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A B S T R A C T 

Observations of the cosmic 21-cm power spectrum (PS) are starting to enable precision Bayesian inference of galaxy properties 
and physical cosmology, during the first billion years of our Universe. Here we investigate the impact of common approximations 
about the likelihood used in such inferences, including: (i) assuming a Gaussian functional form; (ii) estimating the mean from 

a single realization; and (iii) estimating the (co)variance at a single point in parameter space. We compare ‘classical’ inference 
that uses an explicit likelihood with simulation-based inference (SBI) that estimates the likelihood from a training set. Our 
forward models include: (i) realizations of the cosmic 21-cm signal computed with 21CMFAST by varying ultraviolet (UV) and 

X-ray galaxy parameters together with the initial conditions; (ii) realizations of the telescope noise corresponding to a 1000 h 

integration with the low-frequency component of the Square Kilometre Array (SKA1-Low); and (iii) the excision of Fourier 
modes corresponding to a foreground-dominated horizon ‘wedge’. We find that the 1D PS likelihood is well described by a 
Gaussian accounting for covariances between wave modes and redshift bins (higher order correlations are small). Ho we ver, 
common approaches of estimating the forward-modelled mean and (co)variance from a random realization or at a single point 
in parameter space result in biased and o v erconstrained posteriors. Our best results come from using SBI to fit a non-Gaussian 

likelihood with a Gaussian mixture neural density estimator. Such SBI can be performed with up to an order of magnitude 
fewer simulations than classical, explicit likelihood inference. Thus SBI provides accurate posteriors at a comparably low 

computational cost. 

Key words: methods: data analysis – methods: statistical – dark ages, reionization, first stars – cosmology: theory. 
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 I N T RO D U C T I O N  

he redshifted 21-cm signal, corresponding to the hyperfine splitting 
f the 1S ground state of neutral hydrogen, is becoming a powerful
robe of the first billion years of our Universe. This evolutionary 
ilestone includes the Cosmic Dawn (CD) of the first galaxies 

nd the eventual reionization of the intergalactic medium (IGM). 
ontaining orders of magnitude more independent modes than the 
osmic microwave background (CMB; e.g. Loeb & Zaldarriaga 
004 ), this cosmic 21-cm signal will allow us to infer the properties of
he unseen first galaxies (e.g. Park et al. 2019 ), together with physical
osmology (e.g. Kern et al. 2017 ). Current radio telescopes are 
lready putting compelling upper limits on its spherically averaged 
ower spectrum (PS; e.g. Mertens et al. 2020 ; Trott et al. 2020 ;
bdurashidova et al. 2022a , b ). The upcoming Square Kilometre 
rray (SKA) 1 should not only detect the PS, but also enable image-

pace mapping of the signal (Koopmans et al. 2015 ; Mesinger 2020 ).
There are several important reasons why these experiments pri- 
arily aim to detect the PS (as compared with other summary 

tatistics). First, it is the most physically moti v ated summary: the
heoretical PS can be analytically computed for simple functions of 
he matter field that is Gaussian on large scales (e.g. Barkana & Loeb
 E-mail: david.prelogovic@sns.it 
 ht tps://www.skat elescope.org 
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005 ; Pritchard & Furlanetto 2007 ; McQuinn & D’Aloisio 2018 ;
chneider, Giri & Mirocha 2021 ; Mu ̃ noz 2023 ). Secondly, due to

ts high compression (man y F ourier modes are sampled to compute
he PS in a given bin), it provides a good signal-to-noise ratio (S/N)
acilitating a detection with limited, preliminary data. Finally, the 
isibility space of interferometric measurements is closely related 
o Fourier space. This means that the telescope noise, systematics, 
nd foreground contamination can be more naturally characterized 
n PS space, compared with e.g. image-based summaries. As a 
esult, inference from the 21-cm signal generally uses the PS 

hen computing a likelihood (though see e.g. Shimabukuro et al. 
017 ; Gazagnes, Koopmans & Wilkinson 2021 ; Watkinson, Greig &
esinger 2022 ; Greig, Ting & Kaurov 2023 ). 
What is the form of the likelihood of the 21-cm PS? Virtually all

orks (e.g. Greig & Mesinger 2015 ; Ghara et al. 2020 ; Greig et al.
021 ; HERA Collaboration et al. 2023 ; Maity & Choudhury 2023 )
ssume a Gaussian form for the likelihood: 

ln L ( � 

2 
21 obs | θ ) ∝ −1 

2 

[
� 

2 
21 obs − μ( θ ) 

]T 
� 

−1 
[
� 

2 
21 obs − μ( θ ) 

]
≈ −1 

2 

∑ 

k,z 

[
� 

2 
21 obs ( k, z) − μ( θ , k, z) 

]2 

σ 2 ( θ , k, z) 
, (1) 

here � 

2 
21 obs ( k, z) is the ‘observed’ PS (cf. equation 4 ). For a

iven astrophysical/cosmological parameter vector θ , the forward- 
odelled PS is stochastic , primarily due to cosmic variance and
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hermal noise: μ( θ , k, z) is the mean of this distribution and
( θ , k, z, k ′ , z ′ ) its covariance matrix capturing two-point correla-

ions between wave modes and redshifts (note we omit the explicit
ummation o v er bins, writing it as a vector–matrix product for
implicity). Most often, the full covariance matrix is approximated
o be diagonal with variance σ 2 ( θ, k, z) (though see Nasirudin et al.
020 ), leading to the simple summation o v er ( k , z) bins. Furthermore,
ue to computational requirements, the forward-modelled mean and
co)variance are not computed on-the-fly at each θ by varying the
osmic seed and other sources of stochasticity. Instead, a single
ealization is used in place of the mean, and the (co)variance is
enerally only computed at a single, fiducial parameter, θfid , and
hen kept fixed during inference (though see Watkinson et al. 2022 ).
ne then infers the posterior probability distribution P ( θ | � 

2 
21 obs ),

sing the Bayes’ equation: 

 ( θ | � 

2 
21 obs ) = 

L ( � 

2 
21 obs | θ ) · π( θ ) 

Z( � 

2 
21 obs ) 

, (2) 

here π( θ ) the prior probability of θ , and the evidence Z( � 

2 
21 obs ) is

ere treated as a normalization constant as we are focusing only on
 single model. 

The form of the likelihood in equation ( 1 ) is only guaranteed to
e true for a Gaussian random field. Although the primordial density
uctuations are indeed Gaussian, subsequent non-linear evolution

hrough gravitational collapse and radiative cooling introduces non-
aussianities in the hydrogen density field on moderate to small

cales. More importantly, the cosmic 21-cm signal is also sensitive
o the temperature and ionization state of the IGM, which is in turn
riven by the multiwavelength radiation fields of the first galaxies.
ndeed, this dependence is precisely what allows us to infer the
roperties of these galaxies; ho we ver, it introduces highly non-
rivial mode coupling across a wide range of scales. As a result, the
edshifted 21-cm signal from the CD is not Gaussian (e.g. Mellema
t al. 2013 ; Greig, Ting & Kaurov 2022 ; Watkinson et al. 2022 ). This
as two important implications. First, the PS does not provide optimal
ompression; other summary statistics could in principle better
onstrain astrophysical and cosmological parameters (e.g. Gazagnes
t al. 2021 ; Zhao et al. 2022a ; Greig et al. 2023 ; Prelogovi ́c &
esinger, in preparation). Secondly, the likelihood of the PS is not
aussian distributed according to equation ( 1 ). Quantifying this later
oint is the subject of this work. 
How can one determine the form of the 21-cm PS likelihood?

deally, one would start with the Gaussian initial conditions and
race the likelihood throughout the evolution of the Universe, either
nalytically or numerically. Indeed, the field of large-scale structure
LSS) as probed by galaxy surv e ys has made impressive progress
long those lines (e.g. Kitaura & Enßlin 2008 ; Jasche & Kitaura
010 ; Jasche & Wandelt 2012 , 2013 ; Leclercq et al. 2017 ; Dai &
eljak 2022 ; McAlpine et al. 2022 ; Bayer, Modi & Ferraro 2023 ).
o we ver, the dependence on unknown, multiscale, multiwavelength

adiation fields makes it more difficult to obtain a tractable likelihood
or the 21-cm PS. 

Another option is to use simulation-based inference (SBI; for a
ecent re vie w see Cranmer, Brehmer & Louppe 2020 ). SBI relies
n a training set of simulated data, which is used to train neural
ensity estimators (NDEs) to fit the likelihood without having to
pecify its functional form (indeed SBI is commonly also referred to
s ‘likelihood-free’ or ‘implicit likelihood’ inference). Specifically,
BI consists of the following general steps. 

(i) Sample a parameter vector from the prior ̃  θ ∼ π( θ ). 
NRAS 524, 4239–4255 (2023) 
(ii) Simulate a data vector corresponding to the parameter sample,
 d = simulator ( ̃  θ ). This is equi v alent to drawing from the likelihood

unction ̃  d ∼ L ( d | ̃  θ ). 
(iii) Repeat many times. 

Here the data space d corresponds to the 21-cm PS � 

2 
21 ( k, z).

or the simulator of the 21-cm signal, here we use the public
1CMFAST code, described in more detail in Section 2 . The resulting

et 
{ 

( ̃  d 1 , ̃  θ1 ) , . . . , ( ̃  d N , ̃  θN ) 
} 

corresponds to samples from the joint

istribution P ( d , θ ) = L ( d | θ ) · π( θ ). One can then use a density
stimator to fit the likelihood L ( d | θ ). Note that there are many
ariants to such a procedure (e.g. Cranmer et al. 2020 ), including
tting the posterior directly or fitting likelihood ratios (e.g. Cole
t al. 2022 ). SBI is rapidly becoming popular in the field of cosmic
1-cm due to its ability to deliver efficient, unbiased inference (Zhao
t al. 2022a ; Zhao, Mao & Wandelt 2022b ; Saxena et al. 2023 ). 

In this work, we use SBI to test the validity of a wide range of
pproximations for the likelihood of the spherically averaged 21-cm
S. These include: (i) a 1D variance evaluated at a single parameter
hoice; (ii) a 2D covariance evaluated at a single parameter choice;
iii) a 1D variance evaluated on-the-fly; (iv) a 2D covariance eval-
ated on-the-fly; and (v) a fully non-Gaussian likelihood (allowing
s to capture all higher order moments between k and z bins). We
ompare approaches on the basis of both accuracy (verified in some
ases using simulation-based calibration – SBC) and computational
fficiency. As this work was nearing completion, a similar study
as published by Zhao et al. ( 2022b ), comparing SBI to explicit

ikelihood inference in the reco v ery of two astrophysical parameters
rom the 21-cm PS. Our work is an impro v ement because: (i) we use a
arger astrophysical parameter space; (ii) we compute all summaries
n the light-cone (instead of computing some on light-cones and
thers on coe v al cubes), thus allo wing for a more precise comparison
etween different likelihood estimators; (iii) we compute the noise
ore accurately based on baseline sampling directly in uv space; and

iv) we explore a broader set of functional forms for the likelihood. 
This paper is organized as follows. In Section 2 , we discuss the
ain ingredients of the inference, including our forward simulator,

1CMFAST , astrophysical parameters, and priors. In Section 3 , we
iscuss the various functional forms of the PS likelihood we explore
nd the NDEs used to fit them. In Section 4 , we show results for a
ducial mock observation, and test the inference across our parameter
pace with SBC. Finally, we conclude in Section 5 . All quantities are
uoted in comoving units, and we assume a standard � cold dark
atter ( � CDM) cosmology: ( �� 

, �M 

, �b , n , σ 8 , H 0 ) = (0.69, 0.31,
.048, 0.97, 0.81, 68 km s −1 Mpc −1 ), consistent with the results from
lanck Collaboration VI ( 2020 ). 

 SIMULATING  2 1 - C M  OBSERVATI ONS  

nference, whether using SBI or with an explicit likelihood, requires
n accurate simulator to generate mock observables from samples
f astrophysical/cosmological parameters. Our simulation pipeline
s illustrated in Fig. 1 . It consists of the following steps. 

(i) Cosmological signal . We simulate a realization of the 21-
m light-cone (more precisely a light ‘cuboid’), corresponding to
 sampled parameter vector, ˜ θ , and a sampled random seed for
enerating the initial conditions. 
(ii) Mean removal . We remo v e the mean from each red-

hift/frequency slice, to account for the inability of interferometers
o measure the k ⊥ 

= 0 mode. 
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Figure 1. Schematic of our simulation pipeline. Starting from the cosmo- 
logical signal computed with 21CMFAST , we remo v e the mean of the signal, 
add noise corresponding to a 1000 h SKA1-Low observation, and perform a 
foreground cut below the horizon limit (see text for details). Finally, we bin 
the light-cone and compute the 1D power spectrum (PS) in each bin. For the 
reference, in the upper left-hand corner of the first light-cone, we show the 
scale of the simulation box size. 
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(iii) + SKA noise . We add a realization of noise corresponding to a
000 h integration with the low-frequency component of the Square 
ilometre Array (SKA1-Low). 
(iv) + Horizon cut . We remo v e a foreground-dominated ‘wedge’ 

egion by zeroing the corresponding Fourier modes. 
(v) 1D PS . We cut the light-cone into blocks of equal conformal

ength along the redshift axis, computing the 1D PS for each block.
his results in � 

2 
21 ( k, z) that we use as our summary statistics

hroughout this paper. 

Below we briefly describe these steps in more detail. 
To compute the cosmological signal from the first step, we use the

ublic, seminumerical code 21CMFASTV 3 2 (Mesinger, Furlanetto & 

en 2011 ; Murray et al. 2020 ), with the galaxy parametrization
rom Park et al. ( 2019 ). The code generates a realization of the
nitial density and velocity fields, and evolves them with second- 
rder Lagrangian perturbation theory (2LPT; Scoccimarro 1998 ). 
rom the evolved density fields, the conditional halo mass function 

s used to compute the spatial fluctuations in the galaxy field (e.g.
arkana & Loeb 2004 ). The inhomogeneous reionization field is 
btained by comparing the number of ionizing photons to the 
umber of recombinations, in regions of decreasing radii (Furlanetto, 
aldarriaga & Hernquist 2004 ; Sobacchi & Mesinger 2014 ). Soft
ltraviolet (UV) and X-ray photons that have much longer mean free 
aths are instead tracked by integrating the local emissivity back 
long the light-cone, for each simulation cell. These radiation fields 
hen impact the temperature and ionization state of each IGM cell. 
or more details, interested readers are encouraged to see Mesinger & 

urlanetto ( 2007 ) and Mesinger et al. ( 2011 ). 
Our simulations correspond to 300 Mpc boxes, with a cell size 

f 1.5 Mpc. The choices of astrophysical galaxy parameters are 
 https:// github.com/21cmfast/ 21cmFAST 

3

iscussed in the following section. We interpolate between adjacent 
omoving snapshots, also accounting for subgrid redshift-space 
istortions (e.g. Mao et al. 2012 ; Jensen et al. 2013 ; Greig & Mesinger
018 ), creating a light-cone of the cosmic signal extending from
edshift 30 to 5 (see the top panel of Fig. 1 ). 

SKA1-Low uv co v erage and thermal noise are calculated using
OOLS21CM 

3 (Giri, Mellema & Jensen 2020 ). We assume a tracked
can of 6 h d −1 , 10 s integration time, for a total of 1000 h, using
nly the core stations (baseline ≤2 km). After subtracting the mean
ignal from each slice in the light-cone and adding the thermal noise
orresponding to this uv co v erage, we also remo v e a foreground-
ontaminated ‘wedge’ (Morales et al. 2012 ; Trott, Wayth & Tingay
012 ; Vedantham, Udaya Shankar & Subrahmanyan 2012 ; Liu, 
arsons & Trott 2014a , b ; Parsons et al. 2014 ; Pober et al. 2014 ;
urray & Trott 2018 ; Liu & Shaw 2020 ). Conserv ati v ely, we remo v e

zero) all modes below the horizon limit, which can be expressed as
 slope in the line-of-sight ( k ‖ ) v ersus sk y plane ( k ⊥ 

) Fourier modes: 

 ‖ ≤ k ⊥ 

E( z) 

1 + z 

∫ z 

0 

d z ′ 

E( z ′ ) 
, (3) 

here E( z) = 

√ 

�m 

(1 + z) 3 + �� 

. For more details on the tele-
cope noise and foreground a v oidance implemented in this work,
e refer reader to Prelogovi ́c et al. ( 2022 ). The only difference with

espect to the original method is that we do not apply a ‘rolling’ of
he wedge filter, more rele v ant for 21-cm images. As the 1D PS used
ere is computed in (binned) Fourier space, it is sufficient to apply
he wedge filter once per the light-cone chunk on which the PS is
alculated. 

After the telescope effects are included, we cut the resulting 21-cm
rightness temperature light-cone, δT b ( x , z), along redshift axis into
hunks of 300 Mpc and compute the 1D PS on each section as 

T̄ 2 b � 

2 
21 ( k , z) ≡ k 3 

2 π2 V 

〈 ∣∣δT b ( k , z) − δT̄ b ( z) 
∣∣2 〉 

k 
, (4) 

here z is the central redshift of each chunk. This 1D PS serves as
ur summary statistic throughout this work. 

.1 Model parameters 

e characterize the unknown UV and X-ray properties of high- z 
alaxies using the model from Park et al. ( 2019 ). The simple scaling
elations from that work are both easy to interpret (thus allowing us to
et well-moti v ated priors) and sufficient to reco v er currently available
alaxy and Epoch of Reionization (EoR) observations. Specifically, 
e use a subset of five parameters from Park et al. ( 2019 ) that drives
ost of the variation in the signal. 

(i) f ∗, 10 – fraction of the g alactic g as in stars, normalized at a halo
ass of 10 10 M �. The stellar mass of a galaxy M ∗ is assumed to be

roportional to the halo mass M h as 

 ∗ = f ∗

(
�b 

�m 

)
M h , 

here f ∗ is a power law, 

 ∗( M h ) = f ∗, 10 

(
M h 

10 10 M �

)α∗
. 
MNRAS 524, 4239–4255 (2023) 

 ht tps://github.com/sambit-giri/t ools21cm 
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be
ere, we fix the power index to α∗ = 0.5, which fits the observed,
aint-end 4 UV luminosity functions very well (see Park et al. 2019
nd references therein). 

(ii) f esc , 10 – the ionizing UV escape fraction, normalized at a halo
ass of 10 10 M �. The ionizing escape fraction is taken to scale with

he halo mass as a power law, 

 esc ( M h ) = f esc , 10 

(
M h 

10 10 M �

)αesc 

. 

ere again we fix the power-la w inde x to αesc = −0.5 (cf. Park et al.
019 ). 
(iii) M turn – a characteristic halo mass below which star formation

ecomes inefficient due to slow gas accretion, photoheating, and/or
upernovae feedback. We assume only a fraction of haloes given by 

 duty ( M h ) = exp 

(
−M turn 

M h 

)

an host star-forming galaxies (cf. Sobacchi & Mesinger 2013a , b ;
’Shea et al. 2015 ; Xu et al. 2016 ). 
(iv) E 0 – the energy threshold below which X-ray photons are

bsorbed by the interstellar medium (ISM) of the host galaxy. This
ill depend on the ISM density , metallicity , and the local environment
f X-ray sources (like high-mass X-ray binary stars; e.g. Das et al.
017 ). 
(v) L X < 2 keV / SFR – the soft-band (with energies between E 0 and

 keV) X-ray luminosity per unit star formation escaping the galaxy,
n units of erg s −1 keV 

−1 M 

−1 
� yr . Photons with energies greater than

 keV have mean free paths larger than the Hubble length during
he CD (e.g. McQuinn & O’Leary 2012 ), while we assume photons
ith energies below E 0 are absorbed in the host galaxy. We assume
 star formation rate (SFR) of Ṁ ∗ = M ∗/ ( t ∗H 

−1 ), where t ∗ controls
he characteristic time-scale as a fraction of Hubble time, H ( z). Here,
e fix it to t ∗ = 0.5 (cf. Park et al. 2019 ). 

Our data bases are created by sampling physically moti v ated priors
or the abo v e fiv e galaxy parameters. We take flat priors for X-
ay parameters E 0 /[keV] ∈ [0.2, 1.5] and log 10 

L X < 2 keV / SFR 
[ erg s −1 keV −1 M 

−1 
� yr ] 

∈
38 , 42], as they are only weakly and indirectly constrained for the
igh-mass X-ray binaries that likely dominate X-ray production in
he first galaxies (e.g. Mineo, Gilfanov & Sunyaev 2012 ; Fragos
t al. 2013 ; Lehmer et al. 2016 ; Das et al. 2017 ). Our priors for
tar formation and UV emission are taken from the posterior of
ark et al. ( 2019 ), constructed from existing measurements of (i) UV

uminosity functions (Bouwens et al. 2015a , 2017 ; Oesch et al. 2018 ),
ii) τ e (Planck Collaboration XLVII 2016 ), and (iii) the dark fraction
rom the Lyman forest (McGreer, Mesinger & D’Odorico 2015 ).
pecifically, we fit the 6D posterior distribution from Park et al.
 2019 ) with a kernel density estimator, and e v aluate it at the fiducial
alues of ( α∗ = 0.5, t ∗ = 0.5, and αesc = −0.5) to obtain our prior
 v er f ∗, 10 , f esc, 10 , and M turn . For this we use the CONDITIONAL KDE 5 

ode. We stress that the posteriors that we obtain from the 21-cm PS
re much narrower than the priors, which means that the inference
NRAS 524, 4239–4255 (2023) 

 The general stellar to halo mass relation is better fit with a double power 
aw, with a flatter index for haloes above ∼10 12 M � (e.g. Behroozi et al. 
019 ; Mirocha & Furlanetto 2019 ). Ho we ver, the radiation fields that drive 
he 21-cm signal are dominated by the far more abundant faint galaxies 
e.g. Bouwens et al. 2015b ; Nikoli ́c et al. 2023 ); thus we do not bother to 
haracterize the rare massive galaxies (or active galactic nuclei) that have a 
egligible contribution to cosmic radiation fields. 
 https:// github.com/dprelogo/ conditional kde 

θ  

b

L

w  
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m  

c  

f  

r 2023
s likelihood dominated and not sensitive to our specific choice of
riors. 
When required below, we assume a fiducial parameter set, θfid , con-

istent with Park et al. ( 2019 ): log 10 f ∗, 10 = −1.3, log 10 f esc, 10 = −1.0,
og 10 M turn /M � = 8.7, E 0 = 0.5 keV, and log 10 

L X < 2 keV / SFR 
[ erg s −1 keV −1 M 

−1 
� yr ] 

=
0. For ease of notation, in the remainder of the paper we drop the
og 10 , units and limits, denoting the parameters as f ∗, 10 , f esc, 10 , E 0 ,
 turn , and L X /SFR. 

 C H O O S I N G  A  L I K E L I H O O D  F U N C T I O N  

n this work, our summary statistic (i.e. our ‘data space’) is the 1D
S from equation ( 4 ). Here we compare different choices for the

ikelihood (both explicit and implicit). 

.1 Classical (explicit) Gaussian likelihoods 

y far the most common choice for the 21-cm PS likelihood is a
aussian with a fixed variance (i.e. a diagonal covariance matrix in

 k , z) space) computed at some fiducial value θfid , as in equation
 1 ). When doing a 21-cm forecast, this θfid is chosen a priori to
ake a mock observation. More generally, one can use a maximum

ikelihood estimate or a maximum a posteriori (MAP) from inference
sing other data sets to choose θfid . 
Here we discuss all of the ingredients for computing a Gaussian

ikelihood. F or ev ery point in the parameter space θ , we label the
aussian mean, variance, or full covariance as μ( θ ), σ 2 ( θ), or �( θ),

espectively. In the case of the fiducial parameters θfid , we calculate
hem in the following way: 

k i ,z j ( θfid ) = 

1 
N 

∑ N 

n = 1 � 

2 
21 ( θfid , k i , z j ) n , (5) 

 k i ,z j ,k l ,z m ( θfid ) = 

1 

N − 1 

N ∑ 

n = 1 

(
� 

2 
21 ( θfid , k i , z j ) n − μk i ,z j 

)
× (

� 

2 
21 ( θfid , k l , z m 

) n − μk l ,z m 

)
, (6) 

2 
k i ,z j 

( θfid ) = � k i ,z j ,k i ,z j ( θfid ) , (7) 

here n represents a different realization of the cosmic random seed
i.e. different initial conditions) and k i and z j are Fourier wave mode
nd redshift bins, respectively. We will see later how to estimate
hese quantities using machine learning. Note that there are two
ain sources of stochasticity in our pipeline: the cosmological signal

nd the telescope noise. The telescope noise does not depend on θ
nd can be averaged over several realizations and pre-computed.
herefore, the total mean is estimated by μ( θ ) = μ21 cm 

( θ ) + μnoise .
he contributions are separable even with the wedge excision. 
Finally, we can write the Gaussian likelihood for an observed PS,
 

2 
21 obs , in standard notation as 

 ( � 

2 
21 obs | θ ) = N ( � 

2 
21 obs | μ( θ ) , � ( θ )) . (8) 

ere, �( θ) is the covariance and μ( θ ) the PS mean, estimated at each
. The vast majority of 21-cm literature also ignores correlations
etween different redshifts and k -modes: 

 ( � 

2 
21 obs | θ ) = N ( � 

2 
21 obs | μ( θ ) , σ 2 ( θ )) , (9) 

here the variance σ 2 ( θ ) is simply the diagonal of the covariance
equation 7 ). 

To correctly estimate the mean and (co)variance of the forward-
odelled power spectra, one would need to run several simulations

hanging the cosmic seed (cf. equation 5 ) for each θ sample. Ho we ver
or computational reasons, the cosmic seed is usually not varied

https://github.com/dprelogo/conditional_kde
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hen performing inference and thus the mean is estimated from 

nly one, fixed realization (though techniques such as ‘pairing and 
xing’ could reduce the computation time; e.g. Giri et al. 2023 ).
oreo v er, the cosmic (co)variance is generally only computed at the

ducial parameter values (used to make the mock observation), i.e. 
onstants �( θfid ) and σ 2 ( θfid ) are used in place of the θ -dependent
co)variances in equations ( 8 ) and ( 9 ). Both of these assumptions
an bias inference (Mondal, Bharadwaj & Majumdar 2017 ; Shaw, 
haradwaj & Mondal 2019 ; Watkinson et al. 2022 ; Greig et al. 2023 ).
Here when performing ‘classical’ (non-amortized) inference with 

he explicit likelihoods given by equations ( 8 ) and ( 9 ), we pick a
odel seed that gives a realization of the 21-cm PS that is closest

among 1000 realizations) to the mean at θfid , and then use that
ame cosmic seed when sampling all of the parameter space θ . Note
hat this is an impro v ement o v er the most common approach of
andomly choosing the model seed and assuming it is a proxy for the
ean. Furthermore for � 

2 
21 obs , we create a mock observation at θfid 

y picking a ‘reasonable’ data seed that is within 1 σ of the mean.
inally, for computational reasons, we compute the variance and 
ovariance from 1000 realizations only at the fiducial values, θfid , 
eeping these uncertainties constant throughout parameter space. 

The resulting mean PS, its variance, and the realizations cor- 
esponding to the model and data seeds are shown in Fig. 2 , for
he fiducial parameter set θfid . Because of the wedge excision, we 
onsider only k ≥ 0.2 Mpc −1 in our analysis, marked with vertical 
ine. The upper limit k ≤ 0.6 Mpc −1 is moti v ated by the drop in
v co v erage as one approaches the maximum core baseline (see
relogovi ́c et al. 2022 for more details). We see from the figure that
ur choice of model seed matches the mean almost perfectly, at 
east for this fiducial parameter value, θfid . This is a computationally 
ne xpensiv e way of approximating the actual mean that should be
omputed on-the-fly when using a Gaussian likelihood for classical 
nference (cf. equation 1 ). Furthermore, we verify that our data 
eed used for the mock observation is ‘reasonable’, and does not 
orrespond to a rare outlier. 

In Fig. 3 , we show the correlation matrix of the 21-cm PS computed
t the fiducial parameters, � k i ,z j ,j l ,z m ( θfid ) (cf. equation 6 ). We 
alculate it on 11 distinct light-cone chunks and four logarithmically 
paced k -bins, in the range 0 . 2 –0 . 6 Mpc −1 . To visualize such a 4D
orrelation matrix ( k i , z j , k l , z m ), one has to flatten it to 2D, which
s shown in the top-left. There are 11 distinct redshift blocks, with
 × 4 k -bins. The image is further split into two triangles. The upper
ight half shows correlations after mean removal , and the lower left
alf shows correlations after mean removal + SKA noise (cf. Fig. 
 ). The upper right-hand panel shows a zoom-in on the first three
edshift chunks of the upper left-hand panel. The bottom row shows
he same quantities but including also ‘ + horizon cut’. 

As expected, the diagonal terms (the variance) have the strongest 
orrelation, and the telescope noise strongly suppresses off-diagonal 
orrelations abo v e z � 10. Ho we ver, the of f-diagonal terms can
e significant at z � 10, suggesting that it is important to include
he full covariance matrix in the Gaussian likelihood for inference 
uring the EoR. Similar conclusions have also been reached by 
ondal et al. ( 2017 ) and Shaw et al. ( 2019 ) (see their figs 6 and

, respectively), where the authors analysed correlations between 
 -bins at fixed redshifts. 

In order to gain physical intuition about the origin of the strongest
anti)correlations, in Fig. 4 , we show the redshift evolution of the
S amplitude at k = 0.25 Mpc −1 during the EoR (upper panel),

ogether with the neutral fraction (lower panel). The blue (red) 
ine shows the mean computed o v er sev eral realizations that have
igh (lo w) po wer at z = 6.7. One can clearly see that those cosmic
eeds that result in high 21-cm power at z = 6.7 subsequently have
o w po wer at z = 5.9, consistent with the (anti)correlation redshift
engths seen in Fig. 3 . In other words, the realizations in blue have
 delayed, but subsequently more rapid EoR evolution, seen in the
ower panel. This is something that is expected if the EoR had a larger
ontribution from rare, massive haloes that are on the exponential tail
f the halo mass function. These massive haloes appear later than
heir lighter counterparts, but their fractional abundance subsequently 
ncreases more rapidly (e.g. Barkana & Loeb 2004 ). We confirm this
xplanation by looking at the probability density functions (PDFs) of 
he Lagrangian densities of the realizations in red versus those in blue. 
ndeed, the realizations shown in blue have a larger, high- σ tail in the
ensity PDF: these rare, dense cells increase the relative abundance of 
he most massive haloes (flattening the halo mass function), resulting 
n a delayed and more rapid EoR evolution. 

In what follows, we will be fitting the likelihood with different
ensity estimators. For this, it helps to consider the likelihood as a
unction in the parameter space θ and a probability density in the PS
ata space , d PS . Using this notation, a Gaussian likelihood can be
ritten as 

 ( d PS | θ ) = N ( d PS | μ( θ) , � ( θ )) . (10) 

herefore, L ( � 

2 
21 obs | θ ) from equations ( 8 ) and ( 9 ) is a function of θ

or a given observation � 

2 
21 obs ∈ d PS , while L ( d PS | θ) is a probability

ensity o v er all possible observations d PS . 

.2 Simulation-based (‘likelihood free’) inference with neural 
ensity estimators 

n the previous section, we introduced two classic likelihood choices 
sed in the vast majority of 21-cm inference. These explicit, Gaussian 
ikelihoods are only approximations to the true likelihood for several 
easons: 

(i) the mean of the forward-modelled power spectra is estimated 
rom one simulation, instead of covarying the initial condition (IC) 
andom seeds to compute μ( θ ) = 〈 � 

2 
21 ( θ ) 〉 ICs at each parameter

ample θ (see equation 5 ); 
(ii) the (co)variance is generally computed only at θfid , instead of 

omputing it at each parameter sample θ ; 
(iii) only one- and two-point correlations between wave modes 

nd redshifts are included; higher order terms are ignored. 

In the last point, we refer to higher order moments be-
ween wave modes and redshifts used in the PS likelihood, 
ot the fact that the PS itself is a two-point statistic and
o is a suboptimal summary statistic for non-Gaussian fields. 
e will quantify the later point in future work (Prelogovi ́c

t al., in preparation). With the classical methods abo v e, relax-
ng any of these simplifications seriously increases the computa- 
ional costs, often making non-amortized inference impractically 
 xpensiv e. 

Simulation-based inference (SBI) offers an efficient way to address 
ll of the abo v e limitations, by using a simulator to draw samples from
he ‘real’ likelihood. As discussed in the Introduction, this involves 
ampling all of the rele v ant sources of stochasticity in the simulator
in our case the initial conditions and thermal noise), together with
he astrophysical parameters, so as to create a training set of mock
bservations (i.e. a joint distribution of P ( d PS , θ )). 
There are many different fla v ours of SBI, depending on the

sage case. Here we use the Density Estimation Likelihood-Free 
nference ( DELFI ; Alsing, Wandelt & Feeney 2018 ; Papamakarios,
terratt & Murray 2019 ; Alsing et al. 2019 ), which uses a density
MNRAS 524, 4239–4255 (2023) 
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Figure 2. The fiducial power spectrum (PS) mean (black curves) and standard deviation (grey region), computed from 1000 realizations varying initial conditions 
and noise seeds at θfid . We note that the PS includes contributions from the cosmic signal, telescope noise, and wedge excision; cf. Fig. 1 . The ‘data seed’ used 
as our mock observation is shown in red and is chosen to be a statistically ‘reasonable’ realization. The ‘model seed’ is shown in green and is chosen to be the 
realization closest to the mean, so that we can a v oid varying the initial conditions when performing classical inference. The sharp drop seen at low k results 
from the wedge excision. All k -modes to the right of the vertical line k ≥ 0.2 Mpc −1 are taken into account when computing the likelihood. 
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Figure 3. Correlation matrices of the 21-cm PS at the fiducial parameter choice, θfid (cf. equation 6 ). Upper-left: flattened 4D correlation matrix for the mean 
removal case with and without SKA noise (lower left and upper right triangles, respectively). Upper-right: zoom-in of the upper-left plot for the first three 
redshift bins. Bottom row: the same as the upper row, with addition of + horizon cut . 
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stimator to fit either the likelihood L ( d PS | θ ) or the posterior
 ( θ | d PS ). We choose the former, which allows us to parametrize

he form of the likelihood in some of our investigations, directly 
esting the impact of the previously mentioned approximations. 

oreo v er, fitting the likelihood is more flexible as the priors can be
hanged afterwards without having to retrain. We can then perform 

nference using an explicit or non-explicit likelihood fitted with 
ensity estimation. This inference is then vastly more computa- 
ionally efficient as the simulator (in our case 21CMFAST ) is not
alled at each likelihood e v aluation. This is why SBI is a form
f so-called amortized inference: the computational cost is upfront 
n generating a training set for the density estimation. Once the 
ikelihood is learned via density estimation, subsequent inference is 
one very rapidly, with a single likelihood e v aluation taking of order
illiseconds. 
Another and more popular form of amortized inference in 21- 

m literature is emulation, where a deep neural network (NN) is
rained to directly replace the simulator for pre-chosen summary 
tatistics like the PS (e.g. Kern et al. 2017 ; Shimabukuro & Semelin
017 ; Schmit & Pritchard 2018 ; Jennings et al. 2019 ; Ghara et al.
020 ; Mondal et al. 2022 ; Breitman et al., in preparation). Ho we ver,
mulators themselves have errors that are difficult to include properly 
n the likelihood. With SBI, our only source of error (assuming
he simulator is correct) is the density estimation, which can 
l w ays be reduced by increasing the training set or using iterative
esampling. 
MNRAS 524, 4239–4255 (2023) 



4246 D. Prelo go vi ́c and A. Mesing er 

M

Figure 4. Redshift evolution of the 1D PS at k = 0.25 Mpc −1 (upper panel) 
and IGM mean neutral fraction (lower panel), co v ering the first two redshift 
bins. The red (blue) curves illustrate the mean computed o v er fiv e realizations 
with large (small) power at z = 6.7. Consistent with Fig. 3 , the panels 
demonstrate strong anticorrelation between z = 5.9 and z = 6.7, resulting 
from the relative differences in the steepness in the halo mass functions of 
these realizations, which impact the timing of the EoR (see text for details). 
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6 In this work, we sample parameters from the prior π( θ) and then draw 

from the likelihood L ( d PS | θ) by simulating the PS. In this way, θ i , d PS ,i are 
sampled from the joint distribution P ( θ, d PS ). One could therefore think of 
defining the loss function as 

L = − 1 

N 

N ∑ 

i= 1 
π( θ i ) 

−1 log L NN ( d PS ,i | θ i ) . 

As we are interested in the distribution conditional on the parameter space 
(i.e. likelihood), both methods are correct. Introducing the factor π( θ i ) −1 

in the loss gives more weight to the samples from the prior edges, counter- 
balancing the fact that they are rare. We prefer to focus on the main prior 
volume, so we keep the loss as defined in the main text. 
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.2.1 NDE loss function 

iven an NN parametrization of a likelihood L NN ( d PS | θ ), one can
rain its parameters to approximate the real likelihood L ( d PS | θ ). A
atural distance between these distributions is the Kullback–Liebler
KL) div ergence. F or a continuous 1D random variable, with p ( x ) as
he true (target) distribution and q ( x ) as the approximate distribution,
he integral 

 KL ( P ‖ Q ) = 

∫ ∞ 

−∞ 

p ( x) log 
p ( x) 

q( x) 
d x (11) 

epresents the information gain if the target distribution p ( x ) were
sed instead of q ( x ). Therefore, the main goal during training is to
inimize this difference. The integral can be further written as 

 KL ( P ‖ Q ) = 

∫ ∞ 

−∞ 

p ( x) log p ( x) d x −
∫ ∞ 

−∞ 

p ( x) log q( x) d x 

≈ −H P − 1 

N 

N ∑ 

i= 1 

log q( x i ) , (12) 

ith samples x i being drawn from p ( x ). In the last expression, H P 

s a constant denoting the Shannon entropy of the distribution p ( x )
nd the second term is the Monte Carlo estimation of the integral
 ∞ 

−∞ 

p( x ) log q( x ) d x . 
We use equation ( 12 ) to define the loss between the NN likelihood

stimate, L NN ( d PS | θ) ≡ q( x), and the true likelihood, L ( d PS | θ ) ≡
NRAS 524, 4239–4255 (2023) 
( x): 

 = − 1 

N 

N ∑ 

i= 1 

log L NN ( d PS ,i | θ i ) , (13) 

here θ i , d PS ,i are samples from the training set. Once the parametric
hape of L NN is defined (see the following section), one can minimize
he loss via stochastic gradient descent (SGD) and back propagation. 6 

In this work, we pre-calculate a data base of ≈78 000 light-cones,
ass them through the observational pipeline and compress to the
ower spectra (cf. Fig. 1 ). Realizations correspond to astrophysical
arameters drawn from the prior distribution described in Section 2.1 .
mportantly, every realization has different cosmic and noise seeds.
round 57 000 are used for the training, 14 000 for validation, and
000 for the final testing. We note that a data base of this size
orresponds roughly to the number of samples (likelihood calls)
eeded for Markov chain Monte Carlo (MCMC) or nested inference
o converge. We return to this point below, stressing that SBI is not
nly more accurate but also more computationally efficient compared
o classical inference when the simulator is called on-the-fly (non-
mortized). 

.2.2 NDE likelihood parametrizations 

e use SBI to test the validity of the common approximations made
hen using a Gaussian likelihood. As discussed at the beginning of

his section (Section 3.2 ), these include the following: 

(i) estimating the mean from a single realization; 
(ii) estimating the (co)variance only at the fiducial parameters; 
(iii) assuming a Gaussian form to begin with, thus ignoring higher

rder correlations. 

Our aim is to investigate the consequences of each assumption,
uantifying their impact on reco v ered posteriors. To do that, we relax
onstraints one by one, gradually enlarging the likelihood complexity
nd possibly improving final performance. For this, we use neural
ensity estimators (NDEs) parametrized with simple fully connected
ayers. 

In order to estimate the mean of the PS better, we use a feed-
orw ard NN that tak es parameters θ and outputs the PS mean. In
ther words, 

NN ( θ) = NN ( θ ) . (14) 

he possible Gaussian likelihoods are then 

 NN ( d PS | θ ) = N ( d PS | μNN ( θ ) , σ 2 ( θfid )) , (15) 

 NN ( d PS | θ ) = N ( d PS | μNN ( θ ) , � ( θfid )) . (16) 
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Table 1. Properties of the likelihoods used in this study. The CLASSIC likelihoods are used for non-amortized inference, in which the simulator is called at 
each likelihood e v aluation. The NDE likelihoods make use of a pre-computed (amortized) set of simulations to fit explicit (first four) or non-explicit (final two) 
likelihoods. Based on the validation loss and SBC, we find NDE Gauss mixture to be the most accurate and stable to train. 

Non-Gaussian Non-diagonal covariance (Co)variance is a function of θ Mean by averaging over realizations 

CLASSIC fixed var � � � � (single, well-chosen seed) 
CLASSIC fixed cov � � � � (single, well-chosen seed) 
NDE fixed var � � � � 

NDE fixed cov � � � � 

NDE varying var � � � � 

NDE varying cov � � � � 

NDE CMAF � N/A N/A N/A 

NDE Gauss mixture � N/A N/A N/A 
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ere σ 2 ( θfid ) and �( θfid ) represent the variance and covariance 
stimated at the fiducial parameter v alues, respecti vely. After training 
uch likelihoods, the network will learn to interpolate PS mean values 
or the whole parameter space θ . 

Likewise, we can also estimate the (co)variance matrix with an 
N. In this scenario, the network can output one of the following: 

NN ( θ) , σ 2 
NN ( θ) = NN ( θ ) , (17) 

NN ( θ) , � NN ( θ ) = NN ( θ ) , (18) 

ith their respective likelihoods: 

 NN ( d PS | θ ) = N ( d PS | μNN ( θ ) , σ 2 
NN ( θ )) , (19) 

 NN ( d PS | θ ) = N ( d PS | μNN ( θ ) , � NN ( θ)) . (20) 

he last equation represents a likelihood complexity currently 
ntractable by classical methods, as calculating a full covariance 

atrix at every point of the parameter space is too expensive. 
Finally, we also adopt a non-explicit likelihood, allowing us to 

est the importance of the higher order terms that are ignored when
ssuming a Gaussian form. We try two non-explicit likelihood density 
stimators implemented in DELFI : (i) a Gaussian mixture network; 
nd (ii) conditional masked autore gressiv e flow (CMAF). A Gaussian 
ixture density network is a simple density estimator that is very 

table to train. 7 For a mixture of K Gaussians, a feed-forward NN
akes parameters θ and outputs 

NN , 1 ( θ ) , � NN , 1 ( θ) , . . . , μNN ,K 

( θ ) , � NN ,K 

( θ) , � ( θ ) = NN ( θ) , (21) 

here μNN ,i ( θ ) , � NN ,i ( θ ) describe mean and covariance of the i th
aussian and φi ( θ ) ∈ � ( θ ) its relative weight, where � is the vector
f relative weights. Therefore, the full likelihood can be written as 

 NN ( d PS | θ ) = 

K ∑ 

i= 1 

φi ( θ ) · N ( d PS | μNN ,i ( θ ) , � NN ,i ( θ )) , (22) 

here 
∑ 

i φi ( θ ) = 1. Such a parametrization will be able to catch
oth higher order moments and possible multimodalities in the 
ikelihood. Here we use K = 3 G, as it provides the lowest validation
oss. 

We also use CMAF density estimation (P apamakarios, P avlakou & 

urray 2017 ; Papamakarios et al. 2019 ). A CMAF is parametrized
 A Gaussian mixture density network should not be confused with a Gaussian 
ixture model. The latter describes a distribution where each Gaussian 

epresents samples of a particular class. This is not the case here – the mixture 
ensity network is used purely for better parametrization of the likelihood. 

T  

s
a

8

hrough a series of linear transformations of normal random vari- 
bles. The idea is to start from a unit variance, zero-mean normal
istribution p u ( u ) and through the transform x = T ( u ) find the
stimate of some final distribution p x ( x ). If the transformation T
s invertible and differentiable, one can write the final distribution as 

 x ( x ) = p u ( u ) | det J T ( u ) | −1 

= p u ( T 
−1 ( u )) | det J T −1 ( x ) | , (23) 

here J T and J T −1 are Jacobians of T and its inv erse, respectiv ely.
or larger expressivity, one can stack several transformations so that 
 = T n 

◦T n − 1 
◦. . . ◦T 1 . This will reflect in the abo v e equation as

he multiplication of n Jacobian determinants. The parameters of 
he network are then parameters of the transformations, trained in 
he same way as before – by minimizing KL divergence between 
ransformed distribution and the real one. In our case, x = ( d PS , θ )
epresents the space of the PS and parameters. In order to construct
 likelihood, one then fixes parameter dimensions and transforms 
S dimensions only. For more details, see a recent re vie w by
apamakarios et al. ( 2021 ). Although CMAF NDEs offer more
exibility to capture complicated likelihoods, they are less stable 

o train compared to Gaussian mixture NDEs. Indeed, we use 
aussian mixture as our reference NDE below, as it has the best
alidation loss (see results) and is the least biased (see Section
.2.2 ). 
For all NDEs except CMAF, the underlying NNs are defined with

0 fully connected layers of 100 neurons, LEAKYRELU (e.g. Xu 
t al. 2015 ) acti v ation function (except for the last layer) followed by
 layer defining the likelihood parameters. The CMAF NDE is of the
ame shape, using the same acti v ation function, where the sequence
f layers parametrizes the chain of transformations. Our NNs use 
he Adam optimizer (Kingma & Ba 2014 ), learning rate reduction,
nd early stopping. All NDE likelihoods and training procedures are 
ade public as a part of 21CMLIKELIHOODS 8 package. 
Finally, it is important to test that the likelihood density es-

imation has trained well, without introducing biases and being 
nder/o v erconfident. One can use a mock observation and compare
he resulting posteriors obtained from different likelihood estimators. 
f the mock observation is not consistent with the reco v ered posterior,
hen the likelihood estimator is biased (Section 4.1 ). If this is repeated
or many mock observations, sampled from the joint distribution 
 ( θ, d PS ), the av erage o v er all posteriors should reproduce the prior.
his method (described in more details in Section 4.2.2 ) is called
imulation-based calibration (SBC; Talts et al. 2018 ). SBC provides 
 rigorous, quantitative test of the accuracy of likelihood estimation. 
MNRAS 524, 4239–4255 (2023) 
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Figure 5. Posterior of the fiducial mock observation reco v ered from the NDE 

Gauss mixture likelihood, compared with CLASSIC fixed cov and CLASSIC 

fixed var . Individual figures show 2D or 1D marginalizations of the posterior. 
Contours label 95 per cent confidence interval (CI), and black-dashed lines 
true parameter values. 

Figure 6. Like Fig. 5 , but here we compare the posteriors from NDE fixed 
cov and NDE fixed var . 
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Figure 7. Like Fig. 5 , but here we compare the posteriors from NDE varying 
cov and NDE varying var . 

Figure 8. Like Fig. 5 , but here comparing the two non-Gaussian likelihoods, 
NDE Gauss mixture and NDE CMAF . 

 

m  

a  

c  

o  

t  

1
 

n

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/524/3/4239/7220718 by Scuola N
orm

ale Superiore Biblioteca user on 27 D
ecem

ber 2023
nfortunately, it requires averaging over thousands of posteriors and
s therefore only computationally tractable for amortized inference
ike SBI. 

 RESU LTS  

n summary, we compare the performance of the following likelihood
hoices for the spherically averaged 21-cm PS. 
NRAS 524, 4239–4255 (2023) 
(i) CLASSIC fixed var – assumes a Gaussian likelihood, with the
ean estimated from a single (albeit well chosen) realization, and
 diagonal covariance estimated only at θfid . This is by far the most
ommon choice in 21-cm inference. In fact, this is an impro v ement
 v er the most common method of randomly picking a realization for
he model. As mentioned abo v e, we pick the one realization out of
000 that is closest to the mean at the fiducial parameter choice. 
(ii) CLASSIC fixed cov – like CLASSIC fixed var , but using a

on-diagonal covariance. 
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Figure 9. Summary of the previous posteriors, showing only 1D marginal PDFs for all likelihood choices. The fiducial (true) parameter values are denoted 
with horizontal, dashed lines. Most posteriors are o v erconfident. The most accurate posterior estimate (see Section 4.2.2 ) comes from the NDE Gauss 
mixture . 
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Figure 10. Training and validation losses for all NDEs. Loss on the y -axis 
corresponds to an unnormalized KL divergence and can be used as a relative 
measure of accuracy (see text for details). On the x -axis we show the per cent 
of the total number of epochs used for training (100 per cent corresponds to 
the minimum of the validation loss denoted with dots). 
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(iii) NDE fixed var – assumes a Gaussian likelihood, with the
ean estimated by NDE, and a diagonal covariance estimated only

t θfid . 
(iv) NDE fixed cov – like NDE fixed var , but with a non-diagonal

ovariance. 
(v) NDE varying var – assumes a Gaussian likelihood, with the
ean and a diagonal covariance estimated throughout parameter

pace by NDE. 
(vi) NDE varying cov – like NDE varying var , but with the NDE

tting a non-diagonal covariance. 
(vii) NDE CMAF – a non-Gaussian likelihood estimator using

MAF NDE. 
(viii) NDE Gauss mixture – a non-Gaussian likelihood estimator

sing Gaussian mixture NDE. 

For the first two ‘classic’ likelihood choices, the simulator is
alled on-the-fly during inference (i.e. it is not amortized). The other
ikelihoods are used in SBI (amortized inference). Using validation
oss and SBC rank statistics, (see Figs 10 and 12 ), we determine
hat the NDE Gauss mixture is the most accurate of the likelihood
stimators considered here. We therefore use it as a reference
hroughout the rest of this work. We summarize the assumptions
or each likelihood choice in Table 1 . 

We compare the performances of the likelihood choices in two
arts. In Section 4.1 , we show posteriors for the mock observation,
nd qualitatively describe their performances. In Section 4.2 , we
uantitatively test all NDE likelihoods using many mock observa-
ions across parameter space. 

.1 Posteriors for the fiducial mock obser v ation 

n order to reco v er the posteriors of the fiducial mock observation
see Fig. 2 ), we run Bayesian inference for the constructed and trained
ikelihoods. For the two classic choices, we use 21CMMC 

9 package,
ogether with the MULTINEST 10 sampler (Buchner et al. 2014 ). For the
NRAS 524, 4239–4255 (2023) 

 https:// github.com/21cmfast/ 21CMMC 

0 ht tps://github.com/JohannesBuchner/PyMultiNest 

a  

o  

1

DEs, we use ULTRANEST 11 (Buchner 2021 ), with the MLFriends
lgorithm (Buchner 2016 , 2019 ). For simple posteriors like ours the
wo codes perform the same; ho we ver, the computational cost of
BI is lower with ULTRANEST ’s vectorized likelihood evaluation.
or our default convergence criteria that require ∼40 000–90 000

ikelihood e v aluations, the non-amortized (classic) inference with
1CMMC takes ∼10 5 core hours, while the amortized (SBI) inference
ith ULTRANEST takes ∼0.1 core hours. We return to the relative

omputational costs in more detail below. 
In Fig. 5 , we show 1D and 2D marginal posteriors for the two

lassic likelihoods in green, together with NDE Gauss mixture as
 reference in black. Straight lines denote the fiducial parameter
alues and 95 per cent confidence interval (CI) are demarcated in the
D panels. Comparing CLASSIC fixed var with CLASSIC fixed cov ,
e can clearly see that ignoring the non-diagonal covariance terms

esults in a higher bias and a more o v erconfident posterior. This
s in contrast with Zhao et al. ( 2022b ) who find that for their two
arameter model, the NDE likelihood results in a tighter posterior
ompared with a Gaussian likelihood. This difference could be due
o the specific choice of model seed and/or the calculation of the
ariance (computed via Monte Carlo versus assumed to be Poisson).
egardless, we agree with their main conclusions that just using a
iagonal Gaussian variance can bias inference. Our true parameter
alues are in some cases inconsistent with the CLASSIC fixed var
osterior, the most popular choice for 21-cm inference , at greater
han 95 per cent CI. Note that we confirm that our choice of data
eed is not a rare outlier (see Fig. 2 ), and so the truth should be
nside the 68 per cent CI. This bias is especially obvious for the X-
ay heating parameters, E 0 and L X /SFR. Including a full covariance,
till only e v aluated at θfid , gi ves a more accurate reco v ery. Indeed,
he true values of the fiducial mock are al w ays consistent with the
eco v ered CLASSIC fixed cov posterior. Because it only requires
re-computing a few hundred additional realizations of the fiducial
odel, the CLASSIC fixed cov likelihood provides an easy way of

ncreasing the precision of classical inference. Ho we ver, e ven though
t is a significant impro v ement o v er CLASSIC fixed var , we see that
LASSIC fixed cov is still too narrow compared with our reference,
on-Gaussian posterior in black. 
In Fig. 6 , we show results for NDE fixed cov in brown and NDE

xed var in yellow, with NDE Gauss mixture for reference as before.
omparing to the classic likelihood results from Fig. 5 , we can see

hat the bias and constraints from NDE fixed var are consistent with
LASSIC fixed var , while those from NDE fixed cov are consistent
ith NDE fixed var . There is a difference in the direction of the
ias, which is expected as the mean in the two cases is estimated
y different methods. We therefore conclude that using NDE to find
he mean PS does not provide a significant impro v ement o v er using
 single realization as the mean, provided that the realization is
arefully chosen to be the one closest to the mean at the fiducial
ar ameter value . This last cav eat is important, as most classic
nferences randomly choose an initial condition seed to be used in
nference. 

In Fig. 7 , we show posteriors from NDE varying var and NDE
arying cov , which allow the (co)variance to be a function of θ .
n comparison to the previous results for which the (co)variance
s only e v aluated at a single point, we see a notable reduction in
ias. In f act, NDE varying co v results in a very similar posterior
s our reference NDE Gauss mixture . This suggests that higher
rder moments (beyond the two-point covariance) do not contribute
1 ht tps://github.com/JohannesBuchner/Ult raNest 

https://github.com/21cmfast/21CMMC
https://github.com/JohannesBuchner/PyMultiNest
https://github.com/JohannesBuchner/UltraNest
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Figure 11. Training and validation losses for the NDE Gauss mixture model, 
for different training set sizes (denoted as a percentage of the full set, 57 000, 
in the legend). As in Fig. 10 , the loss on the y -axis is the unnormalized KL 

divergence and the x -axis shows the training percentage. 
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is obtained even with ∼6000 simulations. We thus conclude that SBI 

12 The exact number of likelihood e v aluations depends not only on the mock 
observation but also on the sampler settings such as the number of live 
points and the convergence criterion. Our default setting uses 400 live points, 
requiring ∼90 000 likelihood e v aluations. We find that using 200 live points 
can give similar posteriors for our fiducial mock, requiring ∼40 000 likelihood 
e v aluations. Using a smaller number of live points results in noisy/biased 
posteriors. 
13 For visualization purposes, we keep the validation set fixed (17 000 
samples). This insures a smooth evolution of the validation loss curve; 
ho we ver, we confirm that such a large validation set is not needed. We tested 
that for our usage case, having 1000 samples was more than enough for 
the simple purpose of detecting o v erfitting and reducing the learning rate if 
needed. 
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ignificantly to the 21-cm PS likelihood. As we demonstrate in the 
ext section, NDE varying cov also generalizes well across our 
arameter space of mock observations, making it our second most 
ccurate likelihood. 

Finally, in Fig. 8 , we compare the posteriors from our two
on-Gaussian likelihoods: NDE Gauss mixture and NDE CMAF . 
urprisingly, our CMAF results in an o v erconfident and biased 
osterior. The fact that the CMAF is more e xpressiv e (i.e. is able to
dapt to many different distribution shapes) makes it more difficult 
o train, requiring either a larger training set or sequential (active) 
raining (Papamakarios et al. 2019 ; Alsing et al. 2019 ). Thankfully,
he 21-cm PS likelihood is simple enough to be well fit by the

ore stable NDE Gauss mixture , and does not require the additional
exibility of CMAF density estimation. 
We summarize our results in Fig. 9 , by showing 1D distributions

or all parameters (rows) and all likelihoods (columns). Black dashed 
ines denote the true parameter values used for the mock observation. 
or the NDE Gauss mixture the true values are consistent with all
f the 1D marginal PDFs. Although we cannot quantitatively judge 
he likelihood using only one posterior, we show in the following 
ection that NDE Gauss mixture performs the best in general. NDE
arying cov follows it very closely, in both confidence and bias. 
DE varying var performs slightly worse. The largest biases are 

een for the fixed variance likelihoods. These results confirm that it is
mportant to account for the full covariance between wave modes and 
edshifts, preferably at multiple points in parameter space. Higher 
rder moments are not particularly important for characterizing the 
1-cm PS likelihood. 

.2 Do the likelihood estimators generalize well across 
arameter space? 

n the previous section, we compared the posteriors resulting from our
ifferent likelihood estimators for a single mock observation. In order 
o gain confidence in the ability of the likelihoods to generalize across
arameter space, we must compare the posteriors for many mock 
bservations generated at many different θ . Here we quantify this 
sing two metrics: (i) the validation loss; and (ii) rank distributions
rom SBC. We discuss each in turn. 
Unfortunately, it is impractical to generate thousands of classical, 
on-amortized inferences required for this assessment. We therefore 
nly use our SBI likelihoods in this section. As was demonstrated in
he previous section, NDE fixed var and NDE fixed cov can serve as
roxies for CLASSIC fixed var and CLASSIC fixed cov , respectively.

.2.1 Training and validation loss 

ur loss function (equation 13 ) is an unnormalized estimate of the
L divergence between likelihood samples and the fitted distribution. 
or this reason, the validation loss is a measure of how well the
tted likelihood function generalizes o v er the whole parameter space. 
ecause of the missing normalization constant (Shannon entropy of 

he ‘real’ distribution, see equation 12 ), the loss function can be
e gativ e, while the KL divergence cannot. 
Fig. 10 shows the training and validation losses for all NDEs

onsidered in this work, in dashed and solid lines, respectively. On
he x -axis we show the percentage of the total number of epochs used
or the final training (100 per cent corresponds to the minimum of
he validation loss). The relative validation losses follow the same 
rends as noted in the previous section for the case of a single mock
bservation. Namely, NDE Gauss mixture has the lowest validation 
oss, confirming that it can accurately fit the likelihood across our
arameter space. NDE varying cov is the second best, while NDE
xed var is the worst. 

It is useful to know just how large of a training set is needed
o achieve the accuracy demonstrated by NDE Gauss mixture . 
ur default training set has 57 000 simulations. This is roughly

omparable to the average number of likelihood e v aluations needed
or ULTRANEST or MULTINEST to converge when doing inference. 12 

he fact that these numbers are comparable means that amortized 
running simulations before inference) and non-amortized (running 
imulations during inference) approaches to inference have compa- 
able computational costs. Ho we ver, if our best performing NDE
auss mixture estimator can be trained with a smaller training set,

hen it would not only be more accurate but also faster than classical,
on-amortized inference. 
To answer this question, we retrained NDE Gauss mixture using 

nly a subset of our training set: 50 per cent (28 000 simulations) and
0 per cent (5700 simulations). 13 The training and validation losses 
re plotted in Fig. 11 . One can clearly see that reducing the training
ize by a factor of produces little change in the validation loss.
herefore, 20 000–30 000 simulations are sufficient for NDE Gauss 
ixture to maintain accuracy. Reducing the training size by a factor of 
0 pushes the validation loss to roughly the level of NDE varying cov
see Fig. 10 ). Since this is our second best model, good performance
MNRAS 524, 4239–4255 (2023) 
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Figure 12. Posterior rank distributions from SBC computed from ∼7000 models in the test set. Each panel corresponds to a different NDE likelihood. The 
x -axis denotes the rank r from 0 to L = 100. The y -axis shows the posterior number count N of a particular rank. Black line and shaded area mark the mean and 
95 per cent confidence interval (CI) of the binomial distribution, respectively. 
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s not only more accurate than classic, non-amortized inference, but
lso is faster by factors of � 3–10. 
The validation loss discussed in this section quantify the quality

f the likelihood fits, not the performance of the whole Bayesian
nference framework. In the following section, we test the accuracy
f the reco v ered posteriors and thus the robustness of our likelihood
unctions. 

.2.2 Simulation-based calibration 

n Section 4.1 , we showed posteriors obtained from a single mock
bservation. We compared the performances of different likelihood
hoices by noting if the true values from the mock were consistent
ith the reco v ered posteriors. Here we e xtend this comparison
NRAS 524, 4239–4255 (2023) 
 v er man y dif ferent mock observ ations, in a procedure kno wn as
imulation-based calibration (SBC). 

The core of the method is based on the following steps: 

(i) sample parameters from prior, ̃  θ ∼ π( θ ); 
(ii) sample the likelihood with a simulator, ̃  d ∼ L ( d | ̃  θ ); 
(iii) calculate the posterior using the sample as a mock observa-

ion, ̃  d → P ( θ | ̃  d ). 

Here the samples are labelled with ∼. The first two steps are
dentical to SBI, with the final step adding the calculation of the
osterior corresponding to that mock observation. If we repeat these
teps many times and average the posteriors for many ( ̃  θ , ̃  d ), it
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ollows that 

( θ ) = 

∫ 
P ( θ | ̃  d ) · L ( ̃  d | ̃  θ ) π( ̃  θ ) d ̃  θ d ̃  d 

≈ 1 

N 

n ∑ 

i= 1 

P ( θ | ̃  d i ) , (24) 

here the last equation is the Monte Carlo estimate of the integral
or samples drawn from P ( θ , d ) = L ( d | θ ) π( θ ). In other words,
rior = data-avera g ed posterior . If any step of the Bayesian
nference pipeline went wrong, the equality will not hold. This is
he basis of SBC (Talts et al. 2018 ). In particular, if we sample L
oints ( θ1 , . . . θL ) from the posterior P ( θ | ̃  d ), make a scalar function
 :  → R , and define a rank function, 

 

(
f ( θ1 ) , . . . f ( θL ) , f ( ̃  θ ) 

)
= 

L ∑ 

l= 1 

1 

[ 
f ( θ l ) < f ( ̃  θ ) 

] 
, (25) 

 distribution of a rank r should be uniform in [0, L ]. Here the
oolean 1 equals 1 if the condition is true, and 0 otherwise. Therefore, 

he rank of a particular posterior counts how many samples are 
elow its true value. The rank distribution for rank r counts how
an y posteriors hav e r samples out of L below their true values.
his equation is a 1D representation of the data-averaged posterior 

n equation ( 24 ). By testing the uniformity in the rank r , one can
ee if posteriors are statistically underconfident (o v erconfident) or 
iased. Overconfidence will make distribution convex ( ∪ -shaped), 
nderconfidence will make distribution concave ( ∩ -shaped), and any 
ias will tilt the distribution to one side. For instance, having a
 -shaped profile in the case of underconfident posteriors can be 

ntuitively understood as the following. Rank statistics measures the 
ifference between the prior CDF and the data-averaged posterior 
DF. If the two distributions are the same, the rank statistics are
ero and flat. Ho we v er if the data-av eraged posterior is wider, the
ow-rank points would mo v e towards the middle ranks, as it is harder
o obtain low ranks for a wide distribution. The opposite is true for
he o v erconfident posteriors. F or more details, see Talts et al. ( 2018 ).

We consider five scalar functions f i ( θ ) = θi , one for each astro-
hysical parameter. This allows us to assess the quality of the 1D
osteriors for each parameter separately. In order to calculate the rank 
tatistics, we run ULTRANEST for all likelihoods and all samples in 
ur test set of ∼7000 simulations. ULTRANEST is the best choice for
his task because of its (i) vectorization of the likelihood calculation; 
ii) robust convergence criteria; and (iii) non-correlated samples in 
he final posterior. The last point is crucial for SBC as correlated
amples contaminate the rank statistics. We calculate the ranks of the 
osterior samples via equation ( 25 ), for L = 100. 
The results are shown in Fig. 12 . Each rank statistic is expected to

ollow a binomial distribution – in the plot, the black line and grey
rea show its mean and 95 per cent interv al, respecti vely. In general,
he quality of the 1D posteriors is comparable within each likelihood 
hoice (there is no obvious outlying astrophysical parameter). For 
DE fixed var and NDE fixed cov we can see a conv e x distribution,

ndicating that their posteriors are o v erconfident. In the case of NDE
arying var and NDE varying cov , results look much better, with the
urves staying in the 95 per cent region almost throughout the rank
tatistics. Furthermore, NDE CMAF seems to be fairly o v erconfident 
nd slightly biased to the right, especially for reco v ery of L X /SFR
nd E 0 . 

NDE Gauss mixture performs the best across most of the rank 
tatistic range, followed by NDE varying cov . The former seems
lightly o v erconfident while the latter slightly underconfident, but 
he distributions are generally consistent with the expected binomial 
5 per cent interval in grey. This confirms the previous results that
DE Gauss mixture provides the most accurate likelihood. 

 C O N C L U S I O N S  

he spherically averaged PS is the most used summary statistic 
hen performing inference from 21-cm tomography (using either 

urrent mock or upcoming data). Ho we ver, the likelihood functions
ommonly used in such inferences contain several questionable 
ssumptions. Almost e xclusiv ely a Gaussian functional form is 
dopted, despite the fact the signal is non-Gaussian. Even after 
ssuming a Gaussian likelihood, further simplifications are made 
o make the likelihood e v aluation computationally tractable. These 
nclude: (i) estimating the mean from a single, random realization; (ii) 
ssuming a diagonal covariance; and (iii) computing the (co)variance 
nly at a single point in parameter space. 
Here, we systematically test these assumptions with SBI: we train 

DEs to fit the likelihood using a data base of tens of thousands of
imulated 21-cm PS observations. Our simulation pipeline consists 
f the following steps (cf. Fig. 1 ): (i) sample the initial matter PS
nd five galaxy parameters, computing a corresponding realization of 
he cosmic 21-cm light-cone with 21CMFAST ; (ii) add a realization
f the telescope noise corresponding to a 1000 h integration with
KA1-Low; (iii) zero all Fourier modes lying within a foreground- 
ominated horizon wedge; and (iv) bin the light-cone in redshift 
ntervals, computing the 1D 21-cm PS for each bin. We make a data
ase of 57 000 such realizations of the PS for training, including
nother 14 000 for validation and 7000 for testing. We compare the
esults of inference for various likelihood choices, validating the 
bility of our NDEs to generalize o v er parameter space using SBC. 

Our main results are the following. 

(i) The most common likelihood choice – a Gaussian with a 
xed variance evaluated only at a fiducial parameter – results in 
n o v erconfident and biased posterior (see also Zhao et al. 2022b ).
rue values can be outside of the reco v ered 95 per cent CI when they
hould be inside 68 per cent CI. 

(ii) Including the two-point covariance between Fourier modes 
nd redshifts dramatically impro v es inference. If the covariance is fit
s a function of the parameters, the resulting posteriors are almost
dentical to our best-performing non-Gaussian NDE. Ho we ver, e ven
re-computing the covariance only at the fiducial parameter set gives 
ecent results, making it a computationally viable option for classic, 
on-amortized inference. 
(iii) A single realization can be used in place of the mean PS across

arameter space, provided that the realization is pre-selected to lie 
lose to the mean at the fiducial parameter value. 

(iv) Our most accurate posteriors result from a non-Gaussian 
ikelihood, using a simple-to-train Gaussian mixture NDE. More 
omplex non-Gaussian NDEs like CMAFs are unnecessary and more 
ifficult to train. 
(v) Our best-performing likelihood estimator can be trained on 

 data base of only ∼20 000–30 000 simulations without any loss
f accuracy. Good performance (comparable to our second best 
stimator) can be achieved with only 6000 simulations. This is up
o an order of magnitude smaller than the number of likelihood
 v aluations needed for inference. Therefore creating a training set to
t the likelihood before running inference is more computationally 
fficient than calling a simulator on-the-fly with each likelihood 
 v aluation during inference. 

Although the choice of likelihood is unlikely to be important 
or current noisy 21-cm observations, we should have a high S/N
MNRAS 524, 4239–4255 (2023) 
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etection of the cosmic 21-cm PS in the near future. This work
ighlights the power of SBI to provide accurate posteriors at a
omparably low computational cost. 
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