k,n as a solid rectangle of width npk and height 2
(
1− p−j − p−k

)
.

• αj,k as a solid rectangle of width pk and height 2
(
1− p−j

)
− p−k.

In this way, the area of the rectangle is the homological dimension of the cor-
responding generator and its width accounts for the component in which the
generator lies. Hollow rectangles represent generators whose linear duals in the
Nakaoka basis lie in the subalgebra of H generated by sequences of Dyer–Lashof
operations Qi1 ◦ · · · ◦ Qik (ι) without the Bockstein. In terms of lower-indexed
operations, these are written as multiples of Qj1 ◦ · · · ◦ Qjk (ι) where every jl
is even. These generators behave very similarly to the ones obtained in the
mod 2 case. The other generators correspond to solid rectangles. We describe a
gathered monomial, which is a product of γk,n, βj,k,m and possibly αj,k all lying
in the same component, as the column obtained by placing the corresponding
rectangles on top of each other. A basis element, which is a transfer product of
some gathered monomials b1, . . . , br, is described by the diagram obtained by
arranging the columns corresponding to b1, . . . , br next to each other horizon-
tally. In order to conform to the notation used in [3], we will call these objects
skyline diagrams. Some examples of skyline diagrams are depicted in Figure 1
below.

With the aid of this graphical description, we can elucidate the relations
(3), (4) and (5) of 2.5. First, observe that the rectangles of a column associated
with a gathered block must satisfy some necessary condition. For example,
there must be at most one odd-dimensional solid rectangle. This leads to the
following definition.

Definition 3.3. A column made of rectangles with the same width stacked one
onto the other is called admissible if it is associated with a gathered block.

As we will see at the end of this section, the cup product of two columns is
essentially described as a new column obtained by stacking the original ones on
top of each other. Hence relation (3) says that, if a column of width l contains
two odd-dimensional solid rectangles, we can replace them with a hollow rect-
angle of height 2

(
1− l−1

)
and another solid rectangle to match the column’s

height. For the graphical representation of relation (3) see the first example in
Figure 1.

Relations (4) and (5) determine how cup products of generators of the form
βi,j,m and αj,k behave when some indexes are permuted. Their graphical inter-
pretation is that if two columns are made only with solid rectangles of which
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· =

=

α1,2α2,2 = γ2,1β1,2,1

·

(
γi1,1α1,1 � γj1,1α1,1

)
· γ1,2 = γi+1

1,1 α1,1 � γj+1
1,1 α1,1

= −2 −

(γ2,1α2,2 � γ1,1 � 1p) · (α1,2 � γ1,1 � 1p) = −2γ2
2,1β1,2,1 � γ1,2 − γ2

2,1β1,2,1 � γ2
1,1 � 1p

Figure 1: Examples of calculations using the graphical representation. The size
of the rectangles is correct only for p = 3, but the same calculations with classes
understood to be in different degrees are actually true for every p.

at most one is odd dimensional, they must be equal up to sign. Given such a
column, there are in fact two cases:

• If no admissible all-solid column of the same width and height exists, then
it is 0.

• Otherwise it is equal, up to sign, to the (necessarily unique) admissible
all-solid column with the same dimensions.

Note that this gives a simple algorithm to write a non-admissible column as a
multiple of an admissible one, which is the graphical counterpart of what we
observed in the proof of 2.7.

With this basis, one can give a description of the products. For example,
in H∗

(
Σp2 ,Zp

)
, let x be one of the elements γ2,1, α1,2, α2,2 or β1,2,1. We have

x
(
γ1,k � 1p(p−k)

)
= 0 for 1 ≤ k ≤ p − 1. Indeed ∆ (x) = x ⊗ 1 + 1 ⊗ x, hence
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by Hopf ring distributivity:

x
(
γ1,k � 1p(p−k)

)
= xγ1,k�1p(p−k) +γ1,k�x1p(p−k) = 0�1p(p−k) +γ1,k�0 = 0

Similarly one can prove that x
(
γ1,k−1 � α1,1 � 1p(p−k)

)
= 0 for all 1 ≤ k ≤ p.

The general case can be derived in the exact same way as described by Giusti,
Salvatore and Sinha [3, Section 6] and is indeed a straightforward consequence
of the Hopf ring presentation. For this reason, we omit the proofs.

We begin with the transfer product, that can be described very easily. Given
two Hopf monomials x = b1 � · · · � br and y = b′1 � · · · � b′s in M, the transfer
product x� y is again a Hopf monomial, but it may have gathered blocks with
the same profile. However, two even-dimensional gathered blocks with the same
profile can be merged together using the formula:(

γk1,m1
. . . γkr,mrβi1,i2,n1

. . . βi2a−1,i2a,na

)
�
(
γk1,m′1 . . . βi2a−1,i2a,n′a

)
=

(
m1 +m′1
m1

)
γk1,m1+m′1

. . . βi2a−1,i2a,na+n′a

In this way, we can write x� y as a multiple of an element of M. Graphically,
the transfer product corresponds to placing two skyline diagrams next to each
other, merging two columns if they have constituent blocks of the same height

and multiplying by

(
n+m
n

)
, where n and m are the widths of the two

columns.
In order to provide a formula for the coproduct, we need the following

Definition 3.4. Let b = γl1,m1 . . . γlr,mrβi1,i2,n1 . . . βi2s−1,i2s,ns be an even-
dimensional gathered block. Let c (b) = pl1m1 = · · · = pisns be the integer
corresponding to the component of A in which b lies. We say that a k-tuple
(b1, . . . , bk) of gathered blocks is a partition of b if every bi has the same profile

of b and
∑k
i=1 c (bi) = c (b). Some c (bi) are allowed to be 0, in which case bi is

understood to be 10. If b is an odd-dimensional block, a partition is defined in
the same way, but we only allow bi to be equal to 10 or to b itself. A partition
with k = 2 is called a splitting.

The coproduct of elements of M can be calculated with the following for-
mula:

∆ (b1 � · · · � bs) =
∑

(b′1 � · · · � b′s)⊗ (b′′1 � · · · � b′′s )

Here, the sum is taken over all the possible splittings {b′i, b′′i } of the constituent
blocks bi. In terms of our graphical representation, the coproduct can be de-
scribed by dividing each rectangle corresponding to γk,n or βj,k,n in n equal
parts using vertical dashed lines. The coproduct of a skyline diagram is ob-
tained by cutting each column along the dashed lines that cross it from top to
bottom and partitioning them into two to create two other skyline diagrams.
This must be done in every possible way and all the outcomes must be summed.

11



The formula for the cup product of two elements of M is the following:

(b1 � · · · � br) · (b′1 � · · · � b′s) =
∑

(P,P′)

(−1)
εP,P′

s⊙
j=1

r⊙
i=1

(
bi,jb

′
j,i

)
In this formula, the sum is over all couples (P,P ′) of sets P = {(bi,1, . . . , bi,s)}ri=1

and P ′ = {(b′i,1, . . . , b′i,r)}si=1, such that (bi,1, . . . , bi,s) is a partition of bi, while
(b′i,1, . . . , b

′
i,r) is a partition of b′i. The number εP,P′ is given by:

εP,P′ =
∑

1≤i<j≤s
1≤k≤r

dim
(
b′i,k
)

dim (bk,j) +
∑

1≤h<k≤r
1≤i≤s

dim
(
b′i,h
)

dim (bk,i)

The coefficient (−1)
εP,P′ is due to the skew-commutativity of the product. Since

the cup product of two gathered blocks, when it is not zero, is equal up to sign to
a gathered block, each addend in the previous formula is zero or can be written,
up to sign, as a transfer product of gathered blocks. Thus, omitting all the
zero addends and eventually merging together the transfer product of gathered
blocks with the same profile as before, we can write the desired cup product as
a linear combination of elements of M. Note that one can restrict the sum to
the P and P ′ such that bi,j and b′j,i lie in the same component, as the other
terms are equal to 0.

Graphically, if we are given two skyline diagrams, in order to compute their
cup product, we apply the following algorithm:

1. Divide the rectangles with vertical dashed lines as explained before.

2. Divide each diagram into columns using both the boundaries of the rect-
angles and the vertical dashed lines.

3. Match each column of the first diagram with a column of the second one
in all possible ways up to automorphisms, stack the matched columns one
on top of the other and place these newly constructed columns side by
side to make new diagrams.

4. These diagrams may contain a couple of columns with the same profiles. In
this case we must use the transfer product formula to merge them. There
may also be non-admissible columns, that we must write as a multiple of
admissible ones via the previously described algorithm.

For clarity, we compute two examples, represented graphically in Figure 1:

• Let x = γi1,1α1,1 � γj1,1α1,1 and y = γ1,2. Since x is made of two columns
of width p, the only splitting of y which can yield a non-trivial addend in
the formula for the cup product is (γ1,1, γ1,1). Hence:

x · y = γi1,1α1,1γ1,1 � γj1,1α1,1γ1,1 = γi+1
1,1 α1,1 � γj+1

1,1 α1,1

Working graphically, the rectangle corresponding to y should be divided
with a dashed line into two equal parts (γ1,1). Up to automorphisms, there
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is only one way to match the columns of x with them. Stacking matched
columns is equivalent to adding one hollow rectangle of height 2

(
1− p−1

)
to each column of x.

• Let x = γ2,1α2,2 � γ1,1 � 1p and y = α1,2 � γ1,1 � 1p. The only two
partitions of x that can yield a non-trivial addend in the cup product are
(γ2,1α2,2, γ1,1, 1p) and (γ2,1α2,2, 1p, γ1,1). Thus, by our formula:

x · y = γ2,1α2,2α1,2 � γ2
1,1 � 1p + γ2,1α2,2α1,2 � γ1,1 � γ1,1

= −γ2
2,1β1,2,1 − 2γ2

2,1β1,2,1 � γ1,2

Graphically, there are two possible matches of the columns of x and y be-
cause we only need to ensure that the two largest columns match together.
When we stack the two large columns one on top of the other we obtain a
non-admissible column that can be transformed as described in the figure.
By stacking the remaining columns in the two possible ways, we obtain
the two skyline diagrams on the left. In one diagram, two rectangles with
the same height have been merged together, and a coefficient of 2 appears.

4 Restriction to modular invariants

Consider the regular representation of Vn = Znp (the action of Vn on itself given
by the usual Zp–vector space addition). This gives a map Vn → Σpn , as the
set Vn has cardinality pn. This section is devoted to the computation of the
restriction map ρn : H∗ (Σpn ;Zp) → H∗ (Vn;Zp), induced by this immersion.
This is related to the action of the Steenrod algebra on our Hopf ring generators,
as we will see in the next section.

First, recall that H∗ (Zp;Zp) is isomorphic as a Zp–algebra to Zp[y]⊗Λ(x),
where x and y are generators respectively of the first and the second cohomol-
ogy groups. We will also suppose that β (x) = y, where β is the cohomology
Bockstein. Hence, by Künneth formula:

H∗ (Vn;Zp) = H∗ (Zp;Zp)⊗
n

= Zp [y1, . . . , yn]⊗ Λ (x1, . . . , xn)

Recall that, by a result in Adem and Milgram’s book [1, Corollary 1.8 page 182]

the image of ρn is contained in the invariant subalgebra [Zp [y1, . . . , yn]⊗ Λ (x1, . . . , xn)]
GLn(Zp)

,
which was determined by Múi in [7]. In particular, the product gives a Zp–vector
space isomorphism of the previous algebra with Zp [d0,n, . . . , dn−1,1]⊗M , where
M is the Zp–vector space with basis

{
Rn,s : 0 ≤ s1 < · · · < sl < n

}
indexed by

subsets of {0, . . . n− 1}.
The objects dk,n−k and Rn,s1,...,sl are defined by Múi in terms of some de-

terminants. More precisely, we can define Ln,k = det
[
yp

j−δj≤k

i

]
1≤i,j≤n

and by
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letting ·̂ mean ‘omit’:

Mn,s1,...,sl =
1

l!
det


x1 . . . x1 y1 . . . ŷp

s1

1 . . . ŷp
sl

1 . . . yp
n−1

1
...

. . .
...

...
. . .

...
. . .

...
. . .

...

xn . . . xn yn . . . ŷp
s1

n . . . ŷp
sl

n . . . yp
n−1

n


Additionally, we have the equalities dk,n−k =

Ln,k
Ln,n

andRn,s1,...,sl = Mn,s1,...,slL
p−2
n,k .

Note that the dimensions of dk,n−k and Rn,s1,...,sl are equal to 2
(
pn − pk

)
and

to l + 2
(
pn − 1−

∑l
j=1 p

sj
)

, respectively.

Thus, as an algebra, [Zp [y1, . . . , yn]⊗ Λ (x1, . . . , xn)]
GLn(Zp)

is generated by
these objects dk,n−k, which are the classical Dickson invariants, and Rn,s1,...,sl
and the product structure is determined by d0,n being a non-zero divisor and
the following relations:

R2
n,s1,...,sl

= 0

Rn,s1 . . . Rn,sl = (−1)
l(l−1)

2 Rn,s1,...,sld
l−1
0,n

Much is known about these classes. For example, the Steenrod algebra
action, which we will need soon, has been determined by Hung and Minh, whose
result we recall here:

Theorem 4.1. [4, page 42] Let 0 ≤ r < pn. Let r =
∑n−1
i=0 aip

i be the p-adic
expansion of r. We agree that a−1 = 0 by convention. Then:

• Pr (ds,n−s) is 0 unless ai ≥ ai−1 for all 0 ≤ i < n, i 6= s and as+1 ≥ as−1.
In this case it is given by the formula

λr,n,s

n−1∏
i=0

d
ai−ai−1+δi,s
i,n−i ,

where δi,s is equal to 1 if i = s and is 0 otherwise, and the following
formula for λr,n,s holds:

λr,n,s =
(p− 1)!

(p− 1− an−1)!
∏

1≤i≤n−1,i6=s (ai − ai−1)! (as + 1− as−1)!
(as + 1)

• Pr (Rn,s) is 0 unless ai ∈ {0, 1}, ai ≥ ai−1 for all i 6= s and as = 0. This

condition is equivalent to r = (p− 1)
−1

(pn + ps − pt1 − pt2) for some t1 ≤
s < t2 ≤ n. In this case:

Pr (Rn,s) = Rn,t1dt2,n−t2 −Rn,t2dt1,n−t1

Here, we use the convention that Rn,n = 0 and dn,0 = 1.
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• Pr (Rn,s1,s2) is 0 unless ai ∈ {0, 1}, ai ≥ ai−1 for i 6= s1, s2 and as1 =

as2 = 0. This condition is equivalent to r = (p− 1)
−1

(pn + ps1 + ps2 − pt1 − pt2 − pt3)
for some t1 ≤ s1 < t2 ≤ s2 < t3 ≤ n. In this case, the following formula
holds:

Pr (Rn,s1,s2) = Rn,t1,t2dt3,n−t3 −Rn,t1,t2dt2,n−t2 +Rn,t2,t3dt1,n−t1

Again, we agree that Rn,s,n = 0 and d0,n = 1.

Although we will not need this fact, it can be observed that, for Pr (ds,n−s),
the coefficients λr,n,s assume a nicer form if we express them as functions of
the exponents ei = ai + ai−1 + δi,s that appear in the expression on the right.
Explicitly:

pλr,n,s =
p!(

p−
∑n−1
i=0 ei

)
!
∏n−1
i=0 ei!

s∑
i=0

ei

The first factor on the right is the number of choices of disjoint subsets of
cardinality e1, . . . , en−1 in {1, . . . p}. After introducing the appropriate notions

in 5, it will be obvious that
∑n−1
i=0 ei! counts the number of factors with an

‘effective scale’ of at least n− s.
We now need a preliminary lemma.

Lemma 4.2. Let k ∈ N. We define Jk as the k-uple (2 (p− 1) , . . . , 2 (p− 1)).
Let J = (j1, . . . , jk) be a sequence of non-negative integers (not necessarily ad-
missible). Then, if QJ =

∑
J′admissible λJ,J ′QJ′ is the expansion of QJ as a

linear combination of admissible sequences of operations, then λJ,Jk = 0 unless
J = Jk.

Proof. We recall that QJk = ±Qpk−1 ◦ · · · ◦Qp ◦Q1 and use upper indexes, since
Adem relations assume a much better form this way. Given a non-admissible
sequence in R, its expansion in the admissible basis is obtained by reiterative
applications of the Adem relations. Hence, in order to prove the lemma, it is
enough to check that for every βεQrβε

′
Qs with r > ps − ε′, when we apply

the suitable Adem relation written as in 2, the expression we obtain does not

contain an addend in the form λQp
l+1

Qp
l

for some λ ∈ Zp \{0}. This is obvious
if ε 6= 0 or ε′ 6= 0. If ε = ε′ = 0, then Qr ◦ Qs =

∑
i ciQ

r+s−iQi for some
coefficient ci which are different from 0 only if pi ≥ r. If there exists ī, cī 6= 0,
r + s− ī = pl+1 and ī = pl, then r + s = pl+1 + pl and r > ps implies r > pl+1.
This is contradictory because p̄i = pl+1 < r.

We will also need to know how the transfer product behaves with respect to
the restriction maps.

Lemma 4.3. If x1 ∈ H∗ (Σr;Zp) and x2 ∈ H∗ (Σpn−r;Zp) are Hopf monomials
that are different from 1, then ρ∗n (x1 � x2) = 0.

Proof. Recall that the inclusion of Vn in Σpn factors through the iterated wreath
product Zp o(Zp o · · · o (Zp o Zp)) (see Adem and Milgram’s book [1] at page 185).
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By construction, the image in H∗ (Σpn ;Zp) of the homology of this subgroup
is given by Dyer–Lashof operations of length n. Hence, H∗ (Vn) maps onto
the linear span of these classes, which are primitive with respect to ∆�. As a
consequence, they must pair trivially with x1 � x2.

We are now ready to describe the action of ρn on the generators, which is
the analog of [3, Corollary 7.6] but is proved using a different technique.

Proposition 4.4. The following formulas hold:

ρj+k (αj,j+k) = (−1)
j
Rj+k,k

ρj+k
(
βi,j,pk

)
= (−1)

k+i
Rj+k,k,k+j−i

ρj+k
(
γj,pk

)
= (−1)

j
dk,j

Proof. To prove the proposition, we will take advantage of the way Steenrod
operations are constructed to inductively compute ρj (γj,1). Then, we will use
the naturality of the Steenrod action to work out the remaining cases. The core
of this idea was originally used by Mann in [5] to compute im (ρj). To a certain
extent, we follow his reasoning, but we are also able to reconcile this approach
with the Hopf ring structure and to describe in simpler terms the classes in the
cohomology of Σpj which restrict to dl,j−l, Rj,l and Rj,l,m.

First, we will prove that ρj (γj,1) = (−1)
j
d0,j , or equivalently, by shifting to

the lower-index notation, ρj
(
QJj (ι)

∨)
= d0,j , where Jj is the j-tuple defined

in 4.2.
Let us identify H∗ (Vj ;Zp) with H∗ (Zp;Zp)⊗H∗ (Vj−1;Zp). The homomor-

phism (ρn)∗ : H∗ (Vn;Zp) → H∗ (Σpn ;Zp) satisfies, for every x ∈ Hs (Vn−1;Zp)
and for every r ≥ 0, the formula:

(ρn)∗ (er ⊗ x) = ν (s)
∑
k

(−1)
k
Qr+2k−s ◦ Pk∗ (x)

− δ (r) ν (s− 1)
∑
k

(−1)
k
Qr+p+(2pk−s)(p−1) ◦ Pk∗β (x)

Here Pk∗ is the linear dual to the kth Steenrod power Pk, ν (2j + ε) = (−1)
j (p−1

2

)
!ε,

δ (2j + ε) = ε if ε ∈ {0, 1}. This is stated in a paper by May [6, Proposition
9.1 at page 205], where it is used as a preliminary step for the proof of Nishida
relations, and is essentially the dualization of the original construction of Pk
made by Steenrod.

Note that, by 4.2, all the addends in the previous formula pair trivially
with QJj (ι)

∨
, except possibly those in the form Qr+2k−s ◦ Pk∗ (x) with r +

2k − s = 2 (p− 1) and s − 2k (p− 1) = 2
(
pj−1 − 1

)
. This means that r =(

pj−1 − l
)

(p− 1) and s = 2
(
pj−1 − 1

)
+ 2k (p− 1). Hence, dually, we have:

ρj
(
QJj (ι)

∨)
=

pj−1−1∑
k=0

(−1)
k Pkρj−1

(
Q∨Jj−1

)
y

(p−1)(pj−1−1)
j
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This implies by induction on j that the right member is equal to d0,j . Ex-
plicitly, for j = 1 the statement is trivial. For j > 1, by induction hypothe-
sis, ρj

(
QJj (ι)

∨)
is a GLj (Zp)-invariant polynomial in H∗ (Vj−1;Zp) [yj ] whose

leading coefficient is dp0,j−1. This must be d0,j .
The calculations of ρn (x) for γn−k,pk with k > 0, αj,n and βi,j,pn−j follow

directly from the naturality of the Steenrod powers with respect to the restric-
tions ρn and from the formulas in May–Cohen–Lada [2, Theorem 3.9], which
determine the Steenrod action on the dual of R[n]. These formulas are true in
H∗ (Σpn ;Zp) only up to addends containing non-trivial transfer products, but
they still determine ρn ◦Pr on Hopf ring generators because of 4.3. Comparison
with the Steenrod powers of Múi invariants as determined by Hung and Minh
in [4, Theorems B and C] yields the result.

As a corollary, we obtain a known fact about the image of ρn.

Corollary 4.5. [5, Theorem A] The image of ρn in H∗ (Vn;Zp)GLn(Zp)
is the

subalgebra generated by dj,n−j, Rn,j and Rn,i,j. This can be described as:

n⊕
l=0

⊕
0≤s1<···<sl<n

Zp [d0,n, . . . , dn−1,1] d
dl/2e,0
0,n Rn,s

Hence, in general, ρk is not surjective.

5 Steenrod algebra action

This section is devoted to the computation of the action of the Steenrod powers
on the Hopf ring A. We will achieve this by combining the calculations of 4.4
to the ideas used by Giusti, Salvatore and Sinha [3, Section 8] for the mod 2
cohomology.

First note that, as in the mod 2 case, the products � and ·, the coproduct ∆
and the antipode are induced from stable maps; hence, there are Cartan formulas
for all these. This means that A is a Hopf ring over the mod p Steenrod algebra
A (p), so it is sufficient to determine the action of βεP l (l ≥ 0 and ε ∈ {0, 1})
on the Hopf ring generators αj,j+k, βi,j,pk and γj,pk .

In order to describe the Steenrod algebra action on A in terms of our additive
basis, we introduce some notation.

Definition 5.1. • The height (ht) of a gathered block b is the number of
generators that must be cup-multiplied to obtain b. The height of a Hopf
monomial is the largest of the heights of its constituent blocks.

• We define the effective scale (effsc) of a gathered block, which we assume
in the form b = γl1,n1 . . . γlr,nrβi1,i2,m1 . . . βi2s−1,i2s,msα

ε
j,k (ε = 0, 1) as the

largest of the integers l1, . . . , lr, i2s if ε = 0, or as k if ε = 1. In other
words, for b ∈ H∗ (Σpn ;Zp), effsc (x) is the minimum k ≥ 0 such that

the restriction of x to Σp
n−k

pk
is not zero. The effective scale of a Hopf

monomial is the minimum of the effective scales of its constituent blocks.
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• We say that a Hopf monomial is full-width if none of its constituent blocks
is 1Σn .

• We say that a gathered block is of Type A if if all the Hopf ring generators
that must be cup-multiplied to obtain it are in the form γl,n, except one
that is in the form αj,k. For example, γ3

1,p2α1,3 is of Type A. A Hopf
monomial is of Type A if all its constituent blocks are of Type A.

• We say that a gathered block is of Type B if all the Hopf ring generators
that appear in it are in the form γl,n, except one in the form βi,j,m. For
example, γ5

3,1γ
2
2,pβ1,2,3 is of Type B. A Hopf monomial is of Type B if all

its constituent blocks are of Type B.

• We say that a Hopf monomial is of Type C if it is obtained by applying ·
and � only to elements in the form γl,n.

These definitions can be understood graphically. Given a skyline diagram:

• its height is the maximal number of rectangles stacked one on top of the
others that appear in the diagram.

• its effective scale is the width of the thinner column among those de-
lineated by the original boundaries and the vertical dashed lines of full
height.

• it is full-width if there are not columns of height 0.

• it is of type A if its columns contain exactly one solid rectangle and it is
odd dimensional. It is of type B if its columns contain exactly one solid
rectangle and it is even dimensional, while it is of type C if it is made only
of hollow rectangles.

The definitions of height, effective scale and full-width monomial are borrowed
from [3] and make sense also for the mod 2 cohomology.

We will also need the following result from Adem and Milgram’s book:

Lemma 5.2. [1, Corollary 1.4 page 180] Let ρn and τn be the natural re-
strictions from the cohomology of Σpn to H∗ (Vn;Zp) and H∗

(
Σppn−1 ;Zp

) ∼=
H∗
(
Σpn−1 ;Zp

)⊗p
respectively. The following homomorphism, whose compo-

nents are ρn and τn, is injective:

H∗ (Σpn ;Zp)→ H∗ (Vn;Zp)⊕H∗
(
Σppn−1 ;Zp

)
This lemma is derived in [1] by proving that elementary abelian subgroups

detect the cohomology of Σpn , and that all these groups are conjugate to sub-
groups of Σppn−1 or to Vn. However, the same result can be re-obtained as a
consequence of our description. Indeed, the restriction of ρn to the linear span
of Hopf monomials of height n in H∗ (Σpn ;Zp) is injective by 4.4. These mono-

mials map trivially to H∗
(
Σppn−1 ;Zp

)
. Recall that a basis for H∗

(
Σpn−1 ;Zp

)⊗p
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is given by x1 ⊗ · · · ⊗ xp, where xi are Hopf monomials and that τn can be
identified with the iterated coproduct. Let x1 ⊗ · · · ⊗ xp be such a basis el-
ement. By our coproduct formulas, there exists exactly one Hopf monomial
x ∈ H∗ (Σpn ;Zp) of height less that n such that x1 ⊗ · · · ⊗ xp appears with
a non-zero coefficient in the expansion of τn (x). Explicitly, x is the transfer
product of the gathered blocks b ∈ H∗ (Σm;Zp) such that, for every 1 ≤ i ≤ p,
there is bi ∈ H∗ (Σmi ;Zp) that is a constituent block of xi with the same profile
of b and

∑
imi = m (some mi are allowed to be 0). This implies the lemma.

With these tools, we can obtain formulas for the Steenrod action on A. The
idea is to use 4.1 and 5.2 and check, case by case, that the two expressions
we wish to be equal assume the same value if restricted to H∗ (Vn;Zp) and
H∗
(
Σppn−1 ;Zp

)
.

Lemma 5.3. Pr
(
γn−k,pk

)
can be expressed as a linear combination of full-

width Hopf monomials of Type C with a height of at most p and an effective
scale of at least n− k.

Following the notation used by Giusti, Salvatore and Sinha [3], we will call
these monomials the outgrowth monomials of γn−k,pk . We denote the set of
such monomials as Outgrowth

(
γn−k,pk

)
.

Proof of 5.3. The proof will follow that of [3][Theorem 8.3]. We proceed by
induction on k. First, assume k = 0. By 4.1 and 5.2, Pr (γn,1) must restrict

to 0 on H∗
(
Σppn−1 ;Zp

)
and to (−1)

n
λr,n,0

∏n−1
i=0 d

ai−ai−1+δi,0
i,n−i on H∗ (Vn;Zp).

Hence, it must be a multiple of
∏n−1
i=0 γ

ai−ai−1+δi,0
n−i,pi . This is the only full-width

Hopf monomial of Type C, of degree 2 (pn − 1) + 2r (p− 1) with a height of at
most p and an effective scale of at least n.

For k > 0, since τn
(
γn−k,pk

)
= γ⊗

p

n−k,pk−1 , using the external Cartan formula,
we have:

τn
(
Pr
(
γn−k,pk

))
=

∑
r1+...rp=r

Pr1
(
γn−k,pk−1

)
⊗ · · · ⊗ Prp

(
γn−k,pk−1

)
By induction, this is a linear combination of elements x1⊗· · ·⊗xp, where each xi
is an outgrowth monomial of γn−k,pk−1 . Recall that, for each x1⊗· · ·⊗xp in this
form, there exists a unique Hopf monomial x ∈ H∗ (Σpn ;Zp) with effsc (x) < n
whose restriction to H∗

(
Σppn−1 ;Zp

)
has a non-zero multiple of x1 ⊗ · · · ⊗ xp as

an addend. We have described x explicitly above. Moreover, we have effsc (x) ≤
n− 1 and x ∈ Outgrowth

(
γn−k,pk

)
since height and the fact of being full-width

are preserved by the coproduct, and the minimum of the effective scales of xi
must be equal to effsc (x). A Hopf monomial x /∈ Outgrowth

(
γn−k,pk

)
with an

effective scale less than n cannot appear in the expression of Pr
(
γn−k,pk−1

)
,

because this would yield addends in τn
(
Pr
(
γn−k,pk

))
that are not tensor prod-

ucts of elements in Outgrowth
(
γn−k,pk−1

)
. If a Hopf monomial with an effective

scale equal to n appear, this must, once again, be an outgrowth monomial of
γn−k,pk . Otherwise, by applying the restriction to H∗ (Vn;Zp), we would con-
tradict 4.1.
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Thus, Pr
(
γn−k,pk

)
=
∑
x∈Outgrowth (γ

n−k,pk ),deg(x)=2(pn−pk)+2r(p−1) cn,k,xx.

We are left to determine the coefficients cn,k,x. Note that, by restricting to
H∗ (Vn;Zp), using 4.4 and comparing with the formula in 4.1, we can directly

determine cn,k,x when x =
∏n−1
i=0 γ

ai−ai−1+δi,k
n−i,pi is the unique term made by a

single gathered block. Explicitly:

c
n,k,

∏n−1
i=0 γ

ai−ai−1+δi,k

n−i,pi
= (−1)

n−k+
∑n−1
i=0 (ai−ai−1+δi,s)(n−i) λr,n,k

where r =
∑
i aip

i.
In general, let x = b1 � · · · � bl ∈ H∗ (Σpn ;Zp) be the transfer product

of l gathered blocks, with pairwise distinct profiles. We assume that bi ∈
H∗ (Σpnimi ;Zp) with effsc (bi) = ni. As a notational convention, given a block
b, we denote the (necessarily unique) block which has the same profile and lies

in H∗
(
Σpeffsc(b) ;Zp

)
by b′. The restriction of x to the cohomology of

∏l
i=1 Σmipni

is the symmetrization of the class b′⊗
m1

1 ⊗ · · · ⊗ b′⊗
ml

l . By observing that
γn−k,pk |∏

i Σ
mi
pni

= ⊗iγmin−k,pk−n+ni
we obtain, by application of the naturality

of the Steenrod operations and of the external Cartan formula for Pr as above,
that cn,k,x =

∏l
i=1 cn−ni,ni−n+k,b′i

. This reduces the computation of cn,k,x to
the previous particular case.

We summarize our calculations in the following proposition.

Proposition 5.4. Let 0 ≤ k < n. Let b =
∏n−1
i=0 γ

ei
n−i,pi ∈ Outgrowth

(
γn−k,pk

)
be the gathered block with an effective scale of n. We define:

cn,k,b = (−1)
n−k+

∑
i ei(n−i) λ(p−1)−1[

∑
i 2(pn−pi)−2(pn−pk)],n,k

= (−1)
n−k+

∑
i ei(n−i) (p− 1)!

(p− ht (b))!
∏n−1
i=1 ei!

k∑
i=1

ei

Let x ∈ Outgrowth
(
γn−k,pk

)
be a general outgrowth monomial. Then x =

b1�· · ·�bs, with bi ∈ H∗ (Σli ;Zp) that are gathered blocks with pairwise distinct
profiles. We define

cn,k,x =

l∏
i=1

clieffsc(bi),k−n+effsc(bi),b′i

Then, Pr
(
γn−k,pk

)
=
∑
x∈Outgrowth(γn−k,pk),deg(x)=2(pn−pk+r(p−1)) cn,k,xx.

Remark. Note that, with our proof, we do not need to check inductively that
the coefficients agree when we restrict to H∗

(
Σpn−1 ;Zp

)
because this is auto-

matically satisfied. However, this can be proved ‘manually’ by observing that

λr,n,s = λrpk,n+k,s+k. Because of this, for a block b =
∏n−1
i=0 γ

ai−ai−1+δi,k
n−i,i ∈

H∗ (Σpn ;Zp), not necessarily with effsc (b) = n, cn,k,b is indeed equal to (−1)
n−k+

∑
i(ai−ai−1+δi,k)(n−i)

λ∑
i aip

i,n,k,
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agreeing with 4.1. More generally, given a gathered block b =
∑
i γ

ai−ai−1+δi,k
n−i,mpi

in H∗ (Σpnm) with effsc (b) = n and given two partitions (pk1 , . . . , pk1) and

(pk
′
1 , . . . pk

′
l′ ) of m with powers of p, the following equality holds in Zp:

l∏
j=1

λ∑
i aip

i+kj ,n+kj ,kj
=

l′∏
j=1

λ∑
i aip

i+k′
j ,n+k′j ,k

′
j

This implies that the desired coefficients agree in the restriction toH∗
(
Σppn−1 ;Zp

)
.

The computation of Pr (αj,k) and Pr
(
βi,j,pk

)
can be done in the same way.

Before stating the final results we define the analogous notion of outgrowth
monomials for αi,j and βi,j,pk as the full-width monomials of height one or
two with an effective scale of at least j, of Type A and B respectively. We will
denote the set of such monomials with Outgrowth (αi,j) and Outgrowth

(
βi,j,pk

)
,

respectively.

Proposition 5.5. Let 1 ≤ j ≤ n. For x = γn−u,puαn−t,n ∈ Outgrowth (αj,n),

we define c′n,j,x = (−1)
j+t+u

(δt≤n−j − δu≤n−j). Here, we allow u = n with the
convention that γ0,pn = 1. Then:

Pr (αj,n) =
∑

x∈Outgrowth(αj,n),deg(x)=2((p−1)r+pn−pn−j)−1

c′n,j,xx

Let 1 ≤ i < j ≤ n and let k = n − j. Given a gathered block b =
γn−v,vβn−u,n−t,pt in Outgrowth

(
βi,j,pk

)
, define

c′′n,i,j,b = (−1)
i+k+t+u+v

(δv>k+j−i − δu>k+j−i) δt≤k+j−i (δt≤k − δv≤k) δu>k

For a general outgrowth monomial x = b1� · · · � bl with bs ∈ H∗ (Σms ;Zp) and

effsc (bs) = ns for all 1 ≤ s ≤ l, we define c′′n,i,j,x =
∏l
s=1

(
c′′ns,i,j,bs

)ms
. Then:

Pr
(
βi,j,pk

)
=

∑
x∈Outgrowth(βi,j,pk),deg(x)=2((p−1)r+pn−pn−j−pn−i)

c′′n,i,j,xx

Note that, regarding the previous result, the coefficients c′n,j,x and c′′n,i,j,x
are always equal to −1, 0 or 1.

We close this section with a proposition that describes the action of the
Bockstein homomorphism β on Hopf ring generators. This clearly determines
β on the whole Hopf ring and follows easily from [6][Theorem 3.9 at page 33].

Proposition 5.6. The following formulas hold:

• β (αj,k) = γk,1 if j = k and is equal to 0 otherwise.

• β
(
βi,j,pk

)
= −αi,j if k = 0 and is equal to 0 otherwise.

• β
(
γj,pk

)
= 0.
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6 An example

As an example we now extract the cup product structure from our Hopf ring
presentation in the case of H∗

(
Σp2 ;Zp

)
. An equivalent description has been

given by Múi in [7] by analyzing the restriction to elementary p-subgroups.
First note that, by our results, an additive basis for H∗

(
Σp2 ;Zp

)
is given

by:

B =

{
γa2,1γ

b
1,pα

ε1
1,2α

ε2
2,2β

ε3
1,2,1 : a, b, εi ≥ 0,

3∑
i=1

εi ≤ 1

}

∪

{
p⊙
i=1

γti1,1α
εi
1,1 : ti ≥ 0, εi ∈ {0, 1} not all factors equal

}
The elements of the last set are to be considered up to permutations of the p
factors. More simply, we can order the basis for H∗ (Σp;Zp) with the following
rule:

γa1,1α
ε
1,1 > γb1,1α

δ
1,1 ⇔ (a > b) ∨ (a = b ∧ ε > δ)

and we can agree that, in the last set, γt11,1α
ε1
1,1 ≥ · · · ≥ γ

tp
1,1α

εp
1,1 in the given

order. It will be useful to order the set of the basis elements in this form with
the product order.

We now write the generators and relations in H∗
(
Σp2 ;Zp

)
as a ring. We

define:

• x1 = γ2,1

• x2 = α1,2

• x3 = α2,2

• x4 = β1,2,1

• for 1 ≤ i ≤ p− 1, yi = γ1,i � 1p2−pi

• yp = γ1,p

• for 1 ≤ i ≤ p, zi = γ1,i−1 � α1,1 � 1p2−pi

There are equalities x2x3 = x1x4, x2x4 = 0, x3x4 = 0 and x2
4 = 0 coming

directly from relations (3) to (5) in our Hopf ring presentation. Moreover we
have seen as an example in 2 that, for every 1 ≤ i ≤ 4, xiyj = 0 for 1 ≤ j ≤ p−1
and xizj = 0 for 1 ≤ j ≤ p. These will be our cup product generators and
relations.

Proposition 6.1. Consider the unitary ring

S =
U (x1, x2, x3, x4, y1, y2, y3, z1, z2, z3)

I

where U (X) is the free associative skew-commutative algebra generated by the el-
ements of X (in appropriate dimension) and let I ⊆ S be the bilateral ideal gen-
erated by the relations above. There is an isomorphism ϕ : S → H∗

(
Σp2 ;Zp

)
.
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Proof. There is a ϕ defined in the obvious way because we have checked that
these relations hold in this cohomology ring. We now prove that ϕ is bijective.
First, let w =

⊙p
j=1 γ

tj
1,1α

εj
1,1, with the factors γ

tj
1,1α

εj
1,1 ordered from largest to

smallest with respect to the product ordering. Consider the set P of elements
{(bk,1, . . . , bk,p)}2k=1 where (b1,1, . . . b1,p) is a partition of γ1,i and (b2,1, . . . , b2,p)

is a partition of 1p(p−i). Moreover, let P ′ be the set of elements
{ (
b′j,1, b

′
j,2

)}p
j=1

where
(
b′j,1, b

′
j,2

)
is a splitting of γ

tj
1,1. Using our rule for the cup product ex-

plained at the end of Section 2, we have the following:

yi · w =
∑
P,P′

p⊙
j=1

b1,jb
′
j,1 �

p⊙
j=1

b2,jb
′
j,2

Observe that a partition (b1,1, . . . , b1,p) of γ1,k corresponds to a partition k1, . . . , kp
of the natural number k with non-negative integers. Explicitly, the correspon-
dence is given by b1,j = γ1,kj . Similarly, a partition (b2,1, . . . , b2,p) of 1p(p−i)
corresponds to a partition h1, . . . , hp of p(p− i) by the rule b2,j = 1hj . The only
splittings of γa1,1α

ε
1,1 are

(
γa1,1α

ε
1,1, 10

)
and

(
10, γ

a
1,1α

ε
1,1

)
.

Hence, we can write explicitly yi ·
(⊙p

j=1 γ
tj
1,1

)
as a linear combination of

elements of our basis B, and we obtain:

yi · w = λi

p⊙
k=1

γ
tk+δk≤i
1,1 αεk1,1 + ...

for some λi ∈ Zp \ {0}, where ”...” stands for terms that are smaller than the
previous one in the considered ordering. With the same reasoning we can prove:

zi · w = ηi

p⊙
k=1

γ
tk+δk<i
1,1 α

εk+δmin{h≥i:εh=0}(k)

1,1 + ...

where ηi ∈ Zp \ {0} and ”...” has the same meaning as before.
Note that an additive basis for S is given by:

B′ =

{
xa1y

b
px
ε1
2 x

ε2
3 x

ε3
4 : a, b, εi ≥ 0,

3∑
i=1

εi ≤ 1

}

∪

{
p∏
i=1

ytii

p∏
i=1

zεii : ti ≥ 0, εi ∈ {0, 1}

}

By induction, using the previous formulas, the expansion in the basis B of the
cohomology class ϕ

(∏p
i=1 y

ti
i

∏p
i=1 z

εi
i

)
(with ti ≥ 0 and εi ∈ {0, 1}) is in the

form:

ϕ

(
p∏
i=1

ytii

p∏
i=1

zεii

)
= λt,ε

p⊙
i=1

γ
∑p
k=i tk+

∑p
k=i+1 εk

1,1 αεi1,1 + ...
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where, again, λt,ε 6= 0 in Zp and ”...” stands for smaller terms. This implies
that the matrix associated with the Zp–linear function

ϕ : Span

{
p∏
i=1

ytii

p∏
i=1

zεii

}
→ Span

{
p⊙
i=1

γti1,1α
εi
1,1

}

with respect to the two bases considered above (if we properly order their ele-
ments) is triangular, with all non-zero entries on the diagonal. Hence, ϕ : A→
H∗
(
Σp2 ;Zp

)
must be an isomorphism.
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