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We present an off-shell generating function for all cubic interactions of higher spin gauge fields
constructed in Manvelyan et al. (2010) [1]. It is a generalization of the on-shell generating function
proposed by Sagnotti and Taronna [2], is written in a very compact way, and turns out to have a
remarkable structure.
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1. Introduction and notations

Higher spin gauge field theory is one of the most important and
puzzling problems in modern quantum field theory. It is a subject
of many articles and always stays in the center of attention during
last thirty years. Despite the fact that consistent equations of mo-
tion for higher spin gauge fields are known over twenty years [3],
the question of existence of Lagrangians for interacting higher spin
gauge fields is still open. The subject of special interest is a mini-
mal selfinteraction of even spin gauge fields, where one can naively
expect the existence of an Einstein–Hilbert type nonlinear action
for any single even spin gauge field. Although there are known
restrictions on higher spin theories in flat space–time, the recent
development [1] has shown that there is a local higher derivative cu-
bic Lagrangian for gauge fields with any higher spins. This shifts the
no-go theorems to the quartic power of fields in interaction La-
grangians, where one can expect the final battle for the existence
of local (or nonlocal) Lagrangians for interacting HS gauge field
theory in flat space.

The free Lagrangian for higher spin gauge fields both in flat
space and in constantly curved backgrounds (dS and AdS) are
known over thirty years [4]. In contrast to free theory, attempts
to construct Lagrangians for interacting theories haven’t been suc-
cessful yet beyond the cubic vertices. In this Letter we are going to
discuss only trilinear interactions of higher spin gauge fields.
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Our recent results [1,5–8] on higher spin gauge field cubic in-
teractions in flat space, which certainly reproduce the flat limit of
the Fradkin–Vasiliev vertex for higher spin coupling to gravity [9],
show that all interactions of higher spin gauge fields with any
spins s1, s2, s3 both in flat space and in dS or AdS are unique.1

This was already proven for some low spin cases of both the
Fradkin–Vasiliev vertex for 2, s, s and the nonabelian vertex for
1, s, s in [10].

The first important step towards cubic interactions in higher
spin gauge field theory was done in 1984 by Berends, Burgers and
van Dam [11]. They constructed a cubic selfinteraction Lagrangian
for spin three gauge fields and proved impossibility of extension to
higher orders. Their arguments are based on gauge algebra, which
does not close for a single spin three nonabelian field. The au-
thors give an optimistic hope that it will be possible to extend
this Lagrangian to higher orders if one takes into account correc-
tions from interactions with gauge fields with spins higher than
three. A recent discussion on this subject appeared from Bekaert,
Boulanger and Leclerq [12]. They show the impossibility to close
this (spin 3) algebra taking into account corrections from interac-
tions of other fields with spins higher (or lower) than three. It is
not yet known whether there is or there is not any nonlinear self-
interaction for a spin three gauge field in the background space
with nonzero cosmological constant (pure spin three theory).

Another important step was done by Fradkin and Vasiliev in
[9] where coupling of higher spin gauge fields to linearized gravity
was constructed in the constantly curved background. The inter-
esting property of this Lagrangian is it’s non-analyticity in the cos-

1 The cubic interaction Lagrangian is unique up to partial integration and field
redefinition.
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mological constant, therefore excluding a flat space limit. However
it was shown already in [10] that after rescaling of higher spin
gauge fields one can observe a flat limit for the Fradkin–Vasiliev
interactions. In our approach the spin s gauge field has scaling
dimension [length]s−2, therefore the Fradkin–Vasiliev vertex has a
flat limit with 2s − 2 derivatives (minimal possible number) in the
2 − s − s interaction which has the same scaling dimension as the
Einstein–Hilbert Lagrangian terms. As it was shown by Metsaev in
[13] using a light cone gauge approach, there are three different
couplings to linearized gravity with different numbers of deriva-
tives for any higher spin s field, and in general min{s1, s2, s3} + 1
different possibilities with different numbers of derivatives for the
s1 − s2 − s3 interaction. All these interactions were derived in a
covariant off-shell formulation in [1].

In the recent paper [2] by Sagnotti and Taronna the authors
proposed an on-shell generating function for the general interac-
tion presented in [1] from a string theory consideration. In this
article we are going to present an off-shell extension of that gener-
ating function which can surprisingly be enhanced with a beautiful
Grassmann structure, the string origin of which is not clear yet.

For some important results on higher spin cubic interactions
see [14–18] and references therein. For recent reviews see [19].
We should note also that a connection between nonabelian tensor
gauge theories and string amplitudes was also explored in [20].

In this Letter we consider a higher spin gauge field theory
in Fronsdal’s formulation. The spin s field is a rank s symmet-
ric, double traceless tensor and we consider here only one copy
for any spin, so these interactions are for even spin gauge field
(self)interactions only.

To continue with this subject we introduce here briefly our
standard notations coming from our previous papers about HSF
(see for example [21]). As usual we utilize instead of symmetric
tensors such as h(s)

μ1μ2···μs (z) the homogeneous polynomials in the
vector aμ of degree s at the base point z

h(s)(z;a) =
∑
μi

(
s∏

i=1

aμi

)
h(s)
μ1μ2···μs (z). (1)

Then we can write the symmetrized gradient, trace and diver-
gence2

Grad : h(s)(z;a) ⇒ Grad h(s+1)(z;a) = (a∇)h(s)(z;a), (2)

Tr : h(s)(z;a) ⇒ Tr h(s−2)(z;a) = 1

s(s − 1)
�ah(s)(z;a), (3)

Div : h(s)(z;a) ⇒ Div h(s−1)(z;a) = 1

s
(∇∂a)h

(s)(z;a). (4)

Here we only present Fronsdal’s Lagrangian in terms of these
conventions3:

L0
(
h(s)(a)

) = −1

2
h(s)(a) ∗a F (s)(a)

+ 1

8s(s − 1)
�ah(s)(a) ∗a �a F (s)(a), (5)

where F (s)(z;a) is the Fronsdal tensor

F (s)(z;a) = �h(s)(z;a) − s(a∇)D(s−1)(z;a), (6)

2 To distinguish easily between “a” and “z” spaces we introduce the notation ∇μ

for space–time derivatives ∂
∂zμ .

3 From now on we will presuppose integration everywhere where it is necessary
(we work with a Lagrangian as with an action) and therefore we will neglect all
d-dimensional space–time total derivatives when making a partial integration.
and D(s−1)(z;a) is the deDonder tensor or traceless divergence of
the higher spin gauge field

D(s−1)(z;a) = Div h(s−1)(z;a) − s − 1

2
(a∇)Tr h(s−2)(z;a), (7)

�a D(s−1)(z;a) = 0. (8)

The initial gauge variation of order zero in the spin s field is

δ(0)h
(s)(z;a) = s(a∇)ε(s−1)(z;a), (9)

with a traceless gauge parameter for the double traceless gauge
field

�aε
(s−1)(z;a) = 0, (10)

�2
ah(s)(z;a) = 0. (11)

2. Free Lagrangian for all higher spin gauge fields

We introduce a generating function for HS gauge fields by

Φ(z;a) =
∞∑

s=0

1

s!h(s)(z;a) (12)

where we assume that the spin s field has scaling dimension s − 2,
the ai vectors have dimension −1, and therefore all terms in the
generating function for higher spin gauge fields (12) have the same
dimension −2. A zeroth order gauge transformation for this field
reads as

δ0
ΛΦ(z;a) = (a∇)Λ(z;a), (13)

δ0
ΛDaΦ(z;a) = �Λ(z;a), (14)

δ0
Λ�aΦ(z;a) = 2(∇∂a)Λ(z;a), (15)

where

Λ(z;a) =
∞∑

s=1

1

(s − 1)!ε
(s−1)(z;a), (16)

is the generating function of the gauge parameters and is dimen-
sionless.4

Fronsdal’s constraint for the gauge parameter reads as

�aΛ(z;a) = 0. (17)

For a spin s field gauge variation we get as expected

δ0
εh(s)(z;a) = s(a∇)ε(s−1)(z;a). (18)

The second Fronsdal constraint of the gauge field reads in these
notations

�2
aΦ(z;a) = 0. (19)

We introduced the “deDonder” operator

Dai = (∂ai ∇i) − 1

2
(ai∇i)�ai . (20)

This operator is “linear” in ∂ai .
Here we write the quadratic Lagrangian for free higher spin

gauge fields in general form using the generating function for HS
fields (12). First we introduce Fronsdal’s operator

Fai = �i − (ai∇i)(∇i∂ai ) + 1

2
(ai∇i)

2�ai , (21)

4 The gauge parameter for spin s field ε(s−1) has scaling dimension s − 1, there-
fore after contraction with s − 1 a-vectors becomes dimensionless.
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or with the help of (20)

Fai = �i − (ai∇i)Dai . (22)

The operator of the equation of motion can be written in the form

Gai = Fai − a2
i

4
�ai Fai . (23)

Now we can write the free Lagrangian for all gauge fields of any
spin in a symmetric elegant form

Lfree(z) = κ

2
exp

[
λ2∂a1∂a2

] ∫
z1 z2

δ(z1 − z)δ(z2 − z)

×
{
(∇1∇2) − λ2 Da1 Da2 − λ4

4
(∇1∇2)�a1�a2

}
× Φ(z1;a1)Φ(z2;a2)|a1=a2=0 (24)

where λ has scaling dimension −1, therefore λ2 compensates the
dimension of the operator in the exponent. We will see that all
relative coupling constants of HS interactions can be expressed as
powers of λ. The parameter κ is a constant which makes the action
dimensionless (analogous to Einstein’s constant and simply con-
nected with the latter). It has scaling dimension 6 − d, where d is
the space–time dimension. For Einstein’s constant κE we get

κ−2
E = κλ4. (25)

It is now obvious that in the free Lagrangian there is no mixing
between gauge fields of different spin. It can also be written in
such forms

Lfree(z) = −1

2
exp

[
λ2∂a1∂a2

]
×

∫
z1

δ(z1 − z)(Ga1)Φ(z1;a1)Φ(z;a2)|a1=a2=0

= −1

2
exp

[
λ2∂a1∂a2

]
×

∫
z2

δ(z2 − z)(Ga2)Φ(z;a1)Φ(z2;a2)|a1=a2=0. (26)

These expressions reproduce Fronsdal’s Lagrangians for all gauge
fields with any spin.

3. Cubic interactions

We are going to present a very beautiful and compact form of
all HS gauge field interactions derived in [1]. First we rewrite the
leading term of a general trilinear interaction of higher spin gauge
fields with any spins s1, s2, s3

5

Lleading
(1)

(
h(s1)(z),h(s2)(z),h(s3)(z)

)
=

∑
α+β+γ =n

1

α!β!γ !
∫

z1,z2,z3

δ(z − z1)δ(z − z2)δ(z − z3)

× [
(∇1∂c)

s3−n+γ (∇2∂a)
s1−n+α(∇3∂b)

s2−n+β

× (∂a∂b)
γ (∂b∂c)

α(∂c∂a)
β
]

× h(s1)(a; z1)h
(s2)(b; z2)h

(s3)(c; z3), (27)

where the number of derivatives is

5 ∇2∂a = ∂
∂aμ ∇μ

2 and so on.
� = s1 + s2 + s3 − 2n, (28)

0 � n � min(s1, s2, s3). (29)

As we see, the minimal and maximal possible numbers of deriva-
tives are

�min = s1 + s2 + s3 − 2 min(s1, s2, s3), (30)

�max = s1 + s2 + s3. (31)

These interactions trivialize only if we have two equal spin values
and the third value is odd. This we call the 
−s−s case, where 
 is
odd. In that case we should have a multiplet of spin s fields, with
at least two charges to couple to the spin 
 field. In the case of

 − 
 − 
 odd spin self interaction, the number of possible charges
in the multiplet should be at least 3. The case of �min is important
also because only in that case the interaction (27) has the same
dimension as the lowest spin field free Lagrangian.

The same Lagrangian can be written in the following way (due
to a constant normalization factor 2�)

Lleading
(1)

(
h(s1)(z),h(s2)(z),h(s3)(z)

)
=

∑
α+β+γ =n

1

α!β!γ !
∫

z1,z2,z3

δ(z − z1)δ(z − z2)δ(z − z3)

× [
(∇12∂c)

s3−n+γ (∇23∂a)
s1−n+α(∇31∂b)

s2−n+β

× (∂a∂b)
γ (∂b∂c)

α(∂c∂a)
β
]

× h(s1)(a; z1)h
(s2)(b; z2)h

(s3)(c; z3), (32)

where

∇12 = ∇1 − ∇2, (33)

∇23 = ∇2 − ∇3, (34)

∇31 = ∇3 − ∇1. (35)

Now we can see that the following expression is a generating func-
tion for the leading term of all interactions of HS gauge fields.

A00 =
∫

z1,z2,z3

δ(z − z1)δ(z − z2)δ(z − z3)exp W

× Φ1

(
z1;a1 + 1

2
∇23

)
Φ2

(
z2;a2 + 1

2
∇31

)

× Φ3

(
z3;a3 + 1

2
∇12

)∣∣∣∣
a1=a2=a3=0

(36)

with

W = λ2

2

[
(∂a1∂a2)(∂a3∇12) + (∂a2∂a3)(∂a1∇23)

+ (∂a3∂a1)(∂a2∇31)
]
. (37)

This can be written in another form

A00(Φ(z)
) =

∫
z1,z2,z3

δ(z − z1,2,3)exp Ŵ

× Φ(z1;a1)Φ(z2;a2)Φ(z3;a3)|a1=a2=a3=0 (38)

where

Ŵ = λ2

2

[
(∂a1∂a2)(∂a3∇12) + (∂a2∂a3)(∂a1∇23) + (∂a3∂a1)(∂a2∇31)

]
+ 1

2

[
(∂a3∇12) + (∂a1∇23) + (∂a2∇31)

]
, (39)∫

δ(z − z1,2,3) =
∫

δ(z − z1)δ(z − z2)δ(z − z3) (40)
z1,z2,z3 z1,z2,z3
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for brevity. Furthermore we will always assume this integration
with delta functions, without writing it explicitly. The operator in
the second row of (39) is a dimensionless operator, therefore it
does not need any dimensional constant multiplier.

Now we can derive all other terms in the Lagrangian using the
following important relation

[exp Ŵ , A] = exp Ŵ [Ŵ , A] + exp Ŵ
[
Ŵ , [Ŵ , A]]

+ exp Ŵ
[
Ŵ ,

[
Ŵ , [Ŵ , A]]] + · · · (41)

for any operator A. And therefore

[
exp Ŵ , (a1∇1)

] = exp Ŵ
[
Ŵ , (a1∇1)

]
, (42)

[
exp Ŵ , (a2∇2)

] = exp Ŵ
[
Ŵ , (a2∇2)

]
, (43)

[
exp Ŵ , (a3∇3)

] = exp Ŵ
[
Ŵ , (a3∇3)

]
. (44)

The following commutators will be used many times while deriv-
ing trace and divergence terms

[
Ŵ , (a1∇1)

] = −λ2

4

[
(∂a2∇2)(∂a3∇12) + (∂a3∇3)(∂a2∇31)

]

+ 1

2

[
λ2(∂a2∂a3) + 1

]∇1∇23, (45)

[
Ŵ , (a2∇2)

] = −λ2

4

[
(∂a3∇3)(∂a1∇23) + (∂a1∇1)(∂a3∇12)

]

+ 1

2

[
λ2(∂a3∂a1) + 1

]∇2∇31, (46)

[
Ŵ , (a3∇3)

] = −λ2

4

[
(∂a1∇1)(∂a2∇31) + (∂a2∇2)(∂a1∇23)

]

+ 1

2

[
λ2(∂a1∂a2) + 1

]∇3∇12. (47)

Note that

∇1∇23 = �3 − �2, (48)

∇2∇31 = �1 − �3, (49)

∇3∇12 = �2 − �1, (50)

which is obvious because6

∇1 + ∇2 + ∇3 = 0. (51)

6 We always understand partial integrations to be performed, working with a La-
grangian as with an action.
We are working with the same type of diagram as in [1].

(52)

Now we take a gauge variation of A00, and find generating func-
tions for all other terms in the cubic Lagrangian. A simple but
elegant structure is exhibited by the first row of the diagram

A10(Φ(z)
) = A30(Φ(z)

) = 0, (53)

A20(Φ(z)
)

= 1

4
exp Ŵ

{+[
λ2(∂a1∂a2) + 1

][
λ2(∂a2∂a3) + 1

]
Da3 Da1

+ [
λ2(∂a2∂a3) + 1

][
λ2(∂a3∂a1) + 1

]
Da1 Da2

+ [
λ2(∂a3∂a1) + 1

][
λ2(∂a1∂a2) + 1

]
Da2 Da3

}
× Φ(z1;a1)Φ(z2;a2)Φ(z3;a3)|a1=a2=a3=0. (54)

Other terms are

A01(Φ(z)
) = 0, (55)

A11(Φ(z)
)

= λ2

16
exp Ŵ

{+[
λ2(∂a1∂a2) + 1

]
(∂a1∇23)�a3 Da2

− [
λ2(∂a1∂a2) + 1

]
(∂a2∇31)�a3 Da1

+ [
λ2(∂a2∂a3) + 1

]
(∂a2∇31)�a1 Da3

− [
λ2(∂a2∂a3) + 1

]
(∂a3∇12)�a1 Da2

+ [
λ2(∂a3∂a1) + 1

]
(∂a3∇12)�a2 Da1

− [
λ2(∂a3∂a1) + 1

]
(∂a1∇23)�a2 Da3

}
× Φ(z1;a1)Φ(z2;a2)Φ(z3;a3)|a1=a2=a3=0 (56)

and so on.
All these expressions can be written in a very elegant form.

First we introduce Grassmann variables by

ηa1 , η̄a1 , ηa2 , η̄a2 , ηa3 , η̄a3 . (57)

Then we change expressions in the formula (38) in a following
way

(∂a1∂a2) → (∂a1∂a2) + 1

4
ηa1 η̄a2�a2 + 1

4
ηa2 η̄a1�a1 , (58)

(∂a2∂a3) → (∂a2∂a3) + 1
ηa2 η̄a3�a3 + 1

ηa3 η̄a2�a2 , (59)

4 4
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(∂a3∂a1) → (∂a3∂a1) + 1

4
ηa3 η̄a1�a1 + 1

4
ηa1 η̄a3�a3 , (60)

(∂a1∇23) → (∂a1∇23) + ηa1 η̄a2 Da2 − ηa1 η̄a3 Da3 , (61)

(∂a2∇31) → (∂a2∇31) + ηa2 η̄a3 Da3 − ηa2 η̄a1 Da1 , (62)

(∂a3∇12) → (∂a3∇12) + ηa3 η̄a1 Da1 − ηa3 η̄a2 Da2 (63)

and can write

A
(
Φ(z)

) =
∫

dηa1 dη̄a1 dηa2 dη̄a2 dηa3 dη̄a3

× (1 + ηa1 η̄a1)(1 + ηa2 η̄a2)(1 + ηa3 η̄a3)

× exp Ŵ Φ(z1;a1)Φ(z2;a2)Φ(z3;a3)|a1=a2=a3=0

(64)

where

Ŵ = 1

2

[
1 + λ2

(
∂a1∂a2 + 1

4
ηa1 η̄a2�a2 + 1

4
ηa2 η̄a1�a1

)]

× [∂a3∇12 + ηa3 η̄a1 Da1 − ηa3 η̄a2 Da2 ]

+ 1

2

[
1 + λ2

(
∂a2∂a3 + 1

4
ηa2 η̄a3�a3 + 1

4
ηa3 η̄a2�a2

)]

× [∂a1∇23 + ηa1 η̄a2 Da2 − ηa1 η̄a3 Da3 ]

+ 1

2

[
1 + λ2

(
∂a3∂a1 + 1

4
ηa3 η̄a1�a1 + 1

4
ηa1 η̄a3�a3

)]

× [∂a2∇31 + ηa2 η̄a3 Da3 − ηa2 η̄a1 Da1 ]. (65)

This operator generates all terms in the cubic interaction of any
three HS fields with any possible number of derivatives � in the
range �min � � � �max. Another possible form of the Ŵ operator
is

Ŵ =
[

1 + λ2
(

∂a1∂a2 + 1

2
ηa1 η̄a2�a2

)]

×
[
(∂a3∇1) + 1

2
ηa3 η̄a1 Da1 − 1

2
ηa3 η̄a2 Da2 + 1

2
ηa3 η̄a3 Da3

]

+
[

1 + λ2
(

∂a2∂a3 + 1

2
ηa2 η̄a3�a3

)]

×
[
(∂a1∇2) + 1

2
ηa1 η̄a2 Da2 − 1

2
ηa1 η̄a3 Da3 + 1

2
ηa1 η̄a1 Da1

]

+
[

1 + λ2
(

∂a3∂a1 + 1

2
ηa3 η̄a1�a1

)]

×
[
(∂a2∇3) + 1

2
ηa2 η̄a3 Da3 − 1

2
ηa2 η̄a1 Da1 + 1

2
ηa2 η̄a2 Da2

]
.

(66)

This case generates the Lagrangian derived in [1]. The leading term
of that Lagrangian is (27). These two operators (65) and (66) gen-
erate two Lagrangians that differ from each other just by partial
integration and field redefinition. All interactions of HS gauge fields
with any number of derivatives are unique and are generated by
both operators (65) and (66).
In the case of (65) we have

(67)

In the case of (66) we have

(68)

Both forms of the same cubic Lagrangian are very useful for further
investigations.

Note added

When the present work was on its final stage for submission, the paper [22]
appeared in the archive which includes an analysis of off-shell cubic interactions in
HS field theories from String theory point of view, using BRST technique. The two
results are closely related.
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