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Abstract

In this paper we compute the first and second variation of the nor-
malized Einstein-Hilbert functional on CR manifolds. We characterize
critical points as pseudo-Einstein structures. We then turn to the second
variation on standard spheres. While the situation is quite similar to the
Riemannian case in dimension greater or equal to five, in three dimension
we observe a crucial difference, which mainly depends on the embeddable
character of the perturbed CR structure.

1 Introduction

The Einstein-Hilbert action is the functional on the space of Riemannian metrics
on a closed manifold M of dimension n > 3 defined by

Z(g) = /M Rydvg, (1)

where R, is the scalar curvature of the metric g. This functional is of great
importance in differential geometry, and its variation is given by

d%(g)[h] = /M E"hjdv,
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where E;; are the components of the Einstein tensor

Eij = Rij — %Rggm
with R;; the Ricci tensor of g. This implies that the critical points of % are
Ricci-flat metrics.

Its variation on asymptotically flat metrics led to the notion of ADM mass,
see e.g. [LP], a well-studied concept in geometric relativity which has been
important, among other questions, in the resolution of some cases of Yamabe’s
conjecture, see [S1].

It is also relevant to extremize the functional & constrained to the class of
metrics with volume normalized to 1, or equivalently to consider the scaling-
invariant version

. 2—n

H(g) = Volg(M)  Z%(g). (2)
The first variation of 2 is given by

n—2
2n

V(o) )

trgh dvg +/ Eijhijdvg) .
M M

The restriction of the Einstein-Hilbert functional to a given conformal class
of metrics, usually called the Yamabe functional, plays a central role in conformal
geometry (see [Tr], [A1], [S1], [A2], [LP]). In fact, along a conformal variation
of metric that infinitesimally preserves the volume, i.e. taking h;; = 1g;; with
/ u Ndvg =0, by the above formula one has

@)= (5-1) Vo)™ | Ao,

Criticality subject to the above constraint for n then implies that R, is constant.
With this condition the first variation of % becomes

i) =)= [ (Bogs 1) hydo, o,

n

whose vanishing for all & implies that g is Einstein.

The round metric of S™ is a saddle point for Z (+), being a minimum restricted
to its conformal class, and a local maximum in the orthogonal directions (see
[S2], [K], [FM], [V]). To see this, one can split the family of variations h of
gsn as So @ S1 ® So, where Sy stands for the Lie derivatives of ggn, S the
pure trace tensors and Sy the family of TT-variations, i.e. with zero trace and
divergence. The former give zero contribution since they just induce a family
of diffeomorphisms.

Concerning the component S7, one has that for A = ngg» with 7 of zero av-
erage, the volume of the metric is preserved at first order. The second derivative



in this direction is then given by

= n—1)(n—2
d* % (gsn)[h. h] = % /S (IVgsnl* = nn?) dvg.. /S 0 dvggn = 0.

On the round sphere S™ the first non-zero eigenvalue of the Laplacian is equal
to n, with eigenspace generated by the affine functions of R"*! restricted to S™,
and therefore the quadratic form in the latter formula is non-negative definite.

Since the second variation of % diagonalizes with repsect to Sp,.S; and Ss,
we can therefore restrict ourselves to h € Ss, and for this choice one finds (see
e.g. Section 5.1 in [V])

n

2R(gs) b B = V(g) 5 / (h, Al — Bdv,, (3)
where
(AR);; = VFVih;.

One sees in this way that the second variation of R is strictly negative-definite
on the subspace of variations Ss.

More in general, on Einstein manifolds different from the standard sphere the
second variation in the conformal directions is strictly positive-definite due to
the eigenvalue estimate in [L], while on manifolds of constant curvature K > 0
the second variation in the TT directions is strictly negative-definite, since in
(3) the term —h is replaced by —K h.

The purpose of this paper is to study the situation on pseudohermitian man-
ifolds, about which we recall the definition and properties in Section 2. Here we
limit ourselves to mention that they are (2n+ 1)-dimensional manifolds with an
n-dimensional complex sub-bundle . of the complexified tangent bundle 7€ M
of M, such that # N # = {0}, [, #] C 2, and on which a complex rota-
tion J acts. Letting H(M) = Re(H# & ), there exists a one-form 6 such that
H(M) = kerf. Classical examples are hypersurfaces of C" or the Heisenberg
group. If the Levi form Lo(W,Z) := —id0(W, Z) is non degenerate, pseudoher-
mitian manifolds carry a natural connection, the Tanaka- Webster connection
(see [DT], [L2], [We]), and from it curvature operators can be built in anal-
ogy with the Riemannian case. The pseudohermitian counterpart of the scalar
curvature is called Webster curvature, and 6 A (d9)™ acts as a natural volume
form.

In the study of properties of CR geometry one observes a difference between
low and high dimension related to the embeddable character of the underlying
structures. By a classical theorem by Boutet de Monvel, see [Bo], if a closed
CR manifold M of dimension n > 5 is strictly pseudoconvex (that is, the Levi
form is positive-definite), then it can be CR-embedded in C¥ for some natural
integer N. This is not always true in dimension three (see [CS]) and, as we will
see, this fact has repercussions on the analogies between CR and Riemannian
geometry.



Some conditions in three dimensions that characterize embeddability are
as follows. In [CCY], Chanillo, Chiu and Yang found sufficient conditions for
embeddability related to the spectral properties of the CR Paneitz operator (see
[Tk] for a partial converse). In [CMY1] a positive mass theorem for embeddable
three-dimensional CR manifolds was proved, while, as a counterexample by the
same authors in [CMY2] shows, in the non embeddable case the pseudohermitian
mass can be negative. For pseudohermitian structures which are perturbations
of the standard one on S3, Bland characterized in [Bl] embeddability in terms
of the Fourier expansion of the deformation tensor, as it will be recalled below.

In analogy with (1) and (2), denoting by W ¢ the Webster curvature on a
CR manifold M, we set

W (J,0) = / W00 A (dO)™;
M

Q—2

~952
W (J,0) = ( 0N (d0)"> v (J,0),

M
where @Q = 2n + 2 stands for the homogeneous dimension of the manifold M.

We have first the following result.

Theorem 1.1. Suppose (J,0) is critical for W . Then the Webster curvature of
(M, J,0) is constant and the torsion vanishes identically. Moreover, if ¢ (H) =0
then (M, J,0) is pseudo-Einstein.

Remark 1.2. Recall that a pseudohermitian structure is called pseudo-Einstein
when the Ricci tensor is a constant multiple of the Levi form, see [L2] and
Section 2, which is trivial when n = 1. We notice that by Proposition D in
[L2], the requirement that c1(H) = 0 is necessary for the existence of a pseudo-
Einstein structure.

The constancy of the Webster curvature and the vanishing of the torsion
follow from the first variation formula for #'. By Theorem E in [L2], there
exists a conformal choice of contact form which is pseudo-Einstein. The fact
that this occurs for the critical structure itself is a consequence of a divergence
formula by Xiaodong Wang, displayed in the appendix of the paper (see also
[Wa] for a related result).

We next specialize to the case of the spheres S2"*! endowed with the stan-
dard CR structure inherited from C"*1, ie. H(S?" 1) = THOC T NTC 52+
and the complex rotation Jy is the restriction of the ambient complex one to
the holomorphic tangent space. A standard choice of contact form is given by

0o = ;i (zkdzz — zzdzk> ,

k=1



in which case the volume element induced by 6y compares to the Euclidean one
as
90 A (deo)n =2"n! d'UEucl.-

This can be easily seen for example by evaluating the two volume forms at
the point (1,0,...,0) € R?"*2 and by using the homogeneity of the spherical
structure.
For u € C*°(8?"*1), we also define the sub-gradient of u as
vbu = Hv952n+1u
where II denotes the orthogonal projection onto H(S?"+1).
In this paper we are going to exhibit another relationship between embed-

dability and geometric properties of CR structures. Starting from the three-
dimensional case, we define next a variation of J as

J =2E =2F"0' ® Z; + conj., (4)

where, on S3, we consider the standard generator of H and its dual form

LY.

5.1 ¢ 5 0' = 2%d2t — 2td2. (5)

For 21, zo the complex coordinates of C? D S3, we define then the subspace

r, = {f € C>®(8%.C) | f(e?2,e?2) = eimef(21,22)}. (6)

For products of powers in the z- and Z-coordinates, the index m counts the
number of holomorphic factors minus the anti-holomorphic ones.

Theorem 1.3. Consider the standard pseudohermitian structure (S®, Jo, 0p).

(i) Let n € C°°(S?) be such that [4 1600 A dfy =0. Then

dg%(c]o, 90)[’)’]6‘07’000} =cC3 /3(|Vb77|2 — 3772)6‘0 AdBy >0
S

for some positive constant cs, with equality holding if and only is n is the
restriction to S® of some linear function on C2.

(i) The second derivative ofW(JO, o) diagonalizes with respect to the splitting

in Ty precisely, setting EL = Y omez E™) one has

d5W (Jo,00)[E, E] = (m+4) / ) |[E™) 1204 A dby (7)
S

m

Some comments on this result are in order. First, the behaviour of the
functional in the conformal directions is completely analogous to the Rieman-
nian case. However, a difference appears in the sign of second variation in the



complementary directions, which we show to be tightly related to the embed-
dability properties of the (infinitesimally) perturbed CR structures. In fact, it
was proved in [Bl] via a normal form that the perturbed structures that are em-
beddable are precisely characterized by having vanishing Fourier components
E() for m < —4. Notice the difference in notation by a conjugation of the
coefficient from (13.7) in [Bl] and (4), so the present condition on m changes by
a sign compared to Theorem 15.1 in [Bl]. We then observe a situation similar
to the Riemannian one as long as the CR structure stays embeddable, with a
reversed sign if we stay infinitesimally orthogonal to these and to the conformal
deformations. This fact is coherent with the results obtained in [CMY1] and
[CMY?2], where estimates on the Sobolev quotient were derived for a class of
embeddable three-manifolds and for the (non-embeddable) Rossi spheres.

We consider next the higher-dimensional case, which turns out to be always
in analogy with the Riemannian one: recall from the previous discussion that in
dimensions greater or equal to five the CR structures are always embeddable.

Theorem 1.4. Consider the standard pseudohermitian structure (Jo,00) on
S2ntL with n > 1.

(i) Let n € C*°(S?"1) be such that [gs,1 100 Adfy =0. Then

di# (Jo, 00) [0, 100] = cn / (IVon|* = nn*)0o A dflo > 0
§2n+1
for some positive constant c,, with equality holding if and only is n is the
restriction to S*"t1 of some linear function on C"*1,

(ii) For the variation in J we have instead

d2H (Jo,00)[E,E] >0  for any E # 0.

Even for n > 1 a formula similar to (7) holds true, but since we would need
to introduce extra notation, we chose to postpone it to the final section of the
paper and state in the above theorem only its consequence.

While in three dimensions it is a single complex function to determine a
variation F of the CR structure J, in higher dimensions we need to work on a
vector bundle over S?"*!. To carry over the calculation of first- and second-
order variations we use a frame approach as in e.g. [L2], leading to formula (35)
for the second variation of the integral of the Webster curvature. However, to
understand its sign it will be more practical for us to use the formalism in [G],
that employs a basis of vector fields constructed from the ambient coordinates.
Although this family does not form a linearly independent system, it has the
advantage of leading to constant-coefficient quantities, that are more suitable to
be analyzed via Fourier modes. We then rely crucially on the results in [BD1]
and [BD2], where a parametrization of deformations of the CR structure of the
sphere is performed via a suitable Banach manifold and via Fourier analysis.



The plan on the paper is as follows. In Section 2 we review some preliminary
material that includes basic notions in pseudohermitian geometry: we derive in
particular some first properties of deformations of the pseudohermitian struc-
ture. In Section 3 we then derive useful formulas for the variation of interesting
geometric quantities, and we derive in particular an expression for the second
variation of the Webster curvature. In Section 4 we prove our main theorems,
with the completion of Theorem 1.1 performed in the Appendix.
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2 Some preliminary facts

In this section we recall some useful basic material on pseudohermitian mani-
folds, as well as some calculation concerning the variation of the contact form
or of the CR structure.

About the forthcoming review material, we refer the reader to [DT] or [L2].
We recall that a CR manifold is a real smooth manifold M endowed with a
complex sub-bundle J# = Tj oM of the complexified tangent bundle of M,
TCM, such that s N A& = {0} and [#, ] C . We will assume M to be
of hypersurface type, that is dim M = 2n + 1 and dimg¢ 52 = n. Let H(M)
denote the space Re(# @ H#). Then there exists a natural complex structure
on H(M) given by

JZ+2)=i(Z - 2Z).

The CR structure is uniquely determined by H(M) and J. For H(M) and J to
generate a CR structure it is necessary that . is closed under Lie bracket opera-
tion. In three dimensions ¢ is one-dimensional, so the condition [, 7] C
is automatically satisfied.

There exists a non-zero real differential form 6 whose kernel at every point
coincides with H(M); it is unique up to scalar multiplication by a non-zero
function. A triple (M, J, 6) as above is called a pseudohermitian structure. On
a pseudohermitian manifold, the Levi form is defined as

Lo(V,TW) = —idd(V, ) = i0([V, V).



A CR manifold is said to be strictly pseudoconvex (respectively, non-degenerate)
if it admits a positive definite (respectively, non-degenerate) Levi form. Non-
degeneracy is equivalent to the fact that 0 is a contact form (see Proposition 1.9
and formula (1.66) in [DT]). In this case, there exists a unique vector field T' such
that ipdfd = 0 and 6(T) = 1. For example, if 21, ..., 2,41 are standard complex
coordinates on C"*!, then on the unit sphere S?"*! standard structures are

given by
. n+1
g 0 0
T:T = — [ — :
0 2Z<Z“aza Z“aza)’

a=1
. n+1

7 _

0=00=1 > (2alZa — Zadza) .
a=1

As mentioned in the introduction, classical examples of pseudohermitian

manifolds are the Heisenberg group or boundaries of pseudoconvex domains in

complex spaces.

On a nondegenerate pseudohermitian manifold one can introduce a connec-
tion, called the Tanaka- Webster connection. To define it, we recall some useful
facts, mostly from [L2]. If {T, Z,, Zz} is a frame dual to {0, 0%, 6%}, we express
the Levi form as

Lo(f*Za,9" Z5) = hozf*9".
The matrix h, 5 = 88 will be used in a standard way to raise and lower indices.

The Webster connection forms w? and the torsion forms 75 = A, 0% are defined
by the equations

A0’ =0 Al +OAT wgtwg, =dh,g  Aap=Apa. (8)
Also, the curvature forms

ngdwg—wg/\wg

satisfy the structure equations
5 = Rl 0P NOT+WE O NO— WO NO+i0o A5 —iro NOP.

The Ricci tensor and the pseudohermitian scalar (or Webster) curvature are
defined by the contractions

RPE = Rgpﬁ; W = Rg
Recall that (M, J, 0) is pseudo-Einstein when the Ricci tensor is a scalar multiple
of the Levi metric. A consequence of the Bianchi identities from [L2] is the con-

stancy of the Webster curvature for pseudo-Einstein structures with vanishing
torsion.



The covariant differentiation is characterized by the formulas
VZa=uwl®Zs Vis=wl@Zy VI =0, 9)
For a tensor S with components S. we will use the notation
S 0 =(Vz,5); S &= (Vz.9).

We also have the following commutation relations for second-order covariant
derivatives of functions u and (1,0)-forms o = 0,0°, see e.g. Lemma 2.3 in
[L2]:

U = Uga = ihoglo;  Uap =Ugal  Uoa ~ Uao = Aapu’;

Oa,8y = OanB = 1Aay0p — iAapoy;

O'OZ,BW — UO@WE = ZhaBAW g ihaﬁAEﬁO'p;

P

Ta,7 = a8 = thpy0a,0 + Ry pm0p;

00,08 = 0,00 = 00 Ayg — 0, Al g5 0a08 = Oa,80 = TapAj +0,A% .

As a consequence of Bianchi’s identities, see e.g. Lemma 2.2 in [L2], we have in
particular that
Anpy = Aaypg for all indices «, 8, 7. (10)

The sub-Laplacian of a scalar function v € C*°(M) is then defined as (see
e.g. formula (4.10) in [L1])

_ .« Yol
Apu = uf, +u.

The following result will be useful to derive tensorial identities because of the
vanishing of some terms in their expressions.

Lemma 2.1. ([L2]) For any point p € M, there exists a neighborhood U, and
an admissible co-frame (%), such that w? =0 at p.

We recall next the transformation law of the Webster curvature under con-
formal changes of contact form, see e.g. [JL2]. If one writes Q = 2n + 2 for

the homogeneous dimension of (M, J,0), and 0 = uﬁ& then the Webster
curvature W = Wy transforms as

P )
- (2 + n) A+ Wou = Wyud 2. (11)

It will then be useful to recall some spectral properties of the sub-Laplace
operator on spheres, see e.g. [F] or [G].



Proposition 2.2. Let H,,, denote the restriction to S*"*1 of the homoge-
neous complex harmonic polynomials of degree p+ q, where p is the holomorphic
homogeneity and q the antiholomorphic one. Then one has

n
—Dpp =Ny gn® forall g € Hy gn; Ap.gn = Pq + 5(29 +q).

Moreover, let
Ty, = {ue (s | u(e®z,...e%2,) = e™0u(zy,. .., zn)} -

Then one has m
Ty = i§¢ forall ¢ €Ty,

We next consider a deformation of the CR structure, keeping the contact
form fixed: we introduce some notation for this purpose and derive some pre-
liminary properties.

Given the contact bundle &, consider a smooth family ¢ — Ji;) of CR struc-
tures on £. Then, for all values of ¢, Jy;) : £ — & satisfies J(Qt) = —Id. Take a
basis of eigenvectors (Zq 1)) such that Jy Zy ) = iZ4(), which implies for the
conjugate vector fields J(t)Za(t) = fifa(t). In this way Ji;) writes as

J(t) = i@(oz) ® Za(t) — i@g) & Za(t)-
We begin with the following simple result.
Lemma 2.3. Setting J := j(t) = %J(t), one has the simplified relation
J=2F = 2EaE9a ® Z5 + conj.

Proof. By the above formula we get J(Z,) = QEaﬁZg + QEQﬁZﬁ. Differentiate
the relation J(Qt) = —Id with respect to ¢ (at t = 0) to obtain:

JoJ+JoJ=0.

Expressing this relation with respect to the basis (Z,), and (Zz)q, we obtain

E? E° 0\, (i 0 ES E) o
EE’B EE 0 —2 0 —2 Eaﬂ EEE -

which implies E,° = EEE = 0, as claimed. O
We consider next the variation of the basis vector fields with respect to t.

Lemma 2.4. Let us write the derivative of the unitary frame (Zy)o and its
dual forms (0%), as

Zo =F." 75+ G Z; 07 =i — F0,

10



Then we can assume that F,° € R, and that there holds
G’ =—iE,”; F.+F*=0. (12)
Moreover, at t =0 we can take Fg™ = 0.

Proof. For notational simplicity we will often write Fg instead of Fg“, EP

instead of Eag, etc..
We have df =iy 06 N 05) (from h,5 = 82), compare also to Lemma 2.1 in
[CL], so
—2id0(Za) A Zg()) = 04

Differentiating this relation in ¢, we get
0= —2id0(Za N Z3) — 2id6(Zo N Z3)
= —2id0((Fo" Zy + Go Zx) A Zz) — 2id0(Zo N (F3" Zy + G5 Z,))
= —2%F," — 2iF;°. (13)

On the other hand, we can always compose the frame (Z,,), with an element
of SU(n), which infinitesimally means adding to F? a matrix B such that

Bg = —Eg. We can choose for example to add Fﬁ, which satisfies this property
by the above relation (13): this means that we can take F' to be real, and implies
the second relation in (12).

To get the first one, differentiate J;)Zy 1) = 124 () With respect to ¢, to find

0=JZ0+JZo —iZa
= 2E," Z5 + Fo’iZ5 + GoP (—0) Z5 — i(FoP Z5 + GoP Z5)
= 2B," 75 - 2iG." 73,
SO GQE = —iEaB, as desired.
To prove that we can take F' =0 at t = 0, let § = F/Y at t = 0 and consider

the new frame ~
Zogwy = (7795 Zg.

Then, by cancellation

. d 5 B 5
Zo(0) = Zago) and %t:OZOC(t) = _ZEa(O)ZE(O)’

concluding the proof. O

We next derive some consequences of the integrability conditions
0((Za, Z5]) = 0, 07([Za, Zg]) = 0, (14)

which hold along all the deformation, i.e. for all t. We have the following result.

11



Lemma 2.5. For all indices «, 3, we have that
Eaﬁ = Ega; ElB = E’Y7a.
Proof. We differentiate in ¢ the first relation in (14), obtaining

d . .
%[chzﬁ] = [ZOHZﬁ] + [Za,Zg]

= [F)Zy —iE] Zz, 28] + [ Za, F] 2, — i} Z5],
which by integrability yields

06 ( 551200 20)) = ~iE(125.25) - 020 25).

Notice that B
[Z5, Z5) = ihgwT + wiy(Z7) Z1 — w(Z5) 7y,

which in turn implies - B
0= —iEJihgy + iEgihCﬁ.

Since hgy = 5;;, we deduce the first assertion of the lemma.

We next differentiate in ¢ the second relation in (14) to get

0 = 7([Za, Z5)) + 67 <5t[za, Zﬁ]) .

Since by Lemma 2.4 B
07 =iE] o' — F0,
and
(Za, Z5) = wi(Za) 21 — Wi (Z5) 21,

we obtain
0 =iE] 0" (wh(Za) — wi(Zp))
+ 07 (1Za, F) 2, — iE] 25) + | Za F 2, — iE} Z5))
= —iw!,(Zp) B} + iw}y(Za) E] +iE\w] (Zp)
+iZ5(ET)o — iBbw) (Za) — i Za(ED).

This implies - B
iEZﬂ — zEga =0,

which is the second assertion.

12



3 Variation of geometric quantities

In this section we compute the variation of several relevant geometric quantities
along the deformation of J. Our final goal is to derive a second variation formula
for the normalized integral of the Webster curvature at its critical points.

We begin with the variation of connection and torsion.

Lemma 3.1. For all t, the variation of the torsion is given by
e i nleY ol a gl
while for the variation of the connection we have
o = [i(AgEg + E2AT) + F5,o| 0 (16)
+ (—ED L~ FE V07 4 (—iB2 5 + Fg-)67.
Proof. We start by differentiating in ¢ the relations
00y (Zswy) = 95 04)(Zpw) = 03»(T) =0,
to get
0%(Zs) + 6%(Zs) = 0; 0%(Z5) + 6°(Z5) = 0; 0%(T) = 0.
Recall that by Lemma 2.4 one has
6% = —iE30” — Fgo°. (17)
Differentiate now in ¢ the structure equation
a _ gb [e% «@ Y
to get
A = 0° Nw§ +0° Af + A20 AT + AZONGT
= —idE5 N 6° —iE5d0° — dFg N 6° — Fgdp”. (18)

At a given point p we may assume that wi = 0, by Lemma 2.1. Therefore we
obtain at p

_idEX A QP = i B _iEe g7 A QB _iEX 67 A P
ZdEﬁ ANOF = ZEB,OQ/\G zEﬁﬁG A6 ZEEWG A 67
d0” = 97 Nl + AP N GT = ADO N 67
«@ « o [ @ « Y a 2B Y
—dFg N0° — Fgdo® = —Fg§,0N0° — Fg 67 N6° — F§ 67 AN0° — FSAZO NG

Comparing the coefficients of & A 87 in (18), we deduce the first assertion.

13



Write next B
wg = ngﬁ + ygﬁ” + ygﬁm. (19)

From the relation w? + w% = 0, which implies w? + "‘% = 0, we get the system

{zg + a?gi(),

. _ B _ B
yg’v = Yoz = Yoy

Substituting (17), (15) and (19) into (18) we obtain

_ o AY Y .
xg =iESAL +1ASE; + F (20)
Yoy = —iE5 s + Pz,
which implies in particular yg., = —iEga — Fg ~- We also get the relations
B -0 ; N
(Y5, — F5.,)07 NO7 = 0; —zEgﬁm N6 =0,
giving the following constraints on the deformation tensors
{yzz — 5y =455 = Py
[e3 i (03
EEW - E&B'
In this way, we obtain the second assertion as well. O

We can now compute the derivative of the curvature tensor with respect to
t, together with its contractions.

Proposition 3.2. For the curvature tensor, the Ricci tensor and the Webster
curvature we have the following variation formulas

o _ « o RNeY o l o [
R3,5 = Yszp — Y3ps T 1250,7 + RgizF, + Ry s (21)
+ AszES + Ap,Eg — AanE]6p5 — AgyELbap;

S Y Y
Rpg() =1L, 57 —iE7,,

— (A]EL + ALE )5 + RisF, + R ES,  (22)
and

W = Rog = iE] ; —iB] | — (AJEg+ ALE))n+ RisFy + Rz FY. (23)
Proof. Differentiate in ¢ the structure equation (see Section 2)

o ¥ o _ pa P Yod o P o np
ey = wWai) Ny = Bspany Uiy N 00 + W0y N0 = Wigghiyy 10
+ iGB(t) A T((i) — Z'Tg(t) N 03)

where, we recall,

T8 = Ag,07; T = A%GW,
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and A5 = Agy since h,z = 62. We then deduce

diof — &} AwS — Wl NS = RE 507 AO7 + RG,5(07 AO7 + 07 A 6°)
+i6° A Ags07 + iAg=0% A O7 + iAgz0° AT (24)
—iAg 0 NO* —iAg 07 NOY —iAg, 07 NG
mod. 6“Af and 6% A6.
Writing B B
diof = x§d +yg 10' N7+ yg 0" AT 4y 0t A6,
keeping only terms of the type 6° A #° and using wy (p) =0, we get

o _ .« o e 1o} l 1o [
RG,5 = Y55, — Ygpz +1250,5 + RgzF, + RBPZFF (25)
+ AszES + Ap,Eg — AanE]6p5 — AgyELbay.

Recall that, from (20),

Yoo = —iEG s+ Fiz = Yss, = —iE5 5, + Fizy
ﬁ B B B
y,Bw _ZE - F&p = ygptf - ZE/J as Fa,pﬁ

and that zj3 = Z(AEE% + A2 + A%EZ) + Fgo. These last formulas, together
with (25), yield (21).
Contracting then (21), for the Ricci tensor R,z ;) := R;pi(t) we obtain, after
some cancellation that uses Ang = Aga
Rysy = iB) o —iE — (AJEL + ALE])8,5 + RigFL + R ;EL. (26)

We then obtain for the Webster curvature W,y = Rum with a further contraction
(recall that h,5 = dap)

i > Y : vl 12l l l
W = Raa = ZEZWZ — ZE?,/'yl — (A?E% + AVE?)TL + RlﬁFr + RfﬂF'y

= [, O

ﬁ\N\
Q2
2

where we used F:

We can now pass to the calculation of the second derivative of the Webster
curvature with respect to t.

Proposition 3.3. For the second variation of W = Wy along the deformation
J(t), we have the following formula at t =0

W =BT~ ATEbn + RigFl — nAJEL (27)
L Y I Y Y ol 1 7l l 2
- E5 E,mz - b5 Eplp*E E‘YppiEﬂE’Y’YPiE’Yl)E/L
v ol gl [ nel
) pEn/p—EppEvv E5 Bl +COIlJ
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Proof. From formula (23), we see that the contribution in the second variation
from E and F is given by

—(A]EL + ALE))n + RgFL + R, FY,

giving the second and third term in the right-hand side of (27), plus their
conJugates To compute the remaining terms, we can therefore assume that
E=0and F =0.

We will need first some preliminary calculation: recall that

EL s = Z5(EY) — wi(Zp)E] +w] (Zp) By
Taking the t-derivative and using that £ = 0 at t = 0 we get
0= Zp(BQ) — |&h(Z5) + wh(Zo)| BT + [&7(Z5) + T (Zp)] EL.
Recalling that at ¢ = 0 we can take F' = 0, we have
= i(ALE] + ELAT)0 —iEL 07 —iET 67,
which after some calculation implies
(BT ;) = —zEgE;l + ZEB E] + zEgEZl

In a similar manner, from the formula

= Z5(E]) - W\ (Z5) B} +w)(Z5)E,

ﬁ

one finds, for t =0

(EZE)' = iBLE] ,+ iE]ES |+ iEl EL

ARyt

We analyze the terms with second-order covariant derivatives. Notice that

Eq s = 2ol B, 5) —walZp) B — w5 Zp) By 4wl (Z)E, 5.

Since w =0 at t = 0 and at a given point p, this implies

2l 7 2l al
(Ea,ﬁﬁ) =75 (E )+Z (E ,E)

ol (Z5 )E7 %(Z;)E;ng (Z5)E., 5-
After some straightforward calculation, one then finds

(E] ) =iERE] o +iEg (BT +iEy Bl - —iE) BT

a,Bp Y a,B

. l Y 72l Y 28 nl) 7 ! [l
+i (BB, + ESE] i+ Ej5ES  + EJES 4+ EL L +ELEL ).

16



In particular, taking the trace we obtain after some cancellation

YN — L v L v
(BT ;) =i (ELE] o + ELE

v 1l ol
T T+ BB o+ ELEL )

PP PP

. l Y Y 1 7 l l Y
+i (EW,ﬁEp,l T EGES, + By pEn 5+ Eﬁ,pElﬁ) '

We have that

W= z‘(EZﬁ)‘ - i(Egyl)' — (AJEL + ALE])n
+ (RisFl + Rig L) + (R FL+ R ;FL).
The second line indeed vanishes since F,ly =0 at t =0, and since F, ll = 0 implies
- 1 . 2 .
(R + R,ﬂ)Fﬂy = 5(557 + ) F, = EWFZ =0.

This concludes the proof. O

4 Proof of the theorems

In this section we prove our main results, starting from conformal variations
and then passing to variations of the CR structure.

Proof of Theorem 1.1. The constancy of Webster’s curvature is classical and
can be obtained as in [JL2]. In fact, from formula (11) and an integration by
parts we have that

W(J,uﬁg) — fyul=2+2) Apu+ WJ’GZ]E A (dO)" o)
(IMUQ%HA (do)n) @
= Jar [2+ %) [Voul® + WJ,Q’LLQQ}70 A (dg)n. )

(fM udz g A (da)n) @

Given the scaling-invariant character of 7/~, when taking conformal variations
of the type (u+tv)#60 at u = 1 we can assume that Sy v A (dO)" =0, so we
obtain

Wiev8 A (dO)" =0 for all v such that / vO A (dO)" =0,

M M

implying that W4 is constant.

Let us now consider variations in J (leaving then 0 fixed) of #. We see
that the first two terms in the right-hand side of (23) vanish after integration,
and that the last two terms also vanish pointwise since we can take F' = 0.

17



Therefore, choosing E,g = Aag, we deduce the vanishing of the torsion by
integration of the formula over M. Notice that such variations are admissible
since by the third equation in (13) and (10) we have the constraints given in
Lemma 2.5.

Let us now check the pseudo-Einstein condition: vanishing of the torsion
implies that the Reeb vector field T corresponding to 6 generates an infinitesimal
transverse symmetry, see e.g. (2.12) and Proposition 2.2 in [We]. By Theorem
E in [L2], if we also assume that ¢ (71,0(M)) = 0, then there exists u € C>(M)
such that (M, J,e?%0) is pseudo-Einstein. In the Appendix it is indeed shown
that u can be taken identically zero, see Proposition 5.2. O

Before proving the next theorems, we compute the second variation of ¥ in
the conformal directions. The first conformal variation is given by

d 7 a bV - Vo + W 0 A (dO)"
Lm0+ tyatg) = o GV T 2 Wao) PR

(furu@=0 A (o)) ©

/ w300 A (dO)". (31)
M

Jar IVoul® + W u?) 0 A (d6)"
(furud20 1 (a0)")

In this way, if Wy is constant, one sees that criticality occurs when

-2

Q

4

Volg(M)&ua= = 1. (32)

The second variation at a stationary point is the following

d? ~ 4 bn|va\2 —+ WJ79'I)2 0N (d@)n
B, + ) = ol =
VOZQ,U(M) Q

2 lo(M
@+ 2 WoeVolo(M) / 20 A (dO)",
Q=2voly,(M)* T Ju

where Vol (M) = [, u@= A (df)™. Inserting (32) into the latter formula we
see that the second variation becomes

2 4
—@/ (bn|va|2 - WJ,gqﬂ) O A (do)™. (33)
Volg (M) @ Jum Q-2

For the standard spheres (S?"*1 Jy, 0,), recalling from [JL2] and [We] that
2
by, =2+ e Wis.00 = n(n+1), (34)

we get the first statements in Theorem 1.3 and Theorem 1.4 (see also [MU]).
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Remark 4.1. More in general, if we are on a pseudo-FEinstein manifold with
zero torsion other than the standard sphere, using Theorem 1.1 in [Ch] and
Theorem 3 in [LiWa] for n = 1 and n > 1 respectively, by formula (33) the
second conformal variation is strictly positive-definite.

We consider next the second variation of # on standard spheres with respect
to the deformation of the CR structure.

Lemma 4.2. For the standard structure (S*"*1, Jy,0p) we have that

d? ~ . = o n .
EH:OW(J(W 6o) = —zn/ E.7 oE5% 0y A (dy)™ + conj., (35)

S2n+1
where E = 24,0 J ().

Proof. Since 6y remains fixed, we just need to integrate W with respect to the
volume form 60y A (dfp)™.

Recalling (27), we first notice that the terms involving E and F vanish since
they correspond to the first variation of # in the direction E, but we are at a
stationary point.

Concerning the quadratic terms in E, we observe that after integrating and
using Lemma 2.5, we obtain cancellation in (27) of the first with the seventh,
of the second with the fifth, of the third with the sixth and of the fourth with
the eighth. We are then left with

- / (ATEL + ALET) 0y A (dfo)"
S2n+1

Recalling formula (15) and the fact that we can take F/ 5 =0at t =0, we obtain
the desired conclusion. O

To understand the second variation formula in (35) on the sphere S?7+1
instead of employing the above moving frame approach, we use instead a basis
of the complexified tangent space that is induced from the ambient space C**1,
introduced in [G]. This basis does not consist of linearly independent vectors,
but it has the advantage of leading to computable quantities, with coefficients
that are either constant or that are powers of the z- and Z-coordinates.

Let

0 ] ’
Ik =Zig,, ~ g, U= zda - adz, Ak (36)
We have that
0 0
Orm(Zjr) = (2edzm — 2mdzy) (Zjazk _ Zk(%)
J
= 20Zj0km — 20Zk0jm — ZmZjO0ke + ZmZK0je- (37)
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As proven in [G], every form of type (0,1) can be written as

0<j<k<n

We warn that the coefficients 1(Z ;) are some functions which may not coincide
with n applied to Z ;.
Similarly, any form of type (1,0) can be written as

n=Y_ n(Zj)b,

0<j<k<n

and any vector field of type (0,1) as

X= > 0uX)Zj

0<j<k<n

Starting with tensor products of objects of the above form, by linearity a tensor
S of type ((0,1);(1,0)) can be written as

S= > SOk Zem)Zj @ Oem. (38)

<k f<m
Define the musical flat operator $=1 : H — QY0(M) by
7 (Zje) = idb(:, Z ;).
Lemma 4.3. We have the following relations
VrZjk = —iZjk,  Vz,Zpg=0 forallj k,p,q;
V2 Zim = (61Zj — 01Z1) (Om — 2m0®) + (8jmZk — OunZ;) (01 — 210%),
where of = E:ii %,0,. Moreover, if i~ is as above, one has that

17N Z k) = O for all j, k.

Proof. Since the pseudohermitian torsion is zero and 7T is parallel

i g _ o0 _ o _ 0
ViZp =20 = 5 3 [rog ~Faga T g

(L0 0 0
2 19z kazj 19z k(’“)zj

S _ 0 _ 0 .
=1 _Zjaizk + Zk% = —’Lij,
J

giving the first assertion. The third one is proved in (2.4) of [C].
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Let us now turn to the second assertion. From Lemma 3.2 (2) in [Tn] (in
our notation we have an extra factor 1/2 in front of the contact form) one has
that

do(VxY,Z) = Xd0(Y, Z) — do(Y,[X, Z]z); XY eH,Z €H,

where [X ,7]g stands for the anti-holomorphic projection. From (the conjuga-
tion of) the formula in Lemma 3.2 (i) of [Tn] and Lemma 4.3 one has that

[Zjllem]ﬁ = szﬁzm,
= (6kl§j — jﬁk)@m — ZmO'ﬁ) -+ (5jm§k — 5lm2j)(5l — ZlCTn).
A direct computation shows, after some cancellation
dG(qu, [ij»7lm]ﬁ) = 22'51, [6kﬁk6qm + 6jm§k6ql]
— 2i§q [&clzj(spm + 5jm2k5pl] .
On the other hand, we have that
d@(me?lm) = 2i§p(zl6qm — Zm(sql) - QiEq (Zl(spm — Zmépl),
which implies

Zj(d9(Zpg, Zim)) = Zj [20Zp(Okt0qm — OkmOqt) — 2iZ¢(Okt0pm — Okmpi)]
— Zk [2iEp(5jl(5qm — (5jm(5qg) - 2i§q(6jl6pm — 5jm6pl)] .

This means that Z;x(d0(Zpg, Zim)) — d0(Zpq, | Zjk, Zimlz;) = 0, and therefore
dO(NV z,, Zpq, Zim) = 0 for all [, m: hence we obtain the second assertion too.
To prove the last property, we notice that

ido = (dzo A dZa),

«

and therefore

id@(Zlm, ij) = Zle(Skm — Elzkéjm — Eij(Slk + Zmzkélj.
From (37) we then get
id@(Zlm,fjk) = 0;5(Zim) for all indices 7, k, 1, m,

proving also the last assertion. O

We can now prove our second and third main results.

Proof of Theorem 1.3. The first statement follows from formula (33), recalling
(34), so it remains to prove formula (7).
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Notice that, by Leibnitz’s rule

Eg:=Vp(EN'®Zr) = T(ENO' @ Zy+ EH(V10") © Z' +0' @ (V1 Z7)). (39)

In our notation, comparing (5) and (36), and recalling Lemma 4.3 we have that
VrZy=iZy; Vo' =it
This implies
. (m T
Eo=i (5 + 2) for EL € T,

and in turn )
B0 g 1 db,

W = Z(m+4)/53
meZ

by Lemma 4.2. This gives the desired conclusion. O

Proof of Theorem 1.4. In the notation of [Bl] and [BD1], the eigenspace of a
deformed structure corresponding to the eigenvalue i is written as

H={X-9¢(X): X€Ho}; ¢:H—H.

If ¢ is infinitesimal, then we have the following relation to the tensor E from
Lemma 2.3:

o3, = iE].
By Theorem 4.1 in [BD1], ¢ is of the form
¢ = gb(gbf)u + ha(h‘)’ (40)

where f,h are a complex-valued function and a two-form of type (0,2) whose
negative Fourier components are zero (with h determined by f). Here 0 de-
notes the holomorphic differential of f and f the musical isomorphism from
QLO(§2ntl) to TO1(§27+L) In analogy with (6), the m-th Fourier eigenspace
I, for a tensor on S?"*! is defined by the action of the flow generated by the
vector field T'.

Both the operators 9y, and (9p-)* commute with the Lie derivative by 7', and
it is noticed on page 102 of [BD2] that h, preserves the Fourier decomposition.
Therefore the tensor ¢, and hence F as well, only consist of non-negative Fourier
modes.

As for (38), let us write

b= Z E(gjk?zés)7jk®945 : (41)

J<k,l<s

since both ij and 0y, are invariant under the action of T, we must have that

E(0k, Z¢s) also has only non-negative Fourier modes.
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Arguing then as for (39) and using the latter formula, we still obtain that
Eo=1 (% + 2) for £ € T';,, which by Lemma 4.2 gives

F=n > ) [

2
3 E<m>‘ 0 A df.
meZ S

Recalling that E(™) = 0 for m < 0, we obtain the conclusion.

One comment on the above proof is due, since the coefficients in the ex-
pansion (41) for E are not uniquely determined. Near each point of S?"*1 one
could choose linearly independent bases of vector fields and forms, which would

give the asserted property on the Fourier modes of E(6;x, Zss), proving that in
any case By =1 (% + 2) for E €T,,. O

5 Appendix by Xiaodong Wang!

It is a well known fact in Kahler geometry that a Kahler metric w on a closed
complex manifold M with constant scalar curvature must be Kahler-Einstein
if the Kahler class [w] is proportional to the first Chern class ¢; (M). In this
appendix we discuss a CR analogue of this result.

We still follow [L2] as our standard reference on CR geometry. Let M be a
CR manifold of dimension 2n + 1. The first Chern class of the complex vector
bundle 71:° M will be simply denoted by ¢; (M). Given a pseudohermitian struc-
ture 6, we always work with the Tanaka-Webster connection V, and 2me; (M)
is then represented by the closed 2-form

po =i [Rup0" N6 + Agy a0 NG — Az o607 N O], (42)

where R,y is the Ricci curvature and A is the torsion of the Tanaka-Webster

connection. Throughout this section, we always work with a local unitary frame
{Zy:a=1,--- ,n}.

Lemma 5.1. Suppose ¢ = f,z0" A6 is a (1,1)-form. Let A(¢p) =>"_, fum
be its trace. Then

—d*¢ = fap,a0” + fumad" +iM(9)0,
where d* the dual of d with respect to the adapted Riemannian metric.
Proof. By a standard formula, in terms of the Levi-Civita connection v

—d*¢ =T Nrd+ Zwﬁqu +Z0 V7,0

IDepartment of Mathematics, Michigan State University, 619 Red Cedar Road East Lans-
ing, MI 48824 e-mail: xwang@math.msu.edu
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We recall the relationship between the Levi-Civita connection V and the Tanka-
Webster connection, that can be found in [DT]: for X, Y horizontal

VT =0,
VT = AX + %JX,

VxY =VxY — {(AX, Y) + %d@ (X, Y)] T.

We compute, using the above identities
TVré = fu (%Taﬂ (T) 67 — V67 (T) 9#)
= fur (—9# (%T) 07 + 07 (%T) ew) —0,

ZaN7 ¢
=Zafait” + [ui5V75 0" (Za) 07 — fsN7. 07 (Zo) 0" + fai V75 07
= Zafart” = frwt" ( Za) 0% + fut” (V7,20 ) 0"
~ Jow (07 (V2.25) 07 + 67 (V,Z5) 07 + 6" (V2,T) 0)
— Zfarl” — Fur? (Vg Z0) 07 + ol (Vg Za) 0F
— faw (9" (V2. 28) 0" + (V )0’3 +—6”9)

= farat” + 5A(9)0,
and similarly,

ZaNg. b
= Zaf,uaaﬂ - fu?ﬁZQHV ( =+ fuuvZ o* ( ) U - fuaﬁzaw‘

o) 0"
= Zafua0" + fot” (V2.Xa) 0" = fuot" (V2,70 ) 0%
+ fum (ew (ﬁza ZB) 0% + v (vzjﬁ) 7 +om (%QT) 0)
= Zafua" + fi” (V2. Z0) 0" — [l (V7. Z0) 07

. <eu (V. 25)6° + 0 (V5. 25) 0" + ;55(9)

— funal” + 5A(9)0.

We remark that in the calculations the torsion A does not appear because it
anti-commutes with J and therefore maps a (1, 0)-vector to a (0, 1)-vector and
vice versa. Combining these results yields

—d*¢ = fo&,ae7 + fua,a0" +iA(9)0,
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concluding the proof. O

Recall that a pseudohermitian structure 0 is called pseudo-Einstein if R, =
%(5‘57 where W is the scalar curvature. When n = 1, this is always true. From
now on we assume n > 2. Lee showed in [L2] that a necessary condition for the
existence of a pseudo-Einstein structure is ¢; (M) = 0.

Proposition 5.2. Suppose M is a closed CR manifold of dimension 2n+1>5
with ¢y (M) = 0. If § is a pseudohermitian structure with zero torsion and
constant scalar curvature, then it is pseudo-FEinstein.

Proof. Let ¢ = pg — %d@. Since A = 0, we have
—_ W 1V.% _
¢ = iRM;Q“ A\ QV - 7d9 = Z (R#V - (5/“/) 9” A\ 91/7
n n

It is a real (1,1)-form with A (¢) = 0. As A =0, we have Rap,o = Ruga =0
by the Bianchi identities. Together with W being constant, we see that d*¢ = 0
by Lemma 5.1. As ¢ (Tl’OM) =0, pp is exact, i.e. there is a real 1-form y s.t.
pg = dx. Then ¢ = dx, where ¥ = x — %9. It follows

6]° = (¢, dX) = (d*¢,X) = 0.

Therefore ¢ = 0, i.e. 6 is pseudo-Einstein. O
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