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Abstract

The hierarchy of conformally invariant kth powers of the Laplacian acting on a scalar field with scaling dimensions Δ(k) = k −d/2, k = 1,2,3,
as obtained in the recent work [R. Manvelyan, D.H. Tchrakian, Phys. Lett. B 644 (2007) 370, hep-th/0611077] is rederived using the Fefferman–
Graham (d + 2)-dimensional ambient space approach. The corresponding mysterious “holographic” structure of these operators is clarified. We
explore also the (d + 2)-dimensional ambient space origin of the Ricci gauging procedure proposed by A. Iorio, L. O’Raifeartaigh, I. Sachs
and C. Wiesendanger as another method of constructing the Weyl invariant Lagrangians. The corresponding gauged ambient metric, Fefferman–
Graham expansion and extended Penrose–Brown–Henneaux transformations are proposed and analyzed.
© 2007 Elsevier B.V.

1. Introduction

The problem of constructing conformally invariant Lagrangians or differential operators in various dimensions and for various
fields has quite a long history. This problem attracts attention primarily because it is always a nontrivial task to construct local
conformal or Weyl invariants in higher dimensions [1–3]. The AdS/CFT correspondence [4] increased interest in this old problem
as well as returned the attention to the seminal mathematical paper by Fefferman and Graham (FG) on conformal invariants [5]. Our
goal in this Letter is to establish the connections between different ways of construction of the local conformal invariant Lagrangians
or differential operators in d dimensions [6,7] and the FG (d + 2)-dimensional ambient Ricci flat space method [5]. In other words
we extend the consideration of the article [5] to reproduce and explain the results obtained in [6] and [7]. The main FG idea consist
in the confidence that the lower-dimensional diffeomorphisms and local conformal invariants can be obtained from corresponding
reparametrization invariant counterparts in the higher-dimensional space where d-dimensional conformal invariance is realized as
a part of (d + 2)-dimensional diffeomorphisms (we review the FG method in Section 2). On the other hand, the FG expansion
is connected with AdSd+1/CFTd correspondence and plays a crucial role in derivation of the holographic anomalies in different
dimensions [8]. This point forced us in Section 3 to derive again, using the FG ambient space method, the hierarchy of conformally
invariant powers of the Laplacian (or invariant Lagrangian) in spacetime dimensions d � 2k acting on a scalar field obtained
in [6] by the direct Noether procedure, whose conformal dimension is Δ(k) = k − d/2. This ambient space derivation unveiled
the remarkable and mysterious feature of these differential invariants namely the appearance of the 2k-dimensional holographic
anomaly in the kth member of this hierarchy [6] (the most recent mathematical development in the holographic formalism for
conformally invariant operators is considered in [9]).

In this Letter we propose also (Section 4) an extended or gauged FG (d + 2)-dimensional space to establish a connection
between the FG expansion and another interesting method of constructing the Weyl invariant Lagrangians obtained in [7] by
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A. Iorio, L. O’Raifeartaigh, I. Sachs and C. Wiesendanger and named “Ricci gauging”. The magic and universality of the (d + 2)-
dimensional FG method is defined by the existence of so-called Penrose–Brown–Henneaux (PBH) diffeomorphisms [10] considered
in details for usual FG metric in [11] and [12]. In Section 3 we consider the new PBH transformation for gauged ambient spaces
to explore some properties of the FG expansion in the presence of the Weyl gauge field and the holographic origin of the Ricci
gauging.

2. Ambient metric and Fefferman–Graham expansion

In this section we review the FG ambient space method for constructing local conformal invariants [5]. We define the (d + 2)-
dimensional ambient space with the set of coordinates {xμ} = {t, ρ, xi; i = 1,2, . . . , d} and the following Ricci flat1 metric

(1)ds2
A = gA

μν

(
t, ρ, xi

)
dxμ dxν = t2

�2
hij (x, ρ) dxi dxj − ρ dt2 − t dt dρ,

where

(2)hij (x, ρ) = gij (x) + ρh
(1)
ij (x) + ρ2h

(2)
ij (x) + · · ·

is the well-known FG expansion with an arbitrary boundary value of the metric gij (x) = hij (x, ρ)|ρ=0 and a set of the higher ρ

derivatives n!h(n)
ij (x) = ∂n

∂ρn hij (x, ρ)|ρ=0 fixed by the Ricci flatness condition in ambient space

(3)RA
μν = 0.

This condition produces the following set of equations

(4)RA
it = RA

ρt = RA
tt ≡ 0,

(5)RA
ρρ = 1

2

[
hklh′′

kl − 1

2
hijh′

jkh
klh′

li

]
= 0,

(6)RA
iρ = 1

2
hkl

[∇(h)
i h′

kl − ∇(h)
k h′

il

] = 0,

(7)�2RA
ij = �2Rij [h] − (d − 2)h′

ij − hklh′
klhij + ρ

[
2h′′

ij − 2h′
ilh

lmh′
mj + hklh′

klh
′
ij

] = 0,

where . . .′ = ∂ρ . . . and ∇(h)
i , Rij [h] are covariant derivative and Ricci tensor of the metric hij (x, ρ), respectively. It was shown

in [5] that this system of equations is equivalent to the (d +1)-dimensional Einstein’s equations with negative cosmological constant
(see [12] for details). This can be easily seen from the following consideration:

• The AdSd+1 bulk can be found in (d + 2)-dimensional ambient space as a (d + 1)-dimensional surface defined as

(8)t2ρ = �2, ρ > 0,

on which the metric (1) induces the standard Poincaré metric for coordinates {xa} = {ρ,xi},

(9)ds2
Bulk = gBulk

ab (x,ρ) dxa dxb = �2

4ρ2
dρ2 + 1

ρ
hij (x, ρ) dxi dxj .

• The corresponding bulk Ricci tensor is related to the nonzero components of the ambient Ricci tensor in the way

(10)RA
ab = RBulk

ab + d

�2
gBulk

ab ,

and condition (3) leads to the negative constant curvature

(11)RA
ab = 0 ⇒ RBulk = RBulk

ab gab
Bulk = −d(d + 1)

�2
.

1 We use the same conventions for covariant derivatives and curvatures as in [6]:

∇μV
ρ
λ = ∂μV

ρ
λ + �

ρ
μσ V σ

λ − �σ
μλV

ρ
σ , �

ρ
μν = 1

2
gρλ(∂μgνλ + ∂νgμλ − ∂λgμν),

[∇μ,∇ν ]V ρ
λ = Rμνσ

ρV σ
λ − Rμνλ

σ V
ρ
σ , Rμνλ

ρ = ∂μ�
ρ
νλ − ∂ν�

ρ
μλ + �

ρ
μσ �σ

νλ − �
ρ
νσ �σ

μλ,

Rμλ = Rμρλ
ρ, R = Rμ

μ.
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Therefore (3) leads, as in the case of AdSd+1/CFTd correspondence [8], to the same solutions for h
(n)
ij (x) in the FG expansion (2)

in terms of covariant objects constructed from the boundary value gij (x),

(12)h
(1)
ij (x) = �2Kij , h(1) = gij (x)h

(1)
ij (x) = �2J,

(13)h
(2)
ij (x) = �4

4

{
Bij

d − 4
+ Km

i Kmj

}
, h(2) = gij (x)h

(2)
ij (x) = �4

4
KijKij ,

(14)h(3) = gij (x)h
(3)
ij (x) = �6

6(d − 4)
KijBij ,

where we introduced the Weyl (W ) and Schouten (K) tensors, as well as the scalar J and so-called Cotton (C) and Bach (B)
tensors2

(15)Kij = 1

(d − 2)
{Rij − gij J }, J = 1

2(d − 1)
R,

(16)Wijk
m = Rijk

m − Kikδ
m
j + Kjkδ

m
i − Km

j gik + Km
i gjk,

(17)Bij = ∇kCkij + Kk
mWkij

m, Cijk = ∇iKjk − ∇jKik.

This basis of B,C,K,J,W tensors was used in [6] to construct directly3 a hierarchy of conformally invariant Lagrangians or dif-
ferential operators originating from powers of the Laplacian in spacetime dimensions d � 2k, describing the nonminimal coupling
of gravity with a scalar field whose conformal dimension is Δ(k) = k − d/2.

The connection of the Fefferman–Graham ambient metric expansion and AdS/CFT correspondence was investigated and de-
veloped by many authors. We do not pretend here to present an exhaustive list of citations in this field and just quote a number of
articles important for us in this area [8,11,12]. For us the most important result of [5] is the elegant method of constructing con-
formal invariants (covariants) in d dimensions from reparametrization invariant (covariant) combinations of the curvature and its
covariant derivatives in (d + 2)-dimensional ambient space equipped with a Ricci flat metric (1) by truncation to the d-dimensional
boundary at ρ = 0 and t = const. In the simplest case of a Riemannian curvature tensor this prescription gives for nonvanishing
components (see [12] for detailed derivation)

(18)RA
ijk

l |ρ=0 = Wijk
l,

(19)RA
ijk

t |ρ=0 = tCijk,

(20)RA
ρij

t |ρ=0 = t�2

2

Bij

d − 4
.

Using this the authors derived in [5] the first nontrivial invariant obtained from (∇A
mRA

ijkl)
2 and discussed in details in [2]. In the

same article Fefferman and Graham predicted that usual Laplacian in ambient (d +2)-dimensional space should produce conformal
invariant second-order differential operator in dimension d , which is the first representative in the hierarchy of conformal operators
for scalar fields constructed in [6].

3. Hierarchies of conformal invariant powers of Laplacian from ambient space

In [6] the authors introduced the hierarchy of scalar fields ϕ(k), where k = 1,2,3, . . . , with the corresponding scaling dimen-
sions and infinitesimal conformal transformations

2 All important properties of these tensors following from the Bianchi identity can then be listed as (from now on ∇i is the covariant derivative of the metric
gij (x))

∇[mWij ]kn = gk[mCij ]n − δn[mCij ]k, ∇mWijk
m = (3 − d)Cijk,

∇iKij = ∂j J, ∇kCijk = 0, Cij
j = 0, ∇iBij = (d − 4)CijkKik.

3 This basis of B,C,K,J,W tensors forms a closed system with respect to local conformal (or Weyl) transformations of the boundary metric δgij (x) =
2σ(x)gij (x),

δWijk
m = 0, δKij = ∇i ∂j σ, δJ = −2σJ + �σ,

δCijk = −∂mσWijk
m, δBij = −2σBij + (d − 4)∇kσ (Ckij + Ckji ),

and it is all one needs to construct any conformally invariant object in arbitrary dimensions [2,6].
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(21)Δ(k) = k − d/2,

(22)δϕ(k)(x) := Δ(k)σ (x)ϕ(k)(x).

Each of these exists in the spacetime dimensions d � 2k, and with the minimal vanishing dimension, Δ(k) = 0 when d = 2k and
couples with gravity in the conformally invariant way through the hierarchy of the conformally invariant kth power of the Laplacian

(23)L̂(k) = �k + · · · + Δ(k)a(k).

The interesting point of the consideration in [6] was the appearance of the so-called holographic anomaly a(k) [8] namely the
derivative independent part of the conformally invariant kth power of Laplacian is the scaling dimension times the holographic
anomaly in dimension d = 2k written in general spacetime dimension d .

In this section we will explain this remarkable property of the above hierarchy, namely that one obtains conformal invariant
operators from the kth power of the Laplace–Beltrami operator constructed from the ambient metric which acts on the (d + 2)-
dimensional scalar field and from using the FG holographic expansion (2). So we concentrate on4

(24)(�A)kf (x, t, ρ),

where

(25)�A = �2

t2
�h + 4ρ

t2
∂2
ρ − 4

t
∂t ∂ρ + hijh′

ij

(
2ρ

t2
∂ρ − 1

t
∂t

)
− 2(d − 2)

t2
∂ρ.

For doing that first of all we have to understand the right truncation for the (d+2)-dimensional scalar f (x, t, ρ) to the d-dimensional
scalar ϕk(x). Taking into account that we do not want to consider AdS/CFT behaviour for the scalar field we can take it ρ indepen-
dent. Then from simple scaling arguments we arrive at the following ansatz

(26)f (x, t, ρ) = tΔ(k)ϕ(k)(x).

Then we see that (25) reduces to

(27)�A

[
tΔ(k)ϕ(k)(x)

] = �2tΔ(k)−2
[
�hϕ(k)(x) − Δ(k)

�2
hijh′

ij ϕ(k)(x)

]
,

so that inserting k = 1 and using (12) we obtain

(28)�A

[
tΔ(1)ϕ(1)(x)

]∣∣
ρ=0 = �2t−d/2(� − Δ(1)J )ϕ(1)(x),

where we recognize in the brackets the well-known conformal Laplacian

(29)L̂(1) = � − Δ(1)J = � + (d − 2)

4(d − 1)
R.

The next step in our ambient space considerations is the k = 2 case. First we rewrite the last term in (25) in the Δ(k) dependent
form

(30)−2
d − 2

t2
∂ρ = 4Δ(k) − 4(k − 1)

t2
∂ρ.

Inserting (27) in (25) and expanding in ρ we obtain

�2
A

[
tΔ(k)ϕ(k)(x)

] = �4tΔ(k)−4f(k)(ρ, x)

= �4tΔ(k)−4
{(

� − Δ(k)

�2
h(1)

)2

+ 2

�2
h(1)� − 4(3 − k)

�2

[
h(1)ij∇i∂j + 1

2

(∇nh(1)
)
∂n

]

+ 2

�4
Δ(k)

[
(3 − k)h(1)ij h

(1)
ij − h(1)2] + ρΔ(k)

�4

(
8h(1)ij h

(2)
ij − 4h(1)ij h

(1)
jn h

(1)n
i + 3h(1)h(1)ij h

(1)
ij

)

(31)+ ρO(∇) + ρO(3 − k) + ρO
(
Δ2

(k)

) + O
(
ρ2)}ϕ(k)(x),

where we use the following relations

(32)∇jh
(1)j
i = ∇ih

(1), h(2) = 1

4
h(1)ij h

(1)
ij ,

4 We use the notation �A for the Laplacian in ambient space. The �h is the Laplacian constructed from hij (x,ρ) and a simple � corresponds to the boundary
metric gij (x).
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(33)∇j h
(2)j
i + 1

2
∇ih

(2) = 1

2
h(1)jn∇j h

(1)
ni + 1

4
h

(1)
ij ∇j h(1),

(34)h(3) = 2

3
h(1)ij h

(2)
ij − 1

6
h(1)ij h

(1)
jn h

(1)n
i ,

obtained from ρ expansion of (5) and (6). Now inserting in (31) k = 2 and ρ = 0 and using (12) we obtain

(35)�2
A

[
tΔ(2)ϕ(k)(x)

]∣∣
ρ=0 = �4tΔ(2)−4L̂(2)ϕ(k)(x),

(36)L̂(2) = (� − Δ(2)J )2 − 4∇iK
ij ∂j + 2∇ iJ ∂i + 2Δ(2)

(
K2 − J 2).

Again this fourth-order higher derivative conformal invariant operator is known since many years [13,14] for dimension 4 as well
as for general d [15,16]. This operator was rederived in [6] as a kinetic operator for the second Lagrangian of the hierarchy of
conformally coupled scalars by simply applying the Noether procedure.

Now we can evaluate the general expression for Euler densities

(37)E(k) := 1

2k(d − 2k)!δ
i1...id−2kj1j2...j2k−1j2k

i1...id−2kk1k2...k2k−1k2k
R

k1k2
j1j2

· · ·Rk2k−1k2k

j2k−1j2k

for k = 2 and obtain

(38)2Δ(2)

(
K2 − J 2) = − Δ(2)

2(d − 3)(d − 2)

(
E(2) − W 2).

So we see that the last term in (36), which is linear in Δ(2), is proportional to the Weyl tensor independent part of the Euler density.
Thus we recognize as a(k) of (23) for both the k = 1,2 cases (28), (35)

(39)a(1) = − 1

�2
h(1) = − 1

2(d − 1)
E(1),

(40)a(2) = 2
(
h(1)ij h

(1)
ij − h(1)2) = − 1

2(d − 3)(d − 2)

(
E(2) − W 2).

The “‘holographic” trace anomaly arises in AdS/CFT [8] and corresponds to the maximally supersymmetric gauge theories on
the boundary of AdS3 and AdS5. To check our statement as an assertion for general k, we need to carry out this verification in the
next nontrivial case of k = 3 obtained in [6] by the Noether procedure. (The sixth-order conformally invariant operator in d = 6 was
obtained in [17] from cohomological consideration.) We performed the full calculation inserting (31) with k = 3 in (25) and have
found full agreement with the formula (56) of [6]. In this Letter, to avoid cumbersome formulas, we will trace only the derivative
independent term linear in Δ(3). First of all we see from (25) and (30) the relation

(41)�A�4tΔ(k)−4f(k)(ρ, x) = �6tΔ(k)−6[� + (4 − Δ(k))h
(1) + 4(5 − k)∂ρ + O(ρ)

]
f(k)(ρ, x).

Then it is easy to see that the relevant terms in (31) are only two derivative free expressions with the �−4 in front. Now because
both derivative free terms in (31) are already with a Δ(k) factor, the operator (41) contributes only as 4h(1) + 8∂ρ if k = 3 and we

have to just multiply the derivative free part of the second line in (31) (it is just − 2Δ(3)

�4 h(1)2 for k = 3) by 4h(1) and add it to the
third line of (31) with factor 8 instead of the ρ. So finally we have

�3
A

[
tΔ(3)ϕ(k)(x)

]∣∣
ρ=0 = �6tΔ(3)−6L̂(3)ϕ(3)(x)

(42)= �6tΔ(3)−6
{
�3 + · · · + 8Δ(3)

�6

[
8h(1)ij h

(2)
ij − 4h(1)ij h

(1)
jk h

(1)k
i + 3h(1)h(1)ij h

(1)
ij − h(1)3]}ϕ(3)(x).

Now using again (12) and (13) we see that

(43)a(3) = −8

[
J 3 − 3KijKij J + 2KijKjnK

n
j − 2

d − 4
KijBij

]
.

We see again that this part coincides with the so-called “holographic” anomaly [8] in 6 dimensions written in general spacetime
dimension d (see also [12]). The important property of the holographic anomaly is that it is a special combination of the Euler
density with three other Weyl invariants [18,19] which reduce the topological part of the anomaly to the expression (43), which
is zero for the Ricci flat metric (see [20] for recent results on purely algebraic considerations of the general structure of the Weyl
anomaly in arbitrary d).
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4. The ambient space, PBH diffeomorphisms and Ricci gauging

In this section we consider an ambient space origin of another method of construction of d-dimensional local conformal in-
variants. This is the so-called Ricci gauging proposed by A. Iorio, L. O’Raifeartaigh, I. Sachs and C. Wiesendanger in [7]. Ricci
gauging is very effective when we start from a scale invariant matter field Lagrangian and want to generalize it to a local Weyl or
conformal invariant Lagrangian. The prescription developed in [7] consists of two steps:

1. First of all we have to perform Weyl gauging by introduction of the corresponding Weyl gauge field Ai(x). For the scalar
field it looks like

(44)∂iϕ(k)(x) → Diϕ(k)(x) = (
∂i − Δ(k)Ai(x)

)
ϕ(k)(x),

(45)δAi(x) = ∂iσ (x), δDiϕ(k)(x) = Δ(k)Diϕ(k)(x),

with the additional “pure gauge” conditions ∇iAj = ∇jAi for elimination of the self invariant combinations of Ai constructed from
the field strength Fij = ∂[iAj ].

2. After Weyl gauging the actions with a conformally invariant flat space limit (scale invariant) contain the field Ai only in the
combinations

(46)Ωij [A] = ∇iAj (x) + AiAj − gij

2
gklAkAl, δΩij [A] = ∇i∂j σ (x),

(47)Ω[A] = gik∇iAk(x) + d − 2

2
gklAkAl, δΩ[A] = �σ(x),

and therefore can be replaced by

(48)Kij = Ωij [A] and J = Ω[A].
The authors of [7] called this procedure Ricci gauging.

To understand this Ricci gauging on the level of (d + 2)-dimensional gauged ambient space of Fefferman and Graham we turn
first to the idea of PBH diffeomorphisms [10] of the higher-dimensional spaces, which reduce to conformal transformations on
the lower-dimensional boundary or embedded subspace. Actually the PBH transformations can be defined as higher-dimensional
diffeomorphisms which leave the form of the higher-dimensional metric invariant. The PBH transformations for the bulk metric (9)
are constructed and analyzed in [11] and [21]. For the (d +2)-dimensional ambient metric (1) PBH diffeomorphisms are considered
in [12]. The existence of such a transformations is another reason why the reparametrization invariant powers of the Laplacian in
ambient space reduce to the Weyl invariant operators in d-dimensional space as considered in the previous section. Following [12]
we define PBH transformations of (1) as diffeomorphisms (Lie derivative along the vector ζμ(t, ρ, x))

(49)δgA
μν

(
xμ

) = Lζ(t,ρ,x)g
A
μν(t, ρ, x) = ζ λ(t, ρ, x)∂λg

A
μν(t, ρ, x) + gA

μλ(t, ρ, x)∂νζ
λ(t, ρ, x) + gA

νλ(t, ρ, x)∂μζλ(t, ρ, x),

satisfying the conditions

(50)δgA
tt (t, ρ, x) = δgA

tρ(t, ρ, x) = δgA
ρρ(t, ρ, x) = δgA

ti (t, ρ, x) = gA
ρi(t, ρ, x) = 0.

The corresponding infinitesimal PBH transformations are [11,12]

(51)ζ t (t, ρ, x) = tσ (x),

(52)ζ ρ(t, ρ, x) = −2ρσ(x),

(53)ζ i(t, ρ, x) = ζ i(x, ρ), hij (ρ, x)∂ρζ i(ρ, x) = �2

2
∂iσ (x),

(54)δhij (ρ, x) = 2σ(x)(1 − ρ∂ρ)hij (ρ, x) +Lζ(ρ,x)hij (ρ, x).

We see that PBH transformations depend on two free parameters σ(x) and ζ i(x) = ζ i(0, x) corresponding to the local Weyl and
local diffeomorphisms of the boundary metric gij (x) = hij (0, x). All other terms n!ζ (n)i(x) = ∂n

∂n
ρ
ζ(ρ, x)|ρ=0 of the ρ expansion of

the ζ i(ρ, x) are expressed through σ(x) according to the relation (53). This dependence fixes the special unhomogeneous forms of
the Weyl transformations of the FG coefficients, which is in full agreement with the direct solution (11)–(13) of the corresponding
equations (3) or (11) (see [11] for details).

To include the Weyl gauge field Ai(x) in this game and find an ambient space description of the Ricci gauging we introduce a
generalized (d + 2)-dimensional gauged ambient space with the following metric

(55)ds2
GA = t2

2

[
hij (ρ, x) + ρ�2Ai(x)Aj (x)

]
dxi dxj − ρ dt2 − t

[
dt + tAi(x) dxi

]
dρ.
�
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Then we consider corresponding (d + 2)-dimensional diffeomorphisms conserving the form of (55)

(56)δgGA
t t (t, ρ, x) = δgGA

tρ (t, ρ, x) = δgGA
ρρ (t, ρ, x) = δgGA

t i (t, ρ, x) = 0,

and giving for Ai(x) a gauge transformation with the Weyl parameter σ(x) (45). The corresponding solution gives for new PBH
transformations

(57)ζ t (t, ρ, x) = tσ (x),

(58)ζ ρ(t, ρ, x) = −2ρσ(x),

(59)ζ i(t, ρ, x) = ζ i(x),

(60)δhij (ρ, x) = 2σ(x)(1 − ρ∂ρ)hij (ρ, x) +Lζ(x)hij (ρ, x),

(61)δAi(x) = ∂iσ (x) +Lζ(x)Ai(x).

Comparing with (51)–(54) we see that we were lucky with the ansatz (55) to restore the Weyl part of the PBH transformation with
the proper gauge transformation for Ai(x). The only difference that we have here is the ρ-independence of the bulk diffeomorphisms
ζ i(x) and correspondingly the absence of the condition (53). It is a price for the additional gauge field transformation (61). However,
this difference is very essential for the FG expansion. Putting ζ i(x) = 0 we get from (60) for pure Weyl transformations of the FG
coefficients n!h(n)

ij (x) only the homogeneous parts

(62)δgij (x) = 2σ(x)gij (x),

(63)δh
(1)
ij (x) = 0,

(64)δh
(2)
ij (x) = −2σ(x)h

(2)
ij (x).

So it seems really as a Weyl gauged version of the FG expansion. For making the final check of this assertion we turn now to the
Ricci flatness condition for the gauged ambient metric (55). Inverting the metric (55) we obtain

(65)

⎛
⎜⎜⎝

�2A2 − 2γ
t

− �2

t
Aj

− 2γ
t

4ργ

t2
2ρ�2

t2 Aj

− �2

t
Ai 2ρ�2

t2 Ai �2

t2 hij

⎞
⎟⎟⎠ ,

where

(66)γ = 1 + ρ�2A2, A2(ρ, x) = hnm(ρ, x)An(x)Am(x),

(67)Ai(ρ, x) = hik(ρ, x)Ak(x).

Then the calculation of the Christoffel symbols and Ricci tensor became straightforward if we admit the condition Fij = 0. After a
long calculation we see that the first four equations

(68)RGA
it = RGA

ρt = RGA
t t ≡ 0,

(69)RGA
ρρ = 1

2

[
hklh′′

kl − 1

2
hijh′

jkh
klh′

li

]
= 0,

are the same as in the usual ambient space. But the last two undergo a change

(70)RGA
iρ = 1

2
hkl

[∇(h)
i h′

kl − ∇(h)
k h′

il

] + 1

2
hklh′

klAi + d − 2

2
h′

ikh
klAl − ρh′′

ikh
klAl = 0,

�2RGA
ij = �2Rij [h] − (d − 2)h′

ij − γ hklh′
klhij + ργ

[
2h′′

ij − 2h′
ilh

lmh′
mj + hklh′

klh
′
ij

]
− (d − 2)

(∇(h)
i Aj + AiAj − A2hij

) − hij∇(h)
k Ak + ρ

[
hklh′

kl∇(h)
i Aj − (d − 4)A2h′

ij − 2Ak
(
h′

ikAj + h′
jkAi

)
− hkl

(
h′

ki∇(h)
l Aj + h′

kj∇(h)
l Ai

) + ∇(h)
k

(
h′

ijA
k
) + 2ρh′

ikA
kh′

j lA
l
]

(71)= 0.

Then inserting in (71) ρ = 0 we obtain instead of (12) the following solution for the first coefficient of the FG expansion

(72)
1

�2
h

(1)
ij (x) = Kij − ∇iAj − AiAj + 1

2
gijAkAlg

kl = Kij − Ωij [A],

(73)
1

�2
h(1)(x) = J − Ω[A].
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So we see that (72) is Weyl invariant which is in agreement with the PBH transformation (63). On the other hand, we see that Ricci
gauging leads to a trivialization of the Fefferman–Graham expansion. Indeed the Ricci gauging condition (48) means

(74)h
(1)
ij ≡ 0.

Moreover because Eqs. (69)–(71) express recursively each next h
(n)
ij through the nonzero powers of previous ones we can conclude

that all higher h
(n)
ij coefficients of the FG expansion are trivialized after imposing the Ricci gauging condition. The final conclusion

which we can make now is the following: The FG expansion for a gauged ambient metric (55) can be obtained from the usual
expansion for (1) by the Weyl gauging. For example we can easily guess the next coefficient

(75)h
(2)
ij (x) = �4

4

{
B̃ij

d − 4
+ (

Km
i − Ωm

i [A])(Kmj − Ωmj [A])
}
,

where

(76)B̃ij = Bij − (d − 4)Ak(Ckij + Ckji) − (d − 4)AkAlW
l
kij

is the Weyl gauged Bach tensor.

5. Conclusion

We have proved our assertion concerning the connection between the hierarchy of conformally coupled scalars with the dimen-
sions Δ(k) and the FG ambient space method of construction of the conformal invariants [5]. This consideration explains in a natural
way the origin of the holographic structure emerging in the study of the higher derivative invariant operators in [6] obtained using
the direct Noether procedure. In the last part of these notes we evaluated the (d + 2)-dimensional ambient space origin of the Ricci
gauging [7] which is another powerful method for building local conformal invariant Lagrangians.
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