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ANGELO CASULLI\dagger \mathrm{A}\mathrm{N}\mathrm{D} LEONARDO ROBOL\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We consider the computation of roots of polynomials expressed in the Chebyshev
basis. We extend the QR iteration presented in [Y. Eidelman, L. Gemignani, and I. Gohberg, Nu-
mer. Algorithms, 47 (2008), pp. 253--273] introducing an aggressive early deflation strategy, and
showing that the rank-structure allows one to parallelize the algorithm, avoiding data dependencies
which would be present in the unstructured QR. We exploit the particular structure of the colleague
linearization to achieve quadratic complexity and linear storage requirements. The (unbalanced)
QR iteration used for Chebyshev rootfinding does not guarantee backward stability on the poly-
nomial coefficients, unless the vector of coefficients satisfy \| p\| \approx 1, a hypothesis which is almost
never verified for polynomials approximating smooth functions. Even though the presented method
is mathematically equivalent to the unbalanced QR algorithm, we show that exploiting the rank
structure allows one to guarantee a small backward error on the polynomial, up to an explicitly
computable amplification factor \^\gamma 1(p), which depends on the polynomial under consideration. We
show that this parameter is almost always of moderate size, making the method accurate on several
numerical tests, in contrast with what happens in the unstructured unbalanced QR.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Chebyshev polynomials, rootfinding, QR, rank-structure, backward error

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65F15, 65H04

\bfD \bfO \bfI . 10.1137/20M1375115

\bfone . \bfI \bfn \bft \bfr \bfo \bfd \bfu \bfc \bft \bfi \bfo \bfn . The QR method [19], also known as Francis' iteration, is the
de facto standard in eigenvalue computations of small to medium size unstructured
matrices. It is the method implemented by the \tte \tti \ttg MATLAB command, and is used
in most generic eigenvalue routines available in mathematical software packages.

Recently, there has been an increasing amount of contributions dealing with fast
variants of the QR iteration for matrices endowed with special structures, most often
of the form A = F + uv\ast , where F is either Hermitian or unitary, and uv\ast is a
rank 1 correction. Since the QR iteration can be described as a sequence of unitarily
similar matrices A(k+1) = Q\ast 

kA
(k)Qk, where Q\ast 

kQk = I, the Hermitian-plus-rank-
one (resp., unitary-plus-rank-one) structure is maintained throughout the iterations.
Algorithms in this class typically achieve \scrO (n2) complexity in time and have \scrO (n)
storage requirements.

The roots of a polynomial p(x) expressed in the monomial basis are equal to the
eigenvalues of the so-called ``companion matrix"" whose entries are easily computable
by using the coefficients of the polynomial [5, pp. 60--61]:

(1.1) p(x) =

n\sum 
j=0

pnx
n = 0 \Leftarrow \Rightarrow det

\left(     
\left[     
 - pn - 1

pn
. . .  - p1

pn
 - p0

pn

1
. . .

1

\right]      - xI

\right)     = 0.
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RANK-STRUCTURED QR FOR CHEBYSHEV ROOTFINDING 1149

The companion matrix can be decomposed as the sum of a unitary matrix and a
rank 1 correction. Hence, structured QR algorithms allow one to design quadratic
complexity methods for computing roots of polynomials. This has been one of the
main motivations for developing methods in this class [4, 5, 6, 7, 9, 10, 11]. Only
recently some of these methods were proved to be stable eigensolvers; however, it is a
much harder challenge to obtain stability with respect to the polynomial coefficients;
in this case, using a backward stable eigensolver is not sufficient [15, 16, 17], i.e., a
small backward error on the companion matrix does not necessarily imply a small
backward error on the polynomial itself. It has been recently shown that some struc-
tured methods enjoy this property thanks to the fact that the backward error shares
the same unitary-plus-rank-one structure of the companion matrix [6, 26].

Chebyshev polynomials are a key tool for dealing numerically with smooth func-
tions defined on a real interval, as demonstrated by the success of Chebfun [8] and
Chebfun2 [27]; hence, the same problem of obtaining a fast and stable QR iteration
has been considered for colleague matrices, the Chebyshev analogue of the companion
matrix in (1.1), which will be introduced in section 2. Contributions in this direction
can be found in [11, 12, 18, 20, 29]. Analogously to the monomial case, computing the
roots of polynomials expressed in the Chebyshev basis by eigenvalue methods is not
generally backward stable even when the underlying eigenvalues solver has this prop-
erty; the extensions of the results in [17] is described in [24, 25]. More recently, it has
been shown that an eigenvalue solver capable of preserving the Hermitian-plus-rank-
one structure in the backward error, and ensuring a small relative backward error on
both addends, is stable on the polynomial coefficients [26]. Unfortunately, to the best
of our knowledge, this property has not been proved for any of the aforementioned
rank-structured methods for the Hermitian-plus-rank-one case. This paper aims at
improving this situation. The method analyzed does not possess this property for
any polynomial, but we introduce an easily computable parameter that characterizes
the stability; we show that this stronger stability property is almost always attained
for polynomials arising from approximating smooth functions over [ - 1, 1], and the
parameter is effective at detecting the cases where it does not.

\bfone .\bfone . \bfM \bfa \bfi \bfn \bfc \bfo \bfn \bft \bfr \bfi \bfb \bfu \bft \bfi \bfo \bfn \bfs . This work contains several contributions. We recon-
sider the algorithm described in [18] for computing the eigenvalues of Hermitian-plus-
rank-one matrices in the setting of colleague matrices (which belong to this class).

We extend the method by describing how to perform aggressive early deflation
working on the structured representation, and we show that---in contrast to what
happens for the unstructured QR---using the Hermitian-plus-rank-one structure al-
lows one to easily parallelize the algorithm, avoiding data dependencies during the
unitary transformations.

We show that in this context the proposed method is a backward stable eigen-
solver, the same property of the unstructured unbalanced QR iteration, but only
requires \scrO (n) storage and \scrO (n2) floating point operations (flops). However, this is
often not enough to deliver accurate results, because balancing plays an important
role in this context, but would generally break the Hermitian-plus-rank-one structure,
making it not applicable.

For this reason, we introduce an explicitly computable parameter \^\gamma j(p) that char-
acterizes the backward stability of the method on the polynomial coefficients. When
this parameter is moderate, the method produces a small relative backward error
on the polynomial coefficients, even if the coefficient vector \| p\| has large norm, in
contrast to the unstructured (unbalanced) QR iteration. The boundedness of such
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1150 ANGELO CASULLI AND LEONARDO ROBOL

parameter cannot be guaranteed a priori, but holds in most of the practical cases that
we have tested and is easy and inexpensive to check at runtime. We demonstrate that
this enables the use of the algorithm for rootfinding of analytic functions over a real
interval, when coupled with an interpolation step similar to the one in Chebfun [8].
In particular, the obtained accuracy is on par with the one of MATLAB's \tte \tti \ttg (which
uses balancing), but with a much lower computational cost.

The FORTRAN code implementing the algorithm (single and double shift, includ-
ing a parallel version with aggressive early deflation of the single shift code) is publicly
available at https://github.com/numpi/chebqr, and is distributed with MATLAB in-
terfaces.

\bfone .\bftwo . \bfN \bfo \bft \bfa \bft \bfi \bfo \bfn . We denote by \BbbC m\times n and \BbbR m\times n the sets of m\times n matrices with
coefficients in the complex and real fields, respectively.

We employ a MATLAB-like notation for submatrices. For instance, given A \in 
\BbbC m\times n the matrix Ai1:i2,j1:j2 is the submatrix obtained selecting only rows from i1 to
i2 and columns from j1 to j2 (extrema included).

The symbol \epsilon m is used to indicate the unit roundoff. In the remainder of this paper
floating point computations are performed in IEEE 754 \ttb \tti \ttn \tta \ttr \tty \ttsix \ttfour [2], called double
precision before [1], for which the unit-roundoff is approximately 1.11 \cdot 10 - 16 [22]. The
norms are denoted by \| \cdot \| . When not explicitly specified, we mean the spectral norm
(for matrices), or the Euclidean one (for vectors).

Often we deal with error bounds obtained through backward error analysis, for
which we ignore the constants and the (polynomial) dependency in the size of the
problem. We denote backward errors on A as \delta A, and we write the bounds with
constants omitted as follows:

\| \delta A\| \lesssim \| A\| \epsilon m \Leftarrow \Rightarrow \| \delta A\| \leq p(m,n) \cdot \| A\| \epsilon m,

where p(m,n) is a low-degree polynomial in m,n, the dimensions of A; in most cases
discussed in this paper, the degree of the polynomial will be between 1 and 3. We
say that an algorithm for computing the eigenvalues of A is backward stable if it
computes the exact eigenvalues of A+\delta A with \| \delta A\| \lesssim \| A\| \epsilon m, and that an algorithm
for computing the roots of a polynomial p(x) is backward stable if it computes the
roots of a polynomial \delta p(x) where1 \| \delta p\| \lesssim \| p\| \epsilon m.

\bftwo . \bfS \bft \bfr \bfu \bfc \bft \bfu \bfr \bfe \bfd \bfQ \bfR \bfi \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn . Let A = F + uv\ast be an n\times n upper Hessenberg
complex matrix where F is Hermitian, and uv\ast is a rank 1 perturbation. In this section
we describe how to efficiently compute its eigenvalues in quadratic time. Although
this may be applied to any matrix with such structure, the main application that we
consider is the computation of the roots of a polynomial

p(x) =

n\sum 
j=0

pjTj(x)

expressed in the Chebyshev basis. This can be achieved by computing the eigenvalues
of the colleague matrix (originally introduced by [21], and here scaled to make it

1In this case we use the notation \| p\| to denote the norm of the coefficient vectors for p(x).
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RANK-STRUCTURED QR FOR CHEBYSHEV ROOTFINDING 1151

symmetric-plus-rank-one):

(2.1) C =
1

2

\left[        

0 1

1
. . .

. . . 1

1
\surd 
2\surd 

2

\right]         - 
1

2pn

\left[        

1
0
...
...
0

\right]        
\bigl[ 
pn - 1 pn - 2 . . . p1

\surd 
2p0

\bigr] 
.

In section 2.1 we briefly recall the structured QR iteration first proposed by
Eidelman, Gemignani, and Gohberg in [18]; we will then improve this approach by
showing how to perform aggressive early deflation in a structured way in section 2.2,
and how the structure allows for an easy and efficient parallelization of the algorithm
in section 2.3.

\bftwo .\bfone . \bfH \bfe \bfr \bfm \bfi \bft \bfi \bfa \bfn -\bfp \bfl \bfu \bfs -\bfr \bfa \bfn \bfk -\bfo \bfn \bfe \bfQ \bfR . This subsection recalls the structured im-
plicit QR iteration of [18]; this is mathematically equivalent to the standard one, but
an efficient representation for the upper Hessenberg matrix is used to reduce the
computational and storage costs.

To establish the notation, we first summarize how the implicit QR iteration works
in the generic case. Let A be an n\times n irreducible upper Hessenberg matrix, that is,
such that Aij = 0 for any i > j+1, and Aij \not = 0 for any i = j+1. Suppose a shift \sigma \in \BbbC 
has been chosen. Then, we compute a Givens rotation G1, such that G\ast 

1(A  - \sigma I)e1
is a multiple of e1 and update A by performing a similarity transformation G\ast 

1AG1.
Doing this we break the Hessenberg form; indeed a bulge has been created in the entry
(3, 1). The subsequent steps consist of computing Givens rotations G2, . . . , Gn - 1 such
that the matrix (G2 . . . Gn - 1)

\ast A(G2 . . . Gn - 1) is again in Hessenberg form. We refer
to this update as a QR sweep, or iteration.

If the shifts \sigma are chosen appropriately, we expect that in a few sweeps some
subdiagonal elements of A will become negligible. This allows one to split the ei-
genvalue problem into two subproblems (the matrix is now numerically block upper
triangular). Most often, the negligible element will be in position (n, n  - 1); hence,
we immediately identify the element in position (n, n) as an eigenvalue and reduce
the problem size to n - 1.

A more in depth discussion of the QR algorithm, and the role of the shifts, can be
found in [30]. In that book the convergence of the algorithm is interpreted in terms
of Krylov subspaces; in particular this allows for an easy introduction of the double
shift (or, more generally, multishift) QR, which is obtained replacing the initial shifted
column (A - \sigma I)e1 with the evaluation of a low degree polynomial \rho (A)e1.

\bftwo .\bfone .\bfone . \bfS \bft \bfr \bfu \bfc \bft \bfu \bfr \bfe \bfp \bfr \bfe \bfs \bfe \bfr \bfv \bfa \bft \bfi \bfo \bfn . We note that each upper Hessenberg matrix
A = F +uv\ast such that F = F \ast can be completely determined using an \scrO (n) parame-
ter. Indeed, we have the following relations for the entries of F in the lower triangular
part, excluding the first subdiagonal:

(2.2) 0 = Aij = Fij + uivj =\Rightarrow Fij =  - uivj \forall i > j + 1,

and therefore, relying on Fij = F ji, we may write

(2.3) Aij = Fij + uivj = Fji + uivj = uivj  - ujvi \forall j > i+ 1.

Hence, all the entries above the first superdiagonal can be determined solely from u
and v; the complete matrix A can be recovered storing its diagonal and subdiagonal
entries, and the vectors u, v.
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1152 ANGELO CASULLI AND LEONARDO ROBOL

In addition, performing a unitary similarity preserves the Hermitian-plus-rank-
one structure since

QAQ\ast = QFQ\ast + (Qu)(Qv)\ast , Q\ast Q = I.

Hence, the structure is inherited by all the matrices produced by the QR iteration.
Algorithmically, we store two vectors d \in \BbbC n and \beta \in \BbbC n - 1 whose entries are the

diagonal and the subdiagonal entries of A, respectively. This completely determines
the lower triangular part of A (thanks to the upper Hessenberg form); the upper part
can be retrieved exploiting the symmetry as discussed above, which yields

(2.4) Ai,j =

\left\{         
di, i = j,

\beta i - 1, i = j + 1,

\beta i  - ui+1vi + uivi+1, j = i+ 1,

uivj  - ujvi, j > i+ 1.

The preservation of Hermitian-plus-rank-one structure implies that a matrix obtained
after k sweeps of QR can be determined using four vectors d(k), \beta (k), u(k), v(k); we call
these vectors the generators of A(k).

The structured QR iteration is then implemented as a sequence of rotation act-
ing on consecutive rows. Each of these rotations can be applied to the structured
representation by updating in place a constant number of entries in d(i), \beta (i), u(i), v(i).

Storing only these vectors makes the memory storage linear, in contrast to the
quadratic cost for the standard QR algorithm.

The details of the iteration are reported in sections 2.1.2 (for the single shift case)
and 2.1.3 (for the double shift algorithm).

\bftwo .\bfone .\bftwo . \bfS \bfi \bfn \bfg \bfl \bfe \bfs \bfh \bfi \bff \bft \bfi \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn . In this section we briefly summarize the single
shift iteration of the structured QR algorithm introduced in [18]. Let A = F + uv\ast 

be a Hermitian-plus-rank-one matrix in upper Hessenberg form; we discussed how to
store it using \scrO (n) memory, and we aim at computing its eigenvalues leveraging this
representation, and achieving \scrO (n2) complexity.

We consider a single shift QR step in this structured format. Let \rho (z) = z  - \sigma 
be a shift polynomial. As in the implicit version of the QR algorithm, to obtain the
starting Givens rotator G1 we compute the first column of the matrix A - \sigma I. Since
A is in upper Hessenberg form we have

(2.5) \rho (A)e1 =

\left[       
d1  - \sigma 
\beta 1

0
...
0

\right]       .

The rotator such that G\ast 
1\rho (A)e1 is a multiple of e1 can be computed by standard

BLAS routines, such as \ttz \ttr \tto \ttt \ttg .
A is now replaced by G\ast 

1AG1; since A is represented by means of the four vectors
d, \beta , u, v, we directly update this representation. Note that the two matrices only
differ in the top three rows. Thanks to the symmetry, the updated parameters can
be recovered from the top 3 \times 2 block of the updated matrix, which we compute as
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RANK-STRUCTURED QR FOR CHEBYSHEV ROOTFINDING 1153

follows:

(2.6) (G\ast 
1AG1)1:3,1:2 =

\biggl[ 
\^G\ast 
1

1

\biggr] \left[  d1 (\beta 1  - u2v1) + u1\=v2
\beta 1 d2
0 \beta 2

\right]  \^G1,

where \^G1 = (G1)1:2,1:2.
The 3 \times 2 updated block can be computed directly, using a constant number of

floating point operations independent of n, and the the updated entries of d, \beta can be
read off from the updated matrix. Similarly, the updated u, v can be computed by
G\ast 

1u and G\ast 
1v.

As in the standard implicit QR, this operation creates a bulge, breaking the
Hessenberg structure in position (3, 1). In particular, the matrix cannot be recovered
from the generators unless this bulge is stored as well. Since this is just one extra
entry, it does not affect the computational costs or the storage.

The bulge can be chased with another rotation G2 operating on the rows (2, 3),
whose action can be computed updating the vectors d, \beta , u, v in a similar fashion. The
procedure is repeated until the bulge disappears at the bottom of the matrix.

When applying G\ast 
i on the left and Gi on the right with i > 1 the analogous

3\times 2 block Ai:i+2,i:i+1 needs to be considered. We note that to compute Gi the data
required are just the subdiagonal element \beta i - 1 and the bulge given from the previous
step. In Algorithm 2.1 we summarize how to perform the ith bulge chasing step.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone Single shift bulge chasing (ith step).

1: \bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe chasing(d, \beta , u, v,bulge)
2: \gamma \leftarrow (\beta i  - ui+1vi) + uivi+1

3: G\ast \leftarrow Givens

\biggl( \biggl[ 
\beta i - 1

bulge

\biggr] \biggr) 
4: \beta i - 1 \leftarrow 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ \beta i - 1

bulge

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

5:

\left[  di \gamma 
\beta i di+1

bulge \beta i+1

\right]  \leftarrow \biggl[ 
G\ast 

1

\biggr] \left[  di \gamma 
\beta i di+1

0 \beta i+1

\right]  G

6:

\biggl[ 
ui

ui+1

\biggr] 
\leftarrow G\ast 

\biggl[ 
ui

ui+1

\biggr] 
7:

\biggl[ 
vi

vi+1

\biggr] 
\leftarrow G\ast 

\biggl[ 
vi

vi+1

\biggr] 
8: \bfe \bfn \bfd \bfp \bfr \bfo \bfc \bfe \bfd \bfu \bfr \bfe 

The cost of each of the above steps is constant and every iteration requires \scrO (n)
steps; hence, the cost of each iteration is linear in n. Assuming the convergence of all
the eigenvalues in a number of steps linear in the dimension of the problem2 the total
cost is quadratic in n.

The described procedure is backward stable in the original data: the computed
eigenvalues are the exact ones of A+ \delta A, where

\| \delta A\| \lesssim (\| F\| 2 + \| u\| 2\| v\| 2) \epsilon m,

2The QR iteration typically converges in about 2n or 3n iterations; this measure is only weakly
influenced by the matrix under consideration, and is one of the features that makes the QR iteration
the method of choice for the dense unsymmetric eigenvalue problems. We refer to section 5 for some
numerical experiments supporting this claim.
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1154 ANGELO CASULLI AND LEONARDO ROBOL

where \lesssim denotes an upper bound up to a small degree polynomial in the dimension,
as is customary for backward error analyses. This result is proven in [18] but is, in
general, weaker than the stability guaranteed by the usual unstructured QR iteration,
which instead guarantees that \| \delta A\| \lesssim \| A\| \epsilon m. Without further assumptions, \| F\| 2 +
\| u\| 2\| v\| 2 might be arbitrarily larger than \| A\| .

In section 3 we reconsider the backward error analysis focusing on the problem
of interest in this paper---the computation of roots for Chebyshev polynomials---and
we show that for this case the same rigorous bound of the standard QR iteration can
be obtained. In addition, we will also show that the structured method often exhibits
superior stability properties.

\bftwo .\bfone .\bfthree . \bfD \bfo \bfu \bfb \bfl \bfe \bfs \bfh \bfi \bff \bft \bfi \bft \bfe \bfr \bfa \bft \bfi \bfo \bfn . Whenever the matrix A is real, it can be conve-
nient to rely on a double shift iteration, instead of the single shift approach described
in the previous section. This makes the method more efficient (since complex arith-
metic can be avoided completely), and ensures that the computed eigenvalue has the
required complex-conjugation symmetry.

From a high-level perspective, this introduces the following changes. Instead of
choosing a degree 1 polynomial \rho (z) = z  - \sigma we pick a degree 2 one of the form
\rho (z) = z2  - 2\Re (\sigma )z + | \sigma | 2, where \sigma \in \BbbC . Then, we determine two rotations G1,1

and G1,2 such that G\ast 
1,1G

\ast 
1,2\rho (A)e1 is a multiple of e1. Performing a similarity using

G\ast 
1,1G

\ast 
1,2 in place of G1 creates a perturbation in the upper Hessenberg structure,

which is then chased to the bottom of the matrix. This procedure is standard, and
we refer the reader to [30] for further details.

In a similar fashion to what is discussed in section 2.1.2, this procedure can be
carried out relying on the structured representation of the matrix A. The column
vector \rho (A)e1 can be computed with a constant number of operations in terms of
d, \beta , u, v:

(2.7) \rho (A)e1 =

\left[         

d21 + \gamma 1\beta 1  - 2\Re (\alpha )d1 + | \alpha | 2
\beta 1(d1 + d2  - 2\Re (\alpha ))

\beta 1\beta 2

0
...
0

\right]         
.

We now compute the two Givens rotations, G1,1 and G1,2, such that G\ast 
1,1G

\ast 
1,2\rho (A)e1

is a multiple of e1. The matrix G\ast 
1,1G

\ast 
1,2AG1,2G1,1 differs from A only in the top three

rows; analogously to the single shift case, we can recover the updated parameters by
only computing the top 4 \times 3 block, and updating u, v separately. This does also
provide the three entries composing the ``bulge,"" i.e., the ones that perturb the upper
Hessenberg structure.

Let us denote for the sake of brevity by \gamma i := (\beta i  - ui+1vi) + ui\=vi+1 the entries
on the upper diagonal of A, recovered according to the procedure described in (2.4).
Then, the computation required to apply the two rotation is the following:\bigl( 

G\ast 
1,1G

\ast 
1,2AG1,2G1,1

\bigr) 
1:4,1:3

=

\biggl[ 
\^G\ast 
1,1

1

\biggr] \biggl[ 
\^G\ast 
1,2

1

\biggr] \left[    
d1 \gamma 1 u1v3  - u1v3
\beta 1 d2 \gamma 2
0 \beta 2 d3
0 0 \beta 3

\right]    \^G1,2
\^G1,1,

(2.8)D
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where \^G1,1 = (G1,1)1:3,1:3 and \^G1,2 = (G1,2)1:3,1:3.
The cost in floating point operations of this update is independent of n, and

therefore, it accounts for \scrO (1) in the computational cost.
In the updated matrix of (2.8), the entries in positions (3, 1), (4, 1), and (4, 2)

constitute the bulge; they need to be chased down to the bottom of the matrix to
complete a single sweep.

We describe in more detail the generic ith step of bulge chasing; assume that
the three entries composing the bulge are known from the previous step, or from the
initialization of the sweep described above. We denote them by bi+2,i, bi+3,i, bi+3,i+1.
Then, we compute Givens rotations Gi+1,1 and Gi+1,2 such that

(2.9) \^G\ast 
i+1,1

\^G\ast 
i+1,2

\left[  \beta i

bi+2,i

bi+3,i

\right]  =

\left[  c0
0

\right]  
for a suitable constant c, where \^Gi+1,j = (Gi+1,j)i+1:i+3,i+1:i+3 for j = 1, 2. The
rotations can be used to build the matrix A(i+1) defined as follows:

A(i+1) := G\ast 
i+1,1G

\ast 
i+1,2A

(i)Gi+1,2Gi+1,1.

To continue with the process we need to update the generators used to store the matrix
A(i), and also memorize the updated bulge, which will have moved down one step.
Updating u(i) and v(i) requires only multiplying them on the left by G\ast 

i+1,1G
\ast 
i+1,2,

that is,

u(i+1) = G\ast 
i+1,1G

\ast 
i+1,2u

(i) and v(i+1) = G\ast 
i+1,1G

\ast 
i+1,2v

(i).

Computing the action of the rotation in (2.9) yields the updated value of \beta i. To update
the other entries in the vectors d and \beta we compute the action of the rotations on the

4\times 3 submatrix A
(i)
i+1:i+4,i+1:i+3, which can be written explicitly as follows:

(2.10)

\biggl[ 
\^G\ast 
i+1

1

\biggr] \left[     
d
(i)
i+1 \gamma i+1 u

(i)
i+1\=v

(i)
i+3 - u

(i)
i+3v

(i)
i+1

\beta 
(i)
i+1 d

(i)
i+2 \gamma i+2

bi+3,i+1 \beta 
(i)
i+2 d

(i)
i+3

0 0 \beta i+3

\right]     \^Gi+1,

where \^Gi+1 := \^Gi+1,2
\^Gi+1,1.

After the update has been performed, the new bulge will be available in the entries
in positions (3, 1), (4, 1), and (4, 2) of the matrix in (2.10). These entries will form the
values bi+3,i+1, bi+4,i+1, and bi+4,i+2 used in the next chasing step.

The cost of each step is independent of n, and every sweep requires n steps, so the
cost of each iteration is linear. Using the same argument employed in the single shift
case, and assuming convergence within \scrO (n) sweeps, we conclude that the algorithm
has a quadratic cost.

\bftwo .\bftwo . \bfA \bfg \bfg \bfr \bfe \bfs \bfs \bfi \bfv \bfe \bfe \bfa \bfr \bfl \bfy \bfd \bfe fl\bfa \bft \bfi \bfo \bfn . Modern implementations of the QR itera-
tion, such as the one found in LAPACK [3], rely on a number of strategies to improve
their efficiency. One of the most effective, developed by Braman, Byers, and Mathias
in [14] is known as aggressive early deflation (AED). AED is a method for deflating
eigenvalues that, combined with standard deflation, improves the convergence speed,
and in particular speeds up the detection of almost deflated eigenvalues.
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1156 ANGELO CASULLI AND LEONARDO ROBOL

A practical description of this method can be found in [30]. In this section we
consider the case of a matrix A = F + uv\ast , with the now usual assumption F = F \ast .
It turns out that if we are running the QR iteration (either single or double shift)
in the structured format described in sections 2.1.2 and 2.1.3, the AED step can be
performed in structured form as well.

We now briefly recall how AED works in general, and then show how these oper-
ations can be carried out in a structured way. Let k \ll n, and consider the following
partitioning of A:

A =

\biggl[ 
A11 A12

A21 A22

\biggr] 
,

where A22 is k\times k and A11 is (n - k)\times (n - k). We note that A21 is made of a single
entry in its top-right corner, which is equal to An - k+1,n - k.

We rely on a simple implementation of the QR iteration (i.e., without the AED
scheme) to compute the Schur form of A22. This does not pose any computational
challenges, since we assume k to be small. Then, we use the computed Schur form
Q\ast A22Q = T to perform the following unitary similarity transformation on the origi-
nal matrix A:

(2.11)

\biggl[ 
A11 A12Q

Q\ast A21 Q\ast A22Q

\biggr] 
.

Note that Q\ast A21 has nonzero entries only in its last column. Let us call this column
x. Then, the AED scheme proceeds by partitioning the vector x as follows:

Q\ast A21en - k = x =

\biggl[ 
x1

x2

\biggr] 
,

where x1 has 0 \leq j \leq k entries, and j is chosen as small as possible under the
constraint that all the entries of x2 satisfy

(2.12) | x2| i \leq min\{ | Tn - k+j+i| , | An - k+1,n - k| \} \cdot \epsilon m.

If (2.12) is satisfied for some entries, than these can be safely set to zero without
damaging the backward stability of the approach, and allowing one to deflate k  - j
eigenvalues at once. More precisely, it implies that k  - j eigenvalues of A22 are also
(numerically) eigenvalues of A, even though they could not be detected immediately
by the usual deflation criterion. The remaining eigenvalue of A22 can be put to good
use by employing them as shifts for the next sweeps.

The described procedure can be applied directly in the structured format that
we have relied upon for developing the QR iteration. As a first step, we need to
characterize the structure of the partitioned matrix (2.11). Submatrices of A are also
completely determined by the four vectors, as we summarize in the next lemma.

Lemma 2.1. Let A = F + uv\ast be an upper Hessenberg Hermitian-plus-rank-one
matrix, with vector generators d, \beta , u, v. Then, if we partition

A =

\biggl[ 
A11 A12

A21 A22

\biggr] 
, A11 \in \BbbC (n - k)\times (n - k), A22 \in \BbbC k\times k,

then also A11 and A22 are upper Hessenberg Hermitian-plus-rank-one matrices, with
generators d1:n - k, \beta 1:n - k - 1, u1:n - k, v1:n - k, and dn - k+1:n, \beta n - k+1:n - 1, un - k+1:n,
vn - k+1:n, respectively.
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Proof. The proof follows by direct verification.

Lemma 2.1 implies that the generator representation used for A immediately
gives generator representations for A11 and A22. For the latter, we can rely on this
representation and the algorithm presented in the manuscript to construct a Schur
form, and at the same time update using the computed rotations the last column of
A21, which is equal to \beta n - ke1. Hence, we obtain a structured representation of the
updated matrix: \biggl[ 

A11 A12Q
Q\ast A21 Q\ast A22Q

\biggr] 
.

Then, we proceed as in the dense case, and look at the entries of the vector x compos-
ing the last column of Q\ast A21. If it contains negligible elements, we set them to zero
and deflate the associated components. Note that the check in (2.12) can be stated
directly in terms of the generators as follows:

(2.13) | x2| i < min\{ | \beta n - k| , | dn - k+i+j | \} \epsilon m.

Once the deflated components have been removed, we are left with a matrix for which
the top (n - k - 1)\times (n - k - 1) part is already upper Hessenberg (and its structured
representation has not changed), whereas the trailing (j + 1)\times (j + 1) block has the
following form:

(2.14)

\left[       
\ast \ast \ast . . . \ast 
x1 t1,1 t1,2 . . . t1,j
x2 t2,2 . . . t2,j
...

. . .
...

xj tj,j

\right]       .

We remark that for the upper triangular matrix T composing the trailing j \times j block
we have a structured representation in terms of generators. In order to continue the
QR iterations, we need to reduce this matrix again in upper Hessenberg form.

We now assume that the deflated eigenvalues (if any) have been deflated; hence,
we are left with a trailing (j +1)\times (j +1) block M which is not in upper Hessenberg
form, and needs to be reduced before continuing the iterations. Since this process
only works on the trailing block, we can safely ignore the rest of the matrix and its
structured parametrization which will not be altered by this reduction; only the last
j or j  - 1 entries of d, \beta , u, v will be updated.

The trailing matrix has the structure of (2.14). The j \times j trailing upper triangu-
lar block is Hermitian-plus-rank-one, and we are given a structured representation in
terms of the usual vectors d, \beta , u, v. The matrix M can be reduced to upper Hessen-
berg form directly producing the structured representation in \scrO (j) flops working as
follows:
(i) The entries xi of the vector x composing the first column are annihilated one at

a time using Givens rotations, starting from the bottom. The transformations
are performed as similarities, acting on the left and right.

(ii) When an entry of x is annihilated (except for the last one) a bulge that breaks
the Hessenberg form appears. We chase it to the bottom using Givens rotations.
This does not create nonzero elements in x.

(iii) For each transformation, we update the vectors d, \beta , u, v as we have done for the
QR chasing sweeps described in sections 2.1.2 and 2.1.3.
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1158 ANGELO CASULLI AND LEONARDO ROBOL

After j steps of the above procedure, we obtain a matrix in upper Hessenberg form,
and step (iii) guarantees that we have a structured representation of it. We note that
replacing the last entries of d, \beta , u, v, with the computed vectors yields a representation
for the complete matrix.

To clarify the algorithm, we pictorially describe the transformation on a 5 \times 5
example, which can be reduced in six steps. Each arrow represents a unitary similarity
transformation by means of a Givens rotation acting on the specified rows.\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 
\times \times \times 
\times \times 

\right]      (4,5) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 
\times \times \times 

\times \times 

\right]      (3,4) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 

\times \times \times 
\times \times \times 

\right]      (4,5) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 

\times \times \times 
\times \times 

\right]      (2,3) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 
\times \times \times \times 

\times \times 

\right]      (3,4) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 
\times \times \times 
\times \times \times 

\right]      (4,5) -  -  - \rightarrow 

\left[      
\ast \ast \ast \ast \ast 
\times \times \times \times \times 
\times \times \times \times 
\times \times \times 
\times \times 

\right]      .

Working with structured arithmetic requires one to update only the diagonal, a few
super- and subdiagonal entries (as in section 2.1.2), the first column, and the vectors
u, v. The upper triangular part is implicitly updated by keeping track of these changes.

In particular, it is never necessary to perform updates on A12, since this is only
implicitly determined by the four vector representation.

Remark 2.2. From the point of view of computational complexity the use of the
structured QR algorithm in AED for the computation of the Schur form of the trail-
ing principal submatrix is not of paramount importance; we may compute the Schur
form of A22 by an unstructured QR iteration, and then recover the updated A12 a
posteriori thanks to the structure of the matrix. Since the size of A22 is expected to
be negligible with respect to n, this would not change the overall complexity. Nev-
ertheless, we prefer to work directly on the structured representation using the same
operations described in section 2.1.2 because doing otherwise would require recover-
ing the structure from the matrix, complicating the backward error analysis. Indeed,
we will show in section 3 how working directly on the structure can be extremely
beneficial from the error analysis perspective.

\bftwo .\bfthree . \bfP \bfa \bfr \bfa \bfl \bfl \bfe \bfl \bfs \bft \bfr \bfu \bfc \bft \bfu \bfr \bfe \bfd \bfQ \bfR . In section 2.11 we discussed the AED procedure;
this enables the early deflation of eigenvalues, but also produces a larger number of
shifts for later use in QR sweeps with respect to more traditional criteria such as the
Wilkinson or Rayleigh shifts. These can be used in several ways.

When given m shifts \mu 1, . . . , \mu m that approximate m eigenvalues of A we can start
the QR algorithm using \rho (x) := (x - \mu 1) \cdot \cdot \cdot (x - \mu m) as shift polynomial. This process
is theoretically analogous to applying consecutively the single shift algorithm using
the shifts \mu i, but using a shift polynomial of degree m we can deflate m eigenvalues in
a single step. This can be implemented in the structured representation by mimicking

D
ow

nl
oa

de
d 

04
/3

0/
24

 to
 1

92
.1

67
.2

04
.2

53
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-STRUCTURED QR FOR CHEBYSHEV ROOTFINDING 1159

the extension done for going from single to double shift code, described in section 2.1.3.
This may help with achieving better cache usage on modern processors [23], and is
indeed used in LAPACK's QR code by tightly packing several bulges [13, 14].

In this work we describe an alternative strategy for effectively using these shifts,
which is not trivially implemented in the unstructured QR iteration: parallelization.
We discuss how exploiting the structure makes this task much easier.

In practice, we choose to work with small degree shift polynomials (usually of
degree 1 or 2, and hence small bulges), but we allow one to start the following chasing
step (with a new shift) before the end of the previous one. This choice allows one to
exploit modern processors which are often composed of multiple cores.

The scheme can be described as follows. Assume to have p processors, with p > 1.
The algorithm chooses a first shift,3 and starts chasing it down to the bottom of the
matrix. Before the end of the sweep, using another processor, we introduce a new
bulge at the top and start chasing that one as well.

The idea is difficult to implement in the unstructured QR iteration, because of
data dependencies. Indeed, when applying a Givens rotator on the left (resp., on
the right), we modify entries in all columns (resp., all rows) of the matrix. So there
may be entries modified by two processors at the same time, and this creates the
need for careful data synchronization. Let us clarify this matter with an example.
Assume that a chasing step is started before the previous bulge reaches the bottom
right corner. That is, a Givens rotator is applied on the left and performs a linear
combination of the rows i and i + 1; at the same time, using another processor, a
Givens rotator is applied on the right combining the jth and the (j+1)th column for
j > i + 1. The entries ai,j , ai+1,j , ai,j+1, ai+1,j+1 are modified at the same time by
two different processors. Hence, this approach would require one to employ expensive
synchronization techniques.

Exploiting the vector representation automatically solves this issue. Since the
upper triangular part is never explicitly updated, and we need only work on the entries
around the diagonal and the vectors u, v, there is no need for synchronization. Hence,
it is possible to start a number of bulges at the top separated one from the other,
and chase them in parallel to the end of the matrix without further complications.
The differences between data dependency in a parallel chasing for the structured and
unstructured QR are depicted in Figure 1.

\bfthree . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfa \bfn \bfa \bfl \bfy \bfs \bfi \bfs . This section is devoted to the analysis of backward sta-
bility of the proposed approach for computing the roots of a polynomial expressed in
the Chebyshev basis.

To make the analysis rigorous, it is crucial to specify what we consider to be the
input of the algorithm; for instance, the algorithm might be stable when considered
as an eigensolver, and unstable when considered as a polynomial rootfinder. We
comment on this fact in section 3.1.

We analyze the stability under different viewpoints; we show that the method
is stable when considered as an eigensolver, assuming that the input is a colleague
linearization of a polynomial. This yields a slightly stronger backward stability re-
sult compared to the original analysis of [18], which we discuss in section 3.2. In
particular, this implies that the method shares the same favorable properties of the
unstructured QR. Then, we consider stability as a polynomial rootfinder. This is a
property that the unstructured QR does not possess in general: the computed eigen-

3In principle, the shifts may be obtained using any suitable method; we will obtain them from
the AED scheme, which provides a set of good shifts that fit well in this framework.
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1160 ANGELO CASULLI AND LEONARDO ROBOL

Unstructured QR Structured QR

Fig. 1. Pictorial description of the parallel implementation of chasing multiple bulges in the
unstructured and structured QR. On the left, the entries in the matrix that need to be explicitly
updated for chasing the bulges down one step in the unstructured QR are marked with diagonal
lines; on the right, the same is done for the structured QR, where only diagonal and subdiagonal
entries (along with the rank 1 correction) are updated explicitly. The vectors representing the rank
1 correction are depicted as an outer product of tall and thin matrices.

values are eigenvalues of a close-by matrix, but not necessarily roots of a close-by
polynomial. We show that, under an additional verifiable condition, we can prove
that our method is stable as a polynomial rootfinder as well; this additional condition
cannot be guaranteed in general, but can be easily checked at runtime, and it holds
in typical cases arising from the polynomial approximations of smooth functions on
[ - 1, 1]. This is discussed in section 3.3 and demonstrated on practical examples in
section 5.

Throughout this section, we use the notation x \lesssim \epsilon to mean that x is smaller
than \epsilon up to a (low-degree) polynomial in the size of the problem. The latter will be
the degree of the polynomial, or the leading dimension of the colleague linearization.
From now on, when not explicitly specified, \| \cdot \| will be either the spectral norm (for
matrices), or the Euclidean one (for vectors).

We use the notation \| p\| to denote the norm of the vector containing the coeffi-
cients of the (monic) polynomial under consideration. We remark that whenever we
write \| \delta p\| \lesssim \| p\| \epsilon m the constant and the polynomial dependency on n hidden in the
\lesssim notation need to be independent of the polynomial p under consideration. If there
is some additional dependency on p, as will happen in section 3.3 with the term \^\gamma j(p),
then this is explicitly reported.

\bfthree .\bfone . \bfP \bfo \bfl \bfy \bfn \bfo \bfm \bfi \bfa \bfl \bfr \bfo \bfo \bft \bfs \bft \bfh \bfr \bfo \bfu \bfg \bfh \bfe \bfi \bfg \bfe \bfn \bfv \bfa \bfl \bfu \bfe \bfs \bfo \bff \bfc \bfo \bfl \bfl \bfe \bfa \bfg \bfu \bfe \bfm \bfa \bft \bfr \bfi \bfc \bfe \bfs . Ap-
proximating roots of polynomials by computing the eigenvalues of their linearization
is the method of choice in most practical cases. Indeed, this is the way most mathe-
matical software implements commands for this task, such as for MATLAB's \ttr \tto \tto \ttt \tts 
command.

For this reason, the question of whether computing the roots of polynomials using
the QR method is stable has been deeply analyzed in the literature [15, 16, 17, 24, 25,
26]. It is known that the QR method implemented in floating point with the usual
model of floating point errors applied to a matrix A \in \BbbC n\times n computes a Schur form
T satisfying

Q\ast (A+ \delta A)Q = T, \| \delta A\| \lesssim \| A\| \cdot \epsilon m.

If A is a companion linearization for a polynomial expressed in the monomial basis,
Edelman and Murakami proved in the seminal paper [17] thatA+\delta A has as eigenvalues
the roots of p+ \delta p, with \| \delta p\| \lesssim \| p\| 2\epsilon m. Here, both p and p+ \delta p are assumed to be
monic, and we denote by \| p\| the norm of the vectors of coefficients of p(x). More
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recently, it has been shown that the same result holds for colleague linearizations as
well [24].

This result is satisfactory if \| p\| is moderate. Otherwise, one has to resort to
different strategies. One possibility is to perform a preliminary scaling of the matrix
A, considering a diagonal scaling with a matrix D computed in order to minimize
the norm of D - 1AD. This choice is often effective, but is not guaranteed to be
backward stable; counterexamples where it gives inaccurate results can be found even
when generating test polynomials with random coefficients [6]. Nevertheless, this is
the chosen method for MATLAB's roots commands, as it behaves ``well enough"" in
practice for polynomials with moderate norms, and sometimes balancing can deliver
lower forward errors than a perfectly (backward) stable algorithm.

An alternative choice is to rely on the QZ algorithm, in place of QR. This amounts
to computing the generalized Schur form of a pencil A - \lambda B, where A and B contain
the coefficients of the polynomial p(x); this algorithm has the same properties of
the QR iteration, so the computed generalized Schur form S  - \lambda T is the exact one
of A + \delta A  - \lambda (B + \delta B), where \delta A, \delta B are relatively small compared to A and B,
respectively. This guarantees that the error on the polynomial coefficients is bounded
by \| \delta p\| \lesssim \| p\| 2\epsilon m; however, in this case the polynomial is not forced to be monic so
it can always be scaled to have \| p\| = 1, which solves the issue. We refer the reader
to [6] for further details.

\bfthree .\bftwo . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfa \bfs \bfa \bfn \bfe \bfi \bfg \bfe \bfn \bfs \bfo \bfl \bfv \bfe \bfr . The algorithm proposed in this work is an
improved version of the one in [18]. For the purposes of backward error analysis, we
can analyze it as a sequence of unitary similarities described by Givens rotations; if
each of these creates a small \scrO (\epsilon m) backward error, the whole algorithm is backward
stable by composition. Indeed, we can bound the number of rotations to perform with
a polynomial in the size of the problem by assuming that the QR iteration converges
in a predictable number of steps.

The improvements introduced in this work (namely, AED and parallelization) rely
on the same elementary operations, so the backward stability result found in [18] ap-
plies to the presented algorithm as well. More specifically, we recall [18, Theorem 4.1].

Theorem 3.1 (from [18]). Let A = F + uv\ast , where F = F \ast and u, v \in \BbbC n\times k.
Let T be the Schur form computed according to Algorithm 2.1 described in section 2.
Then, there exists a unitary matrix Q such that

T = Q\ast (A+ \delta A)Q, \| \delta A\| F \lesssim (\| F\| F + \| u\| 2\| v\| 2) \epsilon m.

We remark that the algorithm of [18] is stated in more generality, and not only
for colleague linearizations. In this more general context, it might happen4 that
\| u\| 2\| v\| 2 \not \lesssim \| A\| F , so this theorem does not guarantee backward stability with respect
to \| A\| .

Nevertheless, the additional hypotheses coming from considering only colleague
matrices allow one to state a stronger result.

Theorem 3.2. Let A = F + uv\ast be the colleague linearization of a degree n
polynomial p(x) expressed in the Chebyshev basis, as in (2.1), and T its approximate
Schur form computed using the QR iteration described in section 2. Then, \delta A exists
such that

T = Q\ast (A+ \delta A)Q, \| \delta A\| \lesssim \| A\| \cdot \epsilon m.

4As an elementary counterexample, consider F =  - e1e\ast 1 and u = v = e1, where \| u\| 2 = \| v\| 2 =
\| F\| 2 = 1 and \| A\| F = 0.
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1162 ANGELO CASULLI AND LEONARDO ROBOL

Proof. In view of [18, Theorem 4.1], here restated as Theorem 3.1, we have the
bound

\| \delta A\| \lesssim (\| F\| + \| u\| \| v\| ) \epsilon m,

where we have replaced Frobenius norms with 2-norms, since they are equivalent up to
a polynomial in n. Since F is the colleague linearization of Tn(x), it has as eigenvalues
the Chebyshev points inside [ - 1, 1]. F is normal, so we have \| F\| \leq 1. In addition,
u = e1, and therefore, \| u\| = 1. Since for rank 1 matrices and the Euclidean and
spectral norm it holds that \| uv\ast \| = \| u\| \| v\| , we have

uv\ast = A - F =\Rightarrow \| v\| \leq 1 + \| A\| .

Combining these bounds we get

\| \delta A\| \lesssim (1 + \| v\| ) \epsilon m \lesssim (2 + \| A\| )\epsilon m \lesssim \| A\| \epsilon m.

\bfthree .\bfthree . \bfS \bft \bfa \bfb \bfi \bfl \bfi \bft \bfy \bfa \bfs \bfa \bfp \bfo \bfl \bfy \bfn \bfo \bfm \bfi \bfa \bfl \bfr \bfo \bfo \bft fi\bfn \bfd \bfe \bfr . Theorem 3.2 guarantees that the
computed eigenvalues are the exact ones of a slightly perturbed matrix. However,
if we are given a polynomial p(x), is natural to ask if these are also the roots of a
close-by polynomial p+ \delta p, satisfying \| \delta p\| \lesssim \| p\| \epsilon m.

The following result generalizes the bound on the norm of the perturbation that
holds for the unstructured QR iteration [24].

Theorem 3.3. Let p(x) be a monic polynomial in the Chebyshev basis. Then, the
roots obtained by computing the eigenvalues of the colleague linearization (2.1) relying
on the algorithm of section 2 are the roots of p(x) + \delta p(x), where

\| \delta p\| \lesssim \| p\| 2\epsilon m,

where \epsilon m is the unit roundoff, and \| \cdot \| denotes the norm of the vector of coefficients.

Proof. Thanks to Theorem 3.2 we have that the computed eigenvalues are the
ones of A+ \delta A, with \| \delta A\| \lesssim \| A\| \epsilon m. The result follows by [24, Corollary 2.8].

If the polynomial p(x) under consideration has coefficients of moderate norm,
the previous result is satisfactory. Otherwise, the quadratic term \| p\| 2 suggests that
instabilities may arise. In fact, the hypothesis \| p\| \approx 1 is far from being satisfied in
most cases of practical interest. Indeed, if we interpolate an analytic function f(x)
at the Chebyshev points, as we describe in section 4, we expect the magnitude of
its coefficients to decay exponentially with the degree; when---after truncation---we
normalize the polynomial to make it monic the norm of its coefficient vector is bound
to become very large. Hence, one may expect the method to be completely unreliable
for the problem of analytic rootfinding.

The bound given by Theorem 3.3 only depends on the fact that the presented
QR method is backward stable as an eigensolver. Mathematically, the method is
equivalent to calling \tte \tti \ttg (\ttA , `\ttn \tto \ttb \tta \ttl \tta \ttn \ttc \tte ') in MATLAB, where \ttA is the colleague
linearization for p(x).

We now compare these approaches on a simple example: we approximate f(x) =
ex sin(800x) on [ - 1, 1] by Chebyshev interpolation using Chebfun [8], which yields
a polynomial of degree 891. Then, we compute the roots using the structured QR
iteration described in section 2 (\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts ), and the (balanced and unbalanced) QR
implemented by the \tte \tti \ttg function in MATLAB.

The left plot of Figure 2 shows the absolute errors on the computed roots that are
in [ - 1, 1] (which are known exactly for f(x)). Clearly, the structured QR (identified
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\tte \tti \ttg \ttn \ttb 
\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts 

(a) Comparison of the errors produced on the
roots by the MATLAB command \tte \tti \ttg without
balancing and by \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts .

0 200 400

10 - 16

10 - 14

E
rr
or

\tte \tti \ttg 
\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts 

(b) Comparison of the errors produced on the
roots by the MATLAB command \tte \tti \ttg and by
\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts .

Fig. 2. Comparison of the errors produced during the computations of the zeros of ex sin(800x)
in [ - 1, 1]. The zeros are computed finding the roots of the Chebyshev interpolant using a QR
algorithm with and without balancing and the algorithm \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts . The exact zeros of the function
are computed analytically.

by \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts ) outperforms the unbalanced QR (identified by \tte \tti \ttg \ttn \ttb ) with respect
to accuracy, despite the mathematical equivalence of these two approaches. Using
balancing with \tte \tti \ttg greatly improves the accuracy, as shown by the right plot in
Figure 2, and yields about the same accuracy of the proposed algorithm (\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts ).

The plots report forward errors, but for the theoretical analysis we prefer to
work with backward errors instead. If c is the vector of coefficients of p(x), given n
approximation to the roots yj , for j = 1, . . . , n, we may define the relative backward
error as follows:
(3.1)

B(p;x) := min
\alpha \in \BbbR 

\| c - \alpha \^c\| 2
\| c\| 2

, p(x) =

n\sum 
j=0

cjTj(x),

n\prod 
j=1

(x - yj) =

n\sum 
j=0

\^cjTj(x).

The number B(p;x) measures the distance of the polynomial p(x) to the closest
polynomial of the same degree which vanishes at the computed roots. The backward
error for this example is around 1 \cdot 10 - 11 for both \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts and \tte \tti \ttg , but is about
5 \cdot 10 - 7 for \tte \tti \ttg without balancing. As already mentioned, this unexpected stability
is in contrast with the fact that \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts is mathematically equivalent to the QR
algorithm without balancing.

The rest of this section is devoted to analyzing the backward stability of the
approach in a polynomial sense, i.e., to deriving bounds of the form

(3.2) \| \delta p\| \lesssim C\| p\| \epsilon m.

We recall that, for the standard unbalanced QR iteration the results by Edelman and
Murakami [17] yield C \approx \| p\| . We show that in our approach the constant C can be
bounded with a quantity that depends on some features of the magnitude distributions
in the vectors u, v during the QR iteration, and this quantity is as follows:
(i) Explicitly computable: it can be given as output by the algorithm at (almost)

no additional cost.
(ii) Typically very small for the cases of interest, as we show in the numerical ex-

periments.
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1164 ANGELO CASULLI AND LEONARDO ROBOL

Unfortunately, we cannot guarantee C to be always small. However, in our numerical
experiments we managed to find only one example where C exhibits enough growth
for the results to slightly deteriorate. Despite some effort, we were not able to produce
other examples that were not small variations of the latter.

Definition 3.4. Let u, v be two vectors in \BbbC n. We define \gamma j(u, v) for any positive
integer j as the quantity:

\gamma j(u, v) := sup
i=1,...,n - j

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left[   ui

...
u\mathrm{m}\mathrm{i}\mathrm{n}\{ i+j+1,n\} 

\right]   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

\cdot 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left[   v\mathrm{m}\mathrm{a}\mathrm{x}\{ 1,i - 1\} 

...
vi+j

\right]   
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

.

Intuitively, the above quantity bounds the norm of the submatrix of the rank 1
matrix uv\ast obtained selecting a (j+1)\times (j+1) minor close to the diagonal. This is the
submatrix whose entries are updated during a chasing step. We denote by u(k), v(k)

the vectors obtained after applying k rotations in the algorithm described in section 2,
starting from u(0) := u and v(0) := v. We can now define the supremum over all QR
iterations of the quantities \gamma j(\cdot , \cdot ), and we make use of the following notation:

(3.3) \^\gamma j(p) := sup
k

\gamma j(u
(k), v(k)),

where k varies from 0 to the number of rotations performed in the QR algorithm. We
note that one has the trivial upper bound:

\^\gamma j(p) \leq \| u(k)\| 2\| v(k)\| 2 = \| u\| 2\| v\| 2 \lesssim \| p\| ,

thanks to the fact that the Givens rotations preserve the norms throughout the iter-
ations, and \| u\| 2 = 1, \| v\| 2 \approx \| p\| 2. We now show that the constant C in (3.2) can be
bounded using \^\gamma j(p). In almost all cases, we will have that \^\gamma j(p)\ll \| p\| 2.

To obtain this result, we build on a recent result in [26], which enables one to
bound the backward error on p by looking at the backward errors on the Hermitian
and rank 1 part separately. We state this result (slightly simplified and with the
current notation) for completeness, and to better motivate the next developments.

Theorem 3.5 (from [26]). Let A = F +uv\ast be the linearization for a polynomial
p(x) expressed in the Chebyshev basis given by (2.1). Consider perturbations \| \delta F\| 2 \leq 
\epsilon F , \| \delta u\| \leq \epsilon u, and \| \delta v\| \leq \epsilon v. Then, the matrix A+\delta A := F +\delta F +(u+\delta u)(v+\delta v)\ast 

linearizes the polynomial p+ \delta p, where \| \delta p\| \lesssim \| v\| 2\epsilon u + \epsilon v + \| v\| 2\epsilon F .
In our case, bounds on the perturbation on F, u, v are guaranteed by the following

result.

Lemma 3.6. Let C = F + uv\ast be the colleague linearization for a polynomial
expressed in the Chebyshev basis. Let \^\gamma j(p) be the constant defined in (3.3). If the
Schur form is computed with the algorithm described in section 2, then it is the exact
Schur form of

C + \delta C = F + \delta F + (u+ \delta u)(v + \delta v),

where \| \delta u\| 2 \lesssim \| u\| 2\epsilon m, \| \delta v\| 2 \lesssim \| v\| 2\epsilon m, \delta F = \delta F \ast , and \| \delta F\| \lesssim \^\gamma j(p) \cdot \| F\| 2\epsilon m,
where j = 1 in the single shift case, and j = 2 in the double shift one.

Proof. Throughout this proof, we denote by d, \beta , u, v the vectors of the represen-
tation at a generic step of the QR iteration, dropping the indices k.

D
ow

nl
oa

de
d 

04
/3

0/
24

 to
 1

92
.1

67
.2

04
.2

53
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-STRUCTURED QR FOR CHEBYSHEV ROOTFINDING 1165

The Hermitian-plus-rank-one structure preservation in the backward error is an
immediate consequence of using the generators d, \beta , u, v for storing the matrix A.
Hence, the Schur form computed according to the algorithm described in section 2
can be written as the exact Schur form of a slightly perturbed matrix:

T = Q\ast (F + \delta F + (u+ \delta u)(v + \delta v)\ast )Q

for some unitary matrix Q and perturbations \delta F = \delta F \ast , \delta u, and \delta v. The bounds on
the backward errors on u, v follow by standard backward error analysis since all the
rotations G are unitary.

The Hermitian part F is not computed directly, rather it is is implicitly deter-
mined by the vectors d, \beta , u, v. Thanks to the symmetry, we may just prove that the
backward error on the lower triangular part is bounded. The vectors d, \beta are contam-
inated with an error that can be accounted for in \delta F and is created when applying a
rotation on the small blocks around the diagonal as in (2.6) (for the single shift case)
and in (2.8), (2.10) for the double shift one.

In the single shift case, the updated d, \beta are obtained5 by applying unitary op-
erations on the 3 \times 3 matrix B that contains one superdiagonal and up to the third
subdiagonal of the matrix A. This is computed relying on (2.4), and the backward
error can be bounded by \| B\| 2\epsilon m up to a small constant. When operating on a generic
block we have in the single shift case

B = Fi:i+2,i - 1:i+1 +W,

where W is constructed according to (2.2) and (2.3) using u, v; in particular, W is
obtained selecting a few entries from uv\ast , and satisfies \| W\| 2 \leq \gamma 1(u, v) \leq \^\gamma 1(p).
Using 1\surd 

2
\leq \| F\| 2 \leq 1 we obtain \| B\| \lesssim \^\gamma 1(p) \cdot \| F\| 2 which in turn implies that

applying Givens rotations on B and discarding backward errors on diagonals and
subdiagonal entries of F yields the upper bounds

| \delta Fij | \lesssim \^\gamma 1(p) \cdot \| F\| 2\epsilon m, i \in \{ j, j + 1\} .

It now remains to show that the elements below the first subdiagonal, which are only
implicitly determined through u, v, respect a similar bound. We consider a single
rotation G acting on two consecutive indices (s, s + 1). By standard backward error
analysis, we have that the floating point result for applying G to a vector w will have
the form fl [Gw] = (G+ \delta G)w, where \| \delta G\| \lesssim w [22].

Thanks to the upper Hessenberg structure of A and A + \delta A, for every i > j + 1
we may write

0 = fl [G(A+ \delta A)G\ast ]ij = fl [GFG\ast ]ij + ((G+ \delta Gu)u)i((G+ \delta Gv)v)j .

Hence, at the first order we compute the exact unitary transformation of a perturbed
matrix F + \delta F + (G+ \delta Gu)uv

\ast (G+ \delta Gv)
\ast , such that

0 = Fij + \delta Fij + uivj + (\delta Guu)ivj + ui(\delta Gvv)
\ast 
j

=\Rightarrow | \delta Fij | \leq | (\delta Guu)i| | vj | + | ui| | (\delta Gvv)j | ,

5We have extended the matrix B with one more column on the left with respect to the one in
(2.6) to also take into account the update to \beta i - 1, even though in section 2.1.2 it is described as a
separate step.
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1166 ANGELO CASULLI AND LEONARDO ROBOL

since Fij + uivj = 0. We now observe that

\| \delta Guu\| 2 \lesssim 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ us

us+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\epsilon m, \| \delta Gvv\| 2 \lesssim 

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ vs
vs+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\epsilon m.

Hence, we can bound the magnitude of \delta Fij by

| \delta Fij | \lesssim 
\biggl( \bigm\| \bigm\| \bigm\| \bigm\| \biggl[ us

us+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

| vj | + | ui| 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ vs

vs+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

\biggr) 
\epsilon m.

Since we are in the lower triangular part below the first subdiagonal, we have that

Fs:s+1,j =  - us:s+1vj =\Rightarrow 
\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ us

us+1

\biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
2

| vj | = \| Fs:s+1,j\| 2 \leq \| F\| 2,

and similarly for the other term. Hence, for these lower subdiagonal elements we
can guarantee | \delta Fij | \leq \| F\| 2\epsilon m, and therefore, we have the global bound \| \delta F\| 2 \lesssim 
\^\gamma 1(p) \cdot \| F\| 2\epsilon m.

Repeating the same steps for the double shift case yields essentially the same
result, with the only exception that two upper diagonals instead of one need to be
considered in (2.8) and (2.10); hence, we have \| \delta F\| \lesssim \^\gamma 2(p) \cdot \| F\| 2\epsilon m.

We can now prove the main result, which uses the structure of the matrix back-
ward error to characterize the backward error on the polynomial coefficients.

Theorem 3.7. Let C = F + uv\ast be the colleague matrix of a monic polynomial
p(x), and let \^\gamma j(p) be defined as in (3.3). Then, the eigenvalues computed by the
structured QR iteration of section 2 are the roots of a polynomial p+ \delta p satisfying

\| \delta p\| \lesssim \^\gamma j(p) \cdot \| p\| \cdot \epsilon m,

where j = 1 in the single shift case, and j = 2 for the double shift one.

Proof. In view of Lemma 3.6, we have the backward error bound \| \delta F\| \lesssim \^\gamma j(p)\epsilon m,
where j is either 1 or 2 depending on the chosen shift degree. Concerning u, v, by
standard backward error analysis of the Givens rotations we obtain \| \delta u\| \lesssim \epsilon m and
\| \delta v\| \lesssim \| v\| \epsilon m, since \| u\| = 1. We use these different bounds on the backward errors
in Theorem 3.5 to obtain \| \delta p\| \lesssim \^\gamma j(p)\| p\| \epsilon m.

\bffour . \bfR \bfo \bfo \bft fi\bfn \bfd \bfi \bfn \bfg \bff \bfo \bfr \bfa \bfn \bfa \bfl \bfy \bft \bfi \bfc \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn \bfs \bfo \bfn [ - \bfone , \bfone ]. The tools developed in the
previous section can be used for approximating the roots of an analytic function f(x)
over [ - 1, 1]. This can be achieved by finding the roots of the Chebyshev interpolant
of the function, using the presented algorithm for the computation of the eigenvalues
of the colleague matrix.

From a high-level perspective, the approach works as follows:
(i) The function f(x) is evaluated at the Chebyshev points xi, i = 1, . . . , n, and

its polynomial interpolant at those points is computed using the FFT (see [28]).
The degree is adaptively chosen to ensure that \| f(x) - p(x)\| \infty \lesssim \epsilon m.

(ii) The roots of the interpolating polynomial are computed using the QR iteration
proposed in section 2.1.3.

(iii) Among the computed roots, the ones in [ - 1, 1] are returned by the algorithm.
We refer to the behavior of the \ttr \tto \tto \ttt \tts command in Chebfun [8, 28] for what concerns
points (i) and (iii), and we employ the structured QR iteration for addressing point
(ii). We now discuss why we generally expect \^\gamma j(p) to be small on such examples.
Let us recall the definition of a Bernstein ellipse.
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Definition 4.1. Let \rho \geq 1. The Bernstein ellipse E\rho is the set

E\rho :=

\biggl\{ 
z + z - 1

2
, | z| = \rho 

\biggr\} 
\subseteq \BbbC .

Bernstein ellipses are the Chebyshev analogue of circles for Taylor series. If a
function is analytic inside E\rho , the coefficients of its Chebyshev series decay as \scrO (\rho  - k),
and the constant depends on the maximum of the absolute value of the function on E\rho .
We refer the reader to [28, Chapter 8] for further details. Remarkably, the polynomial
interpolant at the Chebyshev points, which are numerically much easier to determine
than the coefficients of the Chebyshev series, have the same decay property, just
weakened by a factor of 2 (see the proof of [28, Theorem 8.2] and Chapter 4 on
aliasing in the same book).

As already pointed out, normalizing such polynomial approximant to be monic re-
quires one to divide by a very small leading coefficient, making the norm of polynomial
coefficients very large.

\bffive . \bfN \bfu \bfm \bfe \bfr \bfi \bfc \bfa \bfl \bfe \bfx \bfp \bfe \bfr \bfi \bfm \bfe \bfn \bft \bfs . The experiments have been run on a server with
two Intel Xeon E5-2650v4 CPUs with 12 cores and 24 threads each, running at 2.20
GHz, using MATLAB R2017a with the Intel Math Kernel Library Version 11.3.1.
The parallel implementation is based on OpenMP. Throughout this section, we refer
to the algorithm described in section 2 as \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts .

\bffive .\bfone . \bfA \bfc \bfc \bfu \bfr \bfa \bfc \bfy . We have tested the accuracy of the proposed algorithm by com-
puting the roots of several polynomials; we have tested both random polynomials of
different degrees, and the more representative example of polynomials obtained by
approximating smooth functions over [ - 1, 1]. We have also tested random oscillatory
functions generated with the Chebfun command \ttr \tta \ttn \ttd \ttn \ttf \ttu \ttn . For \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts , and the
QR iteration with and without balancing we have computed the backward errors on
the original polynomial.

The results are summarized in Table 1. For each test, the method also returns
the value of \^\rho 1(p) computed during the iterations. We see that this value is relatively
small for all functions considered, except for f(x) = sin(1/(x2 + 10 - 2)). In fact, the
accuracy on this particular example is not on par with the QR iteration. However, we
remark that the accuracy for the computed roots in [ - 1, 1] (which are easy to com-
pute explicitly in this case) is at the machine precision level, and the only inaccurate
roots are the ones close to the boundary of the Bernstein ellipse where the function is
defined. We have not been able to find other examples (except ones based on modify-
ing this particular function) where this happens. We are still unaware of whether the
algorithm may be modified (for instance, with a smarter shifting strategy) to avoid
this growth. Upon closer inspection, it seems to be caused by a single entry in the
vectors u, v which is growing large.

We note that the QR without balancing performs poorly in all the cases where
analytic functions are involved since these correspond to companion matrices with
a large norm. The behavior is instead comparable to the balanced case (and to
\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts ) for polynomials with random Chebyshev coefficients.

\bffive .\bftwo . \bfP \bfe \bfr \bff \bfo \bfr \bfm \bfa \bfn \bfc \bfe \bfs \bfa \bfn \bfd \bfa \bfs \bfy \bfm \bfp \bft \bfo \bft \bfi \bfc \bfc \bfo \bfm \bfp \bfl \bfe \bfx \bfi \bft \bfy . We tested the speed of the
proposed algorithm experimentally. The single shift iteration has been implemented
in FORTRAN 90 and a MEX file has been used to interface it with MATLAB.

First, we have tested the speed up obtained by modifying the algorithm of [18]
introducing the aggressive early deflation strategy. As is visible in Figure 3a, the
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1168 ANGELO CASULLI AND LEONARDO ROBOL

Table 1
Relative backward errors on the polynomial coefficients obtained using different methods, as

defined in (3.1). chebzeros refers to the fast unbalanced QR iteration presented in this paper, eig is
the balanced QR implemented in LAPACK, as included in MATLAB, and eig nb is the unbalanced
QR in LAPACK. The symbol pn(x) is used to denote a monic polynomial of degree n where the
coefficients of degree smaller than n are chosen according to a Gaussian distribution of N(0, 1). The
column named degree reports the degree of the polynomial approximant. randnfun refers to random
oscillatory functions generated with this command included in Chebfun. J0(x) denotes the Bessel
function of the first kind. The column \^\gamma 1(p) denotes the amplification factor for the backward error
on the polynomial predicted by Theorem 3.7, \| p\| 2 the norm of the monic polynomial, and \# its the
total number of iterations required for convergence.

f(x) \mathrm{D}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{e}\mathrm{e} \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts \tte \tti \ttg \tte \tti \ttg \ttn \ttb \^\gamma 1(p) \| p\| 2 \# \mathrm{i}\mathrm{t}\mathrm{s}

p100(x) 100 1.7 \times 10 - 12 7.6 \times 10 - 13 8.6 \times 10 - 13 1.02 5.18 262

p200(x) 200 1.6 \times 10 - 12 2.5 \times 10 - 12 2.1 \times 10 - 12 7.1 \times 10 - 1 6.88 501

p500(x) 500 6.1 \times 10 - 12 1.5 \times 10 - 11 2.8 \times 10 - 11 5.0 \times 10 - 1 1.1 \times 101 1180

p1000(x) 1000 2.2 \times 10 - 11 1.0 \times 10 - 10 7.9 \times 10 - 11 1.35 1.6 \times 101 1896

\mathrm{l}\mathrm{o}\mathrm{g}(1 + x + 10 - 3) 688 7.7 \times 10 - 12 1.3 \times 10 - 11 1.8 \times 10 - 2 7.0 \times 103 3.5 \times 1015 1734\surd 
x + 1.01  - \mathrm{s}\mathrm{i}\mathrm{n}(102x) 180 7.4 \times 10 - 13 3.2 \times 10 - 13 7.2 \times 10 - 6 1.4 \times 101 1.1 \times 1015 522

ex \mathrm{s}\mathrm{i}\mathrm{n}(800x) 891 1.2 \times 10 - 11 9.2 \times 10 - 12 5.7 \times 10 - 7 3.01 7.3 \times 1013 1963

\mathrm{s}\mathrm{i}\mathrm{n}( 1

x2+10 - 2 ) 1430 1.6 \times 10 - 6 1.2 \times 10 - 11 2.6 \times 10 - 1 4.2 \times 108 3.2 \times 1015 2818

\ttr \tta \ttn \ttd \ttn \ttf \ttu \ttn (\ttone \tte -\ttone ) 711 3.6 \times 10 - 12 4.0 \times 10 - 12 4.2 \times 10 - 7 2.58 1.1 \times 1014 1780

\ttr \tta \ttn \ttd \ttn \ttf \ttu \ttn (\ttone \tte -\tttwo ) 710 3.8 \times 10 - 12 2.8 \times 10 - 12 1.6 \times 10 - 7 3.47 8.2 \times 1013 1754

\ttr \tta \ttn \ttd \ttn \ttf \ttu \ttn (\ttfive \tte -\ttthree ) 1355 6.9 \times 10 - 12 6.9 \times 10 - 12 1.6 \times 10 - 6 1.66 4.7 \times 1013 2846

J0(20x) 50 3.3 \times 10 - 14 1.9 \times 10 - 14 2.4 \times 10 - 14 9.4 \times 101 1.2 \times 1015 154

J0(100x) 148 1.3 \times 10 - 13 1.5 \times 10 - 13 2.6 \times 10 - 11 1.4 \times 101 4.7 \times 1014 388

e
x2 - 1

2  - 1

10 - 2+x2 380 4.5 \times 10 - 13 1.7 \times 10 - 13 6.5 \times 10 - 1 1.2 \times 103 1.2 \times 1016 1192

e
x2 - 1

2  - 1

10 - 4+x2 3632 3.6 \times 10 - 13 3.0 \times 10 - 13 9.6 \times 10 - 1 9.3 \times 102 1.3 \times 1016 6480
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(a) Comparison of the CPU time of the
algorithm implemented with and without
the aggressive early deflation. Both the al-
gorithms have been executed sequentially,
using only one core.

101 102 103 104
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100

102

104

n

T
im

e(
s)

\ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts 
\tte \tti \ttg 

(b) Comparison of the CPU time of the algo-
rithm \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts with the CPU time taken by
the MATLAB command \tte \tti \ttg . Both the algo-
rithms have been executed using four cores.

Fig. 3.

speed up is considerable for large matrices. In more detail, Figure 3a compares the
CPU time of the two algorithms for randomly generated polynomials for different
values of the degree n.

In Figure 3b we compare \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts with the MATLAB command \tte \tti \ttg applied to
the companion matrix in the Chebyshev basis as in (2.1). We observe that \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts 
is faster than \tte \tti \ttg already for n about 10. For polynomials of a very high degree the
difference of the CPU time is remarkable. This fact is coherent with the theory since
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Fig. 4. Comparison of the clock time of \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts exploiting parallelism using 1, 4, 8, 16, 24,
and 48 cores, for the computation of the roots of random polynomials expressed in the Chebyshev
basis, with different degrees n.

the asymptotic cost of \ttc \tth \tte \ttb \ttz \tte \ttr \tto \tts is \scrO (n2) while the asymptotic cost of \tte \tti \ttg is \scrO (n3).
Then, we enabled the concurrency on the implementation as described in sec-

tion 2.3, and again we have tested the performance for different values of n. In order
to attain optimal performances, the aggressive early deflation needs to provide a num-
ber of shifts that is larger than the number of available cores; hence, the dimension
of the block subject to the AED has been increased proportionally to the number of
available cores. After some tuning, it has been found the optimal choice to be about
nine times the number of available cores.

This choice produces a number of shifts that is about six times the number of
parallel tasks. As the dimension of the problem decreases, thanks to deflations, the
use of a large number of cores becomes less advantageous. Hence, the implementation
halves the number of concurrent tasks (and hence the needed shifts) when the size of
the matrix becomes smaller than 64 times the number of used cores.

In Figure 4 are reported the clock times needed for the computation using 1, 4,
8, 16, 24, and 48 cores. It is immediate to note the good performances of the parallel
implementation already with four cores, which brings a speed up of about 300\%. The
gain from increasing the concurrency is reduced as the number of cores increases up
to 48. We note that the server only had 24 combined physical cores, and going above
12 required communication between the different CPUs, which inevitably reduces
the efficiency of the parallelization. Considering that most consumer hardware has
between 2 and 8 or 16 cores, this shows that the method is well tuned for the currently
available architectures.

\bfsix . \bfC \bfo \bfn \bfc \bfl \bfu \bfs \bfi \bfo \bfn \bfs . A quadratic time structured QR algorithm for Hermitian-plus-
rank-one matrices has been presented by improving the ideas originally discussed
in [18]. The method relies on a structured representation for the matrix that requires
one to store only four vectors. We have shown that it is possible and advantageous
to perform aggressive early deflation in this format, and that the structured repre-
sentation allows one to easily parallelize the scheme avoiding many of the difficulties
present in dense chasing algorithms.

The backward stability of the method has been carefully analyzed, with a partic-
ular focus on the use of the algorithm for polynomial rootfinding in the Chebyshev
basis. It has been shown that, under suitable assumptions that are easy to verify
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1170 ANGELO CASULLI AND LEONARDO ROBOL

at runtime, the method has a small backward error on the polynomial coefficients, a
property that is not present in the balanced and unbalanced QR iteration. Numerical
experiments confirm the stability in the vast majority of the considered cases, and in
particular when dealing with polynomial approximating smooth functions. We also
show that this criterion is effective in detecting the cases where there could have been
some accuracy loss. In all the cases considered the roots in [ - 1, 1], which are the ones
of interest, were computed up to machine precision.

\bfA \bfc \bfk \bfn \bfo \bfw \bfl \bfe \bfd \bfg \bfm \bfe \bfn \bft . We wish to thank the referees, who helped to greatly im-
prove the clarity of this manuscript.
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