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Abstract

A stochastic version of the two–layer quasi–geostrophic model (2LQG) with multiplicative transport noise
is analysed. This popular intermediate complexity model describes large scale atmosphere and ocean dynamics
at the mid–latitudes. The transport noise, which acts on both layers, accounts for the unresolved small scales.
After establishing the well–posedness of the perturbed equations, we show that, under a suitable scaling of the
noise, the solutions converge to the deterministic 2LQG model with enhanced dissipation. Moreover, these
solutions converge to the deterministic stationary ones on the long time horizon.
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1 Introduction

The quasi–geostrophic model, first mathematically described by Charney [6] in the first half of the XX century,
is an approximation of the three dimensional Navier–Stokes equation in vorticity formulation which captures the
large–scale phenomena of atmosphere and ocean dynamics. Quasi–geostrophic models with several layers, like
the one considered in this article, are particularly suitable to describe baroclinic instabilities, a crucial mechanism
behind most common weather patterns at the mid–latitudes. In fact the quasi–geostrophic equations is a popular
model in theoretical meteorology given the richness of phenomena it can describe (see e.g. [29, 26]). From a
mathematical perspective, it can be seen as a model of intermediate complexity between two and three dimensional
Navier–Stokes equation. The model has been shown to be well–posed and to exhibit a global attractor in its
deterministic version (see [1]) and in a stochastic version with additive noise [7, 4]. In this paper a stochastically
perturbed version of the two–layer quasi–geostrophic (2LQG) model with multiplicative noise of transport type
on both layers is studied and shown to be well–posed.

The nature of this perturbation is crucial both from a physical interpretation of the results and for the
novelty of mathematical tools it requires. Recent developments on the physical justification for transport noise
in fluid dynamics models include [20]. There the transport noise is systematically introduced in models relevant
for geophysical applications, including the quasi–geostrophic model, in such a way to retain conservation laws
crucial for the description of fluids, in particular circulation. Recently [17] proposed a rigorous interpretation and
justification of transport noise as additive noise on smaller scales. For more on the interpretation of transport
noise in stochastic partial differential equation refer to [17] and references therein.
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Centre for the Mathematics of Planet Earth, University of Reading, United Kingdom
Email: giulia.carigi@univaq.it

†Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
Corresponding author Email: eliseo.luongo@sns.it

1



From a mathematical perspective the literature on transport noise for fluid dynamics models is vast, especially
for Euler and Navier–Stokes equation. Most relevant for this work are [13, 12]. In these works the authors make
use a suitable scaling, first introduced in [18], to show that weak solutions of a stochastic Euler model converge
to weak solutions of the deterministic Navier–Stokes equation, and provide a quantitative estimate of the rate
of convergence. Similarly, for the 2LQG model we will see that the transport noise provides an enhancement of
eddy dissipation effects. These results highlight the regularization action of the transport noise, which, despite
being energy-preserving in general, acts as a dissipative force. On the relevance of transport noise for dissipation
and mixing properties we refer as well to [14, 11].

Thanks to dissipation properties of the transport noise we will also show that the solution of the 2LQG model
approaches the deterministic stationary solution for large times. The well–posedness of the stationary system
associated to the 2LQG equations would require in general a large model viscosity, hard to justify from a physical
perspective. However, we will show that an appropriate choice of the transport noise ensures stability on the long
run of the solutions. This results extends those obtained for the heat equations in [15] to a nonlinear system like
the quasi–geostrophic model here under analysis. We expect this approach to generalise to the two–dimensional
Navier–Stokes equations and other models with similar structure.

1.1 The Model and the Main Results

The two-layer quasi–geostrophic model (2LQG) is one of the most used model to describe the motion of atmo-
sphere as well as of the ocean at the mid–latitudes. In particular it captures the large scale dynamics of two layers
of fluid of fixed height h1, h2 respectively and with density ρ1 and ρ2 with ρ1 < ρ2. We consider the β-plane
approximation to the Coriolis effect for which the Coriolis parameter fc can be expressed as fc(y) = f0 + βy,
with f0 and β assigned positive constants. In the model we include the effect of eddy viscosity on both layers,
of the bottom friction on the second layer, to account for the interaction with the Eckmann layer, and a de-
terministic additive forcing on the first layer, for example to account for the wind forcing on the upper ocean.
In order to give a mathematical formulation of the model let us introduce a spatial domain D, squared domain
D = [0, L]× [0, L] ⊂ R2 (where L will be e.g. 105 m for the ocean).

Consider the following equations for the variables ψ(t,x) = (ψ1(t,x), ψ2(t,x))
t, streamfunction of the fluid,

and q(t,x) = (q1(t,x), q2(t,x))
t, the so-called quasi–geostrophic (QG) potential vorticity

dq1 +
(
∇⊥ψ1 · ∇q1

)
dt =

(
ν∆2ψ1 − β∂xψ1 + F (t)

)
dt

dq2 +
(
∇⊥ψ2 · ∇q2

)
dt =

(
ν∆2ψ2 − β∂xψ2 − r∆ψ2

)
dt.

(1)

Here ν > 0 is the eddy viscosity parameter, r > 0 accounts for the bottom friction and F (t) is a deterministic
forcing with zero spatial averages, namely∫

D
F (t,x) dx = 0 for all t ≥ 0. (2)

The QG potential vorticities q and the streamfunction ψ are linked by the equations

q1 = ∆ψ1 + S1(ψ2 − ψ1)

q2 = ∆ψ2 + S2(ψ1 − ψ2),
(3)

where S1, S2 are positive constants such that

h1S1 = h2S2 =: S. (4)

As stated in the introduction, the goal of the present work is to study the eddy dissipation properties of
transport noise for this model. There are several motivations to consider transport noise, as the effect of small
scales on large scales in fluid dynamical problems, see [16], [20] for several discussion on this topic. Loosely
speaking, small scale transport noise produces in the limit an extra dissipative term, which can be called eddy
dissipation. There is an extended literature devoted to these kind of topics both in the endogenous and the
exogenous case. See for example [12], [13], [15], [11].

Let us now introduce the stochastic perturbation we will consider. Let (Ω,F ,Ft,P) be a filtered probability

space. Let K be a finite set of indexes, {W j,k
t }k∈K , j ∈ {1, 2} be two sequences of real independent Brownian
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motions adapted to Ft and consider two corresponding sequences of divergence free vector fields {σj,k}Kk=1 ⊆
C∞(D;R2), j ∈ {1, 2}. In general, less can be required on the regularity of the coefficients σj,k and the cardinality
of K, but it is not our goal to stretch the boundaries of regularity of the noise as it is not critical to obtain the
desired final result. Now we can consider the following stochastically perturbed two-layer quasi–geostrophic
model

dq1 +
(
∇⊥ψ1 · ∇q1

)
dt =

(
ν∆2ψ1 − β∂xψ1 + F

)
dt+

∑
k∈K

(
σ1,k ◦ dW 1,k

)
· ∇q1

dq2 +
(
∇⊥ψ2 · ∇q2

)
dt =

(
ν∆2ψ2 − β∂xψ2 − r∆ψ2

)
dt+

∑
k∈K

(
σ2,k ◦ dW 2,k

)
· ∇q2

(5)

which in Itô formulation reads

dq1 +
(
∇⊥ψ1 · ∇q1

)
dt =

(
ν∆2ψ1 − β∂xψ1 + F

)
dt+

∑
k∈K

σ1,k · ∇q1 dW 1,k + 1
2

∑
k∈K

σ1,k · ∇(σ1,k · ∇q1) dt

dq2 +
(
∇⊥ψ2 · ∇q2

)
dt =

(
ν∆2ψ2 − β∂xψ2 − r∆ψ2

)
dt+

∑
k∈K

σ2,k · ∇q2 dW 2 + 1
2

∑
k∈K

σ2,k · ∇(σ2,k · ∇q2) dt.

(6)

We assume periodic boundary conditions for the streamfunction ψ in both directions and that∫
D
ψ(t,x) dx = 0.

Let us set some notation before stating the main contributions of this work. Let (Hk(D), ∥·∥Hk), k ∈ R
be the standard Sobolev spaces of L-periodic functions satisfying condition (2). We will denote by ⟨·, ·⟩Hk the
corresponding scalar products. With a slight abuse of notation, for k > 0 we denote the dual pairing with

⟨T, φ⟩H−k,Hk = T (φ) for all T ∈ H−k, φ ∈ Hk.

In case of k = 0 we will write L2(D) instead of H0(D) and we will neglect the subscript in the notation for the
norm. Similarly, we introduce the Sobolev spaces of zero mean vector fields

Hk = {(u1, u2)t : u1, u2 ∈ Hk(D)}, ⟨u,v⟩Hk = ⟨u1, v1⟩Hk + ⟨u2, v2⟩Hk , for k ∈ R.

Again, in case of k = 0 we will write L2 instead of H0 and we will neglect the subscript in the notation for the
norm and the scalar product. Sometimes, on the space Hk we will consider the norms

|||·|||2Hk = h1∥·1∥2Hk + h2∥·2∥2Hk (7)

which are straightforwardly equivalent to the standard ones that we denote by ∥·∥Hk . Furthermore we define the
following functional spaces

H = L2, V = H1, D (∆) = H2

where ∆ : D (∆) ⊂ H → H is defined by

∆(q1, q2)
t = (∆q1,∆q2)

t.

It is well known that ∆ is the infinitesimal generator of analytic semigroup of negative type and moreover V can
be identified with D((−∆)1/2), see e.g. [25].

A first issue related to the analysis of the dissipation properties of the transport noise is the well–posedness
of such system. In fact the existence of strong probabilistic solution is outside the framework treated in earlier
works, see for example [4, 8, 9, 20]. Thus, first, we need to define our notion of solution for system (6) and state
our well–posedness result.
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Let Z be a separable Hilbert space, with associated norm ∥·∥Z . For p ≥ 1 denote by Lp(Ft0 , Z) the space of p-
integrable random variables with values in Z, measurable with respect to Ft0 . Moreover, denote by CF ([0, T ] ;Z)
the space of continuous adapted processes (Xt)t∈[0,T ] with values in Z such that

E

[
sup

t∈[0,T ]

∥Xt∥2Z

]
<∞

and by Lp
F (0, T ;Z) the space of progressively measurable processes (Xt)t∈[0,T ] with values in Z such that

E

[∫ T

0

∥Xt∥pZ dt

]
<∞.

Define for j ∈ {1, 2} the operators

Fj(q) :=
1

2

∑
k∈K

σj,k · ∇(σj,k · ∇q), (8)

Gk
j (q) := σj,k · ∇q, for k ∈ {1, . . . ,K} (9)

which can be easily shown to be bounded linear operators

Fj ∈ L(H2(D), L2(D)), Gk
j ∈ L(H1 (D) ;L2(D)).

We then consider the following concept of weak solution (see e.g. [10, Chapter 7]) for (6):

Definition 1.1. A stochastic process

q ∈ CF ([0, T ] ;H) ∩ L2
F (0, T ;V)

is a weak solution of equation (6) if, for every ϕ = (ϕ1, ϕ2)
t ∈ D(∆), we have

⟨q1(t), ϕ1⟩ = ⟨q1,0, ϕ1⟩+
∫ t

0

⟨∆ψ1(s), ν∆ϕ1⟩ ds+
∫ t

0

⟨q1(s), F1ϕ1⟩ ds+
∫ t

0

⟨q1(s),∇⊥ψ1(s) · ∇ϕ1⟩ds

+

∫ t

0

⟨β∂xψ1 (s) , ϕ1⟩ ds+
∫ t

0

⟨F (s), ϕ1⟩ ds−
∑
k∈K

∫ t

0

〈
q1(s), G

k
1ϕ1
〉
dW 1,k

s

⟨q2(t), ϕ2⟩ = ⟨q2,0, ϕ2⟩+
∫ t

0

⟨∆ψ2(s), ν∆ϕ2⟩ ds+
∫ t

0

⟨q2(s), F2ϕ2⟩ ds+
∫ t

0

⟨q2(s),∇⊥ψ2(s) · ∇ϕ2⟩ds

+

∫ t

0

⟨β∂xψ2 (s) , ϕ2⟩ ds− r

∫ t

0

⟨∆ψ2(s), ϕ2⟩ ds−
∑
k∈K

∫ t

0

〈
q2(s), G

k
2ϕ2
〉
dW 2,k

s

for every t ∈ [0, T ], P-a.s., where q and ψ are linked by relation (3).

The well posedness of this system is guaranteed by the following result which we will prove in Section 3.

Theorem 1.2. For every q0 ∈ L4
F0

(Ω,H) and F ∈ L4
F
(
0, T ;L2(D)

)
, there exists one and only one weak solution

of equation (6).

Remark 1.3. We stated Theorem 1.2 in full generality in order to provide a complete framework for the well
posedness of such stochastic system, that, to the best of these authors knowledge, is unavailable in the literature.
This result is redundant for the scope of this work though. In fact, in order to exploit the eddy dissipation
properties of the transport noise we will consider deterministic initial conditions and a deterministic and time–
independent forcing.

Remark 1.4. It is well known that, in absence of external forcing or dissipation, the quasi–geostrophic model
has an infinite number of preserved quantities. As a consequence, in that setting and the one–layer case, [19]
showed existence of Gaussian invariant measure induced by the quadratic first integrals. The noise introduced
in (5) will preserve the L2-norm of the quasi–geostrophic potential vorticity q, namely the potential enstrophy
of the system. For more on the role of enstrophy in the two-layer quasi–geostrophic dynamics see e.g. [22], [29,
Section 5.6.3, Section 9.2.2].
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After showing the well posedness of system (6), our goal is to provide sufficient conditions in order to model
the dissipation properties of the transport noise. Let us explain briefly the adopted strategy before going into
the details. First, following the approach introduced in [12], we will show that under an appropriate scaling of
the noise, first introduced by Galeati in [18], the solution of the stochastic system (5) converges, in a suitable
sense which we will clarify later, to the solution of the associated deterministic system with an extra diffusion.

Second, for time–independent forcings F and same properties of the noise, solutions of the stochastic system
(5) will converge to those of the associated stationary deterministic 2LQG model.

In order to precisely formulate these statements, let us introduce some notation and the precise formulation
of the noise. Let a, b be two positive numbers, then we write a ≲ b if there exists a positive constant C such
that a ≤ Cb and a ≲α b when we want to highlight the dependence of the constant C on a parameter α. Let
ek(x) = L−1 exp

{
2πi
L k · x

}
, k ∈ Z2

0 = Z2 \ {(0, 0)}, orthonormal basis of L2(D) made by eigenfunctions of −∆.
Following the approach first introduced in [18] consider the following explicit representations of the coefficients

σj,k, k ∈ Z2
0, j ∈ {1, 2}

σj,k(x) =
√
2κaj,kek(x) =

{√
2κθj,kek(x)

k⊥

|k| if k ∈ Z2
+√

2κθj,kek(x)
−k⊥

|k| if k ∈ Z2
−,

(10)

where Z2
+, Z2

− is a partition of Z2
0 with Z2

+ = −Z2
−, and the parameters θj,k satisfy the following conditions:

1.
∑

k∈Z2
0
θ2j,k = 1;

2. θj,k = 0 if |k| is large enough. We will denote by K the finite set of k where θj,k ̸= 0;

3. θj,k = θj,l if |k| = |l|.

Furthermore take an infinite sequence of complex standard Brownian motions such that W j,k =W j,−k and W i,k

is independent from W j,l if |k| ̸= |l| or i ̸= j. Thus the noise we consider is parameterized by the coefficients
κ, θj,k and the set K. Under this setting, as described for example in [18, 11], equation (6) can be reformulated
as

dq1 +
(
∇⊥ψ1 · ∇q1

)
dt =

(
κ∆q1 + ν∆2ψ1 − β∂xψ1 + F

)
dt+

√
2κ
∑
k∈K

a1,kek · ∇q1 dW 1,k

dq2 +
(
∇⊥ψ2 · ∇q2

)
dt =

(
κ∆q2 + ν∆2ψ2 − β∂xψ2 − r∆ψ2

)
dt+

√
2κ
∑
k∈K

a2,kek · ∇q2 dW 2,k.
(11)

The corresponding deterministic system is

dq̄1 +
(
∇⊥ψ̄1 · ∇q̄1

)
dt =

(
κ∆q̄1 + ν∆2ψ̄1 − β∂xψ̄1 + F

)
dt

dq̄2 +
(
∇⊥ψ̄2 · ∇q̄2

)
dt =

(
κ∆q̄2 + ν∆2ψ̄2 − β∂xψ̄2 − r∆ψ̄2

)
dt,

(12)

where, as before, q̄ and ψ̄ are linked by relation (3).
Thanks to Theorem 1.2 and classical results on two dimensional deterministic quasi–geostrophic equations,

see for example [1], under the assumptions q0 ∈ H, F ∈ L4(0, T ;L2(D)) there exists a unique weak solutions q
(resp. q̄) of the problem (11) (resp. (12)). Now we can state one of the main results of our work which allows to
quantify the difference between the behavior of the stochastic and the deterministic system.

Theorem 1.5. Let q and q̄ be weak solutions to (11) and (12) respectively. Then for any α ∈ (0, 1), there exists
C depending from α and all the parameters of the model except for the noise such that for any ϵ ∈ (0, α] one has

(i)

E
[
∥q− q̄∥2C([0,T ];H−α)

]
≲α,M,ϵ,Tκ

ϵ∥θ∥2(α−ϵ)
ℓ∞ R2

T exp

(
T
ν2 + β2 + r2

κ+ ν

)
exp

(
CTR2

T

(κ+ ν)2
(1 + κ+ ν) +

C

(κ+ ν)
2

∫ T

0

∥F (s)∥2 ds

)
,
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(ii)

E
[
∥q− q̄∥2C([0,T ];H−α)

]
≲α,M,ϵ,Tκ

ϵ∥θ∥2(α−ϵ)
ℓ∞ R2

T exp

(
T
ν2 + β2 + r2

κ+ ν

)
exp

(
C

ν2

(
TR2

T +

∫ T

0

∥F (s)∥2 ds

))
,

where R2
T is a constant independent of the noise defined in Section 4.1.

Next, given the model (5) now with a time–independent forcing F , consider the associated stationary system.
On the one hand, similarly to the Navier–Stokes system, existence and uniqueness of the solution of the stationary
system associated to quasi–geostrophic equations is guaranteed under, generally unfeasible, assumptions on the
viscosity. On the other hand, as we will show in Section 4.2, in our framework these assumptions will be satisfied
thanks to the dissipation properties of the transport noise. More precisely, consider q̃ solution of the following
system

∇⊥ψ̃1 · ∇q̃1 = κ∆q̃1 + ν∆2ψ̃1 − β∂xψ̃1 + F

∇⊥ψ̃2 · ∇q̃2 = κ∆q̃2 + ν∆2ψ̃2 − β∂xψ̃2 − r∆ψ̃2,
(13)

where F ∈ L2(D) and, as always, q̃ and ψ̃ are linked by relation (3). Then, thanks to a particular parametrization
of the noise, we will show in Section 4.2 the following:

Theorem 1.6. For κ large enough, for each δ > 0 and α ∈ (0, 1), it exists T = T (δ) and a sequence
{θj,k}k∈K,j∈{1,2} depending from δ, T , α such that for each t ∈ [T , 2T ]

E
[
supt∈[T ,2T ]∥q(t)− q̃∥2H−α

]
≤ δ.

2 Preliminaries

In this section we recall several technical tools crucial for the next sections, see for example [2],[5],[12],[25] for
more details.

First, similarly to [5], we define the linear operator Ã : Hk+2 → Hk, k ∈ R connecting the streamfunction
with the quasi–geostrophic potential vorticity

Ãψ := (−∆−M)ψ, where M =

(
−S1 S1

S2 −S2

)
.

It is well known that it has a bounded inverse (−∆−M)
−1

: Hk → Hk+2. Thanks to this fact, for each q ∈ Hk,
there exists a unique ψ ∈ Hk+2 such that q = (∆+M)ψ and moreover for each k ∈ R there exists two constants
c1,k ≤ c2,k such that

c1,k∥ψ∥Hk+2 ≤ ∥q∥Hk ≤ c2,k∥ψ∥Hk+2 .

In this work we will also use extensively the relation

ψ1 − ψ2 = (−∆+ S1 + S2)
−1(q2 − q1) (14)

which follows directly from (3).
We recall three technical lemmata which can be proved by classical arguments and we refer to [12, Section 2.1].

Lemma 2.1 ([12, Lemma 2.1]). Given a divergence free vector field V ∈ L2(D;R2) the following bounds hold
true.

1. If V ∈ L∞ (D;R2
)
, f ∈ L2(D), then we have

∥V · ∇f∥H−1 ≲ ∥V ∥L∞∥f∥.
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2. Let α ∈ (1, 2], β ∈ (0, α− 1), V ∈ Hα(D;R2), f ∈ H−β(D), we have

∥V · ∇f∥H−1−β ≲α,β ∥V ∥Hα∥f∥H−β .

3. Let β ∈ (0, 1), then for any f ∈ Hβ(D), g ∈ H1−β(D) it holds

∥fg∥ ≲β ∥f∥Hβ∥g∥H1−β .

4. Let β ∈ (0, 1), V ∈ H1−β(D;R2), f ∈ L2(D), then one has

∥V · ∇f∥H−1−β ≲β ∥V ∥H1−β∥f∥.

Remark 2.2. With some abuse of notation, if ψ and q are two vector fields, we will denote

∇⊥ψ · ∇q :=
(
∇⊥ψ1 · ∇q1,∇⊥ψ2 · ∇q2

)t
and the results of previous lemma continue to hold in this framework. Then this first lemma generalises funda-
mental estimates for the nonlinearity of the quasi–geostrophic model presented for example in [5, 7].

The second lemma provides classical estimates on the semigroup generated by ∆:

Lemma 2.3 ([12, Lemma 2.2]). Let q ∈ Hα, α ∈ R. Then:

1. for any ρ ≥ 0, it holds ∥et∆q∥Hα+ρ ≤ Cρt
−ρ/2∥q∥Hα for some constant increasing in ρ;

2. for any ρ ∈ [0, 2], it holds ∥
(
I − et∆

)
q∥Hα−ρ ≲ρ t

ρ/2∥q∥Hα .

The semigroup eδ(t−s)∆ has also regularising effects as stated in the following:

Lemma 2.4 ([12, Lemma 2.3]). For any δ > 0, α ∈ R, q ∈ L2(0, T ;Hα), it holds∥∥∥∥∫ t

0

eδ(t−s)∆q(s) ds

∥∥∥∥2
Hα+1

≲
1

δ

∫ t

0

∥q(s)∥2Hα ds ∀t ∈ [0, T ].

Finally consider the following classical result.

Lemma 2.5 ([2, Proposition B.3]). If {QN}N≥1 ⊆ L2(Ω,F ,P;L2(0, T ;R)) are continuous stochastic processes,
{σM}M≥1 are Ft-stopping times such that

lim
M→+∞

P(σM < T ) = 0, (15)

supN≥1 E
[
|QN (T )|2

]
< +∞, (16)

lim
N→+∞

E [|QN (σM )|] = 0 ∀M ≥ 1, (17)

then E [|QN (T )|] → 0.

3 Well–posedness

In this section we will show Theorem 1.2 holds following a classical approach by means of the Galerkin approxi-
mation.
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3.1 Galerkin Approximation and Limit Equations

As described in Section 1.1, let {ei}i∈N be the orthonormal basis of L2(D) made by eigenvectors of −∆ and λi
the corresponding eigenvalues, λi are positive and non decreasing. Given HN = span{e1, . . . , eN} ⊆ L2(D) let
PN : L2(D) → L2(D) be the orthogonal projector of L2(D) on HN . As we are looking for a finite dimensional
approximation of the solution of equation (6), define

qNj (t) :=

N∑
i=1

ci,j,N (t)ei(x).

The coefficients ci,j,N are chosen in such a way to satisfy for all eigenfunctions ei, 1 ≤ i ≤ N and all t ∈ [0, T ]
the system

〈
qN1 (t), ei

〉
=
〈
qN1,0, ei

〉
+

∫ t

0

〈
∆ψN

1 (s), ν∆ei
〉
ds+

∫ t

0

⟨qN1 (s), FN
1 ei⟩ ds+

∫ t

0

⟨qN1 (s),∇⊥ψN
1 (s) · ∇ei⟩ds

+

∫ t

0

〈
β∂xψ

N
1 (s) , ei

〉
ds+

∫ t

0

⟨F (s), ei⟩ ds−
∑
k∈K

∫ t

0

〈
qN1 (s), Gk

1ei
〉
dW 1,k

s

〈
qN2 (t), ei

〉
=
〈
qN2,0, ei

〉
+

∫ t

0

〈
∆ψN

2 (s), ν∆ei
〉
ds+

∫ t

0

⟨qN2 (s), FN
2 ei⟩ ds+

∫ t

0

⟨qN2 (s),∇⊥ψ2(s) · ∇ei⟩ds

+

∫ t

0

〈
β∂xψ

N
2 (s) , ei

〉
ds− r

∫ t

0

〈
∆ψN

2 (s), ei
〉
ds−

∑
k∈K

∫ t

0

〈
qN2 (s), Gk

2ei
〉
dW 2,k

s .

(18)

Here qN
0 = PNq0 and the variables ψN and qN are linked by relation (3), and the operators FN

j , j ∈ {1, 2}, are
defined similarly to (8), namely

FN
j ϕ =

1

2

∑
k∈K

PN
(
σj,k · ∇PN (σj,k · ∇ϕ)

)
, j ∈ {1, 2} for all ϕ ∈ HN .

The local well–posedness of (18) follows from classical results about stochastic differential equations with locally
Lipshitz coefficients, see for example [21],[28]. The global well–posedness follows from the following a priori
estimates:

Lemma 3.1. Given the system (18) the following energy estimate holds:

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣2
2

+ ν
∣∣∣∣∣∣∇qN

∣∣∣∣∣∣2dt = (−βh1⟨∂xψN
1 , q

N
1 ⟩ − βh2⟨∂xψN

2 , q
N
2 ⟩+ h1⟨F, qN1 ⟩ − rh2∥qN2 ∥2 + Sr⟨ψN

1 − ψN
2 , q

N
2 ⟩
)
dt

+
(
Sν∥qN1 − qN2 ∥2 + Sν(S1 + S2)⟨ψN

1 − ψN
2 , q

N
1 − qN2 ⟩

)
dt. (19)

Furthermore for any q0 ∈ L4
F0

(Ω,H) and F ∈ L4
F (0, T ;L

2(D)) the following a priori and integral bounds are
satisfied uniformly in N ∈ N

E

[
sup

t∈[0,T ]

∣∣∣∣∣∣qN (t)
∣∣∣∣∣∣2] ≤ E

[
|||q0|||2 + 2

∫ T

0

∥F (s)∥2ds

]
eCT , (20)

νE

[∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds] ≤ E

[∫ T

0

∥F (s)∥2 ds

]
+ CTE

[
|||q0|||2 + 2

∫ T

0

∥F∥2ds

]
eCT , (21)

E
[
supt∈[0,T ]

∣∣∣∣∣∣qN (t)
∣∣∣∣∣∣4]+ E

[∫ T

0

∣∣∣∣∣∣qN (s)
∣∣∣∣∣∣2∣∣∣∣∣∣∇qN (s)

∣∣∣∣∣∣2 ds] ≤ C(T ), (22)

E

(∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds)2

 ≤ C(T ), (23)

where C is a constant possibly changing its value line by line, but independent of N .
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Proof. Let us start by showing (19). We first apply the finite dimensional Itô’s formula to the system (18) to get

d∥qN1 ∥2

2
=
(
ν⟨∆ψN

1 ,∆q
N
1 ⟩ − β⟨∂xψN

1 , q
N
1 ⟩+ ⟨F, qN1 ⟩

)
dt

d∥qN2 ∥2

2
=
(
ν⟨∆ψN

2 ,∆q
N
2 ⟩ − β⟨∂xψN

2 , q
N
2 ⟩ − r⟨∆ψN

2 , q
N
2 ⟩
)
dt,

then multiply each equation by h1 and h2 respectively and sum them up to obtain

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣2
2

=
(
h1ν⟨∆ψN

1 ,∆q
N
1 ⟩+ h2ν⟨∆ψN

2 ,∆q
N
2 ⟩
)
dt+

(
−βh1⟨∂xψN

1 , q
N
1 ⟩ − βh2⟨∂xψN

2 , q
N
2 ⟩
)
dt(

+h1⟨F, qN1 ⟩ − rh2⟨∆ψN
2 , q

N
2 ⟩
)
dt. (24)

Now, thanks to relations (3), (4) and (14) we have

h1⟨∆ψN
1 ,∆q

N
1 ⟩+ h2ν⟨∆ψN

2 ,∆q
N
2 ⟩ = h1⟨qN1 + S1(ψ1 − ψ2),∆q

N
1 ⟩+ h2⟨qN2 + S2(ψ2 − ψ1),∆q

N
2 ⟩

= −
∣∣∣∣∣∣∇qN

∣∣∣∣∣∣2 + S⟨∆ψN
1 −∆ψN

2 , q
N
1 − qN2 ⟩

= −
∣∣∣∣∣∣∇qN

∣∣∣∣∣∣2 + S∥qN1 − qN2 ∥2 + S(S1 + S2)⟨ψN
1 − ψN

2 , q
N
1 − qN2 ⟩.

Using (3) to treat similarly the term rh2⟨∆ψN
2 , q

N
2 ⟩, from (24) we get the desired result

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣2
2

+ ν
∣∣∣∣∣∣∇qN

∣∣∣∣∣∣2dt = (−βh1⟨∂xψN
1 , q

N
1 ⟩ − βh2⟨∂xψN

2 , q
N
2 ⟩+ h1⟨F, qN1 ⟩ − rh2∥qN2 ∥2

)
dt

+
(
Sr⟨ψN

1 − ψN
2 , q

N
2 ⟩+ Sν∥qN1 − qN2 ∥2 + νS(S1 + S2)⟨ψN

1 − ψN
2 , q

N
1 − qN2 ⟩

)
dt. (25)

All the terms in the right hand side of (25) except for h1⟨F, qN1 ⟩ can be estimate by C∥ψN∥H2

∣∣∣∣∣∣qN
∣∣∣∣∣∣ via

Cauchy–Schwarz inequality. Therefore, exploiting the continuity of (−∆−M)
−1

: H → H2 we have

∥ψN∥H2

∣∣∣∣∣∣qN
∣∣∣∣∣∣ ≤ C

∣∣∣∣∣∣qN
∣∣∣∣∣∣2. (26)

For what concerns h1⟨F, qN1 ⟩, it can be bounded easily by Young’s inequality in the following way

h1⟨F, qN1 ⟩ ≤ ∥F∥2 + C
∣∣∣∣∣∣qN

∣∣∣∣∣∣2. (27)

Combining equations (26) and (27) it follows that there exists a constant C independent of N such that

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣2
2

+ ν
∣∣∣∣∣∣∇qN

∣∣∣∣∣∣2dt ≤ (C∣∣∣∣∣∣qN
∣∣∣∣∣∣2 + ∥F∥2

)
dt. (28)

Thus, via Grönwall’s inequality and exploiting the fact that PN are projections on L2(D), we have that∣∣∣∣∣∣qN (t)
∣∣∣∣∣∣2 ≤

(
|||q0|||2 + 2

∫ t

0

∥F (s)∥2ds
)
eCt,

hence (20) holds taking the supremum over [0, T ] and the expectation on both sides. Next, integrating in time
(28) and using the estimate just obtained we have

ν

∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds ≤ ∫ T

0

∥F (s)∥2 ds+ CT

(
|||q0|||2 + 2

∫ T

0

∥F (s)∥2ds

)
eCT .

from which follows (21).

Moving on to (22), since d
∣∣∣∣∣∣qN

∣∣∣∣∣∣4 = 2
∣∣∣∣∣∣qN

∣∣∣∣∣∣2d∣∣∣∣∣∣qN
∣∣∣∣∣∣2, exploiting the energy estimate (19) we obtain

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣4 + 4ν
∣∣∣∣∣∣qN

∣∣∣∣∣∣2∣∣∣∣∣∣∇qN
∣∣∣∣∣∣2 dt = 4

∣∣∣∣∣∣qN
∣∣∣∣∣∣2 (−βh1⟨∂xψN

1 , q
N
1 ⟩ − βh2⟨∂xψN

2 , q
N
2 ⟩+ h1⟨F, qN1 ⟩

)
dt+

4
∣∣∣∣∣∣qN

∣∣∣∣∣∣2 (−rh2∥qN2 ∥2 + Sr⟨ψN
1 − ψN

2 , q
N
2 ⟩
)
dt+4

∣∣∣∣∣∣qN
∣∣∣∣∣∣2 (Sν∥qN1 − qN2 ∥2 + Sν(S1 + S2)⟨ψN

1 − ψN
2 , q

N
1 − qN2 ⟩

)
dt.
(29)
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As argued for (20), by appropriate use of Cauchy-Schwartz inequality and of the continuity of the operator
(−∆−M)−1, we can estimate the right hand side of (29) as follows

d
∣∣∣∣∣∣qN

∣∣∣∣∣∣4 + 4ν
∣∣∣∣∣∣qN

∣∣∣∣∣∣2∣∣∣∣∣∣∇qN
∣∣∣∣∣∣2 dt ≤ (C∣∣∣∣∣∣qN

∣∣∣∣∣∣4 + C∥F∥
∣∣∣∣∣∣qN

∣∣∣∣∣∣3) dt
≤
(
C
∣∣∣∣∣∣qN

∣∣∣∣∣∣4 + ∥F∥4
)
dt. (30)

Thus, via Grönwall’s inequality and the properties of the projection PN , we get∣∣∣∣∣∣qN (t)
∣∣∣∣∣∣4 ≤

(
|||q0|||4 +

∫ t

0

∥F (s)∥4 ds
)
eCt.

From this relation it follows immediately that

E
[
supt∈[0,T ]

∣∣∣∣∣∣qN (t)
∣∣∣∣∣∣4]+ E

[∫ T

0

∣∣∣∣∣∣qN (s)
∣∣∣∣∣∣2∣∣∣∣∣∣∇qN (s)

∣∣∣∣∣∣2 ds] ≤ C

where C = C(T ) is a constant dependent on the time T but crucially independent of N .
Finally, to prove (23) we integrate (28) over [0, T ] to get

ν

∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds ≤ 1

2 |||q0|||2 + C

∫ T

0

∣∣∣∣∣∣qN (s)
∣∣∣∣∣∣2 ds+ ∫ T

0

∥F (s)∥2 ds.

Squaring and simply bounding the right hand side we have

ν2

(∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds)2

≤ 3
2 |||q0|||4 + 3

(
CT sup

t∈[0,T ]

∣∣∣∣∣∣qN (s)
∣∣∣∣∣∣2)2

+ 3

(∫ T

0

∥F (s)∥2 ds

)2

.

By (20) we have

ν2

(∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds)2

≤ 3
2 |||q0|||4 + 3

[
CTeCT

(
|||q0|||2 + 2

∫ T

0

∥F (s)∥2 ds

)]2
+ 3

(∫ T

0

∥F (s)∥2 ds

)2

.

Then taking the expectation on both side, (23) holds with constant C depending on T , E
[
|||q0|||4

]
and E

[
∥F∥4L2(0,T ;H)

]
.

From the energy estimates for qN shown in Lemma 3.1, it follows that there exists a subsequence, which we
will denote again for simplicity by qN , converging to a stochastic process q ∗-weakly in L4(Ω;L∞(0, T ;H)), and
weakly in L4(Ω;L2(0, T ;V)). Furthermore there exist two unknown processes, B∗

1 , B
∗
2 such that

∇⊥ψN
j · ∇qNj ⇀B∗

j in L2(Ω;L2(0, T ;H−1(D)), j ∈ {1, 2}. (31)

Moreover, thanks to the converging properties of the projector PN for N → +∞, the processes q and B∗
j , j ∈

{1, 2} satisfies P-a.s. for each i ∈ N and t ∈ [0, T ]

⟨q1(t), ei⟩+
∫ t

0

⟨B∗
1(s), ei⟩H−1,H1ds = ⟨q1,0, ei⟩+

∫ t

0

⟨∆ψ1(s), ν∆ei⟩ ds+
∫ t

0

⟨q1(s), F1ei⟩ ds

+

∫ t

0

⟨β∂xψ1 (s) , ei⟩ ds+
∫ t

0

⟨F (s), ei⟩ ds−
∑
k∈K

∫ t

0

〈
q1(s), G

k
1ei
〉
dW 1,k

s

⟨q2(t), ei⟩+
∫ t

0

⟨B∗
2(s), ei⟩H−1,H1ds = ⟨q2,0, ei⟩+

∫ t

0

⟨∆ψ2(s), ν∆ei⟩ ds+
∫ t

0

⟨q2(s), F2ei⟩ ds

+

∫ t

0

⟨β∂xψ2 (s) , ei⟩ ds− r

∫ t

0

⟨∆ψ2(s), ei⟩ ds−
∑
k∈K

∫ t

0

〈
q2(s), G

k
2ei
〉
dW 2,k

s .

(32)
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Let us expand on the convergence of the term∫ t

0

⟨qNj (s), FN
j ei⟩ ds.

We know that for each α ≥ 0 and x ∈ D((−∆)α), ∥PNx−x∥D((−∆)α) vanishes on the limit N → ∞. Thus, since

for each k ∈ K, β ≥ 1/2, the operator σj,k · (∇·) is in L(D((−∆)β), D((−∆)β−1/2)), then for ϕ ∈ D((−∆)β),
∥PN (σj,k · ϕ) − σj,k · ϕ∥D((−∆)β−1/2) converges to zero for increasing N . Starting from these observations it is

easy to show that for each i, ∥FN
j ei − Fjei∥ → 0. Then, thanks to the weak convergence of qNj to qj , we have

the required convergence of
∫ t

0
⟨qNj (s), FN

j ei⟩ds.
For what concerns the continuity in H of the process q we can argue in the following way via Itô’s formula and

Kolmogorov continuity theorem. From the weak formulation above we get the weak continuity in H of q applying
the Kolmogorov continuity theorem for (32). Then, applying the Itô’s formula to |||q(t)|||2 we get, arguing as in
the proof of Lemma 3.1,

d|||q|||2

2
= −ν|||∇q|||2dt

(
−βh1⟨∂xψ1, q1⟩ − βh2⟨∂xψ2, q2⟩+ h1⟨F, q1⟩ − rh2∥q2∥2 + Sr⟨ψ1 − ψ2, q2⟩

)
dt

+
(
Sν∥q1 − q2∥2 + Sν(S1 + S2)⟨ψ1 − ψ2, q1 − q2⟩

)
dt− (h1⟨B∗

1 , q1⟩+ h2⟨B∗
2 , q2⟩) dt.

From this, we get the continuity of ∥q(t)∥2 thanks to the integrability properties of q. Weak continuity and
continuity of the norm implies strong continuity, thus we have the strong continuity of q as a process taking
values in H. Alternatively the strong continuity in H of q follows from the results in [24].

3.2 Existence, Uniqueness and Further Results

First, it is easy to show that the solution of (6), when it exists, it is unique.

Theorem 3.2. There is at most one weak solution of problem (6) in the sense of Definition 1.1.

Proof. Let q, q̃ be two solutions and let v be their difference. Let ψ, ψ̃ be the corresponding streamfunctions
and χ be their difference. Let us consider the difference between two weak solutions and applying Itô’s formula,
which can be justified arguing as in the proof of Proposition 3.6 below, we get

d∥v1∥2

2
=
(
ν⟨∆χ1,∆v1⟩ − ⟨∇⊥ψ1 · ∇q1, v1⟩+ ⟨∇⊥ψ̃1 · ∇q̃1, v1⟩H−1,H1 − β⟨∂xχ1, v1⟩

)
dt

d∥v2∥2

2
=
(
ν⟨∆χ2,∆v2⟩ − ⟨∇⊥ψ2 · ∇q2, v2⟩H−1,H1 + ⟨∇⊥ψ̃2 · ∇q̃2, v2⟩ − β⟨∂xχ2, v2⟩ − r⟨∆χ2, v2⟩

)
dt.

Let us rewrite better −⟨∇⊥ψ1 · ∇q1, v1⟩H−1,H1 + ⟨∇⊥ψ̃1 · ∇q̃1, v1⟩H−1,H1 , the other one is analogous.

− ⟨∇⊥ψ1 · ∇q1, v1⟩H−1,H1 + ⟨∇⊥ψ̃1 · ∇q̃1, v1⟩H−1,H1 ± ⟨∇⊥ψ̃1 · ∇q1, v1⟩H−1,H1

= −⟨∇⊥χ1 · q1, v1⟩H−1,H1 − ⟨∇⊥ψ̃1 · ∇v1, v1⟩H−1,H1 = ⟨∇⊥χ1 · ∇v1, q1⟩H−1,H1 .

Multiplying the equations by h1 and h2 respectively and summing up, if we call β̃j = hjβ, for j ∈ {1, 2}, and
r̃ = rh2 we get

d|||v|||2

2
=
(
νh1⟨∆χ1,∆v1⟩+ h1⟨∇⊥χ1 · v1, q1⟩H−1,H1 − β̃1⟨∂xχ1, v1⟩

)
dt

+
(
νh2⟨∆χ2,∆v2⟩+ h2⟨∇⊥χ2 · v2, q2⟩H−1,H1 − β̃2⟨∂xχ2, v2⟩ − r̃⟨∆χ2, v2⟩

)
dt =: RHSdt.

Let R(t) = exp
(
−
∫ T

0
η|||∇q(s)|||2 ds

)
, where η is a positive constant fixed below. Therefore we have

dR(t)|||v|||2

2
= R(t)RHS dt− η

2
|||v|||2|||∇q|||2R(t) dt.
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Exploiting relation (3) we obtain

dR(t)|||v|||2

2
+ νR(t)|||∇v|||2dt =− η

2
|||v|||2|||∇q|||2R(t)dt−R(t)νS⟨∆(χ2 − χ1), v1 − v2⟩ dt(

−β̃1R(t)⟨∂xχ1, v1⟩ − β̃2R(t)⟨∂2χ2, v2⟩ − r̃R(t)∥v2∥2
)
dt

+
(
r̃R(t)⟨χ1 − χ2, v2⟩+ h1R(t)⟨∇⊥χ1 · v1, q1⟩H−1,H1

+h2R(t)⟨∇⊥χ2 · v2, q2⟩H−1,H1

)
dt.

The terms which comes from the linear part of the equations can be estimated easily, up to some constant C, by
R(t)|||v(t)|||2, thus we need only to analyze the nonlinear ones. Again we treat only one of the two in order to
avoid repetitions.

⟨∇⊥χ1 · v1, q1⟩H−1,H1 ≤ ∥∇q1∥∥v1∥L4∥∇⊥χ1∥L4 ≤ C∥∇q1∥|||v||||||∇v|||

≤ ν

4h1
|||∇v|||2 + C∥∇q1∥2|||v|||2.

Therefore, taking η large enough we get

dR|||v|||2

2
+
ν

2
R|||∇v|||2dt ≤CR|||v|||2dt

and the thesis follows immediately by Grönwall’s Lemma.

Harder task is to ensure the existence of the solutions of equations (6). To show it we need the following
crucial lemma which, for an appropriate stopping time τM , ensures convergence of the associated stopped Galerkin
process qN to the stopped process q. This procedure, introduced in [3], is standard in stochastic analysis, see
for example [27], [23].

Lemma 3.3. Let τM = inf{t ∈ [0, T ] : |||q(t)|||2 ≥M} ∧ inf{t ∈ [0, T ] :
∫ t

0
|||q(s)|||2V ds ≥M} ∧ T , then

1[0,τM ](q
N − q) → 0 in L2(Ω, L2(0, T ;H)).

Proof. We have to show that

E
∫ T

0

1[0,τM ](s)
∣∣∣∣∣∣qN (s)− q(s)

∣∣∣∣∣∣2 ds (33)

converges to zero in N . Let us call ψ̃N
j = PNψj q̃

N
j = PNqj , j ∈ {1, 2} and ψ̃N , q̃N satisfy relation (3). Then,

by the triangular inequality

(33) ≤ 2E
∫ T

0

1[0,τM ](s)
∣∣∣∣∣∣q̃N (s)− q(s)

∣∣∣∣∣∣2 ds+ 2E
∫ T

0

1[0,τM ](s)
∣∣∣∣∣∣q̃N (s)− qN (s)

∣∣∣∣∣∣2 ds.
Thanks to the properties of the projector PN and dominated convergence theorem, it can be shown that q̃N → q
in L2(Ω, L2(0, T ;V)) ∩ L2(Ω, C(0, T ;H)), and also in weaker topologies. Therefore, we are left to show the
convergence of

E
∫ τM

0

∣∣∣∣∣∣q̃N (s)− qN (s)
∣∣∣∣∣∣2 ds. (34)

Let us start by taking the difference of (32) and (18), pair the two components respectively with h1
(
q̃N1 − qN1

)
and h2

(
q̃N2 − qN2

)
, and add them together to get an equation for

∣∣∣∣∣∣q̃N − qN
∣∣∣∣∣∣. With Itô formula and some

12



elementary manipulation using (14), we have

1

2
d
∣∣∣∣∣∣q̃N − qN

∣∣∣∣∣∣2 + ν
∣∣∣∣∣∣∇(q̃N − qN )

∣∣∣∣∣∣2 dt =− h1⟨B∗
1 −BN

1 , q̃
N
1 − qN1 ⟩H−1,H1 dt− h2⟨B∗

2 −BN
2 , q̃

N
2 − qN2 ⟩H−1,H1 dt

− νS(S1 + S2)∥(−∆+ S1 + S2)
−1/2

(
(q̃N1 − q̃N2 )− (qN1 − qN2 )

)
∥2

− β̃1⟨∂x(ψ1 − ψN
1 ), q̃N1 − qN1 ⟩ dt− β̃2⟨∂x(ψ2 − ψN

2 ), q̃N2 − qN2 ⟩ dt

+ νS∥(q̃N1 − q̃N2 )− (qN1 − qN2 )∥2 − S1

∑
k∈K

⟨q1 − qN1 , G
k
1(q̃

N
1 − qN1 )⟩dW 1,k

t

− S2

∑
k∈K

⟨q2 − qN2 , G
k
2(q̃

N
2 − qN2 )⟩dW 2,k

t

+ S1⟨q1, F1(q̃
N
1 − qN1 )⟩ dt− S1⟨qN1 , FN

1 (q̃N1 − qN1 )⟩ dt
+ S2⟨q2, F2(q̃

N
2 − qN2 )⟩ dt− S2⟨qN2 , FN

2 (q̃N2 − qN2 )⟩ dt
− r̃⟨∆(ψ̃N

2 − ψN
2 ), q̃N2 − qN2 ⟩ dt

+
S1

2

∑
k∈K

N∑
i=1

⟨q1 − qN1 , G
k
1ei⟩2 dt+

S2

2

∑
k∈K

N∑
i=1

⟨q2 − qN2 , G
k
2ei⟩2 dt,

(35)

where we denoted r̃ := h2r, β̃j := hjβ and BN
j = ∇⊥ψN

j · ∇qNj for j ∈ {1, 2}. Now we can estimate the RHS in
(35). In the following C will denote a generic constant independent of N .

∥⟨∆(ψ̃N
2 − ψN

2 ), q̃N2 − qN2 ⟩∥ ≤ ∥∆(ψ̃N
2 − ψN

2 )∥∥q̃N2 − qN2 ∥∥ ≤ C
∣∣∣∣∣∣q̃N − qN

∣∣∣∣∣∣2; (36)

∥(q̃N1 − q̃N2 )− (qN1 − qN2 )∥2 ≤ C
∣∣∣∣∣∣q̃N − qN

∣∣∣∣∣∣2; (37)

∥β̃1⟨∂x(ψ1 − ψN
1 ), q̃N1 − qN1 ⟩ + β̃2⟨∂x(ψ2 − ψN

2 ), q̃N2 − qN2 ⟩ ∥ ≤ C
∣∣∣∣∣∣q− qN

∣∣∣∣∣∣∣∣∣∣∣∣q̃N − qN
∣∣∣∣∣∣

≤ C
∣∣∣∣∣∣q̃N − qN

∣∣∣∣∣∣2 + C
∣∣∣∣∣∣q− q̃N

∣∣∣∣∣∣∣∣∣∣∣∣q̃N − qN
∣∣∣∣∣∣

≤ C
∣∣∣∣∣∣q̃N − qN

∣∣∣∣∣∣2 + C
∣∣∣∣∣∣q− q̃N

∣∣∣∣∣∣2. (38)

Next, to better understand the behavior of the terms

2⟨q1, F1(q̃
N
1 − qN1 )⟩ − 2⟨qN1 , FN

1 (q̃N1 − qN1 )⟩+
∑
k∈K

N∑
i=1

⟨q1 − qN1 , G
k
1ei⟩2 (39)

we will first write them in an equivalent form. By definition of F1 (8) and Green’s theorem we have

2⟨q1, F1(q̃
N
1 − qN1 )⟩ − 2⟨qN1 , FN

1 (q̃N1 − qN1 )⟩ = −
∑
k∈K

⟨σ1,k · ∇(q̃N1 − qN1 ),σ1,k · ∇q1⟩

+
∑
k∈K

⟨PN
(
σ1,k · ∇(q̃N1 − qN1 )

)
,σ1,k · ∇qN1 ⟩

= −
∑
k∈K

⟨σ1,k · ∇(q̃N1 − qN1 ),σ1,k · ∇q1 − PN
(
σ1,k · ∇qN1

)
⟩.

Similarly, recalling the definition (9) of Gk
1 , k = 1, . . . ,K, we have

∑
k∈K

N∑
i=1

⟨q1 − qN1 , G
k
1ei⟩2 =

∑
k∈K

N∑
i=1

⟨σ1,k · ∇q1 − σ1,k · ∇qN1 , ei⟩2

=
∑
k∈K

⟨σ1,k · ∇q1 − PN (σ1,k · ∇qN1 ), PN (σ1,k · ∇q1)− PN (σ1,k · ∇qN1 )⟩.
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Therefore, by some additional manipulations, it can be shown that

(39) = −
∑
k∈K

⟨σ1,k·∇q1−PN (σ1,k·∇qN1 ), (I−PN )(σ1,k·∇q1)⟩+
∑
k∈K

⟨σ1,k·∇q1−PN (σ1,k·∇qN1 ),σ1,k·∇(q1−q̃N1 )⟩

+
∑
k∈K

⟨σ1,k · ∇q1 − PN (σ1,k · ∇qN1 ), (I − PN )(σ1,k · ∇qN1 )⟩.

We can now estimate all terms by Cauchy-Schwartz inequality to get

(39) ≤
∑
k∈K

∥σ1,k · ∇q1 − PN (σ1,k · ∇qN1 )∥∥(I − PN )(σ1,k · ∇q1)∥

+
∑
k∈K

C∥σ1,k · ∇q1 − PN (σ1,k · ∇qN1 )∥∥∇(q1 − q̃N1 )∥+
∑
k∈K

C∥(I − PN )(σ1,k · ∇q1)∥∥∇qN1 ∥. (40)

The same estimate holds for the terms in (35) relative to the second component.
We now move on to treating the nonlinear term

−h1⟨B∗
1 −BN

1 , q̃
N
1 − qN1 ⟩H−1,H1 dt− h2⟨B∗

2 −BN
2 , q̃

N
2 − qN2 ⟩H−1,H1 dt

in (35) and again we only treat ⟨B∗
1 −BN

1 , q̃
N
1 −qN1 ⟩H−1,H1 as for the second component the argument is identical.

By definition BN
1 = ∇⊥ψN

1 · ∇qN1 , hence

− h1⟨B∗
1 −BN

1 , q̃
N
1 − qN1 ⟩H−1,H1 = h1⟨∇⊥(ψ̃N

1 − ψN
1 ) · ∇(q̃N1 − qN1 ), q̃N1 ⟩H−1,H1

+ h1⟨∇⊥ψ̃N
1 · ∇q̃N1 −B∗

1 , q̃
N
1 − qN1 ⟩H−1,H1 . (41)

We can estimate the first term on the right hand side of the last display as follows

|⟨∇⊥(ψ̃N
1 − ψN

1 ) · ∇(q̃N1 − qN1 ), q̃N1 ⟩H−1,H1 | ≤ ∥∇q̃N1 ∥∥q̃N1 − qN1 ∥L4∥∥∇⊥(ψ̃N
1 − ψN

1 )∥L4

≤ C∥∇q1∥∥q̃N1 − qN1 ∥2L4

and, by Ladyzhenskaya’s and Young’s inequalities we have

≤ C∥∇q1∥∥q̃N1 − qN1 ∥∥∇(q̃N1 − qN1 )∥ ≤ Cν∥∇q1∥2∥q̃N1 − qN1 ∥2 + ν

2
∥∇(q̃N1 − qN1 )∥2. (42)

The second term in (41) can be rewritten as

⟨∇⊥ψ̃N
1 · ∇q̃N1 −B∗

1 , q̃
N
1 − qN1 ⟩H−1,H1 = ⟨∇⊥ψ1 · ∇q1 −B∗

1 , q̃
N
1 − qN1 ⟩H−1,H1

− ⟨∇⊥ψ1 · ∇q1 −∇⊥ψ̃N
1 · ∇q̃N1 , q̃N1 − qN1 ⟩H−1,H1 .

Since q̃N − qN ⇀ 0 in L2(Ω;L2(0, T ;V)), the expected value of first term will go to 0 easily. For what concerns
the second one, adding and subtracting ⟨∇⊥ψ1 · ∇q̃N1 , q̃N1 − qN1 ⟩H−1,H1 we have

⟨∇⊥ψ1 · ∇q1 −∇⊥ψ̃N
1 · ∇q̃N1 , q̃N1 − qN1 ⟩H−1,H1 = ⟨∇⊥ψ1 · (∇q1 −∇q̃N1 ), q̃N1 − qN1 ⟩H−1,H1

+ ⟨(∇⊥ψ1 −∇⊥ψ̃N
1 ) · ∇q̃N1 , q̃N1 − qN1 ⟩H−1,H1

so that, again by Ladyzhenskaya’s inequality,

≤ ∥∇⊥ψ1∥L4∥q1 − q̃N1 ∥1/2∥∇(q1 − q̃N1 )∥1/2∥∇(q̃N1 − qN1 )∥+ ∥∇⊥ψ1 −∇⊥ψ̃N
1 ∥L4∥q̃N1 ∥1/2∥∇q̃N1 ∥1/2∥∇(q̃N1 − qN1 )∥.

In summary, we showed

⟨∇⊥ψ̃N
1 · ∇q̃N1 −B∗

1 , q̃
N
1 − qN1 ⟩ =⟨∇⊥ψ1 · ∇q1 −B∗

1 , q̃
N
1 − qN1 ⟩

+ ∥∇⊥ψ1∥L4∥q1 − q̃N1 ∥1/2∥∇(q1 − q̃N1 )∥1/2∥∇(q̃N1 − qN1 )∥
+ ∥∇⊥ψ1 −∇⊥ψ̃N

1 ∥L4∥q̃N1 ∥1/2∥∇q̃N1 ∥1/2∥∇(q̃N1 − qN1 )∥.

(43)
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Consider now the auxiliary function

R(t) := 1
2 exp

(
−η1t− η2

∫ t

0

|||∇q(s)|||2 ds
)
, (44)

with η1 and η2 two positive constants to be defined later, and let us then compute via the Itô’s formula

R(t)
∣∣∣∣∣∣q̃N (t)− qN (t)

∣∣∣∣∣∣2. We exploit previous estimates (36),(37),(38),(40) and (42) and take the expected value
for t = τM obtaining

E
[
1
2R(τM )

∣∣∣∣∣∣q̃N (τM )− qN (τM )
∣∣∣∣∣∣2]+ νE

[∫ τM

0

R(s)
∣∣∣∣∣∣∇(q̃N (s)− qN (s))

∣∣∣∣∣∣2 ds] ≤
− η1

2
E
[∫ τM

0

R(s)
∣∣∣∣∣∣q̃N (s)− qN (s)

∣∣∣∣∣∣2 ds]− η2
2
E
[∫ τM

0

R(s)|||∇q(s)|||2
∣∣∣∣∣∣q̃N (s)− qN (s)

∣∣∣∣∣∣2 ds]
+ h1

∣∣∣∣E [∫ τM

0

R(s)⟨B∗
1(s)−∇⊥ψ̃N

1 (s) · ∇q̃N1 (s), q̃N1 (s)− qN1 (s)⟩ ds

]∣∣∣∣
+ h2

∣∣∣∣E [∫ τM

0

R(s)⟨B∗
2(s)−∇⊥ψ̃N

2 (s) · ∇q̃N2 (s), q̃N2 (s)− qN2 (s)⟩ ds

]∣∣∣∣
+ CE

[∫ τM

0

R(s)|||∇q(s)|||2
∣∣∣∣∣∣q̃N (s)− qN (s)

∣∣∣∣∣∣2 ds]+ ν

2
E
[∫ τM

0

R(s)
∣∣∣∣∣∣∇q̃(s)N −∇qN (s)

∣∣∣∣∣∣2 ds]
+ CE

[∫ τM

0

R(s)
∣∣∣∣∣∣q̃N (s)− qN (s)

∣∣∣∣∣∣2 ds]+ CE
[∫ τM

0

R(s)
∣∣∣∣∣∣q̃N (s)− q(s)

∣∣∣∣∣∣2 ds]
+
∑
k∈K

E
[∫ τM

0

∥σ1,k · ∇q1(s)− PN (σ1,k · ∇qN1 (s))∥∥(I − PN )(σ1,k · ∇q1(s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥σ1,k · ∇q1(s)− PN (σ1,k · ∇qN1 (s))∥∥∇(q1(s)− q̃N1 (s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥(I − PN )(σ1,k · ∇q1(s))∥∥∇qN1 (s)∥ ds
]

+
∑
k∈K

E
[∫ τM

0

∥σ2,k · ∇q2(s)− PN (σ2,k · ∇qN2 (s))∥∥(I − PN )(σ2,k · ∇q2(s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥σ2,k · ∇q2(s)− PN (σ2,k · ∇qN2 (s))∥∥∇(q2(s)− q̃N2 (s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥(I − PN )(σ2,k · ∇q2(s))∥∥∇qN2 (s)∥ ds
]
.

(45)

Taking η1, η2 large enough and exploiting the convergence of q̃N to q we can neglect several terms in the right
hand side. Let us consider the remaining terms. Recalling that from the weak convergence of qN it follows that

E
[∫ T

0

∣∣∣∣∣∣∇qN (s)
∣∣∣∣∣∣2 ds] ≤ C, applying Cauchy–Schwarz inequality where it is needed, we get

∑
k∈K

E
[∫ τM

0

∥σ1,k · ∇q1(s)− PN (σ1,k · ∇qN1 (s))∥∥(I − PN )(σ1,k · ∇q1(s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥σ1,k · ∇q1(s)− PN (σ1,k · ∇qN1 (s))∥∥∇(q1(s)− q̃N1 (s))∥ ds
]

+ C
∑
k∈K

E
[∫ τM

0

∥(I − PN )(σ1,k · ∇q1(s))∥∥∇qN1 (s)∥ ds
]

≤ C
∑
k∈K

E

[∫ T

0

∥(I − PN )(σ1,k · ∇q1(s))∥2 ds

]1/2
+ CE

[∫ T

0

∥∇(q1(s)− q̃N1 (s))∥2 ds

]1/2
→ 0
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and similarly for the second component. Lastly, let us consider∣∣∣∣E [∫ τM

0

R(s)⟨B∗
1(s)−∇⊥ψ̃N

1 (s) · ∇q̃N1 (s), q̃N1 (s)− qN1 (s)⟩ ds

]∣∣∣∣ .
By (43) we have that

E
[∫ τM

0

R(s)⟨∇⊥ψ̃N
1 (s) · ∇q̃N1 (s)−B∗

1(s), q̃
N
1 (s)− qN1 (s)⟩ ds

]
≤ E

[∫ τM

0

R(s)⟨∇⊥ψ1(s) · ∇q1(s)−B∗
1(s), q̃

N
1 (s)− qN1 (s)⟩ ds

]
+ E

[∫ τM

0

R(s)∥∇⊥ψ1(s)∥L4∥q1(s)− q̃N1 (s)∥1/2∥∇(q1(s)− q̃N1 (s))∥1/2∥∇(q̃N1 (s)− qN1 (s))∥ ds
]

+ E
[∫ τM

0

R(s)∥∇⊥ψ1(s)−∇⊥ψ̃N
1 (s)∥L4∥q̃N1 (s)∥1/2∥∇q̃N1 (s)∥1/2∥∇(q̃N1 (s)− qN1 (s))∥ ds

]
.

(46)

As already observed the first term converges to zero as q̃N − qN ⇀ 0 in L2(Ω;L2(0, T ;V)). For what concerns
the two remaining terms, thanks to Hölder inequality, we have

≤ CE

[∫ T

0

∥q1(s)− q̃N1 (s)∥2 ds

]1/4
E

[∫ T

0

∥∇(q1(s)− q̃N1 (s))∥2 ds

]1/4
E

[∫ T

0

∥∇(qN1 (s)− q̃N1 (s))∥2 ds

]1/2

+ CE

[∫ T

0

∥q1(s)− q̃N1 (s)∥2 ds

]1/4
E
[∫ τM

0

∥∇q̃N1 (s)∥2 ds
]1/4

E

[∫ T

0

∥∇(qN1 (s)− q̃N1 (s))∥2 ds

]1/2
.

In the last inequality we exploit the fact that |||q(t)|||2 ≤M , for all t ≤ τM , and q̃N−qN ⇀ 0 in L2(Ω;L2(0, T ;V)).
In conclusion, in (45) all the terms on the right hand side converge to zero as N → ∞, namely we have the

following relation

E
[
1

2
R(τM )

∣∣∣∣∣∣q̃N (τM )− qN (τM )
∣∣∣∣∣∣2]+ ν

2
E
[∫ τM

0

R(s)
∣∣∣∣∣∣∇(q̃N (s)− qN (s))

∣∣∣∣∣∣2 ds]→ 0. (47)

From relation (47), R(t) ≥ CM > 0, for all t ≤ τM , and the properties of PN , via triangular inequality the thesis
follows.

The lemma just shown allows to treat the nonlinearity ∇⊥ψN
j · ∇qNj , more precisely, to show that for both

j = 1, 2
∇⊥ψN

j · ∇qNj ⇀ ∇⊥ψj · ∇qj .

Lemma 3.4. Let B∗
1 , B

∗
2 be the limit processes as in (31). Then B∗

1 = ∇⊥ψ1 · ∇q1 and B∗
2 = ∇⊥ψ2 · ∇q2 in

L2(Ω, L2(0, T ;H−1(D))).

Proof. Thanks to estimate (22) and (23) we know that ∇⊥ψ1,2 · ∇qN1,2 and ∇⊥ψN
1,2 · ∇q1,2 converge to ∇⊥ψ1,2 ·

∇q1,2 weakly in L2(Ω;L2(0, T ;H−1(D))). We do the explicit computations just for one of them, the others are
analogous.

E

[∫ T

0

∥∇⊥ψ1,2(s) · ∇qN1,2(s)∥2H−1 ds

]
≤ CE

[∫ T

0

∥∆ψ(s)∥2∥∇qN (s)∥2 ds

]

≤ CE

[
supt∈[0,T ]∥q(t)∥2

∫ T

0

∥∇qN (s)∥2 ds

]

≤ CE
[
supt∈[0,T ]∥q(t)∥4

]
+ CE

(∫ T

0

∥∇qN (s)∥2 ds

)2
 ≤ C.
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Let now ϕ ∈ L∞(Ω;L∞(0, T ;H1(D))), then ∇ϕ · ∇⊥ψ1,2 ∈ L2(Ω;L2(0, T ;L2(D))). Thus, from the convergence
properties of qN , we have

E

[∫ T

0

⟨∇⊥ψ1,2(s) · ∇qN1,2(s), ϕ⟩H−1,H1ds

]
= −E

[∫ T

0

⟨∇⊥ψ1,2(s) · ∇ϕ, qN1,2(s)⟩ds

]

→ −E

[∫ T

0

⟨∇⊥ψ1,2(s) · ∇ϕ, q1,2(s)⟩ds

]

= E

[∫ T

0

∇⊥ψ1,2(s) · ∇q1,2(s), ϕ⟩H−1,H1ds

]
.

From the density of L∞(Ω;L∞(0, T ;H1(D))) in L2(Ω;L2(0, T ;H1(D))) and the uniform boundedness of ∇⊥ψ1,2 ·
∇qN1,2 in L2(Ω;L2(0, T ;H−1(D))) we have the required claim. For what concerns the convergence of the nonlinear

term, first note that, arguing as above, the sequence {∇⊥ψN
1,2·∇qN1,2} is uniformly bounded in L2(Ω;L2(0, T ;H−1(D))).

Moreover we have

∇⊥ψ1,2 · ∇q1,2 −∇⊥ψN
1,2 · ∇qN1,2 = ∇⊥ψ1,2 · ∇(q1,2 − qN1,2) +∇⊥ψ1,2 · ∇qN1,2

+∇⊥ψN
1,2 · ∇(q1,2 − qN1,2)−∇⊥ψ1,2 · ∇qN1,2 =: I1 + I2 + I3 + I4.

Thanks to the previous observations I1 + I2 + I4 converges weakly to 0 in L2(Ω;L2(0, T ;H−1(D))). For what
concerns I3, let us take ϕ ∈ L∞(Ω;L∞(0, T ;H2(D))) and τM defined as in Lemma 3.3, then we have

E
[∫ τM

0

⟨∇⊥ψN
1,2(s) · ∇(q1,2(s)− qN1,2(s)), ϕ⟩ ds

]
≤ CE

[∫ τM

0

∥qN (s)∥∥q(s)− qN (s)∥ ds
]
→ 0

thanks to Hölder’s inequality and Lemma 3.3. Since it holds τM ↗ T a.s., then the thesis follows, thanks to
Lemma 3.1. Then the thesis follows by the density of L∞(Ω;L∞(0, T ;H2(D))) in L2(Ω;L2(0, T ;H1(D))) and
the uniform boundedness of ∇⊥ψN

1,2 · ∇qN1,2 in 2(Ω;L2(0, T ;H−1(D))).

This series of lemmas identify the nonlinear term and conclude the proof of Theorem 1.2. Actually, thanks
to some abstract results on stochastic processes it can be shown something more, namely that the full sequence
qN converges to q in L2(Ω;L2(0, T ;V)) and, for each t ∈ [0, T ], qN (t) converges to q(t) in L2(Ω;H). This is an
easy corollary of previous result and Lemma 2.5.

Theorem 3.5. The entire Galerkin’s sequence qN satisfies

lim
N→+∞

E
[
∥qN (t)− q(t)∥2

]
= 0;

lim
N→+∞

∫ T

0

E
[
∥∇(qN (t)− q(t))∥2

]
dt = 0.

Proof. From the uniqueness of the solution of problem (6), we have that each subsequence qnk has a converging
sub-subsequence qnk,k which satisfies Lemma 3.1, Lemma 3.3 and Lemma 3.4. In order to apply Lemma 2.5, we
consider the stochastic processes

QN :=

∫ t

0

∥q(s)− qnN,N (s)∥2V ds or QN := ∥(q− qnN,N ) (t)∥2,

and we take σM to be τM , the stopping time introduced in Lemma 3.3. This choice for σM satisfies the conditions
of Lemma 2.5 by the following argument. Condition (16) follows directly from Lemma 3.1. Condition (17) is
satisfied thanks to relation (47) by exploiting the properties of PN and the fact that R(t) ≥ CM > 0 for all
t ≤ τM . It remains to show that

lim
M→+∞

P(τM < T ) = 0.
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By the definition of τM , Markov’s inequality, and Lemma 3.1, it follows:

P(τM < T ) ≤ P
(
supt∈[0,T ] |||q(t)|||

2
> M

)
+ P

(∫ T

0

|||q(s)|||2Vds > M

)

≤ 1

M
E
[
supt∈[0,T ] |||q(t)|||

2
]
+

1

M
E

[∫ T

0

|||q(s)|||2Vds

]

≤ 1

M
lim sup
N→+∞

E
[
supt∈[0,T ] |||qnN,N (t)|||2

]
+

1

M
lim sup
N→+∞

E

[∫ T

0

|||qnN,N (s)|||2Vds

]

≤ C

M
→ 0 for M → ∞

as desired. Then Lemma 2.5 ensures the result of the theorem.

Lastly, we show that the energy estimate (19) in Lemma 3.1 continues to holds for q, solution of problem
(6). For what concerns the a priori and integral estimates in Lemma 3.1, they straightforwardly continue to hold
by the weak convergence of qN to q, but they can proved independently starting from the energy estimate and
repeating the same steps of Lemma 3.1.

Proposition 3.6. Given q solution of (6), then the following energy estimate holds

d|||q|||2

2
+ ν|||∇q|||2dt =

(
−βh1⟨∂xψ1, q1⟩ − βh2⟨∂xψ2, q2⟩+ h1⟨F, q1⟩ − rh2∥q2∥2 + Sr⟨ψ1 − ψ2, q2⟩

)
dt

+
(
Sν∥q1 − q2∥2 + Sν(S1 + S2)⟨ψ1 − ψ2, q1 − q2⟩

)
dt.

Proof. Let q̃N be defined as in Lemma 3.3. We already know by the properties of the projector PN that q̃N → q
in L2(0, T ;V) ∩ C(0, T ;H) P-a.s. As q satisfies the weak formulation of (6) with test functions ei we have

⟨q1(t), ei⟩ = ⟨q1,0, ei⟩+
∫ t

0

⟨∆ψ1(s), ν∆ei⟩ ds+
∫ t

0

⟨q1(s), F1ei⟩ ds+
∫ t

0

⟨q1(s),∇⊥ψ1(s) · ∇ei⟩ds

+

∫ t

0

⟨β∂xψ1 (s) , ei⟩ ds+
∫ t

0

⟨F (s), ei⟩ ds−
∑
k∈K

∫ t

0

〈
q1(s), G

k
1ei
〉
dW 1,k

s

⟨q2(t), ei⟩ = ⟨q2,0, ei⟩+
∫ t

0

⟨∆ψ2(s), ν∆ei⟩ ds+
∫ t

0

⟨q2(s), F2ei⟩ ds+
∫ t

0

⟨q2(s),∇⊥ψ2(s) · ∇ei⟩ds

+

∫ t

0

⟨β∂xψ2 (s) , ei⟩ ds− r

∫ t

0

⟨∆ψ2(s), ei⟩ ds−
∑
k∈K

∫ t

0

〈
q2(s), G

k
2ei
〉
dW 2,k

s .

Multiplying each equation by ei and summing up, we get

dq̃1
N = ν∆2ψ̃N

1 dt+

N∑
i=1

〈
∇⊥ψ1 · ∇ei, q1

〉
eidt+

N∑
i=1

⟨F − β∂xψ1, ei⟩eidt

−
∑
k∈K

N∑
i=1

⟨Gk
1ei, q1⟩ dW 1,k +

N∑
i=1

⟨q1, F1ei⟩ei dt

dq̃2
N = ν∆2ψ̃N

2 dt− r∆ψ̃N
2 dt+

N∑
i=1

〈
∇⊥ψ2 · ∇ei, q2

〉
eidt− β

N∑
i=1

⟨∂xψ2, ei⟩eidt

−
∑
k∈K

N∑
i=1

⟨Gk
2ei, q2⟩ dW 2,k +

N∑
i=1

⟨q2, F2ei⟩ei dt.
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Now we can apply the Itô’s formula to the process
|||q̃N |||

2

2

=
h1∥q̃N1 ∥2+h2∥q̃N2 ∥2

2 obtaining, thanks to the relations
(3) and (14),

d
∣∣∣∣∣∣q̃N

∣∣∣∣∣∣2
2

+ ν
∣∣∣∣∣∣∇q̃N

∣∣∣∣∣∣2dt = (−βh1⟨∂xψN
1 , q̃

N
1 ⟩ − βh2⟨∂xψN

2 , q̃
N
2 ⟩+ h1⟨F, q̃N1 ⟩ − rh2∥q̃N2 ∥2 + Sr⟨ψ̃N

1 − ψ̃N
2 , q̃

N
2 ⟩
)
dt

+
(
Sν∥q̃N1 − q̃N2 ∥2 + νS(S1 + S2)⟨ψ̃N

1 − ψ̃N
2 , q̃

N
1 − q̃N2 ⟩

)
dt

+ h1⟨q1, F1q̃
N
1 ⟩dt+ h2⟨q2, F2q̃

N
2 ⟩dt+ h1

2

∑
k∈K

N∑
i=1

⟨Gk
1ei, q1⟩2dt+

h2
2

∑
k∈K

N∑
i=1

⟨Gk
2ei, q2⟩2dt

− h1
∑
k∈K

⟨q1, GK
1 q̃

N
1 ⟩dW 1,k − h2

∑
k∈K

⟨q2, GK
1 q̃

N
2 ⟩dW 2,k.

Then, thanks to the properties of the projector PN we get easily the desired formula. The only thing we need to
prove is that

h1⟨q1, F1q̃
N
1 ⟩+ h2⟨q2, F2q̃

N
2 ⟩+ h1

2

∑
k∈K

N∑
i=1

⟨Gk
1ei, q1⟩2 +

h2
2

∑
k∈K

N∑
i=1

⟨Gk
2ei, q2⟩2 → 0.

The last relation is true, in fact for each k ∈ {1, . . . ,K}, j ∈ {1, 2} we have

N∑
i=1

⟨qj(s),σj,k · ∇ei⟩2 + ⟨qj(s),σj,k · ∇
(
σj,k · ∇q̃Nj

)
⟩

= −⟨qj(s),σj,k · ∇
(
PN (σj,k · ∇qj(s))

)
⟩+ ⟨qj(s),σj,k · ∇

(
σj,k · ∇q̃Nj

)
⟩

= ⟨σj,k · ∇qj(s), PN (σj,k · ∇qj(s))⟩ − ⟨σj,k · ∇qj(s),σj,k · ∇q̃Nj ⟩ → 0.

4 Enhanced dissipation by transport

In this section we will focus first on the proof of Theorem 1.5 and then, in Section 4.2, we will study the long
time behaviour of the solutions of (11) showing that Theorem 1.6 holds.

4.1 Convergence to the Deterministic Evolution Model

The first step in order to prove Theorem 1.5, is to rewrite equations (11)-(12) in an alternative way, in order to
introduce explicitly the term ∆q. For this reason, using once more the relation (3), we express ∆2ψ as

∆2ψ = ∆ (q−Mψ) = ∆q+∆M(−∆−M)−1q.

Thus if we call F =

[
F

−r∆ψ2

]
, equation (11) can be rewritten as

dq =
(
(κ+ ν)∆q+ ν∆M(−∆−M)−1q−∇⊥ψ · ∇q− β∂xψ + F

)
dt+

√
2κ
∑
k∈K

akek · ∇qdW k

ψ = −(−∆−M)−1q

(48)

with initial condition q(0) = q0, where we denoted by

akek · ∇qdW k :=

[
a1,kek · ∇q1dW 1,k

a2,kek · ∇q2dW 2,k

]

19



Similarly, if we call F̄ =

[
F

−r∆ψ̄2

]
, the deterministic equation (12) can be rewritten as

dq̄ =
(
(κ+ ν)∆q̄+ ν∆M(−∆−M)−1q̄−∇⊥ψ̄ · ∇q̄− β∂xψ̄ + F̄

)
dt

ψ̄ = −(−∆−M)−1q̄
(49)

with initial condition q̄(0) = q0.
First, we want to show that the weak solution q of (11) satisfies a mild formulation. Denote the stochastic

integral and stochastic convolution as

M(t) :=
√
2κ
∑
k∈K

∫ t

0

akek · ∇q(s)dW k
s (50)

Z(t) :=
√
2κ
∑
k∈K

∫ t

0

e(κ+ν)(t−s)∆ (akek · ∇q(s)) dW k
s . (51)

Thanks to the results of Section 3 for the stochastic system the following relations can be shown to hold

supt∈[0,T ]∥q(t)∥2 ≤ C

(
∥q0∥2 +

∫ T

0

∥F (s)∥2ds

)
eCT =: R2

T , P–a.s. (52)

supt∈[0,T ]∥q̄(t)∥2 ≤ R2
T (53)∫ T

0

∥∇q(s)∥2 ds ≤ C

ν

(
TR2

T +

∫ T

0

∥F (s)∥2 ds

)
P–a.s. (54)

∫ T

0

∥∇q̄(s)∥2 ds ≤ C

κ+ ν

(
TR2

T +

∫ T

0

∥F (s)∥2 ds

)
. (55)

The constants C,RT here above depend from all the parameters of the model (i.e. T, ν, r, F,q0,M, β), except
for the parameters of the noise. Thanks to these estimates, Assumption 2.4 of [12] holds. Thus, thanks to
Corollary 2.6 in [12], the stochastic integral (50) and the stochastic convolution (51) are well defined and have
the regularity prescribed by the following Lemma.

Lemma 4.1. Given the processes (50) and (51) the following statements hold true:

(i) M(t) is a continuous martingale with values in H−1. Moreover it holds

E
[
supt∈[0,T ]∥M(t)∥2H−1

]
≲ κR2

TT.

(ii) For each ϵ ∈ (0, 1/2), p ≥ 1

E
[
supt∈[0,T ]∥Z(t)∥

p
H−ϵ

]1/p
≲ϵ,p,T

√
κ(ν + κ)ϵ−1RT , (56)

E
[
supt∈[0,T ]∥Z(t)∥

p
H−1−ϵ

]1/p
≲ϵ,p,T

√
κ(ν + κ)ϵ−1∥θ∥ℓ∞RT . (57)

(iii) For β ∈ (0, 1] and ϵ ∈ (0, β], p ≥ 1 it holds

E
[
supt∈[0,T ]∥Z(t)∥

p
H−β

]1/p
≲ϵ,p,T

√
κ(ν + κ)ϵ−1∥θ∥β−ϵ

ℓ∞ RT . (58)

It is then easy to show that the weak solution q of the problem (12) satisfies also a mild formulation. In fact
the following lemma holds.
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Lemma 4.2. If we denote by G(t) := ν∆M(−∆−M)−1q(t)−∇⊥ψ(t) · ∇q(t)− β∂xψ(t) + F(t), then

q(t) = e(k+ν)t∆q0 +

∫ t

0

e(k+ν)(t−s)∆G(s)ds+ Z(t), P− a.s. ∀t ∈ [0, T ].

Proof. By definition, if q is a weak solution of problem (11), then it satisfies

⟨q(t),ϕ⟩ − ⟨q0,ϕ⟩ =
∫ t

0

⟨(κ+ ν)∆q(s) +G(s),ϕ ⟩H−2,H2ds−
√
2κ
∑
k∈K

∫ t

0

⟨akek · ∇ϕ,q(s)⟩dW k
s

P-a.s. for each t ∈ [0, T ] and ϕ ∈ D(−∆). If take ei := (ei, ei)
t as a test function, we have

⟨q(t), ei⟩ − ⟨q0, ei⟩ =
∫ t

0

⟨λi(κ+ ν)q(s) +G(s), ei⟩H−2,H2ds−
√
2κ
∑
k∈K

∫ t

0

⟨akek · ∇ei,q(s)⟩dW k
s .

If we apply Itô formula to the process e−t(κ+ν)λi⟨q(t), ei⟩ and integrate in time we have

⟨q(t), ei⟩ = e−t(κ+ν)λi⟨q0, ei⟩+
∫ t

0

e−(t−s)(κ+ν)λi⟨G(s), ei⟩ds

−
√
2κ
∑
k∈K

∫ t

0

e−(t−s)(κ+ν)λi⟨akek · ∇ei,q(s)⟩dW k
s .

We can then find Γ ⊆ Ω of full probability such that the above equality holds for all t ∈ [0, T ]and all i ∈ Z2
0. But

this is exactly the mild formulation written in Fourier modes.

Remark 4.3. Similarly to Lemma 4.2, also the solution q̄ of the associated determinsitic equation (12) satisfies
for all t ∈ [0, T ] the integral relation

q̄(t) = e(k+ν)t∆q0 +

∫ t

0

e(k+ν)(t−s)∆
(
ν∆M(−∆−M)−1q̄(s)−∇⊥ψ̄(s) · ∇q̄(s)− β∂xψ̄(s) + F̄(s)

)
ds.

Before proving Theorem 1.5, we need a preliminary result on the nonlinearity of our problem.

Lemma 4.4. Let q ∈ L2, q̄ ∈ H1, then, given

R(q) = −∇⊥(−∆−M)−1q · ∇q,

for each α ∈ (0, 1) the following relation holds true

∥R(q)−R(q̄)∥H−1−α ≲α,M ∥q− q̄∥H−α (∥q∥+ ∥q̄∥H1) .

Proof. With a simple manipulation and the triangular inequality we have

∥R(q)−R(q̄)∥H−1−α ≤ ∥∇⊥(−∆−M)−1q̄ · ∇(q− q̄)∥H−1−α + ∥∇⊥(−∆−M)−1(q− q̄) · ∇q∥H−1−α

=: I1 + I2.

Then the thesis follows by Lemma 2.1. In fact by point 2, we have

I1 ≲α,M ∥∇⊥(−∆−M)−1q̄∥H2∥q̄− q∥H−α ≲ ∥q̄∥H1∥q̄− q∥H−α ,

and by point 4 it follows

I2 ≲α,M ∥q∥∥∇⊥(−∆−M)−1(q− q̄)∥H1−α ≲α,M ∥q∥∥q− q̄∥H−α .

We are now ready to show the main result of this section, Theorem 1.5:
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Proof of Theorem 1.5. We have seen in Lemma 4.2 and Remark 4.3 that both q and q̄ satisfies a mild formulation.
Thus calling ξ = q− q̄ and χ = ψ − ψ̄ we have

ξ(t) =

∫ t

0

e(κ+ν)(t−s)∆
(
ν∆M(−∆−M)−1ξ(s)− β∂xχ(s) + F(s)− F̄(s)

)
ds

−
∫ t

0

e(κ+ν)(t−s)∆ (R(q(s))−R(q̄(s))) ds+Z(t).

By Lemma 2.4 we have

∥ξ(t)∥2H−α ≲α,M ∥Z(t)∥2H−α +
1

κ+ ν

∫ t

0

∥R(q(s))−R(q̄(s))∥2H−α−1 ds

+
1

κ+ ν

∫ t

0

ν2∥∆M(−∆−M)−1ξ(s)∥2H−α−1 + β2∥∂xχ(s)∥2H−α−1 + r2∥∆χ2(s)∥2H−α−1 ds

and by the relation (3) it follows

∥ξ(t)∥2H−α ≲α,M ∥Z(t)∥2H−α +
1

κ+ ν

∫ t

0

∥R(q(s))−R(q̄(s))∥2H−α−1 ds+
β2 + ν2 + r2

κ+ ν

∫ t

0

∥ξ(s)|2H−α−1 ds.

Last, thanks to Lemma 4.4

∥ξ(t)∥2H−α ≲α,M ∥Z(t)∥2H−α +
1

κ+ ν

∫ t

0

∥ξ(s)∥2H−α

(
∥q(s)∥2 + ∥q̄(s)∥2V + β2 + ν2 + r2

)
ds.

Therefore, by Grönwall’s lemma, there exists C = C(α,M) such that

∥ξ(t)∥2H−α ≲α,M

(
supt∈[0,T ]∥Z(t)∥2H−α

)
exp

(
C

ν + κ

∫ T

0

∥q(s)∥2 + ∥q̄(s)∥2V ds

)
exp

(
T
ν2 + β2 + r2

κ+ ν

)
. (59)

Now we take the expectation of (59) and use relation (58) in Lemma 4.1 to estimate the stochastic convolution
to get

E ∥ξ(t)∥2H−α ≲α,M,ϵ,T
κ

(ν + κ)1−ϵ
∥θ∥2(α−ϵ)

ℓ∞ R2
T exp

(
T
ν2 + β2 + r2

κ+ ν

)
E exp

(
C

ν + κ

∫ T

0

∥q(s)∥2 + ∥q̄(s)∥2V ds

)
.

(60)
Now to prove statement (i) we use (52) and (55) to derive

E
[
∥q− q̄∥2C([0,T ];H−α)

]
≲α,M,ϵ,Tκ

ϵ∥θ∥2(α−ϵ)
ℓ∞ R2

T exp

(
T
ν2 + β2 + r2

κ+ ν

)
exp

(
CTR2

T

(κ+ ν)2
(1 + κ+ ν) +

C

(κ+ ν)
2

∫ T

0

∥F (s)∥2 ds

)
.

We move on to proving statement (ii). Given (60) let us now estimate
∫ T

0
∥q(s)∥2 using the estimate (54)

instead of (52), namely ∫ T

0

∥q(s)∥2ds ≲
∫ T

0

∥q(s)∥2V ds ≲
C

ν

(
TR2

T +

∫ T

0

∥F (s)∥2 ds

)

where we have also used that 1
ν + 1

κ+ν ≤ 2
ν . Then the desired bound follows from the same arguments used for

the estimate (i).

Remark 4.5. Similarly to [12], we can consider also the p moment of the random variables treated in the previous
theorem. We neglect this fact, which is not needed in order to prove Theorem 1.6.
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4.2 Long Time Behavior

Let us recall our framework, q is the weak solution of the system

dq1 +
(
∇⊥ψ1 · ∇q1

)
dt =

(
κ∆q1 + ν∆2ψ1 − β∂xψ1 + F

)
dt+

√
2κ
∑
k∈K

a1,kek · ∇q1 dW 1,k

dq2 +
(
∇⊥ψ2 · ∇q2

)
dt =

(
κ∆q2 + ν∆2ψ2 − β∂xψ2 − r∆ψ2

)
dt+

√
2κ
∑
k∈K

a2,kek · ∇q2 dW 2,k

with ψ = −(−∆−M)−1q, and initial condition q(0) = q0, and q̃ is a weak solution of the stationary deterministic
system

∇⊥ψ̃1 · ∇q̃1 = κ∆q̃1 + ν∆2ψ̃1 − β∂xψ̃1 + F

∇⊥ψ̃2 · ∇q̃2 = κ∆q̃2 + ν∆2ψ̃2 − β∂xψ̃2 − r∆ψ̃2

(61)

with ψ̃ = −(−∆−M)−1q̃. Thanks to this relation between q̃ and ψ̃, the system (61) can be rewritten as

0 = (κ+ ν)∆q̃+ ν∆M(−∆−M)−1q̃−∇⊥ψ̃ · ∇q̃− β∂xψ̃ + F̃ (62)

where

F̃ =

[
F

−r∆ψ̃2

]
.

Then we consider the following concept of solution for (62):

Definition 4.6. A weak solution of the problem (62) is a function q̃ ∈ V such that for all ϕ = (ϕ1, ϕ2)
t ∈ V the

following relation holds true

(κ+ ν)⟨∇q̃,∇ϕ⟩ = ν⟨∆M(−∆−M)−1q̃,ϕ⟩ − ⟨∇⊥ψ̃ · ∇q̃,ϕ⟩ − β⟨∂xψ̃,ϕ⟩+ ⟨F̃,ϕ⟩.

Proposition 4.7. For κ large enough there exists a unique q̃ weak solution of problem (62), moreover ∥q̃(t) −
q̄(t)∥ → 0 exponentially fast as t→ +∞.

Proof. As usual we start by establishing a priori estimates. Assuming there exist a solution q̃. Taking q̃ as a
test function in the weak formulation, we obtain, thanks to the fact that ⟨∇⊥ψ̃ · ∇q̃, q̃⟩ = 0 and to Poincaré
inequality,

(κ+ ν)∥∇q̃∥2 ≤ Cν∥∇q̃∥2 + C∥F∥∥∇q̃∥+ C∥∇q̃∥2

where the constant C depends from β, S1, S2, r,D but it is independent of κ and ν. Thus, if κ is large enough
we have

∥∇q̃∥ ≤ C∥F∥
κ+ ν − Cν − C

=Mκ. (63)

For κ large enough such that the a priori estimate (63) holds, let us consider the complete metric space

Bκ = {q ∈ V : ∥q∥V ≤Mκ}.

Let us show that the map T which takes q ∈ Bκ and associate to it q̃ which is the unique weak solution of the
linear problem

(κ+ ν)⟨∇q̃,∇ϕ⟩ = ν⟨∆M(−∆−M)−1q,ϕ⟩ − ⟨∇⊥ψ · ∇q̃,ϕ⟩ − β⟨∂xψ,ϕ⟩+ ⟨F,ϕ⟩. (64)

is a contraction in Bκ if we take κ large enough. Here, of course ψ is obtained by q via relation (3) and

F =

[
F

−r∆ψ2

]
.
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Existence and uniqueness of the solution of (64) follows immediately by Lax-Milgram Lemma thanks to the fact
that the bilinear form a : V × V → R defined by

a(q1,q2) = (κ+ ν)⟨∇q1,∇q2⟩ − ⟨∇⊥ψ · ∇q1,q2⟩

is continuous and coercive. Moreover, arguing as in the a priori estimate, T (q) satisfies

(κ+ ν)∥∇T (q)∥ ≤ CνMκ + CMκ + C∥F∥

where C is the same costant as above. From this it follows immediately that

∥∇T (q)∥ ≤Mκ.

Thus T is a map between Bκ and itself for κ large enough such that Mκ > 0. Lastly we need to show that T is
a contraction. Let q1,q2 ∈ Bκ and T (q1), T (q2) the corresponding solutions. Then ∀ϕ ∈ V we have

(κ+ ν)⟨∇(T (q1)− T (q2)),∇ϕ⟩ = ν⟨∆M(−∆−M)−1(q1 − q2),ϕ⟩ − ⟨∇⊥ψ1 · ∇T (q1),ϕ⟩
+ ⟨∇⊥ψ2 · ∇T (q2),ϕ⟩ − β⟨∂x(ψ1 −ψ2),ϕ⟩+ ⟨F1 − F2,ϕ⟩.

Here, of course ψj is obtained by qj , for j ∈ {1, 2}, via relation (3) and

F1,2 =

[
F

−r(∆ψ1,2)2

]
.

Taking ϕ = T (q1)− T (q2) we have

(κ+ ν)∥∇(T (q1)− T (q2))∥2 ≤ Cν∥∇(T (q1)− T (q2))∥∥∇(q1 − q2)∥+ C∥∇(T (q1)− T (q2))∥∥∇(q1 − q2)∥
− ⟨∇⊥ψ1 · ∇T (q1), T (q1)− T (q2)⟩+ ⟨∇⊥ψ2 · ∇T (q2), T (q1)− T (q2)⟩
± ⟨∇⊥ψ1 · ∇T (q2), T (q1)− T (q2)⟩

≤ Cν∥∇(T (q1)− T (q2))∥∥∇(q1 − q2)∥+ C∥∇(T (q1)− T (q2))∥∥∇(q1 − q2)∥
+ CMκ∥∇(T (q1)− T (q2))∥∥∇(q1 − q2)∥.

If we take κ large enough, thus T is a contraction and the thesis follows.
We conclude by showing the desired exponential convergence. Let ψ̄ and ψ̃ be the stream functions associated

to q̄ and q̃ respectively and define w = q̄− q̃ and χ = ψ̄ − ψ̃. The following differential relation holds

d∥w∥2

2dt
+ (κ+ ν)∥∇w∥2 = ⟨ν∆M(−∆−M)−1w,w⟩ − β⟨∂xχ,w⟩+ ⟨F̄− F̃,w⟩ − ⟨∇⊥χ · ∇q̃,w⟩.

Using the definition of F̄ and F̃ , Lemma 2.1 and Young’s inequality we have

d∥w∥2

2dt
+ (κ+ ν)∥∇w∥2 ≤ νC∥w∥2 + C∥w∥2 + C∥w∥∥∇w∥∥∇q̃∥

≤ νC∥w∥2 + C∥w∥2 + ν

2
∥∇w∥2 + C

2ν
∥w∥2∥∇q̃∥2,

where C is a constant possibly depending from D, β, r, M but it is independent of κ, ν and T . By Poincaré
inequality, we have ∥∇w∥2 ≥ 1

Cp
∥w∥2, therefore

d∥w∥2

2dt
+

(
κ+ ν/2

Cp
− (νC + C + C∥∇q̃∥2)

)
∥w∥2 ≤ 0.

Calling α = κ+ν/2
Cp

− (νC + C + C∥∇q̃∥2). If κ is large enough, α > 0 thus by Grönwall’s Lemma we have the

exponential rate of convergence.
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Remark 4.8. 1. By the proof of previous theorem, κ must be large enough that the following inequalities are
satisfied, here C is a constant possibly depending from β, S1, S2, r,D but independent of κ and ν.

κ+ ν − Cν − C > 0;

1

κ+ ν

(
Cν + C +

C∥F∥
κ+ ν − Cν − C

)
< 1;

κ+ ν/2

Cp
−

(
νC + C +

C∥F∥2

(κ+ ν − Cν − C)
2

)
> 0.

2. By elliptic regularity, it follows immediately that, actually, q̃ ∈ D(∆).

Now we are able to prove our final result.

Proof of Theorem 1.6. Let q̄ be the weak solution of the deterministic problem (12). First we fix δ > 0, α ∈ (0, 1).
If κ is large enough, by Proposition 4.7, we can find T = T (δ) such that

∥q̄(t)− q̃∥2 ≤ δ/4, for all t ≥ T .

Now we use the results of Theorem 1.5 for ϵ = α/2, thus we have

E
[
∥q− q̄∥2

C([0,2T ];H−α)

]
≲α,M,ϵ,T κ

ϵ∥θ∥2(α−ϵ)
ℓ∞ R2

2T
exp

(
2T

ν2 + β2 + r2

κ+ ν

)
exp

(
CTR2

2T

(κ+ ν)2
(1 + κ+ ν) +

C

(κ+ ν)
2

∫ 2T

0

∥F (s)∥2 ds

)
.

Since the constants appearing in previous equation are independent of the parameters of the noise, if we take
θ to be such that the right hand side of the previous inequality can be bounded by δ/4 then the thesis follows
immediately. For example some possible choices of θ can be found in [12, Example 1.3].
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