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Abstract. In this note we prove in the nonlinear setting of CD(K,∞) spaces the stabil-
ity of the Krasnoselskii spectrum of the Laplace operator −∆ under measured Gromov-
Hausdorff convergence, under an additional compactness assumption satisfied, for in-
stance, by sequences of CD∗(K,N) metric measure spaces with uniformly bounded di-
ameter. Additionally, we show that every element λ in the Krasnoselskii spectrum is in-
deed an eigenvalue, namely there exists a nontrivial u satisfying the eigenvalue equation
−∆u = λu.
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1. Introduction

Given a smooth, closed, n-dimensional Riemannian manifold M, the Laplace-Beltrami
operator is a self-adjoint operator on L2(M). Its associated quadratic form is the Dirichlet
energy

Ch(u) =

∫
M
|∇u|2dHn.

Its spectrum is discrete and only consists of eigenvalues, that is values λ ≥ 0 such that the
equation

−∆u = λu

has a solution. These eigenvalues can be ordered, 0 = λ1(M) < λ2(M) ≤ λ3(M) ≤ . . . ,
(eigenvalues are repeated according to their multiplicity) and they can be found by the
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min-max formula

(1) λk(M) := inf
dim L≥k

sup
v∈S (L)

Ch(v),

where the infimum is over subspaces L of L2(M) of dimension at least k, and S (L) denotes
the unit sphere in L.

An easier version of the question that we consider in this note is the following: If
a sequence of closed Riemannian manifolds Mi converges to a limit space X, do the
eigenvalues λk(Mi) converge to a λk(X) (suitably defined, if X is not smooth)? Under
Gromov-Hausdorff convergence, simple examples show that this is not true in general. In
fact, this led Fukaya to the introduction of the concept of metric measure convergence, or
measured Gromov-Hausdorff convergence [Fuk87]. Given uniform two-sided bounds on
the sectional curvature, and a uniform upper bound on the diameter, the spectrum of the
Laplace operator is indeed continuous under measured Gromov-Hausdorff convergence.
Later, Cheeger and Colding [CC00] extended this continuity result to a setting of Rie-
mannian manifolds with a uniform Ricci curvature lower bound and a diameter upper
bound. Without a curvature bound, the eigenvalues can only be guaranteed to be upper
semi-continuous with respect to measured Gromov-Hausdorff convergence [Fuk87].

In general, the limit spaces X are not Riemannian manifolds. An important part of the
results by Fukaya and Cheeger and Colding is that one can define a (nontrivial) Laplace
operator on such limit spaces. The Laplace operator is introduced through its quadratic
form, by now usually referred to as the Cheeger energy.

The limit spaces fail to have regularity properties that allow for an analytic definition of
the Ricci curvature. Yet, they inherit many properties (such as a Bishop-Gromov volume
comparison theorem) from their approximating Riemannian manifolds, that are conse-
quences of the assumed Ricci curvature lower bound. Soon after the results by Cheeger
and Colding on the structure of Ricci limit spaces, Lott and Villani, and Sturm introduced
a synthetic notion of a lower Ricci curvature bound [LV09, Stu06a, Stu06b], the so-called
CD(K,∞) condition, that can be stated for general metric measure spaces. This condition
implies many of the properties that in the smooth case are a consequence of the Ricci
curvature lower bound.

The first author, Gigli and Savaré showed how the Cheeger energy also induces a non-
trivial Laplace operator on CD(K,∞) spaces [AGS14a]. In general, however, the Laplace
operator and the associated heat flow are non-linear. Indeed, a smooth compact Finsler
manifold (M, F) is an example of a CD(K,∞) space, for some K ∈ R, and in this case the
Cheeger energy agrees with the energy introduced by Shen in [She98]

Ch(u) =

∫
M

F∗(du)2dHn,

where F∗ is the dual Finsler norm. In this case the Laplace operator −∆ is defined as the
L2-gradient of the halved energy, that is∫

M
(−∆u)vdm = D

1
2

Ch(u)(v)

for all v ∈ L2(m). This Laplace operator is linear if and only if the Finsler manifold is in
fact Riemannian.

To rule out Finsler geometries, Gigli, Savaré and the first author defined RCD(K,∞)
spaces as CD(K,∞) spaces for which the heat flow (and equivalently the Laplace operator)
are linear [AGS14b].
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A next natural question was whether the same continuity properties for the spectrum
also hold for RCD(K,∞) spaces. In [GMS15], Gigli, Mondino and Savaré proved the
spectral stability under measured Gromov-Hausdorff convergence for RCD(K,∞) spaces.
The main ingredient is the Mosco convergence of the Cheeger energies on the approxi-
mating spaces to the Cheeger energy on the limit space. Recently, the first and second
author proved the Mosco convergence of the p-Cheeger energy and the continuity of the
first eigenvalue of the p-Laplacian on RCD(K,∞) spaces [AH16].

The purpose of this note is to extend the continuity result of Gigli, Mondino and Savaré
to the setting of CD(K,∞) spaces. However, since just as in the case for Finsler mani-
folds the Laplace operator is in general nonlinear, we should specify what we mean by
eigenvalues.

We will say that u is an eigenfunction and λ is an eigenvalue if they satisfy the eigen-
value equation

−∆u = λu.
We will recall the precise meaning of the Laplace operator in the next section. We men-
tioned at the beginning of the introduction that for Riemannian manifolds, all eigenvalues
λk can be found through the min-max formula (1). Even though for Finsler manifolds the
numbers λk are still invariants, they do not necessarily correspond to values λ for which
the eigenvalue equation −∆u = λu has a solution.

On the other hand, in the case of Finsler manifolds, eigenvalues still exactly correspond
to critical values of the Cheeger energy restricted to the unit sphere. Moreover, because
the Cheeger energy is even, the eigenvalues correspond to critical values of the (normal-
ized) energy restricted to RP∞ ⊂ H. The topology of RP∞ can then then be leveraged in a
Morse-theoretic or mountain-pass approach to finding critical points.

In particular, from now on we define for k ∈ N

(2) λk := inf
γ(V)≥k

sup
v∈V

Ch(v)

where now the infimum is over the collection of compact, symmetric subsets V of the unit
sphere in L2(m) that have Krasnoselskii genus at least k [Kra64], see also [Rab73, Str08].
One can think of the Krasnoselskii genus as the “essential dimension” of a subset. Gro-
mov discusses a slightly different way to assign an essential dimension [Gro88]. For the
subsets considered, the Krasnoselskii genus corresponds to the Lusternik-Schnirelmann
category of the sets in projective space. Equivalently, the minimization in the min-max
problem (2) is over subsets in projective space that have Lusternik-Schnirelmann category
at least k.

This Morse-theoretic approach to finding critical points has many applications, such as
the classical result by Lusternik and Schnirelmann on the existence of three distinct simple
closed geodesics on a Riemannian manifold with the topology of a sphere [LS29, Bal78],
the existence of minimal surfaces in Riemannian manifolds [Pit81] and the existence of
infinitely many solutions to semi-linear elliptic equations, see for instance [Hem71]. For
a list of important references we refer to Struwe [Str08].

Since it is so close to the topic of this paper, let us single out the following result. In
the context of the p-Laplacian on a bounded domain Ω in Rn, Szulkin [Szu88] proved the
existence of infinitely many pairs (λ, u), satisfying the system

− div(|∇u|p−2u) = λ|u|p−2u in Ω

u = 0 on ∂Ω
1
p

∫
|∇u|p = 1.
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In fact, Szulkin’s result is an application of a more general framework that he sets up.
One might wonder if this framework, or the framework described by Struwe [Str08] is
general enough to encompass our setting, and therefore implies immediately that the λk’s
defined through the min-max problem (2) are eigenvalues.

In the context of smooth Finsler manifolds, it was noted by Shen that this general
framework can indeed be applied, and that the λk as defined by the min-max problem
(2) are eigenvalues of the Laplace operator [She98]. However, in general, there may be
eigenvalues λ for which there is no k such that λ = λk. This framework requires the
“energy” to be of class C1. The Cheeger energy generally does not have this regularity
in CD(K,∞) spaces. For this reason, we need to modify the standard arguments. In
particular, rather than constructing a pseudo-gradient flow, we directly work with the
gradient flow that is provided by the general Brezis-Komura theory of gradient flows on
Hilbert spaces.

The two main results of this note are the following.
• We show in Theorem 7.4 that when the sublevel sets of the Cheeger energy Ch

are compact, the values λk correspond to eigenvalues of Ch. That is, there exists
a nontrivial function uk ∈ L2(m) such that

−∆uk = λkuk.

In fact, we also include a statement about the multiplicity of such eigenvalues.
• We show in Theorem 4.3 that when a sequence of CD(K,∞) spaces converges

in the measured Gromov-Hausdorff sense to a limit CD(K,∞) space, the Kras-
noselskii eigenvalues λk converge to those on the limit space.

The additional difficulty in this nonlinear context for proving the stability of the eigen-
values comes from the fact that Mosco convergence alone is not sufficient to prove this
stability. In the linear context, it suffices to approximate a finite number of functions
on the limit space, namely the eigenfunctions, in a way that is guaranteed by Mosco
convergence. However, in the nonlinear context, a whole family of functions needs to
approximated in a continuous fashion to get the necessary estimates.

Finally, we conclude by pointing out some potential extensions. Since the setting of
the paper is nonlinear, it would be interesting to investigate also the continuity of the
spectrum in the case of the p-Cheeger energies Chp, even in the case of RCD(K,∞)
spaces. Additionally, it is still an open question whether the values in the Krasnoselskii
spectrum for the p-Cheeger energy, p , 2, are eigenvalues.

It would also be interesting to extend our results from probability to σ-finite measures,
since most of the results we use (in particular those in [GMS15]) are already available in
this more general setting.
Acknowledgements. The first author acknowledges the support of the MIUR PRIN 2015
grant. The second author acknowledges the support of the JSPS Program for Advancing
Strategic International Networks to Accelerate the Circulation of Talented Researchers,
the Grantin-Aid for Young Scientists (B) 16K17585 and the warm hospitality of SNS. The
third author thanks Mark Peletier, Georg Prokert and Oliver Tse for helpful discussions
and the SNS for its hospitality.

2. Notation and preliminary results

Throughout this paper, a metric measure space is a triple (X, d,m), where (X, d) is a
complete and separable metric space and m is a Borel probability measure in X with
suppm = X. We denote by Cb(X) (resp. Cbs(X)) the space of bounded continuous (resp.
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bounded continuous with bounded support) functions in X. Analogously, we denote by
Lipb(X) the space of bounded Lipschitz functions on X.

In our setting, we are dealing with a sequence (mi) of probability measures weakly
convergent to a probability measure m in a metric space (Z, d), namely in duality with
Cb(Z).

Assuming that fi in suitable Lebesgue spaces relative to mi are given, we recall the
notions of weak and strong convergence for fi, see also [Hon15], [GMS15] and [AST17]
for many more properties of the weak/strong convergence across variable measure spaces.
Lp-weak convergence. Let p ∈ (1,∞). We say that fi ∈ Lp(mi) Lp-weakly converge to
f ∈ Lp(m) if fimi weakly converge to fm in duality with Cb(Z), with

(3) sup
i
‖ fi‖Lp(mi) < ∞.

It is not difficult to prove that any sequence ( fi) satisfying (3) has a Lp-weakly conver-
gent subsequence.
Lp-strong convergence. Let p ∈ (1,∞). We say that fi ∈ Lp(mi) Lp-strongly converge to
f ∈ Lp(m) if, in addition to weak Lp-convergence, one has lim supi ‖ fi‖Lp(mi) ≤ ‖ f ‖Lp(m).

It is easy to check that if fi Lp-strongly converge to f and gi Lq-weakly converge to g,
with q = p/(p − 1), then

lim
i→∞

∫
figidmi =

∫
f gdm.

Slopes, subdifferentials and gradient flows of λ-convex functionals in Hilbert spaces.
Let (H, 〈·, ·〉) be a Hilbert space with norm | · | (in our case it will always be a Lebesgue
L2 space) and let Φ : H → (−∞,∞]. In the case when Φ is convex, a relevant concept is
the subdifferential ∂Φ(u), a closed and convex set (possibly empty) defined at all points
u ∈ {Φ < ∞} by

∂Φ(u) := {ξ ∈ H : Φ(v) ≥ Φ(u) + 〈ξ, v − u〉 ∀v ∈ H} .

For λ ∈ R, we say that Φ is λ-convex if Φ− λ
2 | · |

2 is convex in H. The descending slope
of Φ, defined by

|∂Φ|(v) := lim sup
w→v

(Φ(v) − Φ(w))+

|v − w|
admits, thanks to λ-convexity, the representation [AGS05, Thm. 2.4.9]

(4) |∂Φ|(v) = sup
w,v

(
Φ(v) − Φ(w)
|v − w|

+
λ

2
|v − w|

)+

.

It follows immediately from [AGS05, Cor. 2.4.10] that the descending slope of λ-convex
functionals is lower semicontinuous. Another equivalent representation is (with the con-
vention min ∅ = ∞)

(5) |∂Φ|(v) = min {|ξ| : ξ ∈ ∂FΦ(v)}

where ∂FΦ is the Fréchet subdifferential of Φ at u:

(6) ∂FΦ(u) =

{
ξ ∈ H : lim inf

t→0+

Φ(u + tv) − Φ(u)
t

≥

∫
ξvdm ∀v ∈ H

}
.

Notice that for convex functions Φ, monotonicity of difference quotients yields ∂FΦ =

∂Φ; more generally, for a λ-convex Φ, one has

(7) ξ ∈ ∂FΦ(u) ⇐⇒ Φ(v) ≥ Φ(u) + 〈ξ, v − u〉 +
λ

2
|v − u|2 ∀v ∈ H.
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If Φ : H → (−∞,∞] is λ-convex and lower semicontinuous, the Brezis-Komura theory
provides existence and many more properties of the gradient flow u(t) of Φ starting from
u, namely the locally absolutely continuous map u(t) : (0,∞) → H such that u(t) → u as
t → 0 and

−u′(t) ∈ ∂FΦ(u(t)) for L 1-a.e. t > 0.
Equivalently, for λ-convex Φ’s, (7) can be used to show that the gradient flow can be
characterized in terms of the evolution variational inequality

(8)
d
dt

1
2
|u(t) − v|2 ≤ Φ(v) − Φ(u(t)) −

λ

2
|v − u(t)|2 for L 1-a.e. t > 0.

A systematic account of the theory can be found in [Bré73], we also quote [AGS05]
for extensions of the theory to the metric setting, based either on (8) or on the energy
dissipation points of view. We record in the following theorem the main properties of
gradient flows we need.

Theorem 2.1. Assume that Φ : H → (−∞,∞] is λ-convex and lower semicontinuous.
Then for all u ∈ {Φ < ∞} there exists a unique gradient flow starting from u. The induced
semigroup St satisfies the following properties:

(1) (contractivity and monotonicity) For all t ≥ 0 one has

(9) ‖Stu − Stv‖ ≤ e−λt‖u − v‖ u, v ∈ {Φ < ∞},

and t 7→ Φ(u(t)), t 7→ eλt|∂Φ|(u(t)) are nonincreasing in [0,∞).
(2) (energy regularization) For all t > 0 one has (with the convention (eλt − 1)/t = 1

if λ = 0)

(10) Φ(u(t)) ≤ inf
v∈H

{
Φ(v) +

|u − v|2

2(eλt − 1)/λ

}
.

(3) (slope regularization) For all t > 0 one has

(11) e−2λ−t|∂Φ|2(u(t)) ≤ inf
v∈H

{
|∂Φ|2(v) +

|u − v|2

t2 +
λ−

t2

(∫ t

0
|v − u(s)|2ds + t|v − u(t)|2

)}
.

(4) (minimal selection) For L 1-a.e. t > 0 one has that −u′(t) is the element with
minimal norm in ∂FΦ(u(t)).

(5) (energy identity) If Φ(u) < ∞, then t 7→ Φ(u(t)) is locally absolutely continuous
in [0,∞), with

−
d
dt

Φ(u(t)) = |u′(t)|2 = |∂Φ|2(u(t)) for L 1-a.e. t > 0.

Proof. For the reader’s convenience we provide the proof of (11), adapting [AGS05,
Thm. 4.3.2], where the statement is given only for λ = 0 (while (10) is fully proved
therein).

By the monotonicity of eλt|∂Φ|(u(t)), integrating in time, we get

t2e2λt

2
|∂Φ|2(u(t)) ≤

∫ t

0
se2λs|∂Φ|2(u(s))ds ≤ −e2λ+t

∫ t

0
s
(
Φ(u(s)

)′ds

≤ e2λ+t
[∫ t

0
Φ(u(s))ds − tΦ(u(t))

]
,

so that
t2e−2λ−t

2
|∂Φ|2(u(t)) ≤

∫ t

0
Φ(u(s))ds − tΦ(u(t)).
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Now we use the inequality∫ t

0
Φ(u(s)) ds ≤ tΦ(v) −

1
2
|u(t) − v|2 +

|u − v|2

2
+
λ−

2

∫ t

0
|v − u(s)|2ds

that comes from integration of (8), as well as the inequality

Φ(v) − Φ(u(t)) ≤ |∂Φ|(v)|v − u(t)| +
λ−

2
|v − u(t)|2

that comes from (4), to get

t2e−2λ−t

2
|∂Φ|2(u(t)) ≤ t|∂Φ|(v)|v−u(t)|−

1
2
|u(t)−v|2+

|u − v|2

2
+
λ−

2
(∫ t

0
|v−u(s)|2ds+t|v−u(t)|2

)
.

Eventually with Young’s inequality we conclude. �

Cheeger energies and heat flow. We recall basic facts about Cheeger energies and heat
flow in metric measure spaces (X, d,m), see [AGS14a] and [GMS15] for a more system-
atic treatment of this topic. For p ∈ (1,∞) the p-Cheeger energy Chp : Lp(m)→ [0,∞] is
the convex and Lp(m)-lower semicontinuous functional defined as follows:

(12) Chp( f ) := inf
{

lim inf
n→∞

∫
|∇ fn|

pdm : fn ∈ Lipb(X), ‖ fn − f ‖p → 0
}
,

where |∇ f | denotes the slope, also called local Lipschitz constant (notice that we drop the
factor p−1 in front of the integral, used in other papers on this topic). The case p = 2 plays
an important role in the axiomatization of the so-called RCD(K,∞) spaces [AGS14b] and
in the construction of the differentiable structure, see [Gig15]. For this reason we use the
disinguished notation Ch = Ch2 and denote by D(Ch) its finiteness domain.

Another object canonically associated to Ch and then to the metric measure structure
is the heat flow ht, defined as the L2(m) gradient flow of 1

2Ch, according to the above
mentioned Brezis-Komura theory of gradient flows of lower semicontinuous and convex
functionals in Hilbert spaces. This theory provides a continuous contraction semigroup ht

in L2(m) with the Markov property, characterized by

d
dt

ht f = ∆ht f in L2(m), for a.e. t > 0, lim
t→0+

ht f = f

for all f ∈ L2(m), where −∆g is the element with minimal L2(m) norm in ∂1
2Ch(g).

We shall also use that, because of the 2-homogeneity of Ch, one has (see [AGS14a,
Prop. 4.15] for a proof when ξ = −∆ f , the same proof works with any ξ ∈ ∂Ch( f ))

(13) Ch( f ) =

∫
ξ f dm ∀ξ ∈ ∂ 1

2Ch( f ).

We shall also extensively use the typical regularizing properties which follow by (10)
and (11) (with λ = 0)

(14) Ch(ht f ) ≤
‖ f ‖2L2(X,m)

t
,

(15) ‖∆ht f ‖2L2(m) ≤
‖ f ‖2L2(m)

t2

as well as the monotonicity property Ch(hs f ) ≤ Ch(ht f ) ≤ Ch( f ) for 0 ≤ t ≤ s.
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CD(K,∞) spaces. Denote by P(X) the class of Borel probability measures in (X, d) and
set

P2(X) :=
{
µ ∈ P(X) :

∫
d2(x̄, x)dm(x) < ∞ for some, and thus all, x̄ ∈ X

}
.

We say that a metric measure space (X, d,m) is a CD(K,∞) metric measure space, with
K ∈ R, if the Relative Entropy Functional Ent(µ) : P2(X)→ R ∪ {∞} given by

Ent(µ) :=


∫
ρ log ρdm if µ = ρm � m;
∞ otherwise

is K-convex along Wasserstein geodesics in P2(X). This means that for all µ, ν ∈ P2(X)
there exists a constant speed geodesic µt : [0, 1] → P2(X) relative to W2 with µ0 = µ,
µ1 = ν and

Ent(µt) ≤ (1 − t)Ent(µ0) + tEnt(µ1) −
K
2

t(1 − t)W2
2 (µ0, µ1) ∀t ∈ [0, 1].

Also, in CD(K,∞) spaces we shall use the implication

(16) Ch(u) = 0 =⇒ u = c m-a.e. in X, for some c ∈ R.

Let us provide a justification of (16) when K ≥ 0. By the chain rule, it suffices to show
this implication when u ≥ 0 and

∫
u2dm = 1. Then, the identification

|∂Ent |(u2
m) = 2

√
Ch(u)

provided in [AGS14a, Thm. 9.3(i)] gives that |∂Ent |(u2m) = 0. By convexity, this yields
that u2m is a minimizer of Ent, whence u = 1 m-a.e. in X. In the general case we need to
invoke the local Poincaré inequality of [Raj12].

CD∗(K,N) spaces. For N ≥ 1 and K ∈ R, we denote by CD∗(K,N) the class of metric
measure spaces satisfying the reduced curvature-dimension condition and introduced in
[BS10]. This class includes the CD(K,N) class considered in [LV09, Stu06a, Stu06b]
(see [BS10, Prop. 2.5]) and it is contained in CD(K,∞) (see [AMS15, Lem 9.13]).

These spaces satisfy the Bishop-Gromov comparison inequality, therefore are doubling
as metric measure spaces. In particular, since in our setting m is finite, these spaces are
compact whenever their diameter is finite.

3. The Krasnoselskii spectrum

For a Banach space W, denote

V(W) =
{
V ⊂ W

∣∣∣ V closed and symmetric
}
.

The Krasnoselskii genus γW : V(W)→ N ∪ {∞} is defined as follows. Let V ∈ V(W) be
non-empty. If there exist m ∈ N and an odd function h ∈ C0(V;Rm \ {0}), we set

γW(V) = inf
{
m ∈ N

∣∣∣ ∃h ∈ C0(V;Rm\{0}), h odd
}
.

Otherwise, we set γW(V) = ∞. Further, we define γW(∅) = 0. It is not difficult to check
[Str08, Prop. 5.2] that

(17) γW(S (L)) = dim L

for a finite-dimensional subspace L of W, where here and in the sequel

S (L) := {v ∈ L : ‖v‖ = 1}

is the unit sphere of L.
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For k ≥ 1 we define also

Fk(W) =
{
V ∈ V(W)

∣∣∣ γW(V) ≥ k, V ⊂ S (W) compact
}
.

We will adopt the following “nonlinear” definition of spectrum

λk(Ch) = inf
V∈Fk(L2(m))

sup
u∈V

Ch(u).

Notice that still λ1 = 0, and that there may be critical values of the energy Ch that do not
correspond to a value of λk for any k ∈ N.

In the degenerate case when X consists of a single point, m is a Dirac mass, Ch is
identically null and L2(m) is 1-dimensional, so the above definitions give λ1(Ch) = 0,
λk(Ch) = +∞ for all k > 1. Recall also that, for CD(K,∞) metric measure spaces
(X, d,m), either X consists of a single point, or m has no atom.

For the convenience of the reader, we include Proposition 5.4 of [Str08] on properties
of the Krasnoselskii genus.

Proposition 3.1 (cf. [Str08]). Let V, V1, V2 ∈ V(W) and let h : W → W be continuous
and odd. Then the following properties hold:

(i) γ(V) ≥ 0; γ(V) = 0 if and only if V = ∅.
(ii) V1 ⊂ V2 implies γ(V1) ≤ γ(V2).

(iii) γ(V1 ∪ V2) ≤ γ(V1) + γ(V2).
(iv) γ(V) ≤ γ

(
h(V)

)
.

(v) If V is compact and 0 < V, then γ(V) < ∞ and there is a neighborhood N of V in
W such that N ∈ V(W) and γ(V) = γ(N).

The last item implies the upper semicontinuity of the genus w.r.t. Hausdorff conver-
gence.

Proposition 3.2. Let W be a Banach space and suppose compact sets Fi ∈ V(W) con-
verge to a compact set F ∈ V(W) in the Hausdorff distance, such that 0 < F. Then

γ(F) ≥ lim sup
i→∞

γ(Fi).

Proof. According to the previous proposition, given a compact set F ∈ V(W) with 0 < F,
then γ(F) < ∞ and there exists a neighborhood N of F such that N ∈ V(W) and γ(N) =

γ(F). For i large enough, Fi ⊂ N, and therefore for i large enough, γ(Fi) ≤ γ(N) =

γ(F). �

4. Setup and main result

We consider CD(K,∞) metric measure spaces (Xi, di,mi) and (X, d,m), that are isomet-
rically embedded in a common metric space (Z, ρ), and such that mi → m weakly in dual-
ity with Cb(Z). We denote by Chi, Ch the corresponding Cheeger energies, by ∆i, ∆ their
laplacians, by hi

t, ht the heat flows. As illustrated in [GMS15], this “extrinsic” notion of
convergence is equivalent to many others, and it reduces to measured Gromov-Hausdorff
convergence in the class of uniformly doubling metric measure spaces. In addition, the
main result of [GMS15] is the Mosco convergence of Chi to Ch, namely:

(a) for all f ∈ L2(m) there exist fi L2-strongly convergent to f with lim supi Chi( fi) ≤
Ch( f );

(b) lim infi Chi( fi) ≥ Ch( f ) whenever fi L2-weakly converge to f .
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Notice that the Mosco convergence differs from Γ-convergence because different notions
of convergence are considered in (a) and (b).

In the proof of the lower semicontinuity theorem we shall also need the following
compactness result w.r.t. L2-strong convergence from [GMS15, Thm. 6.3]:

Theorem 4.1 (Compactness). If fi ∈ D(Chi) satisfy

(18) sup
i
‖ fi‖

2
L2(mi)

+ Chi( fi) < ∞, lim
R→∞

sup
i

∫
Z\BR(x̄)

f 2
i dmi = 0

for some x̄ ∈ X, then fi admit a L2-strongly convergent subsequence. The second condition
in (18) is implied by the first one if the estimate

(19)
∫

ρ2(x, x̄) f 2(x)dmi(x) ≤ A
∫

f 2dmi + BChi( f ) ∀ f ∈ L2(mi)

holds with A, B ≥ 0, x̄ ∈ Z independent of i. Finally, (19) holds if either K > 0, or (Z, ρ)
has bounded support.

By applying the previous theorem to a constant sequence of spaces, the compactness
of the sublevels is true whenever (18) holds; the latter is true if either K > 0, or (X, d) has
bounded support, or more generally an inequality of the form (19) holds. Thanks to the
compactness of the sublevels of ‖ · ‖L2(m) + Ch, and using the finiteness of the genus of
compact sets, one can prove that the spectrum provided by the Krasnoselskii eigenvalues
is discrete.

Corollary 4.2. Assume that for all s, t ≥ 0 the sets

(20) E s,t :=
{
u ∈ L2(m) : ‖u‖L2(m) ≤ s, Ch(u) ≤ t

}
are compact in L2(m). Then

lim
k→∞

λk(Ch) = +∞.

Proof. By contradiction, assume that λk(Ch) < M < ∞ for all k ≥ 1. Let Vk ∈ Fk(L2(m))
be satisfying

sup
u∈Vk

Ch(u) ≤ M.

By Theorem 4.1, the closure A of the union ∪kVk is compact. From [Str08, Prop. 5.4] then
we obtain that γ(A) < ∞, and this contradicts the fact that γ(A) ≥ γ(Vk) ≥ k. �

Our main result is the following.

Theorem 4.3 (Convergence of eigenvalues). Under the above assumptions on the CD(K,∞)
spaces, one has

(21) lim sup
i→∞

λk(Chi) ≤ λk(Ch) ∀k ≥ 1.

In addition, if (19) holds with constants A, B ≥ 0 and x̄ ∈ Z independent of i, one has

(22) lim inf
i→∞

λk(Chi) ≥ λk(Ch) ∀k ≥ 1.

A simple continuity argument then gives also uniform bounds on λk in compact families
of metric measure spaces and provides a uniform rate of growth of λk.
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Corollary 4.4. Let K ∈ R and N ∈ [1,∞). For any k ≥ 2 there exist positive and finite
constants C1(K,N, k), C2(K,N, k) such that

(23) C1(K,N, k) ≤ λk(Ch) ≤ C2(K,N, k),

for any CD∗(K,N)-space (X, d,m) with diam X = 1. In addition, C1(K,N, k) → +∞ as
k → +∞.

Proof. Let us denote by M(K,N) the set of all isometry classes of CD∗(K,N)-spaces
(X, d,m) with diam X = 1 and let us consider a function λk : M(K,N) → [0,∞). The
compactness of M(K,N) with respect to the mGH-convergence and the continuity of
(X, d,m) 7→ λk(Ch) provided by Theorem 4.3 yield (23), with Ci equal to the minimal and
maximal values. The same compactness argument gives also the positivity of C1(K,N, k),
namely the positivity of λ2(Ch) for any fixed CD∗(K,N) metric measure space. Indeed,
if λ2(Ch) = 0 by compactness and upper semicontinuity of the genus we can find a set V
with genus at least 2 such that Ch ≡ 0 on V; on the other hand, (16) forces V to consist of
the functions {±1}, and this set has genus equal to 1.

Finally, if C1(K,N, k) are bounded (with respect to k), then we can find a subsequence
k(p) and minimizers (Xp, dp,mp) ∈ M(K,N) of λk(p) convergent to (X, d,m) ∈ M(K,N).
Then, lower semicontinuity gives that the spectrum of (X, d,m) is bounded, contradicting
Corollary 4.2. �

5. Upper semicontinuity of the spectrum

We shall use the following lemma, see [GMS15, Thm. 6.11] for L2 convergence, see
also [AH16, Lem. 5.4 and Cor. 5.5] for the case of RCD(K,∞) spaces; we show how the
argument extends to CD(K,∞) spaces.

Lemma 5.1. Let vi → v strongly in L2. Then, for every t > 0, hi
tvi → htv strongly in H1,2,

i.e. hi
tvi L2-strongly converge to htv and lim supi Chi(hi

tvi) ≤ Ch(htv).

Proof. In order to prove strong H1,2 convergence, taking the identities (13) into account,
one has

−Chi(hi
tvi) =

∫
hi

tvi∆ihi
tvidmi, Ch(htv) =

∫
htvξdm,

for all ξ ∈ ∂ 1
2Ch(htv). Hence, it is sufficient to show that any L2-weak limit point of

−∆ihi
tvi L2 belongs to ∂ 1

2Ch(htv) (notice that the regularization estimate (15) gives that
‖∆ihi

tvi‖L2(mi) are uniformly bounded). This follows at once from

1
2

Chi(w) ≥
1
2

Chi(hi
tvi) −

∫
∆hi

tvi(w − hi
tvi)dmi ∀w ∈ L2(mi)

and from the Mosco convergence of Chi to Ch. �

Lemma 5.2. If mi are not Dirac masses, there exist linear isometries

πi : L2(m)→ L2(mi)

with the additional property that

πi(vi)→ v strongly in L2, whenever vi → v in L2(m).

The functions hi
t ◦ πi : L2(m) → L2(mi) are 1-Lipschitz and 1-homogeneous. In addition,

thanks to Lemma 5.1, for all t > 0 one has the stronger property

hi
tπi(vi)→ htv strongly in H1,2, whenever vi → v in L2(m).
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Proof. The construction of the linear isometries πi : L2(m) → L2(mi) goes as follows.
Sincemi → mweakly in (Z, ρ), if we use the bounded cost function ρ̃2(x, y) = min{1, ρ2(x, y)}
to define the Wasserstein distance we obtain W2

2 (m,mi) → 0 as i → ∞. Select now 2−i-
almost optimal transport maps Ti : Xi → X from mi to m, namely Borel maps satisfying
(Ti)#mi = m and ∫

ρ̃(x,Ti(x))2dmi(x) ≤
1
2i + W2

2 (m,mi).

Since the measuresmi are nonatomic, their existence is guaranteed by [Pra07]. Define the
map πi : L2(m)→ L2(mi) by

πi(v) := v ◦ Ti.

Note that (Ti)#mi = m grants that the map πi is a linear isometry for every i.
We claim that when vi → v in L2(m), then πi(vi) → v, strongly in L2. According to the

definition of L2-strong convergence, we need to verify the following two statements:
(i) For every ξ ∈ Cb(Z), ∫

vi ◦ Tiξdmi →

∫
vξdm.

(ii) The following inequality holds

lim sup
i→∞

‖πi(vi)‖L2(mi) ≤ ‖v‖L2(m).

Since the map πi is an isometry, item (ii) follows immediately. In order to check (i) we
will argue by compactness, since any subsequence of vi ◦Ti admits weakly L2-convergent
subsequences. By density, it suffices then to check the property when ξ is Lipschitz and
with bounded support. Writing∫

vi ◦ Tiξdmi =

∫
vi ◦ Tiξ ◦ Tidmi +

∫
vi ◦ Ti(ξ − ξ ◦ Ti)dmi,

we notice that the first term corresponds to
∫

viξdm, which obviously converges to
∫

vξdm.
On the other hand, using the fact that the Lipschitz constant of ξ w.r.t. ρ̃ can be estimated
with max{2 sup |ξ|,Lip(ξ)}, the modulus of the second one can be estimated from above
with

max{2 sup |ξ|,Lip(ξ)}‖ρ̃(Id,Ti)‖L2(mi)‖vi‖L2(m)

which, by our choice of Ti, converges to 0. We have therefore shown that πi(vi) → v
strongly in L2.

Finally, note that the map w 7→ hi
tw is 1-homogeneous, see [AGS14a, Rem. 4.14],

therefore hi
t ◦ πi is 1-homogeneous as well. �

Lemma 5.3. Let V ⊂ S (L2(m)) be compact. Then, for every ε > 0 there exist t > 0 and
an integer i0 such that

(24) ‖hi
tπi(v) − πi(v)‖L2(mi) < ε, for all v ∈ V, i ≥ i0.

Proof. The compactness of V , together with the continuity of ht at t = 0 and its contrac-
tivity grant, for any ε > 0, the existence of t > 0 satisfying

‖htv − v‖L2(m) < ε, for all v ∈ V.

We now claim that with this choice of t > 0, (24) holds that for i0 large enough. Indeed,
suppose not. By compactness of V , there exist a subsequence (vi) ⊂ V and v ∈ V such
that vi → v in L2(m) and

‖hi
tπi(vi) − πi(vi)‖L2(mi) ≥ ε.
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However, πi(vi) → v strongly in L2 and therefore also hi
t(πi(vi)) → htv strongly in L2.

These facts yield a contradiction. �

Proof of the upper semicontinuity in Theorem 4.3. We can assume that Xi does not
consist of a single point for i large enough (otherwise, also the limit space consists of a
single point and we need only to consider those i for which Xi is not a single point in the
argument below). Let δ > 0 and assume without loss of generality that λk(Ch) < ∞. We
will construct sets Vi ∈ Fk(L2(mi)) such that

lim sup
i→∞

sup
u∈Vi

Chi(u) ≤ λk(Ch) + 2δ,

from which the lemma follows immediately.
By the definition of λk(Ch) there exists V ∈ Fk(L2(m)) such that

(25) sup
u∈V

Ch(u) < λk(Ch) + δ.

Let ε > 0, so small that (1 − ε)(λk(Ch) + 2δ) > λk(Ch) + δ. Using Lemma 5.3, we find
t > 0 and an integer i0 such that

‖hi
tπi(v)‖L2(mi) > 1 − ε for all v ∈ V , i ≥ i0.

Recall that, according to Lemma 5.2, the map hi
tπi : L2(m) → L2(mi) is continuous and

1-homogeneous (in particular, it is odd). Therefore

Vi :=
{

hi
tπi(v)

‖hi
tπi(v)‖2

: v ∈ V
}
∈ Fk(L2(mi))

for all i ≥ i0.
We are left to show that

lim sup
i→∞

sup
u∈Vi

Chi(u) < λk(Ch) + 2δ.

We argue by contradiction: suppose that for a subsequence, that we will not denote dif-
ferently, there exist functions wi ∈ V such that

Chi(
hi

tπi(wi)
‖hi

tπi(wi)‖2
) ≥ λk(Ch) + 2δ

and therefore

Chi(hi
tπi(wi)) ≥ (1 − ε)(λk(Ch) + 2δ) > λk(Ch) + δ.

By compactness, we may also assume without loss of generality that wi → w in L2(m) for
some w ∈ V , so that Lemma 5.2 gives

Chi(hi
tπi(wi))→ Ch(htw).

Since the map ht decreases the energy, we obtain

Ch(w) ≥ Ch(htw) = lim
i→∞

Chi(hi
tπi(wi)) ≥ λk(Ch) + δ,

which is a contradiction with (25).
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6. Lower semicontinuity of the spectrum

As in the proof of Lemma 5.2, since m is nonatomic we can find 2−i-almost optimal
transport maps S i : X → Xi from m to mi (so that (S i)#m = mi and

∫
ρ̃2(Id, S i)dm → 0,

with ρ̃ = min{1, ρ}) to define isometries σi : L2(mi)→ L2(m) by

(26) σi(w) = w ◦ S i.

Lemma 6.1. Let fi ∈ L2(mi) with supi ‖ fi‖L2(mi) < ∞ and f ∈ L2(m). Then fi → f weakly
in L2 if and only if σi( fi)→ f weakly in L2(m).

Proof. Thanks to the compactness properties of weak L2 convergence, we need only to
test the convergence in duality with Lipschitz functions with bounded support ξ : Z → R.

We will show below the convergence

(27)
∫

fi ◦ S iξdm −
∫

fi ◦ S iξ ◦ S idm→ 0

as i→ ∞. Given this fact, ∫
fi ◦ S iξdm→

∫
f ξdm

as i→ ∞ if and only if∫
fiξdmi =

∫
fi ◦ S iξ ◦ S idm→

∫
f ξdm

as i→ ∞, from which the Lemma follows.
The convergence (27) follows at once by estimating, as we did in the proof of Lemma 5.2,

the difference with

max{2 sup |ξ|,Lip(ξ)}‖ρ̃(Id, S i)‖L2(m)‖ fi‖L2(mi)

and using the uniform boundedness of the L2 norms of fi. �

Corollary 6.2. Let fi ∈ L2(mi) and f ∈ L2(m). Then fi → f strongly in L2 if and only if
σi( fi)→ f strongly in L2(m).

Proof. This follows from the previous Lemma 6.1, and from the fact that the maps σi :
L2(mi)→ L2(m) are isometries. �

Lemma 6.3. Assume that (19) holds with A, B ≥ 0, x̄ ∈ Z independent of i. Then, for all
s, t ≥ 0 the sublevel sets

(28) E s,t
i :=

{
u ∈ L2(mi) : ‖u‖L2(mi) ≤ s, Chi(u) ≤ t

}
are uniformly totally bounded in L2(mi). That is, for every ε > 0 there exists an integer N
such that for every i ∈ N one can find points pi

1, . . . , pi
N ∈ E s,t

i satisfying

E s,t
i ⊂

N⋃
j=1

Bε(pi
j).

Proof. Suppose not, then there exist ε > 0, a subsequence (that we do not relabel) and
points pi

j ∈ E s,t
i , j = 1, . . . ,N(i), with N(i)→ ∞ as i→ ∞, such that

‖pi
j − pi

k‖L2(mi) > ε ∀1 ≤ j < k ≤ N(i).

Since j ≤ N(i) → ∞, by a diagonal construction and the compactness result [GMS15,
Thm. 6.3] stated in Theorem 4.1, we may assume that for all j fixed the functions pi

j ∈

L2(mi) L2 strongly converge to p j ∈ L2(m) as i → ∞, and thus by Corollary 6.2 we
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obtain that σi(pi
j) → p j strongly in L2(m). Moreover the lim inf-inequality in the Mosco

convergence yields p j ∈ E s,t, with E s,t as in (20).
Then we have ‖p j− pk‖L2(m) ≥ ε for all j , k, which contradicts the compactness of E s,t

with respect to the L2(m)-norm. �

Lemma 6.4. Assume that (19) holds with A, B ≥ 0, x̄ ∈ Z independent of i. Let Vi ⊂ E s,t
i ,

with E s,t
i as in (28). Then there exist a subsequence i( j) and a compact subset V ⊂ L2(m)

such that

σi( j)(Vi( j))→ V in L2(m)

in the Hausdorff distance.

Proof. As we have established the uniform total boundedness of the sublevel sets E s,t
i in

Lemma 6.3, the proof now follows from a standard construction: For εk = 1/k we select
a sequence εk-nets of Vi as provided by Lemma 6.3, that is points pi

j,k ∈ Vi, j = 1, . . . ,Nk,
such that

Vi ⊂

Nk⋃
j=1

Bεk(pi
j,k).

As in the proof of Lemma 6.3, for fixed k, the sequences of images under σi of these
εk-nets is strongly compact in L2(m). Using the limit points p j,k of pi

j,k along a suitable
subsequence of indices i, one can define

V :=
∞⋂

k=1

Nk⋃
j=1

B1/k(p j,k).

�

Proof of the lower semicontinuity in Theorem 4.3. Let Vi be compact sets in L2(mi)
such that Vi ⊂ S (L2(mi)) and

sup
u∈Vi

Chi(u) ≤ λk(Chi) + 1/i.

Let σi : L2(mi) → L2(m) be the linear isometries defined by (26). By Lemma 6.4,
there exist a compact subset V ⊂ L2(m) and a subsequence such that σi(Vi) → V in
the Hausdorff distance. Since the sets Vi are symmetric, the set V is symmetric as well.
Therefore, by Proposition 3.2, γ(V) ≥ lim supi→∞ γ(Vi) ≥ k. Hence V ∈ Fk(L2(m)).

Moreover, it follows from Corollary 6.2 that for every v ∈ V , there exists a sequence
vi ∈ Vi strongly converging to v in L2.

By the lim inf-inequality in the Mosco convergence,

lim inf
i→∞

Chi(vi) ≥ Ch(v).

Hence,

lim inf
i→∞

sup
u∈Vi

Chi(u) ≥ sup
v∈V

Ch(v),

which, taking our choice of Vi into account, immediately gives (22).
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7. Existence of eigenfunctions and eigenvalues

7.1. Gradient flow of Cheeger energy on sphere. In this section we note the well-
posedness of the gradient flow of Cheeger’s energy on the sphere S (L2(m)), the latter
denoted by S for simplicity of notation. In this section, we shall also denote by B the
closed unit ball of L2(m) and denote by ‖ · ‖ the norm of L2(m), by 〈·, ·〉 the scalar product.

For a constant M > 0 we denoted by E1,M the sublevel set of the energy intersected
with B, namely

(29) E1,M := {u ∈ B : Ch(u) ≤ M}.

We consider the functional Φ : L2(m)→ [0,∞] defined by

Φ(u) :=


Ch(u) if u ∈ E1,M;

+∞ otherwise.

Since we are going to study Φ only with a specific choice of the constant M (specifically
any M = λ + 1, with λ the energy level we are interested in) we will not emphasize the
dependence of Φ on this constant.

Since E1,M is closed and convex, it is easily seen that ΦL := Φ − L‖ · ‖2 is (−2L)-
convex and lower semicontinuous. In addition, the closure of the finiteness domain of ΦL

is E1,M. Therefore, the theory of gradient flows for semiconvex and lower semicontinuous
functionals applies, and provides a unique continuous gradient semigroup St of 1

2ΦL on
E1,M, namely a locally absolutely continuous map u(t) =: Stu in (0,∞) satisfying u(t) →
u =: S0u as t → 0 and

u′(t) ∈ −∂F
1
2

ΦL(u(t)) for L 1-a.e. t > 0,

where ∂F
1
2ΦL(u) is the Frechet subdifferential of 1

2ΦL at u, defined in (6).
We recall that semigroup St satisfies the contractivity property (9), as well as the regu-

larizing properties (10), (11).

Lemma 7.1. For all u ∈ B \ S with Ch(u) < M one has

(30) ∂FΦL(u) = ∂Ch(u) − 2Lu 3 −2(∆u + Lu)

while for all u ∈ S with Ch(u) < M it holds that

(31) ∂FΦL(u) = ∂Φ(u) − 2Lu = ∂Ch(u) − 2Lu + {2µu : µ ≥ 0}.

As a consequence, for all u ∈ S with Ch(u) < M, the element of minimal norm in ∂FΦL(u)
is given by −∆u − Ch(u)u and −∆u = Ch(u)u whenever |∂ΦL|(u) = 0.

Proof. To simplify notation, we prove (30) in the case when L = 0, so that Φ0 = Φ (with
no loss of generality, since L‖ · ‖2 is a smooth perturbation); in this case, the convexity of
Φ grants the identity ∂FΦ = ∂Φ, so we need only to prove that ∂Φ(u) = ∂Ch(u). Since
Φ ≥ Ch, the inclusion ⊃ is obvious, since Φ(u) = Ch(u) by assumption. Conversely, if
ξ ∈ ∂Φ(u) and v ∈ D(Ch), one has

Φ(u + tv) ≥ Φ(u) + t〈ξ, v〉 = Ch(u) + t〈ξ, v〉.

Since ‖u‖ < 1 and Ch(u) < M, for t > 0 sufficiently small one has u + tv ∈ E1,M, and then

Ch(u + tv) ≥ Ch(u) + t
∫

ξvdm.
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By monotonicity of difference quotients, since v ∈ D(Ch) is arbitrary, one then obtains
that ξ ∈ ∂Ch(u).

To prove the second statement, we first claim the following: If u ∈ S with Ch(u) < M
and ζ ∈ ∂Φ(u), then also

ζ − 〈ζ, u〉u + 2uCh(u) ∈ ∂Φ(u) ∩ ∂Ch(u).

This is a consequence of the 2-homogeneity of the Cheeger energy. Indeed, let w ∈
L2(m) ∩ D(Ch). Then

Ch(u + tw) = ‖u + tw‖2Ch(
u + tw
‖u + tw‖

)

≥ (1 + 2t〈u,w〉)
(
Ch(u) +

∫
ζ

(
u + tw
‖u + tw‖

− u
)

dm
)

+ o(t)

= Ch(u) + 2t〈u,w〉Ch(u) + t
∫

ζ(w − 〈w, u〉u)dm + o(t)

= Ch(u) + 2t〈u,w〉Ch(u) + t
∫

(ζ − 〈ζ, u〉u)wdm + o(t),

where in the second line we used the assumption that ζ ∈ ∂Φ(u). It follows that

ξ := ζ − 〈ζ, u〉u + 2uCh(u) ∈ ∂Φ(u) ∩ ∂Ch(u),

proving the claim. From the 2-homogeneity of Ch, considering variations uε = (1 − ε)u
with ε → 0+, it also follows that

〈ζ, u〉 ≥ 2Ch(u)

so that

ζ = ξ + 2µu with µ :=
1
2
〈ζ, u〉 − Ch(u) ≥ 0.

Therefore,
∂FΦL(u) = {ξ + 2(µ − L)u : ξ ∈ ∂Ch(u), µ ≥ 0}.

Recall that −2∆u is the element of minimal norm in ∂Ch(u) and that for every ξ ∈
∂Ch(u) it holds that ∫

ξudm = 2Ch(u).

As a consequence,

∂FΦL(u) = {ξ − 2Ch(u)u + 2(µ + Ch(u) − L)u : ξ ∈ ∂Ch(u), µ ≥ 0}

where
ξ − 2Ch(u)u ⊥ u.

We conclude that the element of minimal norm in ∂ΦL(u) is given by

−2∆u − 2uCh(u).

Therefore, if the descending slope |∂ΦL|(u) vanishes, one has −∆u = uCh(u). �

Theorem 7.2. If L > M the semigroup St leaves S ∩E1,M invariant, namely Stu ∈ S ∩E1,M

whenever u ∈ S ∩ E1,M. In addition, for all t > 0, St maps S ∩ E1,M continuously to
H1,2(m): more precisely, if fi ∈ S → f in L2(m), then

‖St fi − St f ‖ → 0 and Ch(St fi)→ Ch(St f ).
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Proof. Let u ∈ S ∩ E1,M and set u(t) = Stu; notice that ΦL(u(t)) < ∞ for all t > 0
implies Ch(u(t)) ≤ M for all t ≥ 0; for L 1-a.e. t > 0 such that Ch(u(t)) < M and
1 ≥ ‖u(t)‖2 ≥ M/L one has (using (13) and Lemma 7.1)

d
dt

1
2
‖u(t)‖2 =

∫
u(t)(∆u(t) + Lu(t))dm ≥ −M + L‖u(t)‖2 ≥ 0.

On the other hand, for L 1-a.e. t > 0 such that Ch(u(t)) = M the monotonicity of ΦL(u(t))
still implies that d

dt‖u(t)‖2 ≥ 0. Hence, d
dt‖u(t)‖2 ≥ 0 for L 1-a.e. t > 0 such that 1 ≥

‖u(t)‖2 ≥ M/L. This immediately implies that ‖u(t)‖ = 1 for all t ≥ 0.
The continuity statement follows immediately from the contractivity of S, the uniform

upper bounds on the slope (11) and the representation formula (4). (See also the proof of
Lemma 7.3 below.) �

Motivated by the previous result, in the sequel we denote by hS
t the restriction of the

semigroup St to S ∩ E1,M.

7.2. A Palais-Smale condition. Under the compactness assumption on the sublevel sets
E1,M, the following compactness holds for sublevel sets for the energy and slope of Φ (or,
equivalently, of any of the ΦL, because of the inequalities |∂Φ| − 2L ≤ |∂ΦL| ≤ |∂Φ|+ 2L),
which plays the role of the celebrated Palais-Smale condition in our setting.

Lemma 7.3. Assume that the set E1,M in (29) is compact in L2(m). Then, for every T ≥ 0,
the subset

EM,T = {u ∈ S : Φ(u) ≤ M, |∂Φ|(u) ≤ T }
is compact in L2(m) and in H1,2(m). More precisely, for every sequence of functions
(v j) ⊂ EM,T there exist a subsequence (that we do not denote differently) and a function
v ∈ EM,T such that v j → v in L2(m) and

Ch(v j)→ Ch(v).

Proof. Let (v j) ⊂ EM,T be a sequence of functions. By the assumed compactness of E1,M,
this sequence has an L2(m)-strongly converging subsequence (that we will not denote
differently) v j → v, for some v ∈ S . By the lower semicontinuity of Ch and of the local
slope, it follows that v ∈ EM,T .

On the other hand, it follows by the representation (4) of the local slope that

Φ(v j) − Φ(v) ≤ T‖v j − v‖.

Consequently, recalling also the definition of Φ, one has also

lim sup
j→∞

Ch(v j) ≤ Ch(v).

By the lower semicontinuity of the Cheeger energy, we conclude. �

7.3. Existence of eigenvalues. For λ ≥ 0, set M = λ + 1, fix L > M and denote by Kλ

the set of critical points at energy level λ of ΦL = Φ − L‖ · ‖2, namely

Kλ := {u ∈ S : Φ(u) = λ, |∂ΦL|(u) = 0}.

The set Kλ is compact by Lemma 7.3 and recall that Lemma 7.1 shows that −∆u = uCh(u)
for all u ∈ Kλ.

For r > 0 we define the tubular neighborhoods of Kλ

(32) Uλ,r := {v ∈ S : ‖u − v‖ < r for some u ∈ Kλ}.
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Note that by compactness of Kλ, for every neighborhood N of Kλ, there exists r > 0 such
that Uλ,r ⊂ N.

Moreover, define the sets (not necessarily neighborhoods)

(33) Nλ,δ := {u ∈ S : |Φ(u) − λ| ≤ δ, |∂ΦL|
2(u) ≤ 4δ}.

Note that, thanks to Lemma 7.3 and to the lower semicontinuity of the slope, for every
neighborhood U of Kλ, there exists δ > 0 such that Nλ,δ ⊂ U, and we will apply this
property to the sets Uλ,r.

We recall that
λk(Ch) = inf

V∈Fk(L2(m))
sup
u∈V

Ch(u).

The next theorem states that λk(Ch) is an eigenvalue for every k ≥ 1, that is there exists
u ∈ S such that

(34) − ∆u = λk(Ch)u.

Additionally, it gives a statement about the multiplicity of such eigenvalues. In the proof
we will use the restriction hS

t to the sphere S of the gradient flow St of ΦL.

Theorem 7.4. Assume that the sublevel sets E1,M of the Cheeger energy, as defined in
(29), are compact. If for some k, ` ≥ 1 it holds that

λk(Ch) = λk+1(Ch) = · · · = λk+`−1(Ch) = λ

then γ(Kλ) ≥ `. In particular, Kλ , ∅ and therefore there exists u ∈ S such that (34)
holds. Finally, if ` > 1 there are infinitely many solutions u to this equation.

Proof. Our proof is similar to the proof of Lemma 5.6 in [Str08], with some technical
differences. While Struwe uses a pseudo-gradient flow, we may directly apply the gradient
flow hS

t .
By (11) with λ = −2L we obtain the existence of a constant J > 1 such that for all

v ∈ S ∩ E1,M and all t ∈ [1/2, 2], one has

(35) |∂ΦL|(hS
t v) ≤ J.

There exists a symmetric, open neighborhood N ⊃ Kλ such that γ(N) = γ(Kλ). More-
over, there exist r ∈ (0, 1) and δ ∈ (0, 1) such that

Kλ ⊂ Nλ,δJ/r ⊂ Uλ,r ⊂ Uλ,2r ⊂ N,

where Uλ,r, and Nλ,δJ/r were defined in (32) and (33) respectively (this can be achieved
first choosing r, and then choosing δ).

Select a set V0 ⊂ Fk+`−1(L2(m)), such that

sup
u∈V0

Ch(v) < λ + δ.

Without loss of generality we may assume that for every t ∈ [0, 1], hS
t (V0) ⊂ Eλ+δ,J,

otherwise we can just replace V0 by hS
1/2(V0), and use (35) (notice that continuity and

1-homogeneity of hS
1/2 ensure that still hS

1/2(V0) ∈ Fk+`−1(L2(m))).
We now claim that

(36) hS
1 (V0) ⊂ E1,λ−δ ∪ N.

Indeed, assume by contradiction that hS
1 v < N for some v ∈ V0, with Ch(hS

1 v) > λ − δ.
Then, by monotonicity, one has Ch(hS

t v) > λ − δ for all t ∈ [0, 1] and then hS
t v ∈ Nλ,δJ/r
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if and only if |∂ΦL|
2(hS

t v)| ≤ 4δJ/r. Now, if for all t ∈ [0, 1] one has hS
t v < Nλ,δJ/r, energy

dissipation gives
Ch(v) − Ch(hS

1 v) ≥ 4δJ/r > 4δ.
If there exists t ∈ [0, 1] such that hS

t v ∈ Nλ,δJ/r, then since hS
1 v < N we must have (since

the velocity of the curve is at most J)

L 1({s ∈ (t, 1) : hS
s v ∈ Uλ,2r \ Uλ,r}) ≥ r/J.

Hence, using once more the fact that hS
s v < Uλ,r implies |∂ΦL|

2(hS
s v) > 4δJ/r, we get

Ch(v) − Ch(hS
1 v) ≥ 4δ(J/r)L1({s ∈ (t, 1) : hS

s v ∈ Uλ,2r \ Uλ,r})

≥ 4δ(J/r)(J/r)−1 = 4δ.

This proves the claim.
By the very definition of λk(Ch), one has

γ(Eλ−δ) < k.

Hence, combining this inequality with (36) and using the subadditivity of the genus stated
in Proposition 3.1, we find

γ(N) ≥ γ(Eλ−δ ∪ N) − γ(Eλ−δ)

> γ(hS
1 (V0)) − k ≥ γ(V0) − k

≥ k + ` − 1 − k = ` − 1

so that
γ(Kλ) = γ(N) ≥ `.

It follows that Kλ , ∅. Finally, Kλ is a finite set if and only if γ(Kλ) ≤ 1. �
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curvature conditions in metric measure spaces. Memoirs AMS, to appear, 2015.

[AH16] Luigi Ambrosio and Shouhei Honda. New stability results for sequences of metric measure
spaces with uniform Ricci bounds from below. 2016.

[AST17] Luigi Ambrosio, Federico Stra, and Dario Trevisan. Weak and strong convergence of derivations
and stability of flows with respect to MGH convergence. J. Funct. Anal., 272(3):1182–1229,
2017.

[Bal78] Werner Ballmann. Der Satz von Lusternik und Schnirelmann. In Beiträge zur Differentialge-
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[Raj12] Tapio Rajala. Local Poincaré inequalities from stable curvature conditions on metric spaces.
Calc. Var. Partial Differential Equations, 44(3-4):477–494, 2012.

[She98] Zhongmin Shen. The non-linear Laplacian for Finsler manifolds. In The theory of Finslerian
Laplacians and applications, volume 459 of Math. Appl., pages 187–198. Kluwer Acad. Publ.,
Dordrecht, 1998.

[Str08] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und ihrer Gren-
zgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Re-
lated Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin,
fourth edition, 2008. Applications to nonlinear partial differential equations and Hamiltonian
systems.

[Stu06a] Karl-Theodor Sturm. On the geometry of metric measure spaces. I. Acta Math., 196(1):65–131,
2006.

[Stu06b] Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–
177, 2006.

[Szu88] Andrzej Szulkin. Ljusternik-Schnirelmann theory on C1-manifolds. Ann. Inst. H. Poincaré Anal.
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