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We consider the family of nonlocal and nonconvex functionals proposed and investigated by J. Bourgain,
H. Brezis and H.-M. Nguyen in a series of papers of the last decade. It was known that this family of
functionals Gamma-converges to a suitable multiple of the Sobolev norm or the total variation, depending
on the summability exponent, but the exact constants and the structure of recovery families were still
unknown, even in dimension 1.

We prove a Gamma-convergence result with explicit values of the constants in any space dimension.
We also show the existence of recovery families consisting of smooth functions with compact support.

The key point is reducing the problem first to dimension 1, and then to a finite combinatorial rearrange-
ment inequality.

1. Introduction

Let p ≥ 1 and δ > 0 be real numbers, let d be a positive integer, and let �⊆Rd be an open set. For every
measurable function u :�→ R we set

3δ,p(u, �) :=
∫∫

I (δ,u,�)

δ p

|y− x |d+p dx dy, (1-1)

where

I (δ, u, �) := {(x, y) ∈�2
: |u(y)− u(x)|> δ}.

Nonconvex and nonlocal functionals of this type appeared in a paper by J. Bourgain, H. Brezis and
P. Mironescu [Bourgain et al. 2005]; see Open Problem 2 of that work. Subsequently, the family (1-1)
was investigated in a series of papers by H.-M. Nguyen [2006; 2007; 2008; 2011; 2014], J. Bourgain
and H.-M. Nguyen [2006], and H. Brezis and H.-M. Nguyen [2018]; see also [Brezis 2015; Brezis and
Nguyen 2017].

We point out that the dependence on u is just on the integration set. The fixed integrand is divergent
on the diagonal y = x , and the integration set is closer to the diagonal where the gradient of u is large.
This suggests that 3δ,p(u, �) is proportional, in the limit as δ→ 0+, to some norm of the gradient of u,
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and more precisely to the functional

30,p(u, �) :=


∫
�
|∇u(x)|p dx if p > 1 and u ∈W 1,p(�),

total variation of u in � if p = 1 and u ∈ BV(�),

+∞ otherwise.

(1-2)

It is natural to compare the family (1-1) with the classical approximations of Sobolev or BV norms,
based on nonlocal convex functionals such as

Gε,p(u, �) :=
∫∫

�

|u(y)− u(x)|p

|y− x |p
ρε(|y− x |) dx dy, (1-3)

where gradients are replaced by finite differences weighted by a suitable family ρε of mollifiers. The idea
of approximating integrals of the gradient with double integrals of difference quotients, where all pairs
of distinct points interact, has been considered independently by many authors in different contexts. For
example, E. De Giorgi proposed an approximation of this kind to the Mumford–Shah functional in any
space dimension, in order to overcome the anisotropy of the discrete approximation [Chambolle 1995]. The
resulting theory appears in [Gobbino 1998] and was then extended in [Gobbino and Mora 2001] to more
general free discontinuity problems, and in particular to Sobolev and BV spaces. In the same years, the
case of Sobolev and BV norms was considered in detail in [Bourgain et al. 2001]; see also [Ponce 2004].

The result, as expected, is that the family Gε,p(u,Rd) converges as ε→ 0+ to a suitable multiple
of 30,p(u,Rd), both in the sense of pointwise convergence, and in the sense of De Giorgi’s Gamma-
convergence. This provides a characterization of Sobolev functions (if p > 1), and of bounded variation
functions (if p = 1), as those functions for which the pointwise limit or the Gamma-limit is finite.

From the heuristic point of view, the nonconvex approximating family (1-1) seems to follow a different
paradigm. Indeed, it was observed by J.-M. Morel, as quoted on page 4 of the transparencies of the
presentation [Brezis 2016], that this definition involves some sort of “vertical slicing” that evokes the
definition of integral à la Lebesgue, in contrast to the definition à la Riemann that seems closer to the
“horizontal slicing” of the finite differences in (1-3).

From the mathematical point of view, the asymptotic behavior of (1-1) exhibits some unexpected
features. In order to state the precise results, let us introduce some notation. Let Sd−1

:= {σ ∈Rd
: |σ |= 1}

denote the unit sphere in Rd. For every p ≥ 1 we consider the geometric constant

Gd,p :=

∫
Sd−1
|〈v, σ 〉|p dσ, (1-4)

where v is any element of Sd−1 (of course the value of Gd,p does not depend on the choice of v), and the
integration is intended with respect to the (d−1)-dimensional Hausdorff measure. The value of Gd,p can
be explicitly computed in terms of special functions through Beta integrals. It turns out that Gd,p = 2 for
every p if d = 1, and

Gd,p =meas(Sd−2)

∫ π/2

−π/2
(cos θ)p

· | sin θ |d−2 dθ =
2π (d−1)/20((p+ 1)/2)

0((p+ d)/2)
for all d ≥ 2.

The main convergence results obtained so far can be summed up as follows.
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• Pointwise convergence for p > 1. For every p > 1 it turns out that

lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,p 30,p(u,Rd) for all u ∈ L p(Rd). (1-5)

• Pointwise convergence for p = 1. In the case p = 1, equality (1-5) holds true for every u ∈ C1
c (R

d),
but there do exist functions u ∈ W 1,1(Rd) for which the left-hand side is infinite (while of course the
right-hand side is finite). A precise characterization of equality cases is still unknown.

• Gamma-convergence for every p ≥ 1. For every p ≥ 1 there exists a constant Cd,p such that

0– lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,pCd,p 30,p(u,Rd) for all u ∈ L p(Rd),

where the Gamma-limit is intended with respect to the usual metric of L p(Rd) (but the result would
be the same with respect to the convergence in L1(Rd) or in measure). Moreover, it was proved that
Cd,p ∈ (0, 1); namely the Gamma-limit is always nontrivial but different from the pointwise limit.

As a consequence, again one can characterize the Sobolev space W 1,p(Rd) as the set of functions in
L p(Rd) for which the pointwise limit or the Gamma-limit is finite. As for BV(Rd), in this setting it can
be characterized only through the Gamma-limit.

Some problems remained open, and were stated explicitly in [Nguyen 2011; Brezis and Nguyen 2018]:

Question 1. What is the exact value of Cd,p, at least in the case d = 1?

Question 2. Does Cd,p depend on d?

Question 3. Do there exist recovery families made up of continuous functions, or even of functions of
class C∞?

In this paper we answer these three questions. Concerning Questions 1 and 2, we prove that Cd,p does
not depend on d , and coincides with the value C p conjectured in [Nguyen 2007] (see also [Nguyen 2011,
Open question 2]) for the 1-dimensional case, namely

C p :=


1

p−1

(
1− 1

2p−1

)
if p > 1,

log 2 if p = 1.
(1-6)

Concerning the third question, we prove that smooth recovery families do exist. Our main result is the
following.

Theorem 1.1 (Gamma-convergence). Let us consider the functionals 3δ,p and 30,p defined in (1-1) and
(1-2), respectively.

Then for every positive integer d and every real number p ≥ 1 it turns out that

0– lim
δ→0+

3δ,p(u,Rd)=
1
p

Gd,pC p 30,p(u,Rd) for all u ∈ L p(Rd),

where Gd,p is the geometric constant defined in (1-4), and C p is the constant defined in (1-6). In particular,
the following two statements hold true:
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(1) (liminf inequality) For every family {uδ}δ>0 ⊆ L p(Rd), with uδ→ u in L p(Rd) as δ→ 0+, it turns
out that

lim inf
δ→0+

3δ,p(uδ,Rd)≥
1
p

Gd,pC p 30,p(u,Rd). (1-7)

(2) (limsup inequality) For every u ∈ L p(Rd) there exists a family {uδ}δ>0 ⊆ L p(Rd), with uδ→ u in
L p(Rd) as δ→ 0+, such that

lim sup
δ→0+

3δ,p(uδ,Rd)≤
1
p

Gd,pC p 30,p(u,Rd).

We can also assume that the family {uδ} consists of functions of class C∞ with compact support.

The proof of this result requires a different approach to the problem, which we briefly sketch below. In
previous literature, see [Nguyen 2011, formula (1.3)] or [Brezis and Nguyen 2018, formula (1.12)], the
constant Cd,p was defined through some sort of cell problem as

1
p

Gd,pCd,p := inf
{
lim inf
δ→0+

3δ,p(uδ, (0, 1)d) : uδ→ u0 in L p((0, 1)d)
}
,

where u0(x) = (x1 + · · · + xd)/
√

d. Unfortunately, this definition is quite implicit and provides no
information on the structure of the families that approach the optimal value. This lack of structure
complicates things, in such a way that just proving that Cd,p > 0 requires extremely delicate estimates; this
is the content of [Bourgain and Nguyen 2006]. On the Gamma-limsup side, since3δ,p is quite sensitive to
jumps, what is difficult is gluing together the recovery families corresponding to different slopes, even in the
case of a piecewise affine function in dimension 1. This requires a delicate surgery near the junctions; see
[Nguyen 2011]. Finally, as for Question 3, difficulties originate from the lack of convexity or continuity of
the functionals (1-1), which do not seem to behave well under convolution or similar smoothing techniques.

The core of our approach consists in proving that 3δ,p in dimension 1 behaves well under vertical
δ-segmentation and monotone rearrangement. We refer to Section 3A for the details, but roughly speaking
this means that monotone step functions whose values are consecutive integer multiples of δ are the most
efficient way to fill the gap between any two given levels. The argument is purely 1-dimensional, and
it is carried out in Proposition 3.2. In turn, the proof relies on a discrete combinatorial rearrangement
inequality, which we investigate in Theorem 2.2 under more general assumptions.

We observe that this strategy, namely estimating the asymptotic cost of oscillations by reducing
ourselves to a discrete combinatorial minimum problem, is the same as that exploited in [Gobbino 1998;
Gobbino and Mora 2001], with the remarkable difference that now the reduction to the discrete setting
is achieved through vertical δ-segmentation, while in [Gobbino 1998; Gobbino and Mora 2001] it was
obtained through a horizontal ε-segmentation (see Figure 1).

The asymptotic estimate on the cost of oscillations opens the door to the Gamma-liminf inequality in
dimension 1, which at this point follows from well-established techniques. As for the Gamma-limsup
inequality, in dimension 1 we just need to exhibit a family that realizes the given explicit multiple of
30,p(u,R), and this can be achieved through a vertical δ-segmentation à la Lebesgue (see Proposition 3.7).
This produces a recovery family made up of step functions, and it is not difficult to modify them in
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Figure 1. Vertical δ-segmentation vs. horizontal ε-segmentation (δ is the distance between
the parallel lines on the left, ε is the distance between the parallel lines on the right).

order to obtain functions of class C∞ with asymptotically the same energy (see Proposition 3.9). Finally,
passing from dimension 1 to any dimension is just an application of the 1-dimensional result to all the
1-dimensional sections of a function of d variables.

At the end of the day, we have a completely self-contained proof of Theorem 1.1 above, and a clear
indication that the true difficulty of the problem lies in dimension 1, and actually in the discretized
combinatorial model. We hope that these ideas can be extended to the more general functionals considered
in [Brezis and Nguyen 2018]. Some steps in this direction have already been done in [Antonucci et al.
2020]; see also [Antonucci et al. 2018].

This paper is organized as follows. In Section 2 we develop a theory of monotone rearrangements, first
in a discrete, and then in a semidiscrete setting. In Section 3 we prove our Gamma-convergence result in
dimension 1. In Section 4 we prove the Gamma-convergence result in any space dimension.

We would like to thank an anonymous referee for pointing out that the rearrangement inequality in
our Theorem 2.4 is equivalent to a rearrangement inequality proved in [Garsia and Rodemich 1974].
This equivalence is not immediate (see Remark 2.5 for further details), and for this reason the proofs
follow different paths. However, in both cases the basic step consists in reducing the problem to a discrete
combinatorial result, namely Theorem 2.2 in this paper, and a variant of Taylor’s lemma [1973] in [Garsia
and Rodemich 1974].

2. An aggregation/segregation problem

In this section we study the minimum problem for two simplified versions of (1-1), which we interpret as
optimizing the disposition of some objects of different types (actually dinosaurs of different species). The
first problem is purely discrete, namely with a finite number of dinosaurs of a finite number of species. The
second one is semidiscrete, namely with a continuum of dinosaurs belonging to a finite number of species.

2A. Discrete setting. Let us consider

• a positive integer n,

• a function u : {1, . . . , n} → Z,

• a symmetric subset E ⊆ Z2 (namely any subset with the property that (i, j) ∈ E if and only if
( j, i) ∈ E),

• a nonincreasing function h : {0, 1, . . . , n− 1} → R.
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Let us introduce the discrete interaction set

J (E, u) := {(x, y) ∈ {1, . . . , n}2 : x ≤ y, (u(x), u(y)) ∈ E}, (2-1)

and let us finally define
H(h, E, u) :=

∑
(x,y)∈J (E,u)

h(y− x). (2-2)

Just to help intuition, we think of u as an arrangement of n dinosaurs placed in the points {1, . . . , n}.
There are different species of dinosaurs, indexed by integer numbers, so that u(x) denotes the species of
the dinosaur in position x . The subset E ⊆Z2 is the list of all pairs of species that are hostile to each other.
A pair of points (x, y) belongs to J (E, u) if and only if x ≤ y and the two dinosaurs placed in x and y
belong to hostile species, and in this case the real number h(y− x) measures the “hostility” between the
two dinosaurs. As expected, the closer the dinosaurs are, the larger their hostility.

Taking this Jurassic framework into account, sometimes in the sequel we call u a “discrete arrangement
of n dinosaurs”, we call E an “enemy list”, we call h a “discrete hostility function”, and H(h, E, u) the
“total hostility of the arrangement”. At this level of generality, we admit the possibility that (i, i) ∈ E for
some integer i , namely that a dinosaur is hostile to dinosaurs of the same species, including itself. For
this reason, the hostility function h(x) is defined also for x = 0. This generality turns out to be useful in
the proof of the main result for discrete arrangements.

In the sequel we focus on the special case where E coincides with

Ek := {(i, j) ∈ Z2
: | j − i | ≥ k+ 1} (2-3)

for some positive integer k. In this case it is quite intuitive that the arrangements that minimize the total
hostility are the “monotone” ones, namely those in which all dinosaurs of the same species are close to
each other, and the groups corresponding to different species are sorted in ascending or descending order.
To this end, we introduce the following notion.

Definition 2.1 (nondecreasing rearrangement: discrete setting). Let n be a positive integer, and let u :
{1, . . . , n}→Z be a function. The nondecreasing rearrangement of u is the function Mu : {1, . . . , n}→Z

defined as
Mu(x) :=min{ j ∈ Z : |{y ∈ {1, . . . , n} : u(y)≤ j}| ≥ x},

where |A| denotes the number of elements of the set A.

As the name suggests, Mu is the unique nondecreasing function that can be represented in the form
Mu = u ◦π , where π : {1, . . . , n}→ {1, . . . , n} is a suitable bijection. The nondecreasing rearrangement
can also be uniquely characterized by the fact that the two level sets

{x ∈ {1, . . . , n} : u(x)= j}, {x ∈ {1, . . . , n} : Mu(x)= j}

have the same number of elements for every j ∈ Z.
As expected, the main result is that monotone arrangements minimize the total hostility with respect to

the enemy list Ek .
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Theorem 2.2 (total hostility minimization: discrete setting). Let n and k be two positive integers, let
Ek ⊆ Z2 be the subset defined by (2-3), and let h : {0, . . . , n − 1} → R be a nonincreasing function.
Let u : {1, . . . , n} → Z be any function, let Mu be the nondecreasing rearrangement of u introduced in
Definition 2.1, and let H(h, Ek, u) be the total hostility defined in (2-2).

Then it turns out that
H(h, Ek, u)≥H(h, Ek,Mu). (2-4)

Taylor’s result [1973] is substantially equivalent to (2-4) in the special case where there are n dinosaurs
of n different species indexed by n consecutive integers. It is likely that Taylor’s approach based on the
celebrated Hall’s theorem, sometimes referred to as the “marriage theorem”, could work even in the more
general setting that we need here; see [Garsia and Rodemich 1974, Section 3]. The proof we present in
Section 2C below follows a different path.

2B. Semidiscrete setting. Let us consider

• an interval (a, b)⊆ R,

• a measurable function u : (a, b)→ Z with finite image,

• a symmetric subset E ⊆ Z2,

• a nonincreasing function c : (0, b− a)→ R (note that c(σ ) might diverge as σ → 0+).

Let us introduce the semidiscrete interaction set

I (E, u) := {(x, y) ∈ (a, b)2 : (u(x), u(y)) ∈ E}, (2-5)

and let us finally define

F(c, E, u) :=
∫∫

I (E,u)
c(|y− x |) dx dy. (2-6)

In analogy with the discrete setting, we interpret u(x) as a continuous arrangement of dinosaurs of a
finite number of species, c(y− x) as the hostility between two dinosaurs of hostile species placed in x
and y, and we think of F(c, E, u) as the total hostility of the arrangement u with respect to the enemy
list E .

Once again, we suspect that monotone arrangements minimize the total hostility with respect to the
enemy list Ek . This leads to the following notion.

Definition 2.3 (nondecreasing rearrangement: semidiscrete setting). Let u : (a, b)→ Z be a measurable
function with finite image. The nondecreasing rearrangement of u is the function Mu : (a, b)→ Z

defined as
Mu(x) :=min{ j ∈ Z :meas{y ∈ (a, b) : u(y)≤ j} ≥ x − a},

where meas(A) denotes the Lebesgue measure of a subset A ⊆ (a, b).

The function Mu is nondecreasing and satisfies

meas{x ∈ (a, b) : u(x)= j} =meas{x ∈ (a, b) : Mu(x)= j} for all j ∈ Z.
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The following result is the semidiscrete counterpart of Theorem 2.2.

Theorem 2.4 (total hostility minimization: semidiscrete setting). Let (a, b)⊆ R be an interval, let k be a
positive integer, let Ek ⊆ Z2 be the subset defined by (2-3), and let c : (0, b− a)→ R be a nonincreasing
function. Let u : (a, b)→ Z be any measurable function with finite image, let Mu be the nondecreasing
rearrangement of u introduced in Definition 2.3, and let F(c, Ek, u) be the total hostility defined in (2-6).

Then it turns out that
F(c, Ek, u)≥ F(c, Ek,Mu). (2-7)

Remark 2.5. Theorem 2.4 above is stated in the form that we need in the proof of Proposition 3.2. With
a further approximation step in the proof, one can show that the same conclusion (2-7) holds true also
without assuming that the image of u is finite and contained in Z, and without assuming that k is a positive
integer (but just a real number greater than −1).

It is interesting to compare this extended result with [Garsia and Rodemich 1974, Theorem 1.1], which
states that for every nondecreasing function 8 : [0,+∞)→ [0,+∞), and every t ∈ (0, b− a), it turns
out that ∫

D(t)
8(|u(y)− u(x)|) dx dy ≥

∫
D(t)

8(|Mu(y)−Mu(x)|) dx dy, (2-8)

where D(t) := {(x, y) ∈ (a, b)2 : |y− x | ≤ t}. We observe that in (2-8) the integral involves only the pairs
(x, y) ∈ (a, b)2 that are close enough to the diagonal y = x , and the integrand 8 penalizes the pairs for
which |u(y)−u(x)| is large. On the contrary, in our total hostility the integral involves only the pairs with
|u(y)− u(x)| large enough, and the integrand c penalizes the pairs that are close to the diagonal. In this
sense the two statements seem to be two sides of the same coin (again as the Riemann and the Lebesgue
integral), and actually one can show that both statements are equivalent to saying that the inequality

meas{(x, y) ∈ (a, b)2 : |y− x | ≤ t, |u(y)− u(x)| ≥ δ}

≥meas{(x, y) ∈ (a, b)2 : |y− x | ≤ t, |Mu(y)−Mu(x)| ≥ δ} (2-9)

holds true for every t ∈ (0, b− a) and every δ > 0.
The proof of (2-8) given in [Garsia and Rodemich 1974] relies on this equivalence, and establishes

(2-9) through a variant of Taylor’s result. The proof of (2-7) that we present in Section 2D follows a more
direct path, based on our Theorem 2.2, which anyway is again discrete combinatorics.

2C. Proof of Theorem 2.2. Since the hostility function h is fixed, in the sequel we simply write H(E, u)
instead of H(h, E, u).

Our idea is to proceed by induction on the number of dinosaurs. In the case n = 1 there is nothing
to prove. Let us assume now that (2-4) holds true for all arrangements of n dinosaurs, and let u be any
arrangement of n+ 1 dinosaurs. In order to obtain an arrangement of n dinosaurs, we remove from u the
rightmost dinosaur of the species indexed by the highest integer, and we shift one position to the left all
subsequent dinosaurs. More formally, we set

µ :=max{u(i) : i ∈ {1, . . . , n+ 1}},
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we consider the largest index m ∈ {1, . . . , n+ 1} such that u(m)= µ, and we define the reduction of u to
be the new arrangement Red(u) : {1, . . . , n} → Z given by

[Red(u)](i) :=
{

u(i) if i < m,
u(i + 1) if i ≥ m.

When passing from u to Red(u), the total hostility changes by an amount that we call the hostility gap,
defined as

1(E, u) :=H(E, u)−H(E,Red(u)).

Since M(Red(u))= Red(Mu), the inductive hypothesis reads as

H(Ek,Red(u))≥H(Ek,M(Red(u)))=H(Ek,Red(Mu)),
and therefore

H(Ek, u)=H(Ek,Red(u))+1(Ek, u)

≥H(Ek,Red(Mu))+1(Ek, u)

=H(Ek,Mu)−1(Ek,Mu)+1(Ek, u).

As a consequence, (2-4) is proved for the arrangement u if we can show that

1(Ek, u)≥1(Ek,Mu), (2-10)

namely that the monotone rearrangement decreases (or at least does not increase) the hostility gap.
In order to prove (2-10), we begin by deriving a formula for the hostility gap. Let us consider the

removal that leads from u to Red(u). We observe that interactions between any two dinosaurs placed
on the same side of the removed one are equal before and after the removal, and therefore they cancel
out when computing the gap. On the contrary, if two hostile dinosaurs are placed within distance d on
opposite sides of the removed one, their hostility changes from h(d) to h(d − 1) after the removal. It
follows that the hostility gap can be written as

1(E, u)=
∑

i∈J1(E,u,m)

h(|m− i |)−
∑

(i, j)∈J2(E,u,m)

(h( j − i − 1)− h( j − i)), (2-11)

where
J1(E, u,m) := {i ∈ {1, . . . , n+ 1} : (u(i), u(m)) ∈ E},

J2(E, u,m) := {(i, j) ∈ {1, . . . , n+ 1}2 : i < m < j, (u(i), u( j)) ∈ E}.

The first sum in (2-11) takes into account the interactions of the removed dinosaur with the rest of the
world, and the second sum represents the increment of the total hostility due to the reduction of distances
among the others.

Now we introduce the new enemy list

E〈µ〉 := Z2
\ {µ,µ− 1, . . . , µ− k}2,

and we claim that
1(Ek, u)≥1(E〈µ〉, u)≥1(E〈µ〉,Mu)=1(Ek,Mu), (2-12)

which of course implies (2-10).
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The equality between the last two terms of (2-12) follows from formula (2-11). Indeed, since Mu is
nondecreasing, the removed dinosaur is the rightmost one, and therefore in both cases the second sum in
(2-11) is void. Also the first sum in (2-11) is the same in both cases, because a dinosaur of the highest
species is hostile to another dinosaur with respect to the enemy list Ek if and only if it is hostile to the
same dinosaur with respect to the enemy list E〈µ〉.

The inequality between the first two terms of (2-12) follows again from formula (2-11). Indeed, the
first sum has the same terms both in the case of the enemy list Ek and in the case of the enemy list E〈µ〉,
as observed above. As for the second sum, the interactions with respect to Ek are also interactions with
respect to E〈µ〉, and therefore when passing from Ek to E〈µ〉 the second sum cannot decrease. Since the
second sum appears in (2-11) with negative sign, the hostility gap with respect to E〈µ〉 is less than or
equal to the hostility gap with respect to Ek .

It remains to prove that
1(E〈µ〉, u)≥1(E〈µ〉,Mu). (2-13)

To this end, we introduce the complement enemy list

Ec
〈µ〉 := {µ,µ− 1, . . . , µ− k}2 = Z2

\ E〈µ〉.

Since Z2 is the disjoint union of E〈µ〉 and Ec
〈µ〉, and the total hostility is additive with respect to the

enemy list, we deduce
H(E〈µ〉, w)=H(Z2, w)−H(Ec

〈µ〉, w)

for every arrangement w, and for the same reason

1(E〈µ〉, w)=1(Z2, w)−1(Ec
〈µ〉, w).

Moreover, we observe that the total hostility with respect to Z2 depends only on the number of dinosaurs,
and in particular

1(Z2, u)=1(Z2,Mu).

As a consequence, proving (2-13) is equivalent to showing that

1(Ec
〈µ〉, u)≤1(Ec

〈µ〉,Mu). (2-14)

The advantage of this “complement formulation” is that hostility gaps with respect to Ec
〈µ〉 depend

only on the relative positions of the removed dinosaur with respect to the other dinosaurs of the species
with indices between µ− k and µ.

To be more precise, let us compute the left-hand side of (2-14). Let m denote as usual the position of
the dinosaur that is removed from u to Red(u), and let us set

R(u) := {r ≥ 1 : u(m+ r) ∈ {µ,µ− 1, . . . , µ− k}},

L(u) := {`≥ 1 : u(m− `) ∈ {µ,µ− 1, . . . , µ− k}}.

In other words, this means that

{m− ` : ` ∈ L(u)} ∪ {m} ∪ {m+ r : r ∈ R(u)}
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is the set of all integers i ∈{1, . . . , n+1} such that u(i)∈{µ,µ−1, . . . , µ−k}, namely the set of positions
where the dinosaurs of the last k+ 1 species are placed. With this notation, the first sum in (2-11) is

h(0)+
∑
`∈L(u)

h(`)+
∑

r∈R(u)

h(r)

(we recall that in this “complement formulation” the dinosaur in position m is also hostile to itself), while
the second sum in (2-11) is ∑

(`,r)∈L(u)×R(u)

(h(`+ r − 1)− h(`+ r)).

Therefore, it turns out that

1(Ec
〈µ〉, u)= G(L(u), R(u)),

where the function G is defined by

G(L , R) := h(0)+
∑
`∈L

h(`)+
∑
r∈R

h(r)−
∑

(`,r)∈L×R

(h(`+ r − 1)− h(`+ r)) (2-15)

for any two sets L and R of positive integers.
On the other hand, in the nondecreasing arrangement Mu the rightmost dinosaur has |L(u)| + |R(u)|

dinosaurs of the last k+ 1 species exactly on its left, and therefore

1(Ec
〈µ〉,Mu)=

|L(u)|+|R(u)|∑
i=0

h(i).

As a consequence, inequality (2-14) is proved if we show that

G(L , R)≤
|L|+|R|∑

i=0

h(i) (2-16)

for every choice of the sets L and R. For this final step, we argue by induction on the number of elements
of R. If R =∅, from (2-15) we deduce

G(L , R) := h(0)+
∑
`∈L

h(`)≤
|L|∑
i=0

h(i)=
|L|+|R|∑

i=0

h(i),

where the inequality is true term-by-term because h is nonincreasing.
Let us assume now that the conclusion holds true whenever R has n elements, and let us consider any

pair (L , R) with |R| = n+ 1. Let us set

a :=max R, b :=min{n ∈ N \ {0} : n 6∈ L},

and let us consider the new pair (L1, R1) defined as

L1 := L ∪ {b}, R1 := R \ {a}.
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In words, we have removed the largest element of R, and added the smallest possible element to L .
We observe that |R1| = n and |L1| + |R1| = |L| + |R|. Therefore, if we show that

G(L , R)≤ G(L1, R1), (2-17)

then (2-16) follows from the inductive assumption.
In order to prove (2-17), we expand the left-and right-hand sides according to (2-15). After canceling

out the common terms, with some algebra we obtain that inequality (2-17) holds true if and only if

h(a)+
∑
r∈R1

(h(b+ r − 1)− h(b+ r))≤ h(b)+
∑
`∈L

(h(`+ a− 1)− h(`+ a)). (2-18)

All terms in the sums are nonnegative because h is nonincreasing. Let us consider the left-hand side.
If a > 1 we know that R1 ⊆ {1, . . . , a− 1}, and hence

h(a)+
∑
r∈R1

(h(b+ r − 1)− h(b+ r)rut)≤ h(a)+
a−1∑
r=1

(h(b+ r − 1)− h(b+ r))

= h(a)+ h(b)− h(a+ b− 1). (2-19)

The same inequality is true for trivial reasons also if a = 1.
Let us consider now the right-hand side of (2-18). If b> 1 we know that L ⊇ {1, . . . , b−1}, and hence

h(b)+
∑
`∈L

(h(`+ a− 1)− h(`+ a))≥ h(b)+
b−1∑
`=1

(h(`+ a− 1)− h(`+ a))

= h(b)+ h(a)− h(a+ b− 1). (2-20)

As before, the same inequality is true for trivial reasons also if b = 1.
Combining (2-20) and (2-19) we obtain (2-18), which in turn is equivalent to (2-17). This completes

the proof of (2-16). �

2D. Proof of Theorem 2.4. The proof relies on the following approximation result (we omit the proof,
which is an exercise in basic measure theory).

Lemma 2.6. Let m be a positive integer, and let D1, . . . , Dm be disjoint measurable subsets of (0, 1)
such that

m⋃
i=1

Di = (0, 1).

Then for every ε > 0 there exist disjoint subsets D1,ε, . . . , Dm,ε of [0, 1] such that
m⋃

i=1

Di,ε = (0, 1)

and such that for every i = 1, . . . ,m it turns out that

• Di,ε is a finite union of intervals with rational endpoints,

• the Lebesgue measure of the symmetric difference between Di and Di,ε is less than or equal to ε.
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We are now ready to prove Theorem 2.4. First of all, we observe that (2-7) is invariant by translations
and homotheties. As a consequence, there is no loss of generality in assuming that (a, b)= (0, 1) and
c : (0, 1)→ R. Then we proceed in three steps. To begin with, we prove (2-7) in the special case where
the hostility function c is bounded and the arrangement u has a very rigid structure, then for general u but
again bounded hostility function, and finally in the general setting.

Step 1: We prove (2-7) under the additional assumption that the hostility function c : (0, 1)→ R is
bounded, and that there exists a positive integer d such that u(x) is constant in each interval of the form
((i − 1)/d, i/d) with i = 1, . . . , d .

Indeed, this is actually the discrete setting. To be more precise, we introduce the discrete arrangement
v : {1, . . . , d} → Z defined as

v(i) := u
(

i − 1
2

d

)
for all i ∈ {1, . . . , d}

and the discrete hostility function h : {0, . . . , d − 1} → R defined as

h(i) :=
∫ 1/d

0
dx
∫ (i+1)/d

i/d
c(|y− x |) dy for all i ∈ {0, . . . , d − 1},

which represents the contribution to the total hostility of two intervals of length 1/d occupied by hostile
dinosaurs, and placed at distance i/d from each other. Then for every enemy list Ek it turns out that

F(c, Ek, u)= 2H(h, Ek, v),

where H(h, Ek, v) is the discrete total hostility defined in (2-2), and the factor 2 takes into account
that both (x, y) and (y, x) are included in the semidiscrete interaction set I (Ek, u), while only one of
them is included in the discrete counterpart J (Ek, v); see (2-1) and (2-5). Moreover, the monotone
rearrangement Mv of v is related to the monotone rearrangement Mu of u by the formula

Mv(i)= Mu
(

i − 1
2

d

)
for all i ∈ {1, . . . , d},

and again it turns out that
F(c, Ek,Mu)= 2H(h, Ek,Mv)

for every enemy list Ek . At this point, (2-7) is equivalent to

H(h, Ek, v)≥H(h, Ek,Mv),

which in turn is true because of Theorem 2.2.

Step 2: We prove (2-7) for a general arrangement u : (0, 1)→Z, but again under the additional assumption
that the hostility function c : (0, 1)→ R is bounded.

To this end, let z1 < z2 < · · ·< zm denote the elements in the image of u, and let

Di := {x ∈ (0, 1) : u(x)= zi } for all i ∈ {1, . . . ,m}
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denote the set of positions of dinosaurs of the species zi . For every ε > 0, let us consider the sets D1,ε,
. . . , Dm,ε given by Lemma 2.6, and the function uε : (0, 1)→ Z defined as

uε(x)= zi for all x ∈ Di,ε.

Since the hostility function c is bounded, and the symmetric difference between Di and Di,ε has
measure less than or equal to ε, there exists a constant 0 (depending on m and c, but independent of ε)
such that

|F(c, Ek, u)−F(c, Ek, uε)| ≤ 0ε and |F(c, Ek,Mu)−F(c, Ek,Muε)| ≤ 0ε.

On the other hand, the function uε satisfies the assumptions of the previous step, and therefore

F(c, Ek, uε)≥ F(c, Ek,Muε).

From all these inequalities it follows that

F(c, Ek, u)≥ F(c, Ek,Mu)− 20ε.

Since ε > 0 is arbitrary, (2-7) is proved in this case.

Step 3: We prove (2-7) without assuming that the hostility function c(x) is bounded.
To this end, for every n ∈ N we consider the truncated hostility function

cn(x) :=min{c(x), n} for all x ∈ (0, 1).

We observe that
F(c, Ek, u)≥ F(cn, Ek, u) for all n ∈ N

because c(x)≥ cn(x) for every x ∈ (0, 1), and

F(cn, Ek, u)≥ F(cn, Ek,Mu) for all n ∈ N

because of the result of the previous step applied to the bounded hostility function cn(x). As a consequence,
we obtain

F(c, Ek, u)≥ F(cn, Ek,Mu) for all n ∈ N. (2-21)

On the other hand, by monotone convergence we deduce

F(c, Ek,Mu)= sup
n∈N

F(cn, Ek,Mu),

and therefore (2-7) follows from (2-21). �

3. Gamma-convergence in dimension 1

In this section we prove Theorem 1.1 for d = 1, in which case

G1,p = 2 for all p ≥ 1. (3-1)
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To begin with, we introduce the notion of vertical δ-segmentation, which is going to play a crucial role
in many parts of the proof.

Definition 3.1 (vertical δ-segmentation). Let X be any set, let w : X→ R be any function, and let δ > 0.
The vertical δ-segmentation of w is the function Sδw : X→ R defined by

Sδw(x) := δ
⌊
w(x)
δ

⌋
for all x ∈ X. (3-2)

The function Sδw takes its values in δZ, and it is uniquely characterized by the fact that Sδw(x)= kδ
for some k ∈ Z if and only if kδ ≤ w(x) < (k+ 1)δ.

3A. Asymptotic cost of oscillations. Let us assume that a function uδ(x) oscillates between two values
A and B in some interval (a, b). Does this provide an estimate from below for 3δ,p(uδ, (a, b)), at
least when δ is small enough? The following proposition and the subsequent corollaries give a sharp
quantitative answer to this question. They are the fundamental tool in the proof of the liminf inequality.

Proposition 3.2 (limit cost of vertical oscillations). Let p ≥ 1 be a real number, let (a, b) ⊆ R be an
interval, and let {uδ}δ>0 ⊆ L p((a, b)) be a family of functions.

Let us assume that there exist two real numbers A ≤ B such that

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≤ A+ ε}> 0 for all ε > 0, (3-3)

lim inf
δ→0+

meas{x ∈ (a, b) : uδ(x)≥ B− ε}> 0 for all ε > 0. (3-4)

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p
·C p ·

(B− A)p

(b− a)p−1 , (3-5)

where C p is the constant defined in (1-6).

Proof. To begin with, we observe that (3-5) is trivial if A= B, and therefore in the sequel we assume that
A < B.

Let us fix ε > 0 such that 4ε < B− A. Due to assumptions (3-3) and (3-4), there exist η > 0 and δ0 > 0
such that

meas{x ∈ (a, b) : uδ(x)≤ A+ ε} ≥ η for all δ ∈ (0, δ0), (3-6)

meas{x ∈ (a, b) : uδ(x)≥ B− ε} ≥ η for all δ ∈ (0, δ0). (3-7)

Truncation, δ-segmentation and monotone rearrangement: In this section of the proof, we replace {uδ}
with a new family {ûδ} of monotone piecewise constant functions that still satisfies (3-3) and (3-4), without
increasing the left-hand side of (3-5). To this end, we perform three operations on uδ(x).

The first operation is a truncation between A and B. To be more precise, we define TA,Buδ : (a, b)→R

by setting

TA,Buδ(x) :=


A if uδ(x) < A,
uδ(x) if A ≤ uδ(x)≤ B,
B if uδ(x) > B.
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We observe that the implication

|TA,Buδ(y)− TA,Buδ(x)|> δ =⇒ |uδ(y)− uδ(x)|> δ

holds true for every x and y in (a, b), and hence

3δ,p(TA,Buδ, (a, b))≤3δ,p(uδ, (a, b)) for all δ > 0.

We also observe that (3-6) and (3-7) remain true if we replace uδ(x) by TA,Buδ(x).
The second operation is a vertical δ-segmentation; namely we replace TA,Buδ by the function SδTA,Buδ

defined according to (3-2). Again we observe that the implications

|SδTA,Buδ(y)− SδTA,Buδ(x)|> δ =⇒ |SδTA,Buδ(y)− SδTA,Buδ(x)| ≥ 2δ

=⇒ |TA,Buδ(y)− TA,Buδ(x)|> δ

hold true for every x and y in (a, b), and hence

3δ,p(SδTA,Buδ, (a, b))≤3δ,p(TA,Buδ, (a, b)) for all δ > 0.

As for (3-6) and (3-7), we set δ1 :=min{ε, δ0}, and we observe that now

meas{x ∈ (a, b) : SδTA,Buδ(x)≤ A+ 2ε} ≥ η for all δ ∈ (0, δ1), (3-8)

meas{x ∈ (a, b) : SδTA,Buδ(x)≥ B− 2ε} ≥ η for all δ ∈ (0, δ1). (3-9)

The third and last operation we perform is monotone rearrangement; namely we replace SδTA,Buδ with
the nondecreasing function M SδTA,Buδ in (a, b) whose level sets have the same measure of the level sets
of SδTA,Buδ (see Definition 2.3).

From (3-8) and (3-9) we deduce that now

M SδTA,Buδ(x)≤ A+ 2ε for all x ∈ (a, a+ η), for all δ ∈ (0, δ1), (3-10)

M SδTA,Buδ(x)≥ B− 2ε for all x ∈ (b− η, b), for all δ ∈ (0, δ1). (3-11)

Moreover, we claim that

3δ,p(M SδTA,Buδ, (a, b))≤3δ,p(SδTA,Buδ, (a, b)) for all δ > 0. (3-12)

This is a straightforward consequence of Theorem 2.4. To be more formal, let us consider the
semidiscrete arrangement vδ : (a, b)→ Z defined by

vδ(x) :=
1
δ

SδTA,Buδ(x) for all x ∈ (a, b)

(we recall that SδTA,Buδ takes its values in δZ, and hence vδ(x) is integer-valued) and the hostility function
c : (0, b− a)→ R defined as c(σ ) := δ pσ−1−p. We observe that

M SδTA,Buδ(x)= δMvδ(x) for all x ∈ (a, b),

where Mvδ is the nondecreasing rearrangement of vδ according to Definition 2.3.
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We observe also that for every pair of points x and y in (a, b) it turns out that

(x, y) ∈ I (δ, SδTA,Buδ, (a, b)) ⇐⇒ |vδ(y)− vδ(x)| ≥ 2 ⇐⇒ (x, y) ∈ I (E1, vδ),

where E1 is the enemy list defined in (2-3), and I (E1, vδ) is the semidiscrete interaction set defined
according to (2-5). It follows that

3δ,p(SδTA,Buδ, (a, b))= F(c, E1, vδ), 3δ,p(M SδTA,Buδ, (a, b))= F(c, E1,Mvδ),

and therefore (3-12) is equivalent to (2-7).
In conclusion, the three operations described so far delivered us a family

ûδ := M SδTA,Buδ

of nondecreasing functions such that the image of ûδ is contained in δZ. This family satisfies (3-10) and
(3-11), and

3δ,p(uδ, (a, b))≥3δ,p(ûδ, (a, b)) for all δ > 0. (3-13)

In the sequel we are going to show that any such family satisfies

lim inf
δ→0+

3δ,p(ûδ, (a, b))≥ 2
p
·C p ·

(B− A− 4ε)p

(b− a)p−1 . (3-14)

Due to (3-13) and the arbitrariness of ε > 0, this is enough to prove (3-5).

Extension of the integrals to a vertical strip: In this section of the proof we modify the domain of
integration in order to simplify the computation of 3δ,p(ûδ, (a, b)). To begin with, we observe that

3δ,p(ûδ, (a, b))=
∫∫

Aδ

δ p

|y− x |1+p dx dy ≥
∫∫

Bδ

δ p

|y− x |1+p dx dy,

where
Aδ := I (δ, ûδ, (a, b))= {(x, y) ∈ (a, b)2 : |ûδ(y)− ûδ(x)|> δ},

Bδ := {(x, y) ∈ (a+ η, b− η)× (a, b) : |ûδ(y)− ûδ(x)|> δ}.

Then we write the last integral in the form∫∫
Bδ

δ p

|y− x |1+p dx dy =
∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy−
∫∫

Cδ

δ p

|y− x |1+p dx dy,

where

Cδ := (a+ η, b− η)× (R \ (a, b)).

In other words, the set Bδ ∪Cδ consists of the vertical strip (a+ η, b− η)×R minus the set of points
(x, y) ∈ (a+ η, b− η)× (a, b) such that |ûδ(y)− ûδ(x)| ≤ δ. Now we observe that∫∫

Cδ

δ p

|y− x |1+p dx dy = 2δ p
∫ b−η

a+η
dx
∫
+∞

b

1
|y− x |1+p dy.
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From the convergence of the last double integral it follows that

lim
δ→0+

∫∫
Cδ

δ p

|y− x |1+p dx dy = 0,

and therefore

lim inf
δ→0+

3δ,p(ûδ, (a, b))≥ lim inf
δ→0+

∫∫
Bδ

δ p

|y− x |1+p dx dy = lim inf
δ→0+

∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy. (3-15)

Computing the integrals: In this last part of the proof we show that

lim inf
δ→0+

∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥ 2
p
·C p ·

(B− A− 4ε)p

(b− a)p−1 . (3-16)

Recalling (3-15), this proves (3-14), and hence also (3-5).
To this end, we need to introduce some notation. We know that ûδ is a nondecreasing function with

finite image. Let us consider the partition

a = x0 < x1 < · · ·< xn = b

of (a, b) with the property that ûδ(x) is constant in each interval of the form (xi−1, xi ), and different
intervals correspond to different constants. Let us set

h :=min{i ∈ {1, . . . , n} : xi ≥ a+ η},

k :=max{i ∈ {0, . . . , n− 1} : xi ≤ b− η}.

Of course n, h, k, as well as the partition, do depend on δ. Now we claim that∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥ 2
p
·C p ·

δ p(k− h− 1)p

(b− a)p−1 for all δ ∈ (0, δ1). (3-17)

To this end we can limit ourselves, without loss of generality, to the case where the values of ûδ(x) in
neighboring intervals are consecutive multiples of δ; namely if ûδ(x)= mδ in (xi−1, xi ) for some m ∈ Z,
then ûδ(x)= (m+ 1)δ in (xi , xi+1). Indeed, if ûδ(x)≥ (m+ 2)δ in (xi , xi+1), then it turns out that∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
∫ xi

xi−1

dx
∫ xi+1

xi

δ p

(y− x)1+p dy.

Since the integral in the right-hand side is divergent, the left-hand side is divergent as well, and in this
case (3-17) is trivially true.

Therefore, in the sequel we treat the case where the values of ûδ(x) in neighboring intervals are
consecutive multiples of δ. Under this assumption it turns out that∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
k−1∑

i=h+1

(∫ xi

xi−1

dx
∫
+∞

xi+1

δ p

|y− x |1+p dy+
∫ xi+1

xi

dx
∫ xi−1

−∞

δ p

|y− x |1+p dy
)

=
δ p

p

k−1∑
i=h+1

(∫ xi

xi−1

1
(xi+1− x)p dx +

∫ xi+1

xi

1
(x − xi−1)p dx

)
.
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Now we distinguish two cases.

• If p = 1, computing the integrals we obtain∫∫
Bδ∪Cδ

δ

(y− x)2
dx dy ≥ δ

k−1∑
i=h+1

log
(

xi+1− xi−1

xi+1− xi
·

xi+1− xi−1

xi − xi−1

)
.

If `i := xi − xi−1 denotes the length of the i-th interval of the partition, and we apply the inequality
between arithmetic and geometric mean, we obtain∫∫

Bδ∪Cδ

δ

(y− x)2
dx dy ≥ δ

k−1∑
i=h+1

log
(`i + `i+1)

2

`i · `i+1
≥ δ

k−1∑
i=h+1

log 4= 2 log 2 · δ(k− h− 1),

which proves (3-17) in this case.

• If p > 1, computing the integrals we obtain∫∫
Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
δ p

p(p− 1)

k−1∑
i=h+1

(
1

`
p−1
i+1

+
1

`
p−1
i

−
2

(`i+1+ `i )p−1

)
,

where we set `i := xi − xi−1 as before. Therefore, with two applications of Jensen’s inequality to the
convex function t→ t1−p, we obtain∫∫

Bδ∪Cδ

δ p

|y− x |1+p dx dy ≥
δ p

p(p− 1)

k−1∑
i=h+1

2p
− 2

(`i+1+ `i )p−1

≥
δ p(2p

− 2)
p(p− 1)

·
(k− h− 1)p(∑k−1

i=h+1(`i+1+ `i )
)p−1

≥
δ p(2p

− 2)
p(p− 1)

·
(k− h− 1)p

(2(b− a))p−1 =
2
p
·C p ·

δ p(k− h− 1)p

(b− a)p−1 ,

which proves (3-17) also in this case.

Now it remains to estimate δ(k− h− 1). To this end, from (3-10) and the minimality of h we deduce

A+ 2ε ≥ ûδ(x)=: m Aδ for all x ∈ (xh−1, xh).

Similarly, from (3-11) and the maximality of k we deduce

B− 2ε ≤ ûδ(x)=: m Bδ for all x ∈ (xk, xk+1).

Since the values of ûδ in consecutive intervals are consecutive multiples of δ, it turns out that

m B = m A+ (k− h+ 1),

and therefore

(k− h− 1)δ = (k− h+ 1)δ− 2δ = (m B −m A)δ− 2δ ≥ B− A− 4ε− 2δ.

Plugging this inequality into (3-17), and letting δ → 0+, we obtain (3-16), which completes the
proof. �
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The following result is a straightforward consequence of Proposition 3.2.

Corollary 3.3. Let us assume that uδ→ u in L p(R), and let (a, b)⊆ R be an interval whose endpoints a
and b are Lebesgue points of u.

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p
·C p ·

|u(b)− u(a)|p

(b− a)p−1 .

Proof. It is enough to apply Proposition 3.2 with A :=min{u(a), u(b)} and B :=max{u(a), u(b)}. Assump-
tions (3-3) and (3-4) are satisfied because a and b are Lebesgue points of the limit of the sequence uδ . �

We conclude with another variant of Proposition 3.2. We do not need this statement in the sequel, but
we think that it clarifies once more the relation between oscillations of uδ and values of 3δ,p(uδ, (a, b)).

Corollary 3.4. Let (a, b) ⊆ R be an interval, let {uδ}δ>0 ⊆ L p((a, b)) be a family of functions, and let
osc(uδ, (a, b)) denote the essential oscillation of uδ in (a, b).

Then it turns out that

lim inf
δ→0+

3δ,p(uδ, (a, b))≥ 2
p

C p
1

(b− a)p−1

(
lim inf
δ→0+

osc(uδ, (a, b))
)p
.

Proof. Let iδ and sδ denote the essential infimum and the essential supremum of uδ(x) in (a, b), respectively.
Let us assume that iδ and sδ are real numbers (otherwise an analogous argument works with standard
minor changes). Let us set wδ(x) := uδ(x)− iδ, and let us observe that

3δ,p(uδ, (a, b))=3δ,p(wδ, (a, b)) for all δ > 0.

Now it is enough to apply Proposition 3.2 with A := 0 and

B := lim inf
δ→0+

(sδ − iδ)= lim inf
δ→0+

osc(uδ, (a, b)). �

3B. Piecewise affine approximation. The value of30,p(u,R) is the supremum of30,p(v,R) as v ranges
over a sequence of piecewise affine functions that approximate u. The formal statement is the following
(we omit the standard proof, based on the convexity of the norm).

Lemma 3.5 (piecewise affine horizontal segmentation). Let p ≥ 1 be a real number, and let u ∈ L p(R).
Then there exists c ∈ R such that c+ q is a Lebesgue point of u for every q ∈Q.
Moreover, if for every positive integer k we consider the piecewise affine function vk : R→ R such that

vk

(
c+

i
k

)
= u

(
c+

i
k

)
for all i ∈ Z,

then it turns out that

30,p(u,R)= lim
k→+∞

∫
R

|v′k(x)|
p dx = sup

k≥1

∫
R

|v′k(x)|
p dx .
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3C. Proof of Gamma-liminf inequality in dimension 1. We are now ready to prove (1-7) in the case
d = 1. The idea is that Corollary 3.3 represents a “localized” version of the liminf inequality (1-7), which
now follows from well-established techniques; see for example [Gobbino 1998; Gobbino and Mora 2001].
To this end, let uδ→ u be any family converging in L p(R), and let c and vk be as in Lemma 3.5. For
every i ∈ Z, we set ck,i := c+ i/k, and we apply Corollary 3.3 in the interval (ck,i , ck,i+1). We obtain

lim inf
δ→0+

3δ,p(uδ, (ck,i , ck,i+1))≥
2
p

C p
|u(ck,i+1)− u(ck,i )|

p

(1/k)p−1 =
2
p

C p

∫ ck,i+1

ck,i

|v′k(x)|
p dx .

Since

3δ,p(uδ,R)≥
∑
i∈Z

3δ,p(uδ, (ck,i , ck,i+1)) for all δ > 0,

we deduce

lim inf
δ→0+

3δ,p(uδ,R)≥ lim inf
δ→0+

∑
i∈Z

3δ,p(uδ, (ck,i , ck,i+1))

≥

∑
i∈Z

lim inf
δ→0+

3δ,p(uδ, (ck,i , ck,i+1))

≥
2
p

C p

∑
i∈Z

∫ ck,i+1

ck,i

|v′k(x)|
p dx = 2

p
C p

∫
R

|v′k(x)|
p dx .

Letting k→+∞, and recalling (3-1), we obtain exactly (1-7). �

3D. Proof of Gamma-limsup inequality in dimension 1. This subsection is devoted to a proof of state-
ment (2) of Theorem 1.1 in the case d = 1.

It is well known that we can limit ourselves to showing the existence of recovery families for every u
belonging to a subset of L p(R) that is dense in energy with respect to 30,p(u,R). Classical examples of
subsets that are dense in energy are the space C∞c (R) of functions of class C∞ with compact support and
the space of piecewise affine functions with compact support. Here for the sake of generality we consider
the space PC1

c(R) of piecewise C1 functions with compact support, defined as follows.

Definition 3.6. Let u : R→ R be a function. We say that u ∈ PC1
c(R) if u has compact support, it is

Lipschitz continuous, and there exists a finite subset S ⊆ R such that u ∈ C1(R \ S).

We show that for every u ∈PC1
c(R) the family Sδu of vertical δ-segmentations of u is a recovery family.

This proves the Gamma-limsup inequality in dimension 1.

Proposition 3.7 (existence of recovery families). Let p ≥ 1 be a real number, and let u ∈ PC1
c(R) be a

piecewise C1 function with compact support according to Definition 3.6. For every δ > 0, let Sδu denote
the vertical δ-segmentation of u according to Definition 3.1.

Then it turns out that

lim sup
δ→0+

3δ,p(Sδu,R)≤
2
p

C p

∫
R

|u′(x)|p dx . (3-18)
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Proof. To begin with, we introduce some notation. Let R0 ≥ 1 be any real number such that the support
of u is contained in [−R0+ 1, R0− 1]. Let L be the Lipschitz constant of u in R, and let S ⊆ R be a
finite set such that u ∈ C1(R \ S). For every x ∈ R and every δ > 0 we set

J (δ, u, x) := {y ∈ R : |Sδu(y)− Sδu(x)|> δ}, (3-19)

and

Hδ,p(x) :=
∫

J (δ,u,x)

δ p

|y− x |1+p dy,

so that

3δ,p(Sδu,R)=

∫
R

Hδ,p(x) dx for all δ > 0. (3-20)

In the sequel we call Hδ,p(x) the “pointwise hostility function”. It represents the contribution of each
point x to the double integral defining 3δ,p(Sδu,R).

Strategy of the proof : The outline of the proof is the following. First of all, we show that

lim
δ→0+

∫
−R0

−∞

Hδ,p(x) dx = lim
δ→0+

∫
+∞

R0

Hδ,p(x) dx = 0. (3-21)

Then we define an averaged pointwise hostility function Ĥδ,p(x) with the property that∫ R0

−R0

Hδ,p(x) dx =
∫ R0

−R0

Ĥδ,p(x) dx . (3-22)

We also show that the averaged pointwise hostility function satisfies the uniform bound

Ĥδ,p(x)≤
2
p

L p for all x ∈ [−R0, R0], for all δ > 0, (3-23)

and the asymptotic estimate

lim sup
δ→0+

Ĥδ,p(x)≤
2
p

C p|u′(x)|p for all x ∈ [−R0, R0] \ S. (3-24)

At this point, from Fatou’s lemma we deduce

lim sup
δ→0+

∫ R0

−R0

Hδ,p(x) dx = lim sup
δ→0+

∫ R0

−R0

Ĥδ,p(x) dx ≤
∫ R0

−R0

lim sup
δ→0+

Ĥδ,p(x) dx ≤ 2
p

C p

∫ R0

−R0

|u′(x)|p dx .

Keeping (3-20) and (3-21) into account, this estimate implies (3-18).

Reducing integration to a bounded interval: We prove (3-21).
To this end, let us consider any x ≤ −R0. We observe that in this case the set J (δ, u, x) defined in

(3-19) is contained in the support of u, and hence∫
−R0

−∞

Hδ,p(x) dx ≤ δ p
∫
−R0

−∞

dx
∫ R0−1

−R0+1

1
|y− x |1+p dy.

At this point the first limit in (3-21) follows from the convergence of the double integral. The proof of
the second limit is analogous.
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Uniform bound on the pointwise hostility function: We prove that

Hδ,p(x)≤
2
p

L p for all x ∈ [−R0, R0], for all δ > 0. (3-25)

To this end, we observe that the implication

|Sδu(y)− Sδu(x)|> δ =⇒ |u(y)− u(x)|> δ

holds true for every (x, y) ∈ R2. Since u is Lipschitz continuous, we deduce that

|Sδu(y)− Sδu(x)|> δ =⇒ |y− x | ≥
δ

L
,

and hence

Hδ,p(x)≤
∫
|y−x |≥δ/L

δ p

|y− x |1+p dy = 2
∫
+∞

δ/L

δ p

z1+p dz = 2
p

L p,

as required.

Averaged pointwise hostility function: In this part of the proof we introduce the averaged pointwise
hostility function. To this end, we consider the open set

A(u, δ) := {x ∈ (−R0, R0) : u(x) 6∈ δZ}.

A connected component (a, b) of A(u, δ) is called monotone if [a, b] ∩ S = ∅, and |u′(x)| ≥ δ for
every x ∈ [a, b]. In this case there exists k ∈ Z such that u(a) = kδ and u(b) = kδ± δ, where the sign
depends on the sign of u′(x) in (a, b). From the Lipschitz continuity of u we deduce that A(u, δ) has
only a finite number of monotone connected components.

The averaged pointwise hostility function Ĥδ,p : R→ R is defined as

Ĥδ,p(x) :=
1

b− a

∫ b

a
Hδ,p(s) ds

if x ∈ [a, b) for some monotone connected component of A(δ, u), and Ĥδ,p(x) := Hδ,p(x) otherwise.
At this point, inequality (3-23) follows from (3-25), while (3-22) is true because the integrals of Hδ,p(x)

and Ĥδ,p(x) are the same both in all monotone connected components, and in the complement set.

Asymptotic estimate in stationary points: We prove that (3-24) holds true for every x ∈ (−R0, R0) \ S
with |u′(x)| = 0.

To begin with, we observe that in this case x 6∈ [a, b) for every monotone connected component (a, b)
of A(δ, u) (because |u′(x)| is strictly positive in the closure of every monotone connected component),
and therefore Ĥδ,p(x)= Hδ,p(x) for every δ > 0.

If J (δ, u, x)=∅ for every δ > 0, then u is identically null, and the conclusion is trivial. Otherwise
J (δ, u, x) 6=∅ when δ is small enough. In this case, let rδ be the largest positive real number such that

(x − rδ, x + rδ)∩ J (δ, u, x)=∅,
so that

Hδ,p(x)≤
∫ x−rδ

−∞

δ p

|y− x |1+p dy+
∫
+∞

x+rδ

δ p

|y− x |1+p dy = 2
p

(
δ

rδ

)p

.
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Let δk→ 0+ be any sequence such that

lim sup
δ→0+

δ

rδ
= lim

k→+∞

δk

rδk

. (3-26)

Up to subsequences, we can also assume that rδk tends to some r0. If r0 > 0, then the limit in the
right-hand side of (3-26) is 0, which proves (3-24) in this case. If r0 = 0, then from the maximality of rδk

we deduce that |u(x ± rδk )− u(x)| = δk for a suitable choice of the sign, which might depend on k. In
any case, the limit in the right-hand side of (3-26) turns out to be

lim
k→+∞

δk

rδk

= lim
k→+∞

|u(x ± rδk )− u(x)|
rδk

= |u′(x)| = 0,

which proves (3-24) also in this case.

Asymptotic estimate in nonstationary points: We prove that (3-24) holds true for every x ∈ (−R0, R0) \ S
with |u′(x)|> 0.

Let us assume, without loss of generality, that u′(x) > 0 (the other case is analogous). Then for every
δ > 0 small enough it turns out that x lies in the closure of a monotone connected component of A(δ, u).
More precisely, there exist four real numbers aδ, bδ, cδ, dδ with

aδ < bδ ≤ x < cδ < dδ,

and kδ ∈ Z such that

u(aδ)= (kδ − 1)δ, u(bδ)= kδδ, u(cδ)= (kδ + 1)δ, u(dδ)= (kδ + 2)δ,

and

u(y) ∈ ((kδ − 1)δ, kδδ) for all y ∈ (aδ, bδ), (3-27)

u(y) ∈ (kδδ, (kδ + 1)δ) for all y ∈ (bδ, cδ), (3-28)

u(y) ∈ ((kδ + 1)δ, (kδ + 2)δ) for all y ∈ (cδ, dδ). (3-29)

We observe that aδ, bδ, cδ, and dδ tend to x as δ→ 0+, and hence

lim
δ→0+

δ

bδ − aδ
= lim
δ→0+

u(bδ)− u(aδ)
bδ − aδ

= u′(x). (3-30)

Similarly it turns out that

lim
δ→0+

δ

cδ − bδ
= lim
δ→0+

δ

dδ − cδ
= u′(x), (3-31)

lim
δ→0+

δ

cδ − aδ
= lim
δ→0+

δ

dδ − bδ
=

u′(x)
2

. (3-32)

From (3-27) through (3-29) we deduce that

J (δ, u, s)⊆ (−∞, aδ] ∪ [dδ,+∞) for all s ∈ (bδ, cδ).
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It follows that

Hδ,p(s)≤
∫

R\(aδ,dδ)

δ p

|y− s|1+p dy =
δ p

p

(
1

(dδ − s)p +
1

(s− aδ)p

)
for all s ∈ [bδ, cδ),

and hence

Ĥδ,p(x)=
1

cδ − bδ

∫ cδ

bδ
Hδ,p(s) ds ≤

δ p

p
1

cδ − bδ

∫ cδ

bδ

(
1

(dδ − s)p +
1

(s− aδ)p

)
ds (3-33)

for every x ∈ [bδ, cδ). Now we distinguish two cases.

• If p = 1, computing the integrals in (3-33) we obtain

Ĥδ,p(x)≤
δ

cδ − bδ
log
(

dδ − bδ
δ
·

δ

dδ − cδ
·

cδ − aδ
δ
·

δ

bδ − aδ

)
,

and therefore (3-24) follows from (3-30) through (3-32).

• If p > 1, computing the integrals in (3-33) we obtain

Ĥδ,p(x)≤
1

p(p− 1)
δ

cδ − bδ

{
δ p−1

(dδ − cδ)p−1 +
δ p−1

(bδ − aδ)p−1 −
δ p−1

(dδ − bδ)p−1 −
δ p−1

(cδ − aδ)p−1

}
,

and therefore also in this case (3-24) follows from (3-30) through (3-32). �

3E. Smooth recovery families. The aim of this subsection is refining the Gamma-limsup inequality by
showing the existence of recovery families consisting of C∞ functions with compact support. To this end,
we introduce the following notion.

Definition 3.8 (δ-step functions). Let δ be a positive real number. A function u :R→R is called a δ-step
function if there exists a positive integer n, an (n+1)-tuple x0 < x1 < · · · < xn of real numbers, and
(k1, . . . , kn) ∈ Zn such that

• u(x)= 0 for every x ∈ (−∞, x0)∪ (xn,+∞),

• u(x)= kiδ in (xi−1, xi ) for every i = 1, . . . , n,

• |k1| = |kn| = 1 and |ki − ki−1| = 1 for every i = 2, . . . , n.

The values of u(x) for x ∈ {x0, x1, . . . , xn} are not relevant (just to fix ideas, we can define u(xi ) as
the maximum between the limit of u(x) as x→ x+i and the limit of u(x) as x→ x−i ).

Now we show that, for every fixed δ > 0, every δ-step function can be approximated in energy by
functions of class C∞ with compact support. Roughly speaking, this is possible because the rigid structure
of δ-step functions allows us to control the effect of convolutions, which otherwise is unpredictable due
to the sensitivity of the integration region in (1-1) to small perturbations.

Proposition 3.9 (smooth approximation of δ-step functions). Let δ > 0 and p ≥ 1 be real numbers, and
let u : R→ R be a δ-step function.
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Then there exists a family {uε}ε>0 ⊆ C∞c (R) such that

lim
ε→0+

uε = u in L p(R),

and
lim
ε→0+

3δ,p(uε,R)=3δ,p(u,R).

Proof. Let n, xi and ki be as in the definition of δ-step functions, and let

τ :=min{xi − xi−1 : i = 1, . . . , n}

be the length of the smallest interval of the partition. We observe that points in neighboring intervals do
not contribute to the computation of 3δ,p(u,R). In particular, if we write as usual

3δ,p(u,R) :=

∫∫
I (δ,u,R)

δ p

|y− x |1+p dx dy,

then it turns out that
|y− x | ≥ τ for all (x, y) ∈ I (δ, u,R). (3-34)

Let us fix a mollifier ρ ∈ C∞c (R) with

• ρ(x)≥ 0 for every x ∈ R,

• ρ(x)= 0 for every x ∈ R with |x | ≥ 1,

•

∫
R
ρ(x) dx = 1,

and let us consider the usual regularization by convolution

uε(x) :=
∫

R

u(x + εy)ρ(y) dy.

It is well known that uε ∈ C∞c (R) for every ε > 0, and that for every p ≥ 1 it turns out that uε→ u in
L p(R) as ε→ 0+.

Let us assume that 2ε < τ , let us consider the two open sets

Aε :=
n⋃

i=0

(xi − ε, xi + ε)⊆ R, Bε := (Aε×R)∪ (R× Aε)⊆ R2,

and let us write

3δ,p(uε,R)=

∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy+
∫∫

I (δ,uε,R)\Bε

δ p

|y− x |1+p dx dy.

Since the support of ρ is contained in [−1, 1], it turns out that uε(x)= u(x) for every x ∈ R \ Aε. It
follows that

I (δ, uε,R) \ Bε = I (δ, u,R) \ Bε,

and therefore

lim
ε→0+

∫∫
I (δ,uε,R)\Bε

δ p

|y− x |1+p dx dy = lim
ε→0+

∫∫
I (δ,u,R)\Bε

δ p

|y− x |1+p dx dy =3δ,p(u,R),
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where the last equality follows from Lebesgue’s dominated convergence theorem because Bε shrinks to a
set of null measure. So it remains to show that

lim
ε→0+

∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy = 0. (3-35)

To this end, from (3-34) and the properties of the support of the mollifier, we deduce that now

|y− x | ≥ τ − 2ε for all (x, y) ∈ I (δ, uε,R),

and therefore∫∫
I (δ,uε,R)∩Bε

δ p

|y− x |1+p dx dy ≤ 2
n∑

i=0

∫ xi+ε

xi−ε

dx
∫
|z|≥τ−2ε

δ p

|z|1+p dz

≤ 2
n∑

i=0

∫ xi+ε

xi−ε

2
p

δ p

|τ − 2ε|p
dx =

4
p

δ p

|τ − 2ε|p
· 2ε(n+ 1),

which implies (3-35). �

We are now ready to show the existence of smooth recovery families. As usual, it is enough to show
the existence of such a family for every u in a subset of L p(R) which is dense in energy for 30,p(u,R).
In this case we consider the space PAc(R) of piecewise affine functions with compact support.

Since piecewise affine functions are piecewise C1, we know from Proposition 3.7 that the family Sδu
of vertical δ-segmentations of u is a (nonsmooth) recovery family for u. The key point is that the vertical
δ-segmentation of a piecewise affine function with compact support is a δ-step function according to
Definition 3.8. Thus from Proposition 3.9 we deduce the existence of a function uδ ∈ C∞c (R) such that

‖uδ − Sδu‖L p(R) ≤ δ and 3δ,p(uδ,R)≤3δ,p(Sδu,R)+ δ

for every δ > 0. This implies that {uδ} is a smooth recovery family for u. �

4. Gamma-convergence in any dimension

It remains to prove Theorem 1.1 in any space dimension. This follows from well-established sectioning
techniques. For every σ ∈ Sd−1, let 〈σ 〉⊥ denote the hyperplane orthogonal to σ , namely

〈σ 〉⊥ := {z ∈ Rd
: 〈z, σ 〉 = 0}.

Given any u : Rd
→ R, for every σ ∈ Sd−1 and every z ∈ 〈σ 〉⊥, we consider the 1-dimensional section

uσ,z : R→ R defined as
uσ,z(x) := u(z+ σ x) for all x ∈ R.

The main idea is that Sobolev norms, total variation, and functionals such as 3δ,p computed in u are
a sort of average of the same quantities computed on the 1-dimensional sections uσ,z . The result is the
following.

Proposition 4.1 (integral-geometric representation). Let u : Rd
→ R be any measurable function. Let

3δ,p and 30,p be the functionals defined in (1-1) and (1-2), respectively.



622 CLARA ANTONUCCI, MASSIMO GOBBINO, MATTEO MIGLIORINI AND NICOLA PICENNI

(1) For every p ≥ 1 it turns out that∫
Sd−1

dσ
∫
〈σ 〉⊥

30,p(uσ,z,R) dz = Gd,p 30,p(u,Rd),

where Gd,p is the geometric constant defined in (1-4).

(2) For every δ > 0 and every p ≥ 1 it turns out that∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p(uσ,z,R) dz = 23δ,p(u,Rd). �

We skip the details of the proof of Proposition 4.1, which is a simple application of variable changes
in multiple integrals. More generally, for every σ ∈ Sd−1 and every g ∈ L1(Rd) it turns out that∫

Rd
g(y) dy =

∫
〈σ 〉⊥

dz
∫

R

g(z+ σ x) dx,

and this is the main ingredient in the proof of statement (1).
Similarly, for every g ∈ L1(Rd

×Rd) it turns out that∫∫
Rd×Rd

g(u, v) du dv = 1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

dz
∫∫

R×R

g(z+ σ x, z+ σ y) · |y− x |d−1 dx dy,

and this is the main ingredient in the proof of statement (2).

We are now ready to prove Theorem 1.1.

Proof. Gamma-liminf : Let us assume that uδ→ u in L1(Rd). Then for every σ ∈ Sd−1 it turns out that

(uδ)σ,z→ uσ,z in L1(R)

for almost every z ∈ 〈σ 〉⊥. Therefore, from the integral-geometric representations of Proposition 4.1,
Fatou’s lemma, and the 1-dimensional result, we obtain

lim inf
δ→0+

3δ,p(uδ,Rd)= lim inf
δ→0+

1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p((uδ)σ,z,R) dz

≥
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

lim inf
δ→0+

3δ,p((uδ)σ,z,R) dz

≥
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

2
p

C p 30,p(uσ,z,R) dz

=
1
p

Gd,pC p 30,p(u,Rd).

Gamma-limsup: Let u ∈ C∞c (R
d) be any function with compact support. For every δ > 0 we consider the

vertical δ-segmentation Sδu of u, and we observe that this operation commutes with the 1-dimensional
sections, in the sense that

(Sδu)σ,z = Sδ(uσ,z) for all σ ∈ Sd−1, for all z ∈ 〈σ 〉⊥.
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Therefore, from the integral-geometric representations of Proposition 4.1, Fatou’s lemma, and the
1-dimensional result, we obtain

lim sup
δ→0+

3δ,p(Sδu,Rd)= lim sup
δ→0+

1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

3δ,p((Sδu)σ,z,R) dz

≤
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

lim sup
δ→0+

3δ,p((Sδu)σ,z,R) dz

≤
1
2

∫
Sd−1

dσ
∫
〈σ 〉⊥

2
p

C p 30,p(uσ,z,R) dz

=
1
p

Gd,pC p 30,p(u,Rd).

The δ-independent bounds on 3δ,p((Sδu)σ,z,R) needed in order to apply Fatou’s lemma follow from
the Lipschitz continuity of u and the boundedness of its support.

Smooth recovery families: It remains to show the existence of smooth recovery families. The strategy is
analogous to the 1-dimensional case, and therefore we limit ourselves to outlining the argument, sparing
the reader all technicalities.

To begin with, we observe that the space PAc(R
d) of piecewise affine functions with compact support

is a subspace of L p(Rd) that is dense in energy for 30,p(u,Rd). This is true because C∞c (R
d) is dense in

energy, and in turn any function in C∞c (R
d) can be approximated in W 1,∞(Rd) by functions in PAc(R

d);
see for example Chapter 4 in [Brenner and Scott 1994], and in particular Corollary 4.4.24.

As a consequence, it is enough to show the existence of a recovery family for every u ∈ PAc(R
d),

in which case a nonsmooth recovery family is provided by the vertical δ-segmentations Sδu of u. On
the other hand, vertical δ-segmentations of piecewise affine functions with compact support are δ-step
functions, and these functions can be approximated in energy by smooth functions. It follows that for
every δ > 0 there exists uδ ∈ C∞c (R

d) such that

‖uδ − Sδu‖L p(Rd ) ≤ δ and 3δ,p(uδ,Rd)≤3δ,p(Sδu,Rd)+ δ,

and therefore {uδ} is the required recovery family.
The last approximation step can be proved by convolution as we did in Proposition 3.9. To be more

precise, a δ-step function in dimension d is a function v : Rd
→ R with the property that there exist a

finite set {P1, . . . , Pm} of disjoint open polytopes (bounded intersections of half-spaces) and integers
k1, . . . , km such that

• v(x)= kiδ in Pi for every i = 1, . . . ,m,

• v(x)= 0 in the open set P0 defined as the complement set of the closure of P1 ∪ · · · ∪ Pm ,

• |ki − k j | ≤ 1 whenever the closure of Pi intersects the closure of Pj ,

• |ki | ≤ 1 whenever the closure of Pi intersects the closure of P0.

In words, the level sets of a δ-step function are finite unions of polytopes, and values in adjacent
regions differ by δ.
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The key point is that for every δ-step function v there exists a positive real number τ such that

(x, y) ∈ I (δ, v,Rd) =⇒ |y− x | ≥ τ.

As a consequence, when we define vε as the convolution of v with a mollifier whose support is
contained in the ball with center in the origin and radius ε, we obtain

(x, y) ∈ I (δ, vε,Rd) =⇒ |y− x | ≥ τ − 2ε,

and at this point the conclusion follows exactly as in the proof of Proposition 3.9. �
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