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Abstract

In this paper, we address the problem of anomaly detection in decentralised settings. We
took inspiration from the current edge computing trend, pushing towards the development
of decentralised ML algorithms, i.e., the devices that collected or generated data are in
charge of collaborating to train the ML models without sharing raw data . The challenges
connected to this scenario are (i) data distributions of local datasets might be different, (ii)
data is very often unlabelled, and (iii) devices have limited computational resources. We
address them by proposing an unsupervised ensemble method for decentralised anomaly
detection where the base learners are lightweight autoencoders. We aim to investigate
whether an ensemble of lightweight models trained in isolation on non-IID and unlabelled
local data can compete with heavier models trained in centralised settings. In a task of
multi-category anomaly detection, our results show that our method exploits the data
imbalance successfully to make accurate predictions.

Keywords: centralised vs decentralised, unsupervised anomaly detection, data imbalance,
autoencoders ensemble

1. Introduction

Anomaly detection (AD) (Chandola et al., 2009) addresses the problem of identifying
instances of rare events (i.e., anomalies) that are inconsistent for the majority of data
considered as normal. The concept of anomaly might take several different meanings,
depending on the reference domain, e.g., Health, Manufacturing, Finance, Networking, to
mention a few.

Regardless of the specific domain, there is a growing interest in how and where data is
processed to train machine learning (ML) models (Verbraeken et al., 2020). Specifically, due
to the explosion of the number of devices at the edge of the internet generating and collecting
data1, the knowledge extraction process is shifting from centralisation to decentralisation.
The reasons for such a paradigm shift are both technological and privacy related. From the
technological standpoint, it is foreseen that the amount of data generated at the edge will

1. Cisco Annual Internet Report (2018–2023) White Paper
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be so massive and often ephemeral that full centralisation might result simply infeasible nor
ecological, i.e., it is shown that the carbon footprint of cloud datacentres is becoming an issue
and international regulators are pushing toward the development of solutions alternative
to the cloud. Moreover, data centralisation raises privacy and ownership issues. More and
more attention is given to how the current cloud-based AI systems endanger privacy and
data ownership. AI-based service providers require users to upload their data to remote
cloud facilities for processing. In response to these challenges, lately appeared several ML
approaches suitable for processing data directly where they are generated or collected. This
is the case, for example, of the Federated Learning framework (McMahan et al., 2016) and
all its derivations (Kairouz, 2021).

When processing data in a completely decentralised fashion, it becomes of paramount
importance considering several aspects that are not so relevant in centralised settings. First,
local data collected by devices, although belonging to the same domain, might be represented
differently at each device, i.e., non IID data distributions. Second, the devices at the edge
are not as powerful as their counterpart in the cloud. Therefore, they might not be able
to train the same heavy models as in the cloud. Third, data labelling at the edge might
be an issue, especially when they are collected by automated machines without a human
supervisor.

In this paper, we address all these challenges within the framework of anomaly detection.
Precisely we want to address the following research questions:

• How to accomplish an unsupervised anomaly detection task in completely decentralised
settings, without sharing raw data and relying only on lightweight models with
performance comparable to a centralised solution?

• To what extent the data imbalance at the edge devices affects or favours the decen-
tralised anomaly detection task?

We answer these questions considering an instance of multi-class anomaly detection2

where each device trains a local and lightweight autoencoder (AE). The AEs are then used
to build an ensemble that, through a simple heuristic, can discern anomalous data from
normal ones, even when the different elements of the ensemble are trained on heterogeneously
distributed data. In the paper, we show that our decentralised ensemble is accurate and
robust to outliers as long as the local data imbalance enables each device to specialise on a
restricted set of categories. In these cases, the advantages of the approach are substantial:
the training process can be easily parallelised, the amount of information exchanged is
significantly less than the one that would be exchanged by centralising the data.

The remainder of the paper is organised as follows. In Section 2 an overview of the
problem and the related works are discussed. In Section 3 and Section 4 we list the
preliminaries and we describe our method in detail. In Section 5 we discuss the results of
the experiments and in Section 6 we draw the conclusions

2. Related Works

Centralised Anomaly detection Anomaly detection, also referred as outlier detection in
the literature, is an intrinsically unsupervised problem. Given its wide application, countless

2. Normal data might belong to multiple categories
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techniques for this problem have been introduced. Most of the solutions are meant for
centralised scenarios and they can be of different kinds, i.e., distance-based, density-based,
or subspace based (Aggarwal, 2017). In recent works the focus has shifted to neural network
based approaches (Chalapathy and Chawla, 2019), in particular, autoencoder has revealed to
be a simple yet effective tool for this task (Xia et al., 2015) since it is able to employ nonlinear
dimensionality reductions (Sakurada and Yairi, 2014). On top of these approaches, several
ensemble methods have been proposed (Aggarwal and Sathe, 2017), allowing remarkable
improvements in many aspects depending on the specific case. In addition, recent works has
been introduced involving autoencoder ensembles for unsupervised tasks (Chen et al., 2017;
Sarvari et al., 2019).

Decentralised Anomaly detection Unsupervised tasks in distributed contexts is a far
less studied topic compared to its supervised counterpart. The gap between them is even
larger if modern supervised NN-based collaborative paradigms like federated learning are
taken into account (Jin et al., 2020). Relevant studies of unsupervised distributed learning
have been made within anomaly detection in wireless sensor networks, targeting challenges
similar to those discussed in Section 1. However, these works are generally based on more
traditional approaches like clustering methods or predefined statistical assumptions each with
their own limitations in terms of high computational complexity, communication overhead
or lack of collaboration between devices, as noted by Rajasegarar et al. (2006); Luo and
Nagarajany (2018). The first effort of introducing a collaborative system of autoencoders
for distributed anomaly detection is given by Luo and Nagarajany (2018). However, the
lightweight autoencoders adopted in the solution are trained in cloud (i.e., centralised
training) on data collected by small devices. Locally, the autoencoders are used for inference
only.

Precisely, we address the problem of performing anomaly detection based on an ensemble
of autoencoders trained without complete knowledge of the whole dataset. Moreover, as an
additional challenges we impose that the autoencoders must be lightweight. Our interest is
to investigate what are the limits of such a process in both IID and non-IID settings. To
the best of the authors’ knowledge, this problem has not yet been explored in literature.

3. Preliminaries

In anomaly detection the goal is to train a model that recognises anomalous data out of
normal ones. The central assumption in anomaly detection is that normal data outnumbers
anomalies that are considered by definition rare events. An anomaly detection algorithm
(Aggarwal, 2017) generally proceeds as follow: (i) it builds a model of the normal patterns
in the data; (ii) it computes an anomaly/outlier score of a given test sample based on the
deviation from the normal patterns. (iii) The anomaly scores provided by an AD algorithm
can be converted into binary labels, indicating whether a data point is an anomaly or not.
This is typically achieved by imposing thresholds on outlier scores; a threshold can be chosen
based on the statistical properties of the scores.

In the paper, we use autoencoders as base models. We found autoencoder particularly
interesting for their flexibility regardless of the domain and the dimensionality of the data.
Moreover, although not covered in this work, they are suitable for incremental training,
differently from the vast majority of other approaches adopted in AD. An autoencoder is
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a multi-layer neural network specifically designed to learn a compressed representation of
unlabelled data by performing a nonlinear dimensionality reduction. It has a symmetric
structure in which an encoder network maps the d-dimensional input into a latent k-
dimensional code with k < d, and a decoder network recovers the data from the code. The
goal is to reconstruct the input as closely as possible to itself. Formally, given a training
set {x1, . . . ,xn} ∈ Rd such that xi is a d-dimensional input sample (i.e, a feature vector),
the autoencoder is a composite function f(xi) := hθ′(gθ(xi)) where g : Rd → Rk and
h : Rk → Rd are the encoder and the decoder functions parameterized by θ,θ′, respectively.
For the sake of readability, we denote the set of parameters θ,θ′ as Θ. The reconstruction
of the input is then indicated as x′i = fΘ(xi).

The square loss ei = ‖fθ(xi) − xi‖2 is usually taken as reconstruction error of xi,
therefore, the autoencoder is trained3 by finding the weights Θ that minimise the average
reconstruction error: L(fΘ) = 1/n

∑n
i=1‖fΘ(xi)− xi‖2.

When a sample is given as input to a trained autoencoder, both the reduced dimensional
representation (i.e., the output of the middle layer) or the reconstruction error can be
exploited to understand whether it is an outlier or not.

The rationale is that during training, the autoencoder captures statistical regularities of
the training set. Thus, when an anomalous sample occurs, the corresponding reconstruction
error will be higher than normal.

4. Proposed Methodology

Our distributed system is composed by K devices. Each device is equipped with a copy
of the same autoencoder which is trained on a partition Di of the dataset D, such that
D =

⋃K
i=1Di where Di 6= Dj for i 6= j.

The idea is that if the data partitioning allows the devices to specialise individually
on a specific normal class, then, once all the autoencoders are collected, a data point can
be scored by each autoencoder by computing the reconstruction error. The autoencoder
that provides the minimum reconstruction error is the one that most likely recognised it
as normal. A data point is recognised as an anomaly in our scheme when no device in the
ensemble recognises it.

Formally, providing a test data point x to the ensemble of K autoencoders {AEi}Ki=1,
we obtain a set s = {s1, . . . , sK} of K reconstruction errors. The elements of the vector
s represent the anomaly scores assigned by each AE to the point x. In our solution the
final aggregate score s∗ corresponds to the minimum reconstruction error over the different
ensemble components, as in Eq. (1).

s∗ = min{‖AEi(x)− x‖2}i=1,...,K (1)

Finally, the AE corresponding to the minimum score, here denoted as AE∗, is the one in
charge of providing also the binary decision on the test point x as in Eq. (2).

b(s∗, τAE∗) =

{
1 s∗ > τAE∗

0 otherwise
(2)

3. Training is performed through back-propagation of the error.
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where τAE∗ is a fixed threshold locally computed by AE∗. Here one stands for anomaly
and zero for normal. The threshold embeds a prior assumption about the expected percentage
of outliers ρ that might be present in the whole data (not in the local partitions). Each
autoencoder exploits ρ to calculate its threshold as the (100− ρ)th percentile of its training
scores, i.e., the reconstruction errors computed on the local training set. We motivate this
choice considering that in a completely decentralised setting where sharing is not allowed,
each device can only leverage the local knowledge build on its local data and some common
prior knowledge. This ensemble-based anomaly detection method is reported in Algorithm 1.

Algorithm 1: DAE - Decentralised Anomaly Detection

Input: xtest,K, {AEi}Ki=1, {τi}Ki=1

s← [ ]
for i← 1 to K do

si ← ‖AEi(xtest)− xtest‖2 ; . Get reconstruction error from each AE

end
i∗ ← arg mini(s) ; . Get the index of the AE with minimum score

return b(si∗ , τi∗) ; . return the binary response

5. Numerical results

In this section, we evaluate the performance of our decentralised ensemble-based anomaly
detection system. We recall that our research questions address two main aspects. On the
one hand, we investigate if an ensemble of lightweight autoencoders trained in isolation on
non-IID data can achieve performance comparable to a centralised and potentially heavier
model trained by centralising all the data.

On the other hand, we investigate to what extent the level of data heterogeneity affects
the performance of our decentralised method. For the sake of reproducibility, our code is
based on well-accessed and standard frameworks: Tensorflow4, Scikit-Learn5 and PyOD6.
The code is available at https://github.com/mirqr/MultiAEDist.

5.1. Dataset preparation and performance metrics

In our experiments we use MNIST (LeCun et al., 2010) and fashion-MNIST (Xiao et al., 2017),
two widely used labelled data sets that are commonly adapted to the anomaly detection
scenario as well. They share the same structure, consisting of a training set of 60000 examples
and a test set of 10000 examples. Each example is a 28× 28 grey-scale image associated with
a label from 10 classes. The former contains handwritten digits, the latter contains images of
clothing and it represents a considerably more complex learning task7. We use the original
train/test splits and exploit the data labels to perform a comprehensive set of experiments in

4. https://www.tensorflow.org
5. https://scikit-learn.org/stable/
6. https://pyod.readthedocs.io/en/latest/
7. MNIST vs. fashion-MNIST: http://fashion-mnist.s3-website.eu-central-1.amazonaws.com/
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which we compare several multi-class distributed scenarios to the corresponding centralised
ones.

For each experiment, from the set of classes C we define a subset inlier classes CI of size
SI such that SI ≥ 2. All the training samples belonging to CI are labelled as normal, while
the samples of the remaining classes COUT = C \ CI are labelled as anomalies. Remember
that in our settings, the anomaly detection problem is unsupervised. Therefore, we use the
labels for evaluation purposes only.

To simulate data imbalance among devices’ local datasets, we adopt the following
procedure. Given the number of inlier classes SI , we partition the whole dataset D into SI
disjoint partitions Di, such that D =

⋃SI
i=1Di where Di 6= Dj∀i 6= j. Moreover, we impose

that the Di 6= Dj∀i, j = 1, . . . , SI , where Di is the distribution of the i-th data partition
Di. For the rest of the paper we set K = SI . We consider a range of data partitioning
configurations. At one extreme, we assume that each Di contains only samples from a single
normal class (from now on called ideal partitioning). At the other extreme, at each local
datasets Di, the normal classes are equally represented. This is a limit case that we include
for completeness to cover the situation where local datasets are IID. We term it uniform
partitioning. Finally, for the middle cases, we allocate the samples to the Di partitions
according to a discrete Zipf(n = SI , a) distribution under different values of the parameter
a (i.e., the exponent of the distribution). As a result, each device takes most of its samples
from one normal class and few samples from all the remaining normal classes. To preserve
heterogeneity between the local datasets Di, we ensure that the Zipf ranking of the normal
classes is circular along with the devices. Figure 1(a) and Figure 1(b) exemplify the data
distributions at each device in the cases of ideal partitioning and Zipf-like partitioning,
respectively. Note that we use the labels information only to partition the data: once placed,
all the samples are deprived of labels.

Beyond the three macro-cases of data partitioning, to test the robustness of our decen-
tralised anomaly detection solution to outliers, we design two separate sets of experiments.
In the first set, we considered local datasets free from any outliers. This is an ideal case
we use to set the baseline. In the second set, we assume that each local dataset Di con-
tains a fixed percentage of outliers (i.e., 10% as it is commonly assumed in the anomaly
detection literature). Here the outliers are uniformly sampled from the patterns of COUT .
In the distributed cases, they are uniformly spread among the devices. Hence the training
inliers/outliers ratio is preserved in both centralised and distributed settings.

The performance evaluation is done comparing the accuracy of the decentralised anomaly
detection in all the data partition configurations with the one obtained by a centralised
anomaly detection solution with complete access to the whole training set D. In real-world
settings, this represents a scenario where data collected by the decentralised devices are
collected on a central server for being processed. The data distribution of D is exemplified
in Figure 1(c).

We measure the accuracy of both the decentralised and centralised anomaly detection
algorithms on a common test set by using two standard metrics: the F1 as accuracy score,
considering the outlier label as the positive label, and the Receiver Operating Characteristic
(ROC) curve to generate the full trade-off between the true positive rate and the false
positive rate, which we summarise in a single value by computing the area under the ROC
curve (AUC).
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Figure 1: Examples of data partitioning using MNIST with CI = {0, 1, 2, 3, 4}. (a) Ideal
distributed partitioning, (b) Zipf(n = 5, a = 3) distributed partitioning and (c)
uniform centralised settings.

5.2. Experimental settings

Centralised anomaly detection benchmarks. The centralised benchmarks considered
in this paper are three state-of-the-art algorithms commonly used in anomaly detection,
namely, One-class Support Vector Machines (OC-SVM), Local Outlier Factor (LOF) and a
Deep Autoencoder (FAE).

OC-SVM (Schölkopf et al., 1999) is a special case of support vector machine, particularly
effective in semi-supervised tasks, i.e. assumes only positively labelled instances in the
training data. It maps input data into a high dimensional feature space and iteratively finds
the maximal margin hyperplane that best separates the origin’s training data. It requires the
choice of a kernel and a scalar parameter ν ∈ (0, 1] to define a frontier. It can be used with
contaminated data set but requires fine-tuning of ν to prevent over-fitting, which can be
challenging without any assumptions on the distribution of the outliers. In our experiments,
we use the RBF kernel and set ν = 0.1, an upper bound on the fraction of training errors
and a lower bound on the fraction of support vectors.

LOF (Breunig et al., 2000) is a conventional distance-based algorithm originally meant to
be applied for unsupervised outlier detection tasks. It computes the local density deviation
of a given data point and detects the ones that have a substantially lower value than their
neighbours. The local density is obtained from the k-nearest neighbours, i.e. k is the main
parameter of the estimator. We set the number of nearest neighbours k = 20, after testing
other values from 10 to 20 as suggested in the original paper. Since LOF is originally meant
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for outlier detection tasks, it also needs a contamination parameter to be fixed, representing
the proportion of outliers in the data set used to define the threshold on the anomaly
scores of the samples. We set it to 0.1, a commonly used value when the training set is
uncontaminated.

FAE is a deep fully connected autoencoder based method. This recent approach, along
with its numerous extensions, has proved to stand up to classical algorithms by exploiting
the nonlinear representation of the data. For the definition of the number of the hidden
layer, we followed a strategy similar to (Chen et al., 2017): we set the number of neurons
of the middle layer to 16, a reasonable value to avoid an excessive information bottleneck,
and we doubled it in each added layer until we reach the closest number of neurons of the
input/output layer (e.g., 512 for MNIST, since it is 784 dimensions). We tested all structures
obtained, and we observed that after seven hidden layers (i.e., 128 neurons for the outermost
hidden layers), the accuracy does not significantly improve due to the tendency of the neural
network to overfit. Hence, for the centralised part we selected three architectures (denoted
as FAE3, FAE5, FAE7) with the following hidden layers’ structure: [32-16-32], [64-FAE3-64],
[128-FAE5-128], respectively.

Decentralised autoencoders. The autoencoders forming the decentralised ensemble
have the same architecture as FAE3. FAE3 is a lightweight autoencoder with only 50k
parameters that resource-limited devices might relatively easily train. We included it also
among the centralised experiments to have a comparison on the same model. The remaining
parameters and settings are the same among all autoencoders: the activation functions of
input and output layers are sigmoid, while for hidden layers, we set ReLU. This is a classic
combination that turned out to be resilient to the vanishing gradient problem. We used
Adam (Kingma and Ba, 2015) as the optimizer with learning rate η = 10−3 tuned over the
set {10−4, 10−3, 10−2, 10−1}.

Table 1: Inlier classes used in the experiments.

Normal Classes

CI1 {0, 1, 4, 6, 9}
CI2 {1, 2, 3, 4, 8}
CI3 {0, 1, 6, 7, 9}
CI4 {0, 3, 5, 6, 8}
CI5 {3, 4, 6, 7, 8}
CI6 {0, 2, 3, 4, 5}
CI7 {0, 1, 2, 3, 4}
CI8 {5, 6, 7, 8, 9}
CI9 {0, 2, 4, 6, 8}
CI10 {1, 3, 5, 7, 9}

5.3. Results

We run ten experiments for both the MNIST (MN) and fashion-MNIST (F-MN) data sets,
each time randomly selecting a set of five inlier classes to form CI as shown in Table 1. From
now on, we refer to our ensemble of lightweight autoencoders, each one trained in isolation
on one of the Di local datasets as Decentralised Autoencoder Ensemble (DAE) and the other
anomaly detection solutions trained on the whole datasets as centralised solutions.

In Table 2 we compare how DAE performs against all the centralised solutions, under
ideal-partitioning where data do not include outliers (DAE Ideal). For the MNIST data set,
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Table 2: AUC and F1 results on MNIST (MN) and fashion-MNIST (F-MN) with no contam-
ination. Comparison of centralised methods against a perfectly distributed setting
(the rightmost columns). The best overall scores are highlighted in boldface. The
best centralised scores are underlined.

Dataset
AUC F1

OCSVM LOF FAE3 FAE5 FAE7 DAE OCSVM LOF FAE3 FAE5 FAE7 DAE
Ideal. Ideal.

MN CI1 0.818 0.976 0.957 0.966 0.974 0.97 0.656 0.935 0.891 0.903 0.913 0.904
MN CI2 0.722 0.926 0.819 0.845 0.89 0.915 0.498 0.836 0.617 0.680 0.774 0.832
MN CI3 0.756 0.971 0.963 0.972 0.98 0.985 0.586 0.927 0.899 0.919 0.922 0.933
MN CI4 0.657 0.905 0.858 0.866 0.868 0.894 0.336 0.775 0.686 0.686 0.789 0.752
MN CI5 0.629 0.899 0.725 0.76 0.791 0.859 0.382 0.747 0.56 0.608 0.683 0.73
MN CI6 0.553 0.872 0.680 0.705 0.75 0.833 0.199 0.748 0.401 0.489 0.592 0.714
MN CI7 0.624 0.938 0.848 0.884 0.908 0.92 0.317 0.867 0.648 0.743 0.798 0.84
MN CI8 0.695 0.918 0.831 0.853 0.869 0.88 0.463 0.774 0.658 0.753 0.792 0.766
MN CI9 0.666 0.867 0.715 0.733 0.806 0.841 0.319 0.727 0.481 0.513 0.633 0.688
MN CI10 0.795 0.953 0.962 0.963 0.973 0.976 0.648 0.901 0.898 0.904 0.916 0.91
avg. 0.691 0.922 0.836 0.855 0.881 0.907 0.44 0.824 0.674 0.720 0.781 0.807

F-MN CI1 0.742 0.836 0.824 0.832 0.836 0.841 0.625 0.603 0.658 0.683 0.691 0.688
F-MN CI2 0.752 0.845 0.831 0.832 0.839 0.854 0.703 0.675 0.682 0.698 0.709 0.617
F-MN CI3 0.646 0.838 0.816 0.825 0.826 0.833 0.499 0.604 0.567 0.599 0.619 0.597
F-MN CI4 0.588 0.692 0.637 0.654 0.656 0.677 0.303 0.339 0.265 0.303 0.306 0.362
F-MN CI5 0.687 0.774 0.720 0.717 0.723 0.755 0.538 0.575 0.456 0.477 0.505 0.622
F-MN CI6 0.677 0.72 0.757 0.772 0.772 0.768 0.477 0.458 0.543 0.572 0.59 0.537
F-MN CI7 0.875 0.902 0.913 0.91 0.914 0.917 0.849 0.826 0.851 0.847 0.848 0.845
F-MN CI8 0.64 0.766 0.682 0.655 0.661 0.682 0.507 0.535 0.436 0.406 0.406 0.401
F-MN CI9 0.904 0.874 0.897 0.881 0.876 0.882 0.809 0.657 0.776 0.736 0.735 0.678
F-MN CI10 0.66 0.834 0.891 0.891 0.877 0.909 0.61 0.614 0.774 0.778 0.753 0.818
avg. 0.717 0.808 0.797 0.797 0.798 0.812 0.592 0.589 0.601 0.610 0.615 0.616

DAE has the second-best results after the LOF algorithm, with an average AUC score of
0.907 against 0.922 respectively. On MNIST, LOF appears to work particularity well, while
OC-SVM has difficulty finding a normality pattern in an intrinsic multi-class training set.
At the same time, by using a more complex data set like fashion-MNIST, DAE can produce
the highest AUC and F1 scores. The autoencoders used in the centralised setting (FAE) are
ranked in the middle, and we note that at least 7-layers (FAE7) are needed to get a score
reasonably close to the distributed solution.

Similar considerations can be made by introducing a 10% of contamination to the training
set, as shown by the results in Table 3. Here DAE overtakes all the centralised models in both
MNIST and fashion-MNIST data sets, proving a good tolerance to outliers. LOF struggles
to find clear density variations; hence it performs poorly, especially on fashion-MNIST. The
second-bests are FAE7 for MNIST and FAE3 for fashion-MNIST, with a 13% and a 6%
decrease of the AUC score. Note that we kept the decision threshold to 0.1 in this test
case, as in the uncontaminated experiments. Considering the generally low values for F1,
a threshold of 0.1 is probably insufficient in a multiple categories anomaly detection task
with 10% of contamination rate. Nevertheless, the performance ranking of the algorithms
remains consistent.

In the second block of our experiments, we compare several distributed settings in order
to analyze the sensitivity of DAE when the samples of the inliers classes are not perfectly
arranged into different partitions. To simulate such a scenario, we place the samples following
a Zipf distribution using a = {3, 2.5, 2}, ensuring that the ranking of the inlier classes is
circular among the devices (Figure 1(b)). In this way, we make sure each device is still
exposed to a slightly more heterogeneous data distribution than in the previous ideal case.

15



Centralised vs decentralised AD under different data imbalance

Table 3: AUC and F1 results on MNIST (MN) and fashion-MNIST (F-MN) with 10% of
outlier contamination. Comparison of centralised methods against DAE trained in
a perfectly distributed setting (the rightmost columns). The best overall scores are
highlighted in boldface. The best centralised scores are underlined.

Dataset
AUC F1

OCSVM LOF FAE3 FAE5 FAE7 DAE OCSVM LOF FAE3 FAE5 FAE7 DAE
Ideal Ideal

MN CI1 0.7 0.676 0.870 0.861 0.87 0.942 0.422 0.430 0.635 0.647 0.701 0.712
MN CI2 0.643 0.557 0.673 0.678 0.684 0.86 0.351 0.217 0.285 0.307 0.357 0.489
MN CI3 0.65 0.705 0.900 0.914 0.914 0.957 0.379 0.425 0.626 0.689 0.742 0.719
MN CI4 0.578 0.542 0.597 0.621 0.585 0.754 0.233 0.322 0.338 0.424 0.402 0.474
MN CI5 0.593 0.591 0.578 0.600 0.615 0.724 0.302 0.317 0.282 0.341 0.397 0.492
MN CI6 0.519 0.611 0.615 0.642 0.677 0.747 0.158 0.337 0.407 0.461 0.564 0.566
MN CI7 0.568 0.648 0.826 0.872 0.902 0.946 0.226 0.326 0.540 0.640 0.725 0.656
MN CI8 0.646 0.603 0.660 0.672 0.643 0.729 0.352 0.341 0.398 0.446 0.453 0.539
MN CI9 0.585 0.577 0.521 0.515 0.532 0.681 0.191 0.289 0.229 0.255 0.311 0.376
MN CI10 0.707 0.656 0.866 0.867 0.852 0.932 0.473 0.350 0.566 0.600 0.62 0.678
avg. 0.619 0.617 0.711 0.724 0.727 0.827 0.309 0.336 0.431 0.481 0.527 0.57

F-MN CI1 0.673 0.584 0.732 0.726 0.723 0.789 0.405 0.238 0.413 0.420 0.42 0.466
F-MN CI2 0.644 0.523 0.697 0.695 0.691 0.779 0.374 0.211 0.377 0.375 0.393 0.398
F-MN CI3 0.6 0.637 0.766 0.767 0.752 0.811 0.383 0.293 0.437 0.446 0.445 0.463
F-MN CI4 0.55 0.439 0.510 0.491 0.489 0.593 0.212 0.106 0.153 0.158 0.176 0.145
F-MN CI5 0.633 0.563 0.609 0.599 0.59 0.653 0.383 0.250 0.301 0.310 0.314 0.415
F-MN CI6 0.621 0.420 0.688 0.678 0.675 0.698 0.324 0.121 0.405 0.407 0.446 0.3
F-MN CI7 0.751 0.506 0.909 0.910 0.913 0.909 0.525 0.176 0.822 0.814 0.824 0.766
F-MN CI8 0.517 0.513 0.502 0.444 0.433 0.534 0.265 0.203 0.124 0.129 0.136 0.164
F-MN CI9 0.792 0.465 0.693 0.641 0.626 0.732 0.417 0.131 0.337 0.324 0.322 0.363
F-MN CI10 0.486 0.465 0.727 0.689 0.693 0.792 0.385 0.180 0.381 0.362 0.383 0.514
avg. 0.627 0.511 0.683 0.664 0.658 0.729 0.367 0.191 0.375 0.375 0.386 0.4

Finally, we added the case in which all samples are uniformly spread among the devices
as the worst case (DAE Uniform).

In Table 4 and in Table 5 we show the percentage of gain/loss of DAE compared to the
best centralised scores (underlined in Table 2 and Table 3 respectively) for all the Zipf-like
cases and uniform data partitioning. Looking at the AUC scores, we observe that in the
uncontaminated cases (Table 4) only on fashion-MNIST, the distributed algorithm can
compete with the best-centralised ones, recalling that LOF performed very well on MNIST
experiments without outliers. The results radically improve in the contaminated cases
(Table 5); here, we get an increase in the AUC scores in almost every distributed scenario.
It is interesting to note how the improvement decreases as long as the class distribution
flattens, i.e. this happens for lower values of a. Of course, there is a drastic degradation of
performance in the uniform case since the lightweight autoencoders can no longer specialise
in a single inlier class and their small architecture is not expressive enough to generalise all
the categories presented in the local dataset. Regarding the F1 metric, in both groups of
experiments, we observe that only in the ideally distributed scenario there are improvements
(or moderate degradations) in the scores. This can be explained by recalling the binary
decision criteria we described in Section 4: every device computes its decision threshold from
its local reconstruction errors (on the training set) and a fixed contamination parameter. In
a non-perfectly distributed situation like the Zipf cases, every device has most of its samples
from one inlier class and a small chunk from other inlier classes, which forms an additional
portion of local outliers. Since we made no assumptions on it, the fixed contamination value
works only in an ideally distributed case. Nevertheless, the high values of the AUC scores
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Table 4: Gain/loss comparison (%) between the best centralised scores (underlined in Table 2)
and DAE under various distribution settings on MNIST and fashion-MNIST (no
contamination).

Training Set

AUC gain/loss (%) F1 gain/loss (%)

Ideal
Zipf

Uniform Ideal
Zipf

Uniform

a = 3 a = 2.5 a = 2 a = 3 a = 2.5 a = 2

MN CI1 -0.615 -1.025 -1.025 -1.639 -2.459 -3.316 -7.594 -5.989 -8.663 -7.594
MN CI2 -1.188 -4.32 -3.78 -3.888 -12.419 -0.478 -19.258 -22.727 -28.708 -36.124
MN CI3 0.51 -0.408 -0.408 -0.51 -2.245 0.647 -3.236 -2.697 -4.099 -8.091
MN CI4 -1.215 0.552 -2.652 -2.21 -7.956 -4.689 -12.041 -17.490 -17.871 -29.024
MN CI5 -4.449 -7.564 -9.455 -10.011 -21.246 -2.276 -19.009 -24.498 -31.861 -39.491
MN CI6 -4.472 -8.257 -8.83 -11.468 -21.674 -4.545 -30.214 -43.984 -50.668 -60.027
MN CI7 -1.919 -1.919 -1.812 -5.224 -11.940 -3.114 -24.913 -26.528 -35.409 -43.137
MN CI8 -4.139 -4.793 -5.882 -8.388 -11.111 -3.283 -11.995 -15.530 -21.465 -24.621
MN CI9 -2.999 -9.573 -8.304 -8.42 -23.529 -5.365 -38.377 -48.418 -47.868 -60.385
MN CI10 0.308 -0.719 -1.336 -0.719 -1.953 -0.655 -3.930 -5.240 -6.987 -6.004

F-MN CI1 0.598 -1.196 0.239 0.239 -1.555 -0.434 -16.353 -15.051 -15.630 -11.577
F-MN CI2 1.065 0.355 0.0 0.118 -0.237 -12.976 -17.772 -14.386 -17.066 -2.257
F-MN CI3 -0.597 -1.79 0.835 0.119 -1.551 -3.554 -17.447 -16.801 -20.679 -11.793
F-MN CI4 -2.168 -4.913 -5.491 -4.48 -7.803 6.785 -15.339 -30.088 -37.463 -35.103
F-MN CI5 -2.455 -4.522 -5.814 -4.134 -7.364 8.174 -20.522 -17.391 -21.391 -25.391
F-MN CI6 -0.518 -1.554 -1.036 -1.295 -1.036 -8.983 -21.186 -18.644 -21.017 -14.746
F-MN CI7 0.328 0.219 0.0 -0.109 -0.438 -0.705 -0.118 -0.588 -0.118 -0.588
F-MN CI8 -10.966 -10.574 -8.094 -12.141 -11.488 -25.047 -35.888 -45.421 -38.879 -30.467
F-MN CI9 -2.434 -1.991 -0.885 -2.212 -2.102 -16.193 -18.047 -15.575 -20.272 -13.597
F-MN CI10 2.02 0.337 1.01 1.796 -0.337 5.141 -6.684 -16.967 -6.170 -2.442

indicate that setting decision thresholds (τ) properly, the distributed algorithm has good
potential in the other cases.

Table 5: Gain/loss comparison (%) between the best centralised scores (underlined in Table 3)
and DistAE under various distribution settings on MNIST and fashion-MNIST
(10% contamination).

Training Set

AUC gain/loss (%) F1 gain/loss (%)

Ideal
Zipf

Uniform Ideal
Zipf

Uniform

a = 3 a = 2.5 a = 2 a = 3 a = 2.5 a = 2

MN CI1 8.276 5.977 4.943 3.563 0.115 1.569 -25.678 -25.25 -25.963 -19.829
MN CI2 25.731 18.421 14.327 7.749 -2.047 36.975 -27.731 -19.048 -30.532 -45.938
MN CI3 4.705 3.72 2.735 2.298 -1.422 -3.1 -22.642 -20.889 -22.372 -26.280
MN CI4 21.417 15.62 15.298 11.272 4.348 11.792 -16.745 -26.887 -24.057 -25.708
MN CI5 17.724 12.195 11.057 8.78 -4.228 23.929 -28.967 -35.768 -35.516 -39.547
MN CI6 10.34 6.204 4.727 2.068 -11.669 0.355 -36.879 -42.73 -44.504 -54.787
MN CI7 4.878 2.217 0.998 -1.663 -7.539 -9.517 -26.759 -34.897 -35.172 -38.069
MN CI8 8.482 6.548 6.994 2.232 -3.274 18.985 -15.453 -22.517 -28.477 -39.294
MN CI9 16.41 9.915 9.744 6.154 -12.821 20.9 -34.084 -30.868 -39.550 -45.659
MN CI10 7.497 5.075 3.576 2.537 0.577 9.355 -10.968 -11.29 -11.452 -22.419

F-MN CI1 7.787 6.284 5.601 6.011 0.82 10.952 -17.857 -15.238 -13.333 -13.810
F-MN CI2 11.765 7.891 5.308 6.169 -0.43 1.272 -5.344 -1.781 -8.397 -12.723
F-MN CI3 5.737 4.172 4.694 2.608 0.652 3.812 -19.507 -17.265 -21.749 -15.022
F-MN CI4 7.818 4.182 0.909 1.455 -5.636 -31.604 -49.057 -45.755 -46.226 -41.981
F-MN CI5 3.16 3.16 3.633 2.528 -2.37 8.355 -14.883 -14.099 -21.671 -24.021
F-MN CI6 1.453 1.163 1.744 1.599 0.727 -32.735 -32.511 -29.372 -29.372 -18.610
F-MN CI7 -0.438 -0.329 -0.219 -0.767 -1.752 -7.039 -5.825 -6.432 -8.374 -12.257
F-MN CI8 3.288 2.708 3.288 0.58 -3.288 -38.113 -56.604 -58.491 -68.302 -60.755
F-MN CI9 -7.576 -10.354 -11.364 -10.985 -14.52 -12.95 -26.379 -31.894 -26.139 -27.098
F-MN CI10 8.941 6.602 4.677 4.814 -0.825 33.506 -0.519 5.974 -2.857 -15.844
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To verify such a claim, we substitute for each device the fixed value of the contamination
rate ρ with the real percentage r1 of local data not belonging to the most represented
class, i.e., the class of rank 1 in the Zipf distribution. With this information, the devices
could modify their local decision threshold for detecting anomalies by setting ρ = r1 and
computing the corresponding percentile. We test this assumption within the same settings
of the results presented in Table 5. Looking at Table 6, it is interesting to note that using a
locally computed threshold that takes into account the structure of the local dataset, apart
from few isolated cases, almost all the F1 scores are positive, meaning that DAE outperforms
the best-centralised algorithm. Surprisingly, it appears that using such a simple heuristic, it
would be possible to improve the F1 accuracy up to 79.552%. This suggests that it might
represent an interesting research direction to investigate in future work.

Table 6: F1 gain/loss between the best centralised scores (underlined in Table 3) and
DAE under Zipfs distribution (10% outlier contamination). The r1 values for
a = {2, 2.5, 3} are 15.66%, 22.48%, 31.68%, respectively.

Training Set
F1

DistAE DistAE DistAE
Zipfa = 3 Zipfa = 2.5 Zipfa = 2

MN CI1 -1.284 13.837 18.117
MN CI2 38.655 58.263 79.552
MN CI3 1.617 13.747 17.79
MN CI4 20.991 31.84 49.528
MN CI5 5.542 27.456 48.111
MN CI6 -11.525 0.532 7.979
MN CI7 -4 4.138 12.414
MN CI8 14.57 29.801 41.943
MN CI9 7.074 50.161 68.167
MN CI10 16.613 33.71 38.871

F-MN CI1 11.667 34.762 52.619
F-MN CI2 25.954 51.399 60.814
F-MN CI3 6.951 33.408 47.534
F-MN CI4 -8.491 35.849 69.34
F-MN CI5 8.355 31.332 40.47
F-MN CI6 -8.296 9.417 25.336
F-MN CI7 1.82 2.063 0.485
F-MN CI8 -27.925 5.283 28.679
F-MN CI9 -5.036 11.751 45.084
F-MN CI10 39.221 55.325 74.286

6. Conclusion

In this paper we address the problem of anomaly detection in decentralised settings, meaning
that the data is spread over several locations and it can be accessed and processed only
locally using resource constrained edge devices. Specifically, we want to address the following
open problems: (i) how to perform this unsupervised task without sharing raw data and
relying only on lightweight models with performance comparable to a centralised solution;
(ii) to what extent the data imbalance at the edge devices affects or favours the decentralised
anomaly detection task.

Firstly, we propose an autoencoder ensemble-based method where each device of the
system is provided with a 3-layer autoencoder, that is independently trained on local data.
Afterwards, the trained autoencoders are collected and used to compute an outlier score as
the minimum reconstruction error across the ensemble components.
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Using the dataset labels to simulate different distributed settings, our solution is accurate
in terms of AUC score and robust to outliers. In many experiments it outperforms equivalent
centralised configurations in which all the samples are collected and more complex models
are used. Moreover, our method is particularly accurate when the training data partitioning
enables the devices to specialise individually on a specific normal class.

In future work, we plan to extend this model introducing incremental training phases
and adaptive threshold to convert the outlier scores into binary decisions.
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