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We consider the problem of discriminating quantum states, where the task is to distinguish two
different quantum states with a complete classical knowledge about them, and the problem of
classifying quantum states, where the task is to distinguish two classes of quantum states where no
prior classical information is available but a finite number of physical copies of each classes are given.
In the case the quantum states are represented by coherent states of light, we identify intermediate
scenarios where partial prior information is available. We evaluate an analytical expression for the
minimum error when the quantum states are opposite and a prior on the amplitudes is known.
Such a threshold is attained by complex POVM that involve highly non-linear optical procedure. A
suboptimal procedure that can be implemented with current technology is presented that is based
on a modification of the conventional Dolinar receiver. We study and compare the performance of
the scheme under different assumptions on the prior information available.

I. INTRODUCTION

Since its early studies, the discrimination of quantum
states has been a central problem in quantum information
theory due to the impossibility of perfectly distinguish
non–orthogonal quantum states. Its implications reflects
not only on quantum communication scenarios [1–3], but
also in metrology [4–7], sensing [8, 9], quantum key dis-
tribution and cryptography [10–14].

In the typical discrimination scenario [15–18], two par-
ties, the transmitter and the receiver, agree on a known
shared communication protocol, which defines the (pos-
sibly finite) set of quantum states to transmit and dis-
criminate in the best way possible [19, 20]. A different
perspective on the problem has been adopted in recent
years, following the growing trend of machine learning
studies [21–28]. In the context of supervised learning, clas-
sification problems aim at assigning a sample to one of the
available classes, of which a description is not known, but
multiple training samples are provided. Training samples
could be copies of the quantum states to classify or other
members of the family defining the classes. Classification
problems are more general since the description provided
by the communication protocol allows the generation of
the training samples, therefore expressing a discrimina-
tion problem as a classification one. The latter is also
more difficult since the classifier has to learn a description
or a strategy for the discrimination from the (possibly
noisy) training samples, in addition to performing the
distinction.

Historically, the discrimination scenario has been in-
vestigated the most. Minimum error discrimination has
been considered initially for two quantum states [19, 20],
where the optimal solution for the measurement operators
assigning the estimate has been given in a closed-form. Op-
timality conditions for a bigger set of quantum states have
been found [29], but the evaluation of the measurement
operators and of the performance usually requires numer-

ical procedures such as semi–definite programming [30].
When the quantum states exhibit symmetries, such eval-
uation can be further simplified [31–33]. Despite the
advances in the field, in the case of the discrimination of
optical states, physical realizations of the optimal receiver
end are still an open problem, with the only exception of
the Dolinar receiver for the discrimination of two coherent
states [34–39]. Along with this scheme, other practical
realizations of suboptimal receivers have been proposed
for other sets of coherent states [40–44].

Regarding the quantum classification problem, early
works frame the same scenario under different names,
such as quantum matching (see [25] and references
within) or quantum state identification [26], and pro-
grammable discrimination [45]. In the minimum error
setting, solutions for the two–classes problem came first
for pure states [26, 27] and then for general qubit mixed
states [23, 46, 47], in the asymptotic and limited–training–
samples regimes. Following papers [23, 48, 49] have fo-
cused on the performance comparison between a joint
(collective) measurement strategy involving both the train-
ing samples and the one to distinguish, versus an Esti-
mate&Discriminate strategy, where the training copies
are used to estimate the classes of states, and the classical
information extracted is used to setup the discrimination.
The latter strategy results to be suboptimal to the former.
The unambiguous version of the classification problem
considered in this paper has been addressed in [50, 51],
which provided a strategy based on interferometers and
photodetectors, that has been demonstrated experimen-
tally [39]. Other results on programmable discriminators
can be found in [52–61].

In the field of quantum optics, discrimination and clas-
sification problems have been formulated for the reading
of an optical memory. The advantage of using quantum
states of light for the discrimination has been established
in a series of papers [62–66], while in [67] the reading has
been framed as a classification problem between the vac-
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uum state and a coherent state with unknown parameter,
later setup to be a Gaussian a priori distribution around
a mean value. The asymptotic behaviour of the collective
measurement strategy and the Estimate&Discriminate
one has been evaluated and compared, confirming that
the former gives better performances. In the paper, it is
conjectured and given some evidence that this holds also
for non–Gaussian Estimate&Discriminate strategies.

Our work further investigates this comparison. We con-
sider the simplest scenario concerning the classification of
an unknown state belonging to one of two classes of coher-
ent states that are assigned by giving access to a certain
number of training copies. A practical scenario where this
task could be relevant is an optical link through a stochas-
tic channel where the attenuation is so unpredictable and
random that over sufficiently long time intervals, the sig-
nal intensity can be assumed to be completely unknown,
and the same holds for the added phase. In this context
one may try to exploit the existence of stability periods in
the perturbations induced by the noise, to set communica-
tion protocols that consist in sending samples of the two
types of training signals followed by the quantum state
to classify. To begin with we show that via simple linear
optics, the problem we are facing can always be reduced
to the special symmetric case where the two classes of
inputs differs only by the sign of the associated coherent
amplitudes. We hence evaluate the optimal bound for the
probability of success of the classification task, under the
assumption that the protocol to use is phase invariant.
Such threshold can be explicitly calculated for any number
of input copies of the training states, and for any given
prior distribution of the coherent amplitudes that char-
acterize them. Unforturnately the POVM measurement
that ensures the attainability of the optimal bound relays
on highly non-linear optical processes that are not feasi-
ble with current technology. In alternative we propose a
modification of the conventional Dolinar receiver [34] that
we dub agnostic-Dolinar receiver, whose implementation
is instead at reach with conventional quantum optical pro-
cedures. While being sub-optimal when employed with a
finite number n of training copies, the proposed scheme it
is shown to saturate to the optimal bound in the asymp-
totic limit n→∞. Most importantly, for all n, it yields a
clear advantage when compared with respect to simple Es-
timate&Discriminate strategies that involve estimations
performed on a fraction of the training samples.

The paper is organized as follows. In Section II we
introduce the problem and review the original Dolinar
receiver. Section III is the main section of the manuscript.
Here we reduce the problem to a symmetric scenario,
provide an optimal bound for the problem, and present
our apparatus. We study its performance by compar-
ing it with an Estimate&Discriminate strategy based on
a miscalibrated Dolinar scheme, and also compute the
optimal error probability of the problem under different
assumptions on the prior information available.

II. DISCRIMINATION AND CLASSIFICATION
OF COHERENT OPTICAL SIGNALS

This section is dedicated to set the problem, introduce
the notation, and review some basic facts.

A. Discrimination vs Classification

The discrimination and classification of quantum
states are two distinct primitives of quantum information
processing that find applications in a variety of different
contexts. Relaying on the error probability as cost
function to evaluate their efficiencies [19], we schematize
these procedures in terms of the following Minimum
Error Discrimination (MED), and Minimum Error
Classification (MEC) problems:

MED problem:– Given a set of known quantum states
{ρ̂k}Kk=1 and probabilities {pk}Kk=1,

∑
k pk = 1 and an un-

known quantum state ρ̂ ∈ {ρ̂k} drawn from the set with
probability p ∈ {pk}, find the POVM measurement op-

erators {Π̂k}Kk=1 that allows to identify ρ with minimum

probability of error P
(MED)
e , or equivalently, with maxi-

mum probability of correct decision P
(MED)
c = 1−P (MED)

e ,

P (MED)
c =

K∑
k=1

pk tr
[
Π̂kρ̂k

]
. (1)

It is worth reminding that for the special case with
K = 2 an explicit solution for the MED problem is pro-
vided by the Helstrom theorem according to which the

maximum value of P
(MED)
c is achieved by a binary projec-

tive measurement associated with positive and negative
part of the operator p1ρ̂1 − p2ρ̂2, leading to the optimal
expression

P (MED)
c,max =

1

2
(1 + tr|p1ρ̂1 − p2ρ̂2|) , (2)

which we shall employ in the following as a benchmark
for the efficiency of our schemes.

MEC problem:– Given a training set of quantum
states {ρ̂k}nk=1 and a set of labels {y(k) | y(k) ∈
[1, . . . ,K]}nk=1 that associate each sample to its class
y(k), and given an unknown testing set of quantum states
{ρ̂r}sr=1 and labels {z(r)| z(r) ∈ [1, . . . ,K]}sr=1, find

the POVM measurement operators {Π̂z}Kz=1 that identify

their classes with minimum error probability P
(MEC)
e , or

equivalently, with maximum probability of correct decision

P
(MEC)
c = 1− P (MEC)

e ,

P (MEC)
c =

1

s

s∑
r=1

tr
[
Π̂z(r)ρ̂r

]
. (3)

Notice that at variance with the MED problem, for the
MEC problem a (complete classical) description of the
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quantum states of the training set {ρ̂k}nk=1 is not known,
nor it is the a priori probability of each class which is often
inferred from the relative amount of the labels. Notice
also that, even though in the subsequent sections of our
manuscript we shall not adopt such options, in the general
MEC setting i) the samples of the training set are not
necessarily organized into cluster of identical copies, and
ii) the testing samples {ρ̂r}sr=1 are not included in the
training set {ρ̂k}nk=1.

B. Quantum optical setting

In the rest of the paper we shall consider the case where
the system of interest is a single optimal mode of the
electro-magnetic field described by the annihilation and
creation operators â, â† fulfilling canonical commutation
rules, [â, â†] = 1 [68, 69]. In this context we focus on a
MEC problem where the training set is formed by identical
copies of K = 2 coherent states

|αk〉 = D̂(αk)|Ø〉 , k ∈ {1, 2} , (4)

whose complex amplitudes α1 and α2 are unknown (in this

expression |Ø〉 and D̂(α) = exp[αâ†−α∗â] are respectively
the vacuum state and the displacement operator of the
model). Specifically we shall work under the assumption
of having n copies of each training state, and that the
density matrix we need to classify is guaranteed to be a
coherent state |δ〉 that coincides either with |α1〉 or with
|α2〉, with flat prior probabilities (i.e. p1 = p2 = 1/2).
The resulting global input state we operate can hence be
expressed in the following multi-mode compact form∣∣α⊗n1 , α⊗n2 , δ

〉
= |α1〉⊗n ⊗ |α2〉⊗n ⊗ |δ〉 , (5)

which in principle is characterized by 4 unknown real
parameters (the complex numbers α1 and α2), and by
one quantum binary variable (the testing state |δ〉 ∈
{|α1〉, |α2〉}). In the MED version of the problem, i.e.
when the complex quantities α1, α2 are assigned or equiv-
alently when the number n of the training copies of the
MEC problem are infinitely many so that the values of
the amplitudes can be recovered through quantum pro-
cess tomography, the optimal success probability can be
computed as in Eq. (2) leading to the value

P (MED)
c,max =

1

2

(
1 +

√
1− 4p1p2|〈α1|α2〉|2

)
=

1

2

(
1 +

√
1− 4p1p2 e−|α1−α2|2

)
, (6)

which can be attained via the Dolinar detection scheme
which we review in the next section. The procedure
we have in mind to solve the MEC problem for finite
n is a variation of the such scheme that relays on basic
linear optical manipulations of the state

∣∣α⊗n1 , α⊗n2 , δ
〉

to
compensate for the absence of classical information on
the values of the amplitudes α1 and α2. We call such
procedure agnostic-Dolinar receiver and we present it in
Section III.

C. Dolinar receiver

As anticipated the Dolinar receiver is an experimental
technique that allows one to practically attain the optimal
threshold limit (6) for a binary MED problem aimed to
discriminate between two assigned coherent input states
|α1〉 and |α2〉 which are produced with prior probabilities
p1 and p2. It is worth noticing that in this special context,
due to the fact that the values of the complex amplitudes
α1 and α2 are known, one can always reduce the problem
to case of a symmetric configuration in which |α1〉, |α2〉
are traded with the couple | ± ᾱ〉 with ᾱ = (α1 − α2)/2,
or equivalently to a maximally energetically unbalanced
setting where instead |α1〉 and |α2〉 get replaced by |2ᾱ〉
and |Ø〉, respectively. Such mappings in fact simply relay
on acting on the input |δ〉 via optical displacements, i.e.
transformations that can be physically implemented by
mixing the signal with an intense coherent ancillary state
through a beam-splitter of high transmissivity. Specif-
ically in the cases we are considering this accounts in
replacing |δ〉 with

D̂ (−β) |δ〉 = e(αβ
∗−α∗β)/2 |δ − β〉 , (7)

with β = (α1 + α2)/2 for the symmetric configuration,
and β = −α2 for the maximally energetically unbalanced
setting. In view of these facts in the following paragraphs,
without loss of generality we shall assume the symmetric
setting posing α1 = −α2 = α. We also point out that in
our presentation of the Dolinar scheme we shall rely to
the continuous-time formulation of the problem discussed
in [37] – see however Appendix A for a description
based on sequence of beam splitters and photon–detectors.

The Dolinar receiver works by continuously applying a
displacement D̂(γk(t)) on the input state and performing
a photon-counting on the displaced signal (see upper
panel of Fig. 1). The displacement is optimized such
that the parity of the counting at the end of the signal
gives the final estimate of the input coherent state. The
rationale of the scheme follows the same idea of another
suboptimal scheme, the Kennedy receiver [70]. The key
idea behind the Kennedy receiver is to rigidly shift the
two states by α to obtain the pair {|2α〉 , |0〉} (i.e. to map
the symmetric setting into the maximally energetically
unbalanced one), and then perform photon-counting. The
vacuum always counts zero photons, and thus the Kennedy
receiver uses Π̂+ = 1−|Ø〉〈Ø| , Π̂− = |Ø〉〈Ø| as the POVM
for the discrimination. This apparatus does not reach
the optimal Helstrom bound (6), and this gap is filled
exactly by the Dolinar receiver [34, 36, 37], where the
optimal shift is defined from an optimization procedure.
More precisely, consider the input field for our system
ψk(t), 0 < t < T , corresponding to the coherent state
|±α〉, being represented by

ψk(t) = ±ψeiω0t, (k = ±) , (8)

with ω0 the optical pulsation frequency and T the pulse
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duration, that are linked through the normalization con-
dition

|α|2 =

∫ T

0

|ψ(t)|2 dt = |ψk|2 T. (9)

It can be shown that all the following results do not
depend on our choice of T and thus, for clarity reasons,
we set T = 1 and ψ = α. This input signal is displaced by
a value γk(t), which is classically controlled via feedback,
and the resulting sum signal is monitored with a photon-
counter. Every time our counter “clicks”, the added
signal is discontinuously changed from γ+(t) to γ−(t) and
vice-versa, which are the displacement employed when the
provisional estimation for the quantum state is z(t) = + or
z(t) = − corresponding to the sign of |±α〉. Equivalently,
the parity of the total number of photons counted until
the current time t gives the estimation for the quantum
state. The final discrimination result is declared at the
end of the signal, t = T = 1.

We can use the following argument to find the opti-
mal choice for γk(t). The provisional correct decision
probability at time t can be written as

Pc(t) = P [z(t) = +|k = +]p+ + P [z(t) = −|k = −]p−.
(10)

Let us now assume that k = +, that is, the actual coherent
to discriminate is represented by the input field ψ+(t) of
Eq. (8). Then, the process z(t) can be interpreted as
a telegraph process driven by non-homogeneous Poisson
processes [37] with rates

λ(t) = |ψ+(t)− γ+(t)|2 ,
µ(t) = |ψ+(t)− γ−(t)|2 , (11)

that allows the evaluation of the differential equations for
the conditional probabilities of correct decision q+(t) =
P [z(t) = +|k = +] and q−(t) = P [z(t) = −|k = −] as

dq+(t)

dt
= µ(t)− [λ(t) + µ(t)]q+(t),

dq−(t)

dt
= µ(t)− [λ(t) + µ(t)]q−(t). (12)

Hence, the differential equation for the correct detection
probability results

dPc(t)

dt
=
q′+ + q′−

2
= µ(t)− [λ(t) + µ(t)]Pc(t) . (13)

We can now extremize with respect to γ+(t) = −γ−(t) at
each fixed time to find the optimal displacement, which
leads to the differential equation

dPc(t)

dt
= −4|α|2Pc(t)(1− Pc(t))

1− 2Pc(t)

= |α|2
(

1− 2Pc(t)−
1

1− 2Pc(t)

)
(14)

± (t)

γ+(t)

γ
−
(t)

D̂(γ(t))

p

n (t)

± (t)

✓+(t)

✓
−
(t)

T

T

T

Figure 1. Time continuous description of the conventional
Dolinar receiver (upper panel) and the agnostic-Dolinar re-
ceiver (lower panel): continuous black lines represent optical
signals, dashed lines represent instead classical control lines. In
the upper panel, the rectangle with the D̂ (γ(t)) symbol repre-
sents a time-dependent displacement gate, which is followed by
a photon-counter that switch between two classically controlled
quantities represented in the circles. In the lower panel, the
crossing with an extra horizontal rectangle is a beam splitter
with time-dependent reflectivity θk(t) ∈ {θ+(t), θ−(t)}, which
are classically controlled and selected by the photon-counter.

with solution

P
(MED)
c,Dol (t) =

1

2

(
1 +

√
1− 4p+p−e−4|α|2t

)
, (15)

which for t = 1 reaches the maximum value (6) dictated
by the Helstrom bound [19]. An experimental realization
of this apparatus has been realized in [38].

III. BUILDING AN AGNOSTIC-DOLINAR
RECEIVER

In this section we present a scheme that allows one
to solve the MEC problem associated with a binary set
of coherent inputs introduced in Section II B. As a pre-
liminary step, following the discussion at beginning of
Section II C, in Section III A we show that via some trivial
physical manipulations of the input data we can always
restrict the analysis to the special case of a binary MEC
problem where α2 = −α1, hence reducing from 4 to 2 the
number of unknown real parameters associated with the
input state Eq. (5). In Section III B we find the equiva-
lent of the Helstrom bound in Section II B for the MEC
scenario: as we shall see the attainability of such optimal
threshold relay on the possibility of implementing highly
non-linear optical processes which represent an impres-
sive challenge for current technology. In Section III C we
hence focus on a more realistic procedure based on an
adaptive scheme where the displacements D̂(γk(t)) of the
original Dolinar receiver are replaced by partial coherent
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mixing with a fraction of the copies of the training set. In
this context we show that if the value |α1 − α2| is known
(an assumption which would be trivially granted in the
MED version of the problem but not in the MEC scenario
where it allows to reduce the number of the unknown real
parameters needed from 2 to 1), the new setting attains a
probability of success that already for medium size values
of n, approaches the one of the non-linear optimal bound
of Section III B. In Sec. III D we fix the issue associated
with the lack of knowledge of the parameter |α1 − α2| by
exploiting part of the copies of the training set to obtain
a preliminary estimation of such term: the performance
of the resulting scheme is hence studied and compared
with those one would obtain by using a mis-calibrated
Dolinar scheme.

A. Mapping the MEC problem into a symmetric
scenario

Aim of this section is to show that when studying
the MEC problem introduced in Sec. II B, we can safely
assume the amplitudes of the unknown coherent states
of the training set, to have opposite phases and equal
absolute values (i.e. α2 = −α1). This simplification is
analogous to the reduction of the general MED problem
to a symmetric configuration: in the present case however
this formal passage is slightly more subtle due to the fact
we do not have prior classical knowledge of α1 and α2.

A key ingredient of the analysis is represented by what

we may call a m-modes concentrator gate Û
(m)
C [51, 67, 71,

72], i.e. a m-modes unitary transformation implementable
via array of properly concatenated beam-splitters, that
acting on a collection of m copies of a generic (possibly
unknown) coherent state |α〉 manages to move all their
photons in a single output mode via the mapping

|α〉⊗m 7−→ Û
(m)
C |α〉⊗m = |

√
mα〉 ⊗ |Ø〉⊗m−1 . (16)

Applying this to the (2n+ 1)-modes input state (5) that
formally defines the MEC problem we are facing, we can
map it into an equivalent form where all photons are
concentrated into the following 3-modes coherent state∣∣√nα1,

√
nα2, δ

〉
=
∣∣√nα1

〉
⊗
∣∣√nα2

〉
⊗ |δ〉 , (17)

(the net operation involves a collection of extra 2(n− 1)
irrelevant vacuum states |Ø〉). Notice also that with a
3–port beam splitter [68] defined by the 3× 3 scattering
matrix

Sn =


1√
2

− 1√
2

0

1√
4n+2

1√
4n+2

−
√

2n
2n+1√

n
2n+1

√
n

2n+1

√
1

2n+1

 , (18)

we can then unitarily transform (17) (and hence (5)) into
the further equivalent form∣∣√2n+ 1α′

〉
⊗ |δ′〉 ⊗

∣∣∣ δ+n(α1+α2)√
2n+1

〉
, (19)

where now

α′ =
√

2n
2n+1

α1−α2

2 , (20)

and where

δ′ =
√

2n
2n+1

(
α1+α2

2 − δ
)
, (21)

is a variable that for δ = α1, α2 assumes the values ±α′.
Therefore, since the coherent state

∣∣√2n+ 1α′
〉

can be

mapped into |α′〉⊗(2n+1)
via the action of the inverse of

a concentrator gate Û
(2n+1)
C our original MEC problem

associated with the input (5), can be casted into the new
MEC problem where starting from a collection of 2n+ 1
copies of the coherent state |α′〉 we are asked to decide
wether the state |δ′〉 is either equal to |α′〉 or to | − α′〉.
Notice that in doing so we are implicitly neglecting the
last coherent state component of Eq. (19): this however
does not represent a huge loss of information since the
residual dependence that such term bares upon δ vanishes
in the asymptotic limit of n → ∞, and in any case the
analysis shows that a scheme that is capable to efficiently
solve a MEC in the symmetric scenario can also be applied
to the generic one. Notice further that via the action of a
phase shifter gate aimed to flip the sign of the amplitude
of an incoming input state, we can also convert the 2n+ 1
copies of |α′〉 into a state of the form |α′〉⊗m⊗|α′〉⊗2n+1−m

with 0 ≤ m ≤ 2n + 1. Relying on these observations in
the remainder of the paper we will thus focus on the
symmetric version of our MEC problem where starting
from the beginning it is assumed α1 = −α2 = α, hence
replacing the input state (5) with the vector∣∣α⊗n, δ〉 = |α〉⊗n ⊗ |δ〉 , (22)

characterized by 2 unknown real parameters (the phase
and the absolute values of the complex number α), and by
the quantum binary variable |δ〉 ∈ {| ± α〉} [NB. formally
speaking in the above expression the total number of
copies of |α〉 we can extract from (5) requiring α1 = −α2

would be 2n: hereafter however we shall reparametrize
this with n just to allow for the possibility of having an
odd number of input copies].

B. Optimal bound for the problem

As already anticipated in the asymptotic limit n� 1,
the optimal upper bound for the success probability of
a generic apparatus aimed to solve the MEC problem
associated with the input (22) reduces to the Helstrom
limit (6) attainable via the Dolinar scheme, i.e. the
quantity

P (MED)
c,max =

1

2

(
1 +

√
1− e−4|α|2

)
. (23)

Estimating the optimal MED performance in the finite-
copy case can be useful to compare our results with a



6

fundamental bound. In this section we will find this bound
under the assumption that the protocol we use is phase in-
variant, i.e. insensitive to the phase value of the amplitude
α that enters in Eq. (22), a constraint which is reasonable
to impose in the MED scenario where no prior info on α
is granted. For this purpose, first of all we invoke once
more the action of a concentrator gate (16), to replace
|α⊗n, δ〉 with a two mode input state |

√
nα, δ〉. Then we

focus on two-element POVM {Ê+, Ê− = Î − Ê+} which,
acting globally on the two modes of the model, aims to
discriminate the density matrix ρ̂+ = |

√
nα, α〉 〈

√
nα, α|

from ρ̂− = |
√
nα,−α〉 〈

√
nα,−α| under phase invariant

assumptions. It is worth stressing that a similar calcu-
lation was performed in Ref. [67] for a slightly different
setting where the two states under scrutiny were |

√
nα, α〉

and |
√
nα, 0〉 and where the analysis was confined in large

n limit: as we shall see in the following, at variance
with those results, due to the symmetric structure of
the inputs we employ, our analysis allows us to present
closed analytical expressions also for the finite n limit.
Specifically we associate Ê+ to ρ̂+ and Ê− to ρ̂−, and we
enforce the phase invariant constraint by requiring them
to commute with the global phase operator eiφ(n̂1+n̂2)

with n̂1 = â†1â1 and n̂2 = â†2â2 being the number opera-
tors of the two modes of the model. By Schur’s lemma [73]
it then follows that the POVM elements must satisfy the
identities Ê± =

∑∞
m=0 Π̂mÊ±Π̂m =

∑∞
m=0 Ê+,m, where

Π̂m is the projector on the subspace total photon number
n1 + n2 = m and {Ê+,m, Ê−,m = Îm − Ê+,m} is a binary
POVM in this subspace. For any two states ρ̂+ and ρ̂−,

POVMs {Ê±} with this property, the probability of error
satisfies

Pe =
1

2

(
1−

∞∑
m=0

tr[Ê−Π̂mρ̂+Π̂m + Ê+Π̂mρ̂−Π̂m]

2

)

≥ 1

2

1−
∞∑
m=0

∣∣∣∣∣∣ Π̂m(ρ̂+ − ρ̂−)Π̂m

∣∣∣∣∣∣
1

2

 . (24)

where the inequality comes from the Helstrom bound.
Remembering that in our case ρ̂± are the coherent states
|
√
nα〉〈
√
nα|⊗ |±α〉〈±α| it follows that the optimal choice

for Ê± is given by

Ê± :=

∞∑
m=0

|m;±〉〈m;±| , (25)

with

|m,±〉 :=
∑

n1+n2=m

√(
m

n1

)√
n
n1(±1)n2

√
n+ 1

m |n1, n2〉 . (26)

Accordingly as shown in Appendix B, the minimum error
probability (Eq. (24)) reduces to

P
(MEC,n)
e,min =

1

2

(
1− 1

2

∞∑
m=0

p(m;µ)

√
1−

(
N−1
N+1

)2m)
,

(27)

where µ =
√
n+ 1 α and p(m;µ) is the probability of

drawing m from a poissonian of mean |µ|2, namely

p(m;µ) =
|µ|2m

m!
exp[− |µ|2]. (28)

Notice in particular that, for fixed |α|2, the above ex-
pression admits the following asymptotic expansion at
large n

P
(MEC,n)
e,min '1

2

[
1− 1

2

(√
1− e−4|α|2 − 1

n
2|α|2e−4|α|2

(1−e−4|α|2)
3/2

)]
+O

(
1
n2

)
, (29)

with the leading term corresponding to value dictated
by the Helstrom limit (23). The same analysis can be
repeated for input states of our problem with a given
prior p(α) by simply replacing ρ̂± with

ρ̂
(ave)
± =

∫
C2

dα p(α)
∣∣√nα〉〈√nα∣∣⊗ |±α〉〈±α| , (30)

obtaining in this case the following optimal minimum
error probability

P̄
(MEC,n)
e,min =

1

2

1− 1

2

∞∑
m=0

p̄(m)

√
1−

(
n− 1

n+ 1

)2m
 ,

(31)

where now

p̄(m) =

∫
C2

dα p(α) p(m;
√
n+ 1α) , (32)

is the average photon number distribution.

C. Agnostic-Dolinar receiver with prior
information on the input mean photon number

The implementation of the optimal covariant mea-
sure (25) is highly non trivial as it requires to discriminate
between non-orthogonal states |m,±〉 that involve com-
plex superposition of two-mode Fock states (see Eq. (26)).
To compensate for this here we introduce a preliminary
version of the agnostic-Dolinar scheme that assumes that
only the phase of the complex parameter α of Eq. (22) to
be unknown, but grants full knowledge about the mean
photon number |α|2 of the inputs. In other words we
interpolate between the symmetric version of the MEC
problem defined at the end of the previous section (2
unknown real terms and one quantum binary variable),
and the corresponding MED problem (zero unknown real
terms and one quantum binary variable). As schemati-
cally shown in the lower panel of Fig. 1, the basic idea
is to replace the displacement operations of the original
Dolinar configuration whose values γk assume full knowl-
edge of α, with coherent mixing of the testing input with
the single-mode concentrated version |

√
nα〉 of the train-

ing copies, via a beam-splitter operation characterized by
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a time–dependent reflectivity θk(t), where k can be either
+ or −. Because of the symmetry of the problem, we will
call θ(t) = θ+(t) = θ−(t)+π. Note that in the alternative
formulation of the Dolinar receiver [36] discussed in Ap-
pendix A where the input coherent state is sliced by the
sequence of beam splitter and on each slice a displacement
and photon–counting process is applied, the scheme of
the current section substitute the displacement operations
with additional beam splitters, which mix slices of the n
training copies and the sliced input field in an optimized
way to give output rates Eq. (33). It is finally worth
stressing that, since we not relay on reference signals, by
construction, the proposed detection strategy is explicitly
phase insensitive: accordingly the optimal bound (27)
constitute a proper reference for testing the efficiency of
the scheme.

In order to evaluate the optimal θ(t) and maximize the
correct decision probability we follow the same procedure
of Section II C, that we will now discuss with a more detail.
First of all, following the same procedure, we define our
new λ(t), µ(t) as

λ(t) = |α|2
∣∣cos θ(t)−

√
n sin θ(t)

∣∣2 ,
µ(t) = |α|2

∣∣cos θ(t) +
√
n sin θ(t)

∣∣2 . (33)

Let us now assume that k = +. The number of photons
counted in an interval (t, t + ∆t] is a Poisson variable
N(t, t+ ∆t) with parameter λ(t)∆t or µ(t)∆t depending
whether the provisional hypothesis is respectively z(t) = +
or z(t) = −. These rates allows us to evaluate the condi-
tional probabilities of correct decision q+(t) = P [z(t) =
+|k = +] and q−(t) = P [z(t) = −|k = −] following the
Dolinar receiver strategy, which changes the provisional
hypothesis when a photon is detected [37]. From the
difference equation

q+(t+ ∆t)

= P [N(t, t+ ∆t) = 0, z(t) = +|k = +]+

P [N(t, t+ ∆t) = 1, z(t) = −|k = +] + o(∆t)

= P [N(t, t+ ∆t) = 0|z(t) = +, k = +]q+(t)+

P [N(t, t+ ∆t) = 1|z(t) = −, k = +](1− q+(t)) + o(∆t)

= (1− λ(t)∆t)q+(t) + µ(t)∆t(1− q+(t)) + o(∆t),
(34)

follows the differential equation

dq+(t)

dt
= µ(t)− [λ(t) + µ(t)]q+(t).

In a similar fashion, from the expression for q−(t+∆t) and
employing symmetric arguments for the displacements,
we get the other differential equation of Eq. (12). With
this same procedure, it is obvious that the equation for
Pc(t) maintains the same form of Eq. (13), i.e.

dPc(t)

dt
= µ(t)− [λ(t) + µ(t)]Pc(t) , (35)

where now however the terms µ(t) and λ(t) are defined
in Eq. (33) instead of Eq. (11) We can now extremize
Eq. (35) to obtain an equation for the optimal control

function θ∗(t) = θ
|α|2,(n)
opt (t) given |α|2 and n: this yields

the solution

tan(2θ∗(t)) =

√
n

n− 1

1

P ∗c (t)− 1
2

, (36)

where P ∗c (t) = P
|α|2,(n)
c,opt (t) is the the associated optimal

probability of success that can be obtained by solving a
differential equation which is more concisely expressed
with the change of variable ξ(t) = P ∗c (t)− 1/2, i.e.

dξ(t)

dt
= |α|2

(
−ξ(t)(n+ 1) +

√
(n− 1)2ξ2(t) + n

)
(37)

= |α|2
[
−2ξ(t)− (n− 1)

(
ξ(t)−

√
n2

(n− 1)2
+ ξ(t)2

)]
,

(notice the explicit dependence upon |α|2) which for
n → ∞ converges to Eq. (14). With the separation
of variables we can formally integrate (37) obtaining

1

2
|α|2 t = −n− 1

4n
tanh−1

(
(n−1)ξ(t)√

(n−1)2ξ2(t)+n

)
+
n+ 1

8n

[
tanh−1

(
2ξ(t)(n+1)

√
(n−1)2ξ2(t)+n

2(n2+2)ξ2(t)+n

)
− log

(
1− 4ξ2(t)

) ]
. (38)

This expression cannot be inverted explicitly but it can
be evaluated numerically. It turns out that the result-
ing P ∗c (t) does not coincide with the optimal bound
of Eq. (27). Still it remains close to such function being
increasing in n and asymptotically reaching the perfor-
mance of the Dolinar scheme given in Eq. (23). This is
explicitly shown in Fig. 2, where we plot the resulting
associated probability of error P ∗e = 1− P ∗c (t = 1) as a

function of the training set n for a known value of |α|2:
notice that the asymptotic limit (23) is reached quickly
for n ≈ 20 even in the full quantum limit (|α| < 1).

D. Agnostic-Dolinar receiver with no prior
information on the input mean photon number

The scheme of the previous Section requires the exact
knowledge of |α|2, which is not granted in the original
MEC problem. Here, we compensate for such lack of
information by splitting the n training copies of |α〉 into
two sets, one of size m used to obtain an estimate of
the value of |α|2, and the other set of size n−m copies
to realize the apparatus described in the former section.
Obviously, a priori there is no optimal choice for the
size of the two sets, as there is a trade–off between a
good parameter estimate and the performance of the
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Figure 2. Error probability P ∗
e = 1−P ∗

c (t = 1) of an agnostic-
Dolinar receiver (dashed and dash–dotted lines) as a function
of the number n of training copies, for different (known) values
of the mean photon number |α|2. The horizontal solid red
lines correspond to the Helstrom values (23) attained by the
conventional Dolinar scheme for the associated MED problem.
The dotted lines correspond to the optimal error probability
obtainable using the optimal bound for phase invariant scheme
of Eq. (27).

apparatus. Studying the optimal way to split our sets will
be the aim of this section. To estimate the classical value
of |α|2 we examine two strategies, photon counting and
heterodyne detection. In the former case, the outcomes
of the measurement are discrete values k ∈ N associated
with the count of photons of the state |α〉 which get
distributed according to the poissonian probability p(k;α)
defined as in Eq. (28). When applied to a coherent state

|
√
mα〉, we can obtain an estimate k

m for |α|2. Note that
due to the discrete nature of the outcomes, such estimate
comes in discrete steps. Heterodyne detection is obtained
by mixing the coherent state |α〉 with a strong local
oscillator with higher optical frequency [68], and then
measuring both quadratures. The measurement outcomes
are continuous and can be represented with a complex
value β ∈ C obtained with probability

P [β;α] =
e−|β−α|

2

π
. (39)

The estimate for |α|2 can be obtained from the absolute

value |β|2 of the complex outcome, which is obtained with
probability

P [|β|2 ;α] =

∫ 2π

0

e−(|α|
2+|β|2−2|αβ| cosφ)

π
|β|dφ

= 2 |β| e−|α|
2−|β|2I0(2 |αβ|) , (40)

with I0(·) the modified Bessel function of the first kind.

To obtain the real performance of the apparatus, we
take the expectation value over this probability distri-
bution of the performance of the apparatus using the
wrong estimate for |α|2. Namely, we use Eq. (36) and

Eq. (38) with the amplitude |α̃|2 estimated from |
√
mα〉

to obtain θ
|α̃|2,(n−m)
opt (t). Averaging the performance for

all the estimates gives the probability of correct decision
as a function of α, n, m.

We compare the performance with the Helstrom
bound (6), but also with an Estimate&Discriminate
procedure which assumes of using all the n copies to
obtain a classical estimate of α (m = n) and then apply
the original Dolinar receiver. The performance of this
straightforward method (which we dub miscalibrated
Dolinar) is studied in the next section, Section III D 1,
while the performances of the agnostic Dolinar are
studied in Section III D 2 and Section III D 3.

1. Estimate&Discriminate scheme based on Miscalibrated
Dolinar receiver

In the original setting of the Dolinar receiver, the
value of α that uniquely determines the coherent state
|α〉 was known with arbitrary precision. In the Esti-
mate&Discriminate approach we analyze here, the idea is
to use all the n copies of |α〉 of the state (22) to get an
estimate β of α and then use this to build up the Dolinar
procedure.

To evaluate the performance of the scheme let us first
consider what happens when a Dolinar receiver setup
for the discrimination of |β〉 , |−β〉 , β 6= α is applied
to the coherent states |α〉 , |−α〉. For this purpose we
can use Eq. (13), which is still valid, using the optimal
displacement evaluated from β, obtaining a differential
equation that can be solved analytically. As a result we
get the following probability of success

P
(β;α)
c,Dol =

1

2
+

Re [αβ∗]
(

1− e−2(|α|
2+|β|2)

)
(
|α|2 + |β|2

)√
1− e−4|α|2

, (41)

which, by construction, is upper-bounded by the optimal

value P
(MED)
c,max of Eq. (23) – see Fig. 3. The average suc-

cess probability of the Estimate&Discriminate approach
can now be obtained by averaging (41) with respect to
probability P [β;α, n] of getting a certain value of β from
our n copies of |α〉, i.e.

P
(MEC)
c,E&D =

∫
C2

dβ P [β;α, n] P
(β;α)
c,Dol . (42)

A plot of this quantity as a function of n for few values
of α can be found in Fig. 4 under the assumption that β
is recovered via heterodyne detection, so that

P [β;α, n] =
n

π
exp

[
−n |α− β|2

]
. (43)
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Figure 3. Density plot of the ratio between the probability
of correct decision of a miscalibrated Dolinar receiver as in
Eq. (41) and the optimal threshold P

(MED)
c,max of Section III B as

a function of the complex estimate β for α = 0.25.

2. Miscalibrated agnostic-Dolinar receiver

In this section, we study the performance of our classi-
fier in the two-step procedure where we split our set of
states into two different sets. The first one, of size m, is
used to obtain an estimate of the value of |α|, while the
second one of size n−m is used as input for the agnostic
Dolinar receiver described in Section III C. In the upper
plot of Fig. 5, the dependence on the size of the estimating
set m is studied in case of n = 15 with a photon–counting
estimator. Other values of n show a similar trend. The
same setting, but with heterodyne-detection estimation,
is plotted in the same Figure, in the lower panel. As can
be seen from the figure, the optimal choice of m depends
on the value of |α|, but the optimal value belongs to a big
plateau that allows us to ignore this dependence without
losing too much performance. For this reason, we can
choose apriori the value of m for each n, independent
from α, looking at the plateau in the former figures. With
this choice, we can finally compare our results with the
Estimate&Discriminate strategy of Sec. III D 1 where all
the training copies were used to estimate α with hetero-
dyne detection and then a miscalibrated original Dolinar
receiver was employed. These results are summarized in
Fig. 6. The red solid line is the Helstrom bound, while the
black lines are the Estimate&Discriminate performance
for n = 4 and n = 8. The orange and blue lines correspond
to photon-counting and heterodyne detection respectively.
We can clearly see a divergence in the optimal perfor-
mance and the Estimate&Discriminate procedure, due to
the difference in the concavity of the two plots. This does
not happen with our strategy that remains close to the

0 10 20 30 40 50

10−4

10−3

10−2

10−1

n

Pe

α = 1/4 α = 1

α = 5/8

Figure 4. Error probability 1 − P
(MEC)
c,E&D of the Esti-

mate&Discriminate scheme base on a miscalibrated Dolinar
receiver where we use the n training copies of |α〉 of the
input (22) to estimate the value of α via heterodyne mesure-

ments. The red solid line is the Helstrom bound 1− P (MED)
c,max

from (23).

optimal bound. For low values of the distance between
the states, the performance of the Estimate&Discriminate
is slightly better than our, and this is due to our apriori
choice of m, namely (n = 4 → m = 2, n = 8 → m = 3),
that is near the plateau for high (greater than 0.3) values
of |α| but is not optimal for low values. If we chose the
best m for each value of the distance, our performance
would be better than the Estimate&Discriminate proce-
dure, but this cannot be done for the reasons discussed
above.

3. Performances in the presence of prior on |α|

In this section we analyze the agnostic Dolinar scheme
when we have a prior on the value of |α| but no information
on the value of the phase argα. In this case we can
average the performance of Fig. 5 to obtain an expected
probability of error for each size of the estimating set m,
and choose the best m for the given prior. As an example
we consider the case in which the prior distribution for
|α| is given by the Rice distribution

p(|α| ;σ, xc) =

∫ 2π

0

exp
[
− (|α|2)+x2

c−2xc|α| cos θ
2σ2

]
2πσ2

|α|dθ

=
|α|
σ2

exp

[
−|α|

2
+ x2c

2σ2

]
I0

(
|α|xc
σ2

)
, (44)

where I0 is the modified Bessel function of the first kind.
The obtained results are reported in Fig. 7, where the
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Figure 5. Probability of Correct decision computed as in
indicated in Sec. III D as a function α and the size m of the
copies used to estimate it, for a total number of copies n = 15.
The estimation of |α| is performed via photon–counting in the
upper plot and with heterodyne detection in the lower one.

optimal error probability bound given in Eq. (31) is com-
pared with the performance of our scheme, employing
both heterodyne detection (blue lines) and photon count-
ing (orange lines) to estimate |α|, for n = 4 and n = 8.
In this plot, which is evaluated with σ = 0.1 as a func-
tion of xc, we can observe that with both measurements
the performances remain close to the optimal ones as
xc increases, maintaining the ordering with respect to n
(greater gives lower error probability).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

10−4

10−3
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|α|

Pe

Photon-counting

Heterodyne

Miscal. E&D

Helstrom

(a) n = 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
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10−3

10−2

10−1

100

|α|

Pe

Photon-counting

Heterodyne

Miscal. E&D

Helstrom

(b) n = 8

Figure 6. Error probability as a function of α for different
classifiers, for size n = 4 (panel a) and n = 8 (panel b) of the
training set. The red solid line is the Helstrom bound (23)
while the agnostic-Dolinar receiver employing photon counting
and heterodyne measurements are depicted with a blue dotted
line and orange dashed line respectively. The miscalibrated
E&D line is relative to the Estimate&Discriminate procedure
based on full estimation with heterodyne detection and the
use of a conventional (miscalibrated) Dolinar receiver.

IV. CONCLUSIONS

To summarize, here we have introduced the Minimum
Error Discrimination and Minimum Error Classification
problems of quantum states. The former, a central prob-
lem in Quantum Information Theory, assumes classical
knowledge of the quantum states to discriminate. The
latter, risen with the recent studies on machine learning,
trades the classical description with the availability of
multiple training copies assigned to the classes of quan-
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Figure 7. Error probability comparison given a prior Rice
distribution Eq. (44) on |α| with σ = 0.1 as a function of
xc, for n = 4 (panel a) and n = 8 (panel b). The red solid
lines represents the associated optimal bound for phase insen-
sitive schemes in Eq. (31). The performance of the agnostic
Dolinar receiver are plotted for heterodyne (dashed orange)
and photon-counting (blue dotted) measurements.

tum states to distinguish. In Quantum Optics, in the
case of the binary discrimination of coherent states, an
apparatus realizing the optimal discrimination is known
(Dolinar receiver), while the corresponding for the clas-
sification problem is still missing. Between these two
scenarios, we identify some intermediate setups with in-
creasing level of classical knowledge: for instance, we can
assume that the coherent states have opposite phases, or
in addition to that, a prior distribution on the amplitude
of the quantum states. We evaluate an optimal bound
for this later problem, leveraging on the fact that the
POVM associated with the optimal classifier must be
phase invariant on the quantum states defined by the
training copies and the state to distinguish. This bound

asymptotically approaches the Helstrom limit in the limit
of infinite training copies, that is the optimal bound for
the discrimination problem.

We extend the Dolinar receiver with an agnostic formu-
lation with and without prior information on the input
mean photon number. In the case the prior is unknown,
a fraction of the training copies is measured to estimate
the mean photon number, either with a heterodyne mea-
surement or via photon counting. The remaining training
copies are employed in the classification device. We com-
pare the performances of these schemes with the optimal
bound previously evaluated and with a Miscalibrated Es-
timate&Discriminate apparatus, where all the training
copies are employed in the amplitude estimation, used
in a later stage by a Dolinar receiver. The trend of the
schemes employing both heterodyne and photon-counting
measurements follows the optimal bound with a clear
gap, but over–perform the Estimate&Discriminate strat-
egy. This confirms and extends the results by [67], where
the behaviour of the Estimate&Discriminate strategy was
evaluated asymptotically in the number of training copies.

As future outlooks, one can narrow the gap with the
optimal bound with adaptive strategies that estimate
the coherent states amplitudes and perform a partial dis-
crimination at the same time. On the experimental side,
the proposed classifiers can in principle be already imple-
mented as they require state–of–the–art devices (beam
splitters, phase shifters, photon counters and local laser
sources) commonly present in current laboratories.
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Appendix A: An equivalent description of the
Dolinar receiver

Here we review the alternative formulation of the
Dolinar receiver presented in [36], which is depicted in
Fig. 8 and comes from the equivalence between a contin-
uous photon–counting process and a sequence of beam
splitters and photon–detectors [74]. The input state comes
in the apparatus from the left and goes through a sequence
of very similar steps. Each of the diagonal rectangles is
a beam splitter of very small reflectivity θ � 1. The
input state is mixed with the vacuum |0〉 via this beam

splitter, displaced with the displacement gate D̂ (γk sin θ),
and then undergoes photon counting. The measurement
result is used, in addition to the known value of α, to
decide the next displacement parameter γk+1. Then, the
discrimination result will simply be the parity of the total
number of photons counted. It can be shown that, with
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Figure 8. Discretized description of the Dolinar receiver. The
rectangles represents a displacement gate, which is followed
by photon-counters, while the diagonal lines represent beam
splitters.

the correct choice of γk, and for the number of steps going
to infinity, this apparatus tends to the Helstrom bound.

Appendix B: Derivation of Eq. (28)

Observe that the following identities hold

∞∑
m=0

Π̂m

∣∣√nα〉〈√nα∣∣⊗ |±α〉〈±α| Π̂m

=

∞∑
m=0

p(m;µ) |m,±〉〈±,m| , (B1)

∞∑
m=0

||Πm(ρ̂+ − ρ̂−)Πm ||1 = (B2)

∞∑
m=0

p(m;µ)
√

1− | 〈m,+|m,−〉 |2,

which imply Eq. (28) by noticing that

〈m,+|m,−〉 =

(
n− 1

n+ 1

)m
. (B3)
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M. Hillery, Unambiguous identification of coherent states:
Searching a quantum database, Physical Review A -
Atomic, Molecular, and Optical Physics 76, 022326
(2007).

[51] M. Sedlák, M. Ziman, V. Bužek, and M. Hillery, Un-
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