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Abstract
This research employs the voltammetry of immobilized microparticles (VIMP) methodology to analyze a collection of 
ceramic samples from the temple of Venus Fisica in the archaeological site of Pompeii. The primary objective is to discern 
their origins and manufacturing processes by the solid-state analysis of the electroactive properties of iron minerals, par-
ticularly hematite, extensively investigated for its electrochemical and catalytic characteristics. In our study, we propose 
a model to elucidate the electrochemical processes involved, building upon prior logistic and nucleation formulations. In 
this model, we consider the possibility of two superimposed pathways. This approach provides a nuanced understanding 
of composition changes and mineral crystallinity, factors that can induce significant variations in the voltammetric signal. 
Consequently, it becomes an effective means to discriminate between different provenances and manufacturing techniques 
of different potteries. The outcomes of this research contribute valuable insights into the intricate realm of ancient ceramic 
materials, casting light on their origins and production processes within the historical context of Pompeii.

Keywords  Ancient potteries · Venus Fisica Temple · Pompeii · Voltammetry of immobilized particles · Electrochemistry · 
Archaeometry

Introduction

Ceramic materials hold significant importance in archae-
ology and archaeometry, possessing rich ethnohistorical 
value and widespread availability. However, their study 
presents challenges due to frequent recovery in fragmented 
states, with remains from different origins often overlap-
ping. Therefore, analytical techniques for compositional 

and provenance studies become crucial for archaeological 
samples, especially in micro-invasive sampling.

Recently, the voltammetry of immobilized microparti-
cles (VIMP) has proven effective in solving pivotal issues 
in discriminating unknown samples, being extensively used 
in cultural heritage studies [1–5]. To unravel the origins and 
manufacturing processes of a collection of 13 pottery sam-
ples originating from the Venus Fisica Temple in Pompeii, 
we have applied this technique. This approach allows for the 
extraction of chemical–mineralogical information from solid 
materials at the sub-microgram level [6–8]. Our ongoing 
research builds upon previous investigations into ceramic 
clay bodies [4, 5, 9–12], with a specific focus on the fir-
ing conditions employed in their production. This emphasis 
arises from the electroactive nature of iron minerals, particu-
larly hematite, extensively studied for its electrochemistry 
and electro- and photoelectrocatalytic properties [13–18].

The extraction of archaeometric information requires 
the disposal of reasonable solid-state processes involved 
in the electrochemistry of iron minerals. In this context, 
the application of logistic [19] and nucleation-type [20] 
models was discussed to describe the solid-state redox pro-
cesses accompanied by phase changes. More recently, these 
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formulations were applied to ion-intercalation processes [21] 
with satisfactory results. Here, we extend these formulations 
to describe hematite-centered electrochemical processes 
considering the possibility of the coexistence of different 
pathways, a situation extensively treated in the modeling of 
ion-insertion electrochemistry [22, 23].

This study emerges as a pivotal tool for addressing crucial 
questions concerning the identification of pottery produc-
tion centers in Pompeii, especially during the city’s early 
periods. Our investigation delves into black-gloss ware and 
“bucchero” samples, aiming to discern whether the buc-
chero found in the archaic phase’s stratigraphy or as residu-
als in the Hellenistic phase was a locally produced item or 
imported from Etruria or Lazio, as described in previous 
non-electrochemical studies [24–33].

The current article advances beyond the existing state 
of the art by showcasing the fundamental significance of 
applying electrochemical techniques and a thorough com-
prehension of solid-state processes in the field of archaeom-
etry. Our objective is to enhance the broader understanding 
of Pompeii’s ceramic production landscape, leveraging the 
electroactive characteristics of iron minerals.

Experimental

Materials

Our analyses center on thirteen fragments, addressing cru-
cial questions for identifying the production centers of pot-
tery circulating in Pompeii, particularly during the city’s 
earliest periods. We aim to determine whether the bucchero 
found in the stratigraphies of the archaic period or as residu-
als in the Hellenistic phases was a local product or imported 
from Etruria or Lazio (Italy).

Additionally, our investigation extends to understand-
ing to what extent the production of black-painted ceramics 
from the Gulf of Neapolis differs from that manufactured in 
Pompeii. Information regarding the samples analyzed here 
is given in Table 1. The archaeological context and petro-
graphic analyses conducted previously can be found in the 
supplementary material.

As regards Pompeian production, jug and a patera 
fragments   of  bucchero were analyzed (respectively  
Nrr. Inv. 4226.109, 4020.107). The bottom of a skyphos 
with painted traces (Nr. Inv. 4032.105), a patera (Inv. Nr.  
4032.104) in BGW, and two cups in BGW (Inv. Nr. 4226.108  
and 4226.110) were analyzed. Other two cup samples, classi-
fied as common pottery and Pre-sigillata (Nr. Inv.1_403_405  
and 4032_Tav XV_9), were analyzed. Finally, a brown uni-
dentified fragment (Nr. Inv.14226_106) is investigated.

About Apulian production, a unit belonging to a kỳlix has 
been identified (Inv. Nr. 4032.103), while to the manufactur-
ers of southern Etruria, perhaps at the port of Pirgy, frag-
ments of the edge of a patera (Inv. Nr. 4032.101). Finally, 
a kylix and a patera belong to the area of southern Lazio, 
perhaps to the production of Minturno (Nrr. Inv. 4226.102 
and 4032.158) [27–31]. It is pertinent to note that crystal-
lization of hematite starts above 600 at the expense of Fe-
hydroxide forms during firing in an oxidizing atmosphere 
according to the reaction: 2α -FeO(OH) → α -Fe2O3 + H2O. 
Then, hematite is a ubiquitous but a minority component that 
influences the color significantly [24–32].

Instrumentation and methods

Voltammetry measurements were performed using CH 
720c equipment (Cambria Scientific, Llwynhendy, Lla-
nelli UK). The voltammetry of sample-modified graphite 
electrodes was studied at room temperature (298 ± 1 K) in a 

Table 1   Main characteristics of samples in this study

Sample Color Type Attributed provenance

4032_158 Brown Kylix and a patera BGW Southern Lazio, perhaps to the production of Minturno
4226_109 Black A jug and a patera Bucchero Pompeii workshop
4032_103 Brown Kylix and a patera BGW Apulian
4226_110 Black Cup Bucchero Pompeii workshop
4026_102 Brown Kylix and a patera BGW Southern Lazio, perhaps to the production of Minturno
4032_101 Brown Edge of a patera or plate BGW with iridescence Etruria, perhaps at the port of Pirgy
4226_106 Brown Unidentified BGW with iridescence Pompeii workshop
4226_108 Black Cup Bucchero Pompeii workshop
1_403_405 Brown Cup Common pottery Pompeii workshop
4032_Tav XV_9 Red Cup Pre-sigillata Pompeii workshop
4020_107 Grey A jug and a patera in bucchero Bucchero Pompeii workshop
4032_105 Brown Skyphos with painted traces BGW Pompeii workshop
4032_104 Brown Patera BGW Pompeii workshop
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conventional three-electrode cell including a platinum disc 
auxiliary electrode and an Ag/AgCl (3 M NaCl) reference 
electrode. Air-saturated 1.0 M H2SO4 and 0.25 M HAc/
NaAc (pH 4.75) aqueous solutions were used as electrolyte 
solutions. Commercial graphite bars (Alpino Maxim HB-
type, 2 mm diameter) were used as working electrodes, com-
pleting the three-electrode arrangement with a platinum disc 
auxiliary electrode and an Ag/AgCl (3 M NaCl) reference 
electrode. Electrode modification was carried out by scratch-
ing ca. 1 µg of solid material from the cross-section of the 
ceramic fragments with the help of a scalpel. The resulting 
ceramic powder was extended, forming a fine coating on one 
plane face of an agate mortar. Subsequently, portions of this 
powder were transferred to the graphite electrode using an 
abrasion technique. This method involves rubbing or scrap-
ing the ceramic powder onto the surface of the graphite elec-
trode, likely to achieve a specific coverage or distribution. 
Square wave voltammetry was used as the detection mode. 
To avoid possible biased selection of samples, these were 
randomized before voltammetric experiments.

Results and discussion

General voltammetric response

Figure  1 shows the cyclic voltammogram of sample 
4032_101: in the initial anodic scan, a well-defined oxida-
tion peak (A) appears at ca. 0.95 V vs. Ag/AgCl. This pro-
cess is irreversible, and it is preceded by a shoulder near 

0.70 V (marked by a dotted arrow in the figure). In the 
subsequent cathodic scan, reduction peaks at 0.3 (G), − 0.2 
(B), and − 0.7 V (C) appear. The former is coupled with an 
oxidation counterpart at 0.40 V corresponding, according to 
previous studies [11, 12, 33, 34], to a redox process involv-
ing oxygen functionalities in the graphite surface. In turn, 
process B can be assigned to the proton-assisted reduction 
of Fe(III) minerals, and process C corresponds to the reduc-
tion of dissolved oxygen (oxygen reduction reaction, ORR) 
catalyzed by crystalline hematite superimposed to the reduc-
tive dissolution of this compound [12, 14–18, 35]. It should 
be noted that the voltammetric response of solid materials 
depends not only on the chemical/mineralogical composi-
tion but also on the shape and size distribution of the solid 
particles. Under our experimental conditions, these factors 
influence more significantly the impedance response than 
the voltammetric one [11, 23, 34].

Depending on the electrochemical conditions, the reduc-
tion of hematite results in the formation of Fe2+(aq) plus 
Fe(III)Fe(II) hydroxylated hematite. These processes can be 
represented as follows:

Hematite acts catalytically on the ORR process (D), either 
chemically [14, 15] or electrochemically [12, 23]. The same 
effect is, in principle, produced by Fe(II) minerals existing in 
the solid sample [5], resulting in an increase of the peak cur-
rent C at sample-modified electrodes relative to that current 
measured at unmodified graphite electrodes. In the region of 
positive potentials, peak A can be attributed to the oxidation 
of hematite to hydroxylated forms in higher iron oxidation 
states [33–37]. This process can be represented as [38]

For our purposes, the key point to emphasize is that the 
voltammetric response is sensitive to the composition and tex-
tural properties (crystallinity, porosity, hardness, compactness, 
etc.) of the solid sample. These properties, in turn, depend on 
the composition of the raw material and the manufacturing 
process. Ultimately, the voltammetric response will be sensi-
tive to the firing temperature: above 500–900 °C, hematite 
becomes dehydroxylated, and since crystalline hematite is a 
more efficient catalyst than its hydroxylated forms, the inten-
sity of the ORR signal will be sensitive to the firing tempera-
ture. This signal can also be influenced by the catalytic effect 
of Fe(II) minerals [39], whose proportion in ceramic pastes 
significantly increases when the firing process is carried out 
under reducing conditions.

(1)FeIII2O3 + 6H+ (aq) + 2e− → Fe2+ (aq) + 3H2O

(2)Fe2O3 + xH+ (aq) + xe− → FeIII2−xFe
II
xO3−x(OH)x

(3)
FeIII2O3 + 2xH2O → FeIVxFe

III
2−xO3(OH)2x + 2xH+ (aq) + 2xe−

1.6 0.8 0.0 0.8

E / V vs. Ag AgCl

0

50

50

i
/

A

A

B
C

G

G

Fig. 1   Cyclic voltammogram of sample 4032_101 attached to graph-
ite electrode in contact with air-saturated 1.0 M H2SO4. Potential scan 
initiated at 0.0 V vs. Ag/AgCl in the positive direction, potential scan 
rate 50 mV s−1. The weak shoulder at ca. 0.70 V is marked by a dot-
ted arrow
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Modeling

The processes described by Eqs. (1)–(3) can be treated, in 
principle, assuming that ion insertion plays an essential role 
in the overall electrochemical process. In the classical for-
mulation from Levi and Aurbach [34, 35], the advance of 
the process can be represented by the Langmuir isotherm

Here, x is the intercalation level, and E is the potential 
applied to the working electrode. x corresponds to the ratio 
between the net number of intercalated ions and the total 
number of intercalation sites. This quantity can be seen as 
the ratio between the charge passed q and the maximum 
charge to be passed during a voltammetric experiment, qo.

The current i measured in a voltammetric experiment 
under quasi-equilibrium conditions can be expressed as 
the product of potential scan rate by a term similar to the 
pseudo-capacity characterizing surface-confined electro-
chemical processes [34, 35]

The Langmuir isotherm can be reproduced simply assum-
ing that the dx/dE function corresponds to a logistic growth 
of type [19]

where k represents a rate constant. Accordingly, linear poten-
tial scan voltammograms can be described by the equation

This expression applies to reversible ion-intercalation 
processes under quasi-equilibrium conditions. Deviations 
from reversibility in the electron transfer and geometric con-
straints involved in the intercalation process can be modeled 
either by introducing other logistic-type equations [19, 20] 
or by introducing nucleation equations of the type [20]. In 
the first approach, the Richards equation [36],

leads to current/potential curves of the type

The second approach gives

(4)
1 − x

x
= exp

[
nF(E − E◦)

RT

]

(5)i = v
dx

dE

(6)
dx

dE
= kx(1 − x)

(7)i = qokv
ek(E−E

◦)

[
1 + ek(E−E

◦)
]2

(8)
dx

dE
= kx(1 − x� )

(9)i = qokv
ek(E−E

◦)

[
1 + e�k(E−E

◦)
] 1

�
+1

Here, Ei represents the initial potential of the voltammo-
gram, and the exponent m is representative of the dimension-
ality of the nucleation process. In the classical Avrami kinet-
ics, m can take the values m = 2, 3, 4. Fractional m values can 
be taken eventually and seen as representative of the fractal 
dimension of the nucleation. Now, the voltametric current/
potential curve is represented by the equation

However, many systems show more complex growth pat-
tern, characterized by the occurrence of multiple processes 
sequentially or simultaneously [37]. Let us consider a system 
growing in two discrete phases, termed as bi-logistic [38, 
39]. In principle, the system growth can be expressed as the 
sum of two components

where x1(t) and x2(t) are the populations at time t of the 
phases 1 and 2.

The first description of this kind of systems was pro-
posed independently by Lotka [37] and Volterra [40, 41]  
in the 1920s. This can be represented by the differential 
equation [42]

where k1 is the exponential rate of growth of the first species 
when both the 1 and 2 population densities are low; x1lim is 
the carrying capacity of species 1 in the absence the species 
2, and p12 is the linear reduction of the growth rate of the 
species 1 by its competitor, the species 2.

Assuming that the two phases grow independently fol-
lowing a logistic pattern, the aggregate x(t) vs. t curve can 
offer different appearances [33]. In the case of “sequen-
tial” or “paused” growth, the second process does not start 
growing until the first pulse has nearly reached its satura-
tion level. Then, the global curve shows two consecutive 
s-shaped regions. If the second process starts when the  
first phase has reached a significant (ca. 50% saturation) 
level of development, the two s-shaped waves merge. This 
situation occurs for systems growing via two concurrent pro-
cesses of a similar nature. When the first process is joined 
by the second, faster process, a unique s-shape curve is 
obtained. This is the converging case, roughly equivalent 
in appearance to the diverging one. Here, the two processes 
initiate at the same time but grow with different rates and 
carrying capacities [33].

We can apply this general view to describe the well-
defined signal A in the voltammetric records such as in 

(10)−[ln(1 − x)]1∕m = G(E − Ei) ; |E| > ||Ei
||

(11)i = vqo
[
Gm(E − Ei)

m−1exp
[
−G(E − Ei)

]m]

(12)x(t) = x1(t) + x2(t)

(13)
dx1(t)

dt
= k1x1(t)

[
1 −

x1(t)

x1lim
+ p12

x2(t)

x1 lim

]
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Fig. 1. In principle, the two-wave pattern can be approxi-
mated by a paused growth involving two intercalation 
pathways

each one a function of its respective rate constant (g, h), formal 
electrode potential (E°1, E°2), saturation charge (qo1, qo2), and 
exponent (γ, λ). In turn, for two Avrami-type patterns,

Now, two different charge saturations (qo1, qo2) and two 
different exponents (m, r) are introduced. However, it is 
possible to conceive a third situation where one pathway 
replaces the other. Qualitatively, the change in the electro-
chemical mechanism is consistent with the aforementioned 
approaches to intercalation reactions [22, 23, 39] and the 
description of such processes from Malaie et al. [43, 44].

We focus our attention on the anodic signal A which 
exhibits a peak preceded by a weak shoulder. The best fit of 
experimental data can be obtained assuming that the oxidation 
process initially follows a nucleation mechanism that becomes 
further superimposed to a logistic growth. Figure 2a shows the 
experimental data for signal A recorded for sample 4032_101 
superimposed to the theoretical current/potential curves pre-
dicted from Eq. (11) taking G = 0.0025 mV−1, qovGm = 10.0 
µA, and m = 2 (squares), and Eq. (10) inserting E°′ = 0.90 V, 
qokv = 34 µA, γ = 0.60, k = 20 V−1 (circles). The sum of the 
two theoretical curves (continuous line in Fig. 2) is coincident 
with experimental data.

For our purposes, the relevant point to emphasize is that 
the different ceramic samples, although displaying quali-
tatively similar voltammetric patterns, exhibit subtle but 
consistent differences in the voltammetric parameters. This 
can be seen by comparing the data for peak A for samples 
4032_101 (Fig. 2a) and 4020_107 (Fig. 2b). In this second 
case, experimental data can be reproduced from Eq. (11) 
taking G = 0.0020 mV−1, qovGm = 7.5 µA, and m = 2, and 
Eq.  (10) inserting E°′ = 0.90  V, qokv = 32 µA, γ = 0.65, 
k = 15 V−1 (circles). These features support the idea that 
voltammetric data can detect regularities in the properties 
of ceramic specimens.

Screening

For screening purposes, square wave voltammetry offers a sen-
sitive method to group/discriminate different sets of samples [4, 
5, 11, 12]. Figure 3 depicts the square wave voltammograms 
recorded for sample 4032_101. While scanning the potential 

(14)

i = qo1gv
eg(E−E1)

[
1 + e�g(E−E2)

] 1

�
+1

+ qo2hv
eh(E−E2)

[
1 + e�h(E−E2)

] 1

�
+1

(15)
i =vqo1

[
Gm(E − Ei)

m−1exp
[
−G(E − Ei)

]m]

+ vqo2
[
Hr(E − Ei)

r−1exp
[
−H(E − Ei)

]r]

from 1.25 V vs. Ag/AgCl in the negative direction, the voltam-
mograms in acetate buffer (Fig. 1a) exhibit an intense initial 
current corresponding to the oxygen evolution reaction (OER). 
Subsequently, a peak at approximately 1.0 V (A) is followed by 
a second signal around − 0.1 V (B) and a more prominent peak 
at about − 1.0 V (C). This signal is succeeded, at extreme nega-
tive potentials, by a rising current corresponding to the hydro-
gen evolution reaction (HER). This current is enhanced rela-
tive to unmodified graphite electrodes, thus suggesting that the 
ceramic materials exert a moderate catalytic effect on the HER 
process. The voltammograms in contact with 1.0 M H2SO4 
solution (Fig. 1b) display a similar pattern, now incorporating 
a sharp peak at about 0.3 V (G). In the region of potentials 
between 0.0 and around − 1.2 V, signal C is replaced by peaks 
at approximately − 0.7 V (D) and − 1.0 V (E).
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Fig. 2   Experimental current/potential curves for signal A (solid cir-
cles) for samples a 4032_101 and b 4020_107. Theoretical waves 
predicted from Eqs.  (10) and (11), taking: a G = 0.0025  mV−1, 
qovGm = 10.0 µA, and m = 2 (squares), E°′ = 0.90  V, qokv = 33.6 µA, 
γ = 0.60, k = 20  V−1 (circles); b G = 0.0020  mV−1, qovGm = 7.5 µA, 
and m = 2 (squares), E°′ = 0.90 V, qokv = 32.0 µA, γ = 0.65, k = 15 V−1 
(circles). The continuous line corresponds to the sum of the theoreti-
cal curves from Eqs. (10) and (11) in each case
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To discriminate between different ceramic samples, it is 
worth noting that the voltammetric response of iron miner-
als, as well as their catalytic effect on electrochemical pro-
cesses such as ORR, HER, and OER, will depend on the 
composition, crystallinity, and degree of hydration of the 
minerals. The electrocatalysis of hematite in the OER reac-
tion has been widely studied in the context of semiconduc-
tor electrochemistry [13, 45–49]. The proposed mechanism 
involves hole generation and the oxidation of deprotonated 
surface hydroxyls coupled to Fe(III)/Fe(IV) transformations; 
the rate-determining step involves the formation of an O − O 
bridge between contiguous oxygen atoms bound to surface 
iron centers [48].

As previously noted, the effect of hematite on the ORR 
process has been described by Shimizu et al. [15, 16] in 
terms of the catalytic promotion of the disproportionation of 
H2O2, the primary product of the electrochemical reduction 
of O2, into H2O and O2. In addition to the above “chemical” 
mechanism, we proposed an “electrochemical” one involv-
ing the reaction with O2 of iron active sites generated in the 
process described by Eq. (16) [12, 33]. This reaction, which 
accelerates the initial step of the ORR process, yields super-
oxide radical anion, O2

−, as

(16)
FeIII2−xFe

II
x
O3−x(OH)x + xH2O + O2 →

FeIII2O3−x(OH)2x + xH+
aq + O2⋅

−

The produced superoxide radical anion can then expe-
rience the subsequent chemical/electrochemical steps 
yielding H2O2 and H2O. This is consistent with the results 
reported by Wan et al. [18] on the activation of the electro-
catalytic activity of hematite nanoparticles via its reduc-
tion so that the major catalytic performance was achieved 
for magnetite (Fe3O4) plus hematite composites.

Electrocatalytic effects on HER have been described 
for several molecular Fe(II) catalysts such as tetraden-
tate phosphine ligands, clathrochelates, and porphyrins 
[49–52]. The catalytic cycle has been described in terms 
of an initial one-electron reduction to Fe(I), that is the 
catalytically active species. This is protonated to form 
an iron-hydride complex which subsequently reacts with 
hydrogenions yielding H2 and a Fe(III) complex which is 
electrochemically reduced to the parent Fe(II) complex 
[33–35]. In the case of Fe(III) and Fe(II) minerals, whose 
electrochemical reduction takes place at potentials similar 
to those where the HER process occurs, it is conceivable 
that any equivalent catalytic scheme could be operative 
via the generation of coordinatively unsaturated Fe(II) and 
Fe(I) centers.

As is customary in VIMP experiments, one can assume 
that the intensity of the voltammetric signals depends on 
the net amount of the respective electroactive species [1–4]. 
Then, as far as the net amount of sample transferred onto the 

Fig. 3   Square wave voltam-
mograms of microparticulate 
deposits from sample 4032_101 
attached to graphite electrode 
in contact with air-saturated a 
0.25 M HAc/NaAc, pH 4.75, 
and b 1.0 M H2SO4 aque-
ous solutions. Potential scan 
initiated at 1.25 V vs. Ag/
AgCl in the negative direction; 
potential step increment 4 mV; 
square wave amplitude 25 mV; 
frequency 10 Hz. The dotted 
lines mark the baselines used to 
measure peak currents
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electrode cannot be accurately controlled, the absolute inten-
sities vary for replicate experiments on the same sample. In 
addition, there are deviations from linearity in the intensity/
sample amount as a result of the variations in the effective 
contact between the solid particles and the graphite active 
sites [3]. Accordingly, we will analyze experimental voltam-
metric data in terms of tendency graphs of different pairs of 
intensities (i(J)). These were measured using the baselines 
depicted in Fig. 3.

First of all, we compare local Pompeii productions dis-
tinguishing between “brown” samples and “grey” samples. 
Figure 4 shows the i(OER) vs. i(B) and i(HER) vs. i(B) rep-
resentations for such samples in contact with acetate buffer. 
Here, we have adopted the signal at − 0.1 V (B) as a refer-
ence because it is confined to a narrow range of absolute 
values in all cases. One can see in this figure that both the 
signal A and the HER current are more intense for “grey” 
than for “brown” Pompeii samples.

Confirming the above peak assignments, we obtain that 
the intensity of the HER process is strongly correlated with 
the intensity of the overlapping reduction processes labeled 
as C measured in acetate buffer. Both “grey” and “red” data 

points fall in the (essentially) common tendency (almost) 
straight line passing by the origin, as can be seen in Fig. 5. 
Remarkably, plots of i(HER) vs. i(OER) discriminate not only 
between “brown” and “grey” samples produced in the Pompeii 
workshops but also between samples 4020_107 and samples 
4226_108, 4226_109, and 4226_110. The former is a grey 
jug and a patera in bucchero, whereas the other three samples, 
which exhibit a homogeneous response, correspond to black 
cups (4226_108 and 4226_110) and a second patera in buc-
chero (4226_109). This can be seen in Fig. 6, where the dif-
ferent sets of samples are grouped on tendency potential lines.

Roughly, this diagram can be seen as representative of 
two parameters associated with the firing process: the firing 
temperature and the reducing/oxidizing conditions of firing. 
In principle, the intensity of the OER signal should increase 
on increasing the crystallinity of the catalytic iron species 
[33, 34] so that a larger i(OER) denotes larger firing tem-
peratures. In turn, the intensity i(HER) should increase on 
increasing the proportion of Fe(II) species, i.e., on increas-
ing the reducing conditions of firing.

These apparent tendencies are represented by arrows in 
Fig. 4. However, it has to be taken into account that different 
factors are superimposed, often contradictorily, in the above 
general trends. For instance, the crystallinity of mineral com-
ponents should favor all (OER, HER, ORR) catalytic processes. 
Other factors, namely, the heterogeneity of the shape and size 
particle distribution or the proportion of hard minerals such as 
quartz can influence the voltammetric response [23, 34].

Keeping in mind these considerations, voltammetric 
data can discriminate both the provenance and manufactur-
ing techniques. This can be seen in Fig. 7, where “brown” 
samples in this study are grouped based on plots of i(C) vs. 
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Fig. 4   Plots of a i(OER) vs. i(B) and b i(HER) vs. i(B) for voltam-
metric data of the studied samples from Pompeii local productions in 
contact with aqueous acetate buffer at pH 4.75. “grey” (solid circles) 
and “brown” (circles) samples are separately plotted. Three independ-
ent measurements for each sample are represented
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Fig. 5   Plots of i(C) vs. i(HER) for voltammetric data of the studied 
samples from Pompeii local productions in contact with aqueous 
acetate buffer at pH 4.75. “Grey” (solid circles) and “brown” (circles) 
samples are separately plotted. Three independent measurements for 
each sample are represented
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i(OER). Experimental data points can be separated into four 
tendency lines. The Pompeii productions are separated into 
two trend lines, by the one hand, samples 4226_106 and 
1_403_405 (circles), two brown fragments of unidentified 
objects, and by the second hand, sample 4032_Tav XV_9, 
(triangles) corresponding to a red object. These samples 

are separated from the Apulian sample 4032_103 (solid 
triangles). Samples from Etruria (4032_101) and Lazio 
(4026_102, and 4032_158) workshops (solid triangles) 
become unified in a common tendency line.

Conclusions

The voltammetric response of clay ceramics in contact with 
air-saturated aqueous electrolytes consists of different oxi-
dation and reduction processes associated with iron (mainly 
hematite) minerals accompanied by catalytic effects on 
hydrogen evolution, oxygen evolution, and oxygen reduction 
reactions. The voltammetric response can be modeled satis-
factorily using logistic- and Avrami-type approaches. These 
approaches reveal that subtle changes in the composition, 
crystallinity, etc. of the minerals can produce significant 
variations in the voltammetric pattern. This confirms the 
sensitivity of the solid-state voltammetry to changes in the 
manufacturing type (granulometry, firing conditions, etc.) 
and, consequently, the suitability of voltammetric data to 
discriminate between different ceramic productions.
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