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Abstract

The statistical distributions of active galactic nuclei (AGNs), i.e., accreting supermassive black holes (BHs), in
mass, space, and time are controlled by a series of key properties, namely, the BH–galaxy scaling relations,
Eddington ratio distributions, and fraction of active BH (duty cycle). Shedding light on these properties yields
strong constraints on the AGN triggering mechanisms while providing a clear baseline to create useful mock
catalogs for the planning of large galaxy surveys. Here we delineate a robust methodology to create mock AGN
catalogs built on top of large N-body dark matter simulations via state-of-the-art semiempirical models. We show
that by using as independent tests the AGN clustering at fixed X-ray luminosity, galaxy stellar mass, and BH mass,
along with the fraction of AGNs in groups and clusters, it is possible to significantly narrow down the choice in the
relation between BH mass and host galaxy stellar mass, the duty cycle, and the average Eddington ratio
distribution, delivering well-suited constraints to guide cosmological models for the coevolution of BHs and
galaxies. Avoiding such a step-by-step methodology inevitably leads to strong degeneracies in the final mock
catalogs, severely limiting their usefulness in understanding AGN evolution and in survey planning and testing.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Active galaxies (17); X-ray active galactic
nuclei (2035); AGN host galaxies (2017); Large-scale structure of the universe (902)

1. Introduction

Several semianalytical models and hydrodynamical simula-
tions (e.g., Springel et al. 2005; Hopkins et al. 2006; Menci
et al. 2008) have been developed in recent years to describe the
main mechanisms that fuel the central supermassive black
holes (BHs). With a suitable adjustment of parameters, these
models can explain many aspects of active galactic nucleus
(AGN) phenomenology (e.g., Hopkins et al. 2006, 2008).
Often relying on a rather heavy parameterization of the physics
regulating the cooling, star formation, feedback, and merging
of baryons (e.g., Monaco et al. 2007), semianalytical models of
galaxy evolution can present serious degeneracies (e.g.,
González et al. 2011; Lapi et al. 2018) or even significant
divergences in, e.g., the adopted subgrid physics (Scannapieco
et al. 2012; Nuñez-Castiñeyra et al. 2020). Semiempirical
models (SEMs) represent an original and complementary
methodology to more traditional modeling approaches (e.g.,
Hopkins & Hernquist 2009). The aim of SEMs is to tackle
specific aspects of galaxy and BH evolution in a transparent,
fast, and flexible way, relying on just a few input assumptions
and parameters. The SEMs cannot replace ab initio models of
galaxy and BH evolution but can provide guidance to reduce
the space of parameters and shed light on the viable physical
processes.

Particularly relevant is the application of SEMs to the
creation of active and normal galaxy mock catalogs (e.g.,
Conroy & White 2013), which are a vital component of the
planning of imminent extragalactic surveys such as Euclid
(Laureijs et al. 2011) and the Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST; LSST Science

Collaboration et al. 2009). The first step for the creation of
mocks consists of assigning galaxies to dark matter halos
extracted from large cosmological N-body simulations (e.g.,
Riebe et al. 2013; Klypin et al. 2016) via abundance-matching
techniques (e.g., Kravtsov et al. 2004; Vale & Ostriker 2004;
Shankar et al. 2006; Behroozi et al. 2013a; Moster et al. 2013).
Despite being based on minimal assumptions, the latter are not
immune to important systematics, mostly related to the input
data, which propagate onto the star formation and mass
assembly histories predicted by SEMs (e.g., Grylls et al.
2020b, 2020a; O’Leary et al. 2021).
In the last few years, several studies have focused on the

creation of mock catalogs specifically for AGNs that can be
utilized for the planning and testing of large-scale AGN-
dedicated extragalactic surveys such eROSITA (e.g., Comparat
et al. 2019; Georgakakis et al. 2019; Aird & Coil 2021). These
AGN mocks are built by starting from an empirical galaxy
catalog and assigning to each object a specific accretion rate
that is proportional to the quantity LX/Mstar, drawn randomly
from observationally determined probability distributions PAGN

(LX/Mstar; e.g., Bongiorno et al. 2016; Georgakakis et al. 2017;
Aird et al. 2018). This quantity can be measured directly from
observations and provides an estimate of X-ray emission per
unit stellar mass for a galaxy. The advantage of this
methodology is that by using just a few input relations,
namely, the stellar mass–halo mass relation (from abundance
matching) and the probability distribution of specific accretion
rate PAGN, it allows the creation of a mock catalog of AGNs
that—by design—reproduces the observed X-ray luminosity
function (XLF) and broadly matches the large-scale bias at a
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given host galaxy stellar mass. Using this approach,
Georgakakis et al. (2019) populated cosmological simulations
with AGNs and showed that their clustering properties
(including the signal at small scales) are consistent with state-
of-the-art observational measurements of X-ray or UV/optically
selected samples at different redshifts and accretion luminosities,
supporting the view that the large-scale distribution of AGNs
may be independent of the detailed physics of BH fueling. Some
recent works also tested the same methodology against the large-
scale bias dependence on the X-ray luminosity at different
redshifts (Georgakakis et al. 2019; Aird & Coil 2021).

However, in these models, key information such as BH mass
is largely bypassed, and the AGN duty cycle (i.e., the
probability of a galaxy being active above a certain luminosity
or threshold) is not considered as a separate model input
parameter, limiting the efficacy of these models in shedding
light on the processes controlling the coevolution of BHs and
their hosts. Moreover, in these models, the assignment of
specific accretion rates to mock galaxies by using PAGN is a
stochastic process, assumed to be independent of the environ-
ment (centrals and satellites of similar stellar mass share the
same probability of being active).

In this paper, we instead create mock catalogs of AGNs by
varying different input model parameters, namely the stellar
mass–halo mass and BH mass–stellar mass relations, the AGN
duty cycle, the Eddington ratio distribution, and the fraction of
satellite AGNs (controlled by the parameter Q, defined later),
and test the effect on several observables, such as the AGN
XLF, the PAGN distribution, and the AGN large-scale bias as a
function of BH/stellar mass and luminosity. More generally,
we demonstrate in this study that calibrating the AGN mocks
on the bias at fixed BH mass, stellar mass, and AGN luminosity
provides a self-consistent and robust route to break the most
relevant degeneracies and narrow down the choice of input
parameters. For example, Shankar et al. (2020) emphasized that
current measurements of AGN clustering at z= 0.25 (Krumpe
et al. 2015) are already sufficient to constrain, in ways
independent of the AGN duty cycle, the scaling relations of
BHs (e.g., Kormendy & Ho 2013; Reines & Volonteri 2015;
Savorgnan & Graham 2016; Shankar et al. 2016; Davis et al.
2018). The main goal of this paper is to provide a complete
framework to build a robust and realistic AGN mock catalog
that is both consistent with many different and independent
observables and physically sound, being based on the under-
lying scaling relations between BHs and their host galaxies and
dark matter halos.

2. Research Methodology

In this section, we provide a step-by-step description of our
baseline methodology.

1. At a given redshift of reference, in this work z= 0.1, we
extract large catalogs of dark matter halos and subhalos
from large, N-body dark matter simulations. We here rely
on the MultiDark simulation (Riebe et al. 2013). The
catalogs contain both central/parent halos and satellite
halos with unstripped mass at infall.

2. To each parent halo, a central galaxy is assigned, with
stellar mass given by abundance-matching relations at the
redshift of reference (e.g., Grylls et al. 2019), while
satellite halos are assigned a stellar mass at their redshift
of infall.

3. To each galaxy, we assign a BH mass from an empirical
BH mass–galaxy mass relation drawn from several recent
studies (e.g., Shankar et al. 2016).

4. To each galaxy and BH, we then assign an Eddington
ratio λ= Lbol/LEdd, with Lbol the bolometric luminosity
and LEdd the Eddington limit of the BH. The parameter λ
is randomly extracted from a P(λ) distribution described
by a Schechter function, the latter chosen in such a way
as to reproduce the AGN XLF at z= 0.1, for a given
input “duty cycle” (see below). In our reference model,
we ignore, for simplicity, any mass dependence of P(λ)
on, e.g., BH mass. We will discuss in Section 5 the
(moderate) impact of relaxing this assumption. Regard-
less, we note that any mass dependence in P(λ) is
degenerate with the duty cycle (e.g., in the AGN XLF;
Shankar et al. 2013), a model input parameter we explore
thoroughly in this work.

5. To each galaxy/BH, an extinction-corrected X-ray
luminosity LX in the 2–10 keV band is then assigned
from the bolometric luminosity Lbol via up-to-date
bolometric corrections (e.g., Duras et al. 2020).

6. Each galaxy and its associated BH is assigned a duty
cycle, i.e., a probability for a BH of a given MBH of being
active, following empirically based duty cycles (e.g., Man
et al. 2019).

We then generate our mock catalog of AGNs and, by
varying our input parameters, test a number of outputs, such as
the AGN XLF, the AGN specific accretion rate distribution
PAGN, and the AGN large-scale clustering. We focus on
z= 0.1, where the galaxy–BH scaling relations are better
constrained and additional measurements on some of the key
observables, such as AGN–galaxy clustering, are available. We
stress that the methodology we put forward in this work is
applicable to any redshift of interest. In Viitanen et al. 2021, for
example, we apply our methodology to z∼ 1.2, while in
Carraro et al. 2021, we push our methodology up to z∼ 3 and
specifically focus on the correlation with star formation rate,
which is not explicitly included in the present work.

2.1. Connecting Halos to Galaxies and BHs

We start from a large catalog of dark matter halos and
subhalos from MultiDark7-Planck 2 (MDPL2; Riebe et al.
2013) at the redshift z= 0.1. The MDPL2 currently provides
the largest publicly available set of high-resolution and large-
volume N-body simulations (box size of 1000 h−1 Mpc, mass
resolution of 1.51× 109 h−1 Me). The ROCKSTAR halo finder
(Behroozi et al. 2013b) has been applied to the MDPL2
simulations to identify halos and flag those (subhalos) that lie
within the virial radius of a more massive host halo. The mass
of the dark matter halo is defined as the virial mass in the case
of host halos and the infall progenitor virial mass for subhalos.
From abundance-matching techniques, one can infer the

stellar mass–halo mass relation, which shows that the baryons
are converted into stars with very different efficiencies in halos
of diverse mass (e.g., Shankar et al. 2006; Moster et al. 2013).
We adopt the parameterization for the stellar-to-halo mass ratio
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by Moster et al. (2013),
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where N is the normalization of the stellar-to-halo mass ratio,
Mn is a characteristic mass where the ratio is equal to the
normalization N, and the two slopes β and γ indicate the
behavior at the low and high halo mass ends, respectively. We
fixed these redshift-dependent parameters as in Grylls et al.
(2019), who suggested a steeper slope than Moster et al. (2013)
for the high-mass end (as also shown in Shankar et al.
2014, 2017; Kravtsov et al. 2018), which better fits the Sloan
Digital Sky Survey Data Release 7 (SDSS DR7) from Meert
et al. (2015, 2016), with improved galaxy photometry.8

Figure 1 (left panel) shows the stellar mass functions at
z= 0.1 presented in Bernardi et al. (2017), based on Sérsic-
exponential fits to the surface brightness profiles of galaxies in
the SDSS DR7 and characterized by significantly higher
number densities of massive galaxies (>1012 M*) when
compared to estimates by, e.g., Bell et al. (2003), Bernardi
et al. (2010), Baldry et al. (2012), and Moustakas et al. (2013).

2.2. Input MBH–Mstar Relation

As a second step, to each galaxy, we assign a BH mass
assuming the following two scaling relations.

1. The BH mass–stellar mass relation as derived in Shankar
et al. (2016, hereafter BHSMR-Sha16 debiased),
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with a mass-dependent intrinsic scatter given by
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as presented in Equation (5) of Shankar et al. (2019).
Note that this equation is applicable to galaxies with
stellar masses log Mstar/Me 10.

2. The relation derived for the Savorgnan & Graham (2016)
sample of galaxies with dynamically measured BH
masses, hereafter BHSMR-SG16 (raw), as presented in
Equation (3) of Shankar et al. (2019), with a scatter of 0.5
dex:
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The right panel of Figure 1 shows the MBH–Mstar relations
defined by Equations (2) and (4) with their associated
dispersions and compared with several other relations from
the recent literature, as labeled. It can be seen from Figure 1
that our two chosen relations bracket the systematic uncertain-
ties in both slope and normalization present in the local BH
mass–galaxy stellar mass relation.
In our reference models throughout, we include the scatters

in the relations described above as random normal dispersions.
However, it may be possible that some correlation between, in
particular, the dispersions in BH mass and galaxy stellar mass
at a given DM halo mass may exist. We thus explore in
Section 5 some of the main consequences for our results of
including a degree of covariance in the scatters and refer to
Viitanen et al. (2021) for a more comprehensive discussion of
implementing a covariant scatter in the input stellar mass–halo
mass and BH mass–stellar mass relations.

2.3. Input Eddington Ratio Distribution

To each galaxy and BH, we assign an Eddington ratio
λ≡ Lbol/LEdd following a P(λ) distribution described by the
following.

Figure 1. Left panel: stellar mass function at z = 0.1 for central and satellite mock galaxies, compared with measurements using SDSS DR7 galaxies. Right panel: BH
mass–stellar mass relation, as put forward by Shankar et al. (2016, debiased) and derived for local galaxy samples with dynamically measured BH masses from
Savorgnan & Graham (2016, raw). TheMBH–Mstar relations as derived for early- and late-type galaxies by Sahu et al. (2019) and AGNs by Reines & Volonteri (2015)
are shown for comparison.

8 We decrease by 0.1 dex the original stellar masses by Grylls et al. (2019) to
further improve the match to the latest stellar mass function by Bernardi et al.
(2017).
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1. A Schechter function,
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with λ in the range λ= 10−4
–101. The Schechter

function is characterized by two free parameters: the knee
λå, where the power-law form of the function cuts off,
and the power-law index α. The Schechter function is
supported by recent studies of the specific accretion rate
distribution of AGNs, such as Bongiorno et al. (2016),
Aird et al. (2017, 2018, 2019), and Georgakakis et al.
(2017).

2. A Gaussian function,
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where ( )llog varies in the range log λ=−4–1, σ is the
standard deviation, and μ is the mean of the distribution.

Both the Schechter and Gaussian input P(λ) are normalized
to unity. Such Eddington ratio distributions have a lower cutoff
at lmin = 10−4, below which the sources are no longer regarded
as AGNs. We chooselmin to be low enough to include even the
faintest AGN recorded in the z= 0.1 AGN XLF, down to

~Llog 41X erg s−1 for BHs with mass Mlog 6BH . We note
that the exact choice oflmin is not too relevant in our modeling.
Lowering/increasing lmin would simply correspond to a
higher/lower duty cycle, i.e., a higher/lower probability for
BHs to active. In Section 5, we explore the effect on our results
of assuming an input BH mass–dependent Eddington ratio
distribution, i.e., P(λ, MBH).

We then assign a bolometric luminosity to each source
according to the Eddington ratio λ and the BH mass. The
bolometric luminosity is then converted into intrinsic rest-
frame 2–10 keV X-ray luminosity via the relation LX=
Lbol/KX, with the bolometric correction KX expressed as
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with a= 10.96, b= 11.93, and c= 17.79 (Duras et al. 2020).

2.4. Input BH Duty Cycle

In general terms, the total accretion probability of a BH
being active at a given Eddington ratio is a convolution of the
duty cycle U(MBH), i.e., the probability of a galaxy/BH being
active as an AGN above a certain luminosity threshold and the
(normalized) Eddington ratio distribution P(λ) being accreting
at a given rate (e.g., Steed & Weinberg 2003; Marconi et al.
2004; Aversa et al. 2015). We here follow the rather common
and broad approximation followed in the continuity equation
formalism of expressing the total accretion probability into a
simple product of the duty U(MBH) and the Eddington ratio
distribution P(λ) (e.g., Small & Blandford 1992; Marconi et al.
2004; Shankar et al. 2009). This choice is extremely flexible
and allows us to disentangle the roles of a mass- and/or time-
dependent duty cycle from an evolving characteristic Edding-
ton ratio λ (e.g., Shankar et al. 2013).

Both the Eddington ratio distribution P(λ) and duty cycle
U(MBH) have been separately studied by different groups. For
the duty cycle in particular, despite the numerous dedicated
works, no clear trend has yet emerged, and controversial results

are present in the literature. For this reason, we decided to test
three different duty cycles for BHs with mass ( ) M Mlog BH
6, as shown in Figure 2:

1. a duty cycle U(MBH) decreasing with BH mass, as derived
in Schulze & Wisotzki (2010) at z= 0.1 for Compton-thin
un/obscured AGNs, hereafter U-SW10 (decr);

2. a duty cycle increasing with BH mass in such a way as to
reproduce the increasing trend with host galaxy stellar
mass as estimated at low redshift (z< 0.1) by Man et al.
(2019) for narrow-line AGNs in host galaxies with

( [ ]) >M Mlog 9star , hereafter U-M19 (incr); and
3. a constant duty cycle U(MBH orMstar)= 0.2, as suggested

by Goulding et al. (2010), hereafter U-G10 (const).

In all cases, we define a duty cycle as the probability of BHs
being active above the minimal Eddington ratio threshold lmin
in our input P(λ) distribution. It is worth noticing that we are
assuming that the duty cycle from Man et al. (2019) can be
applied to both obscured and unobscured AGNs. Given that it
has been derived by using a sample of narrow-line AGNs, we
can consider it as a lower limit. However, a similar duty cycle
increasing with stellar mass was also derived in Georgakakis
et al. (2017) from a sample of Compton-thin un/obscured
AGNs.

2.5. The Q Parameter

The AGN duty cycle U(MBH) is the average fraction of both
central and satellite galaxies that are active at a given stellar or
BH mass above a given threshold. However, the relative
probability of a central and satellite BH being active could still
be different. To allow for this possibility, following Shankar
et al. (2020), we define the total duty cycle as the sum of the
fraction of active central and satellite BHs at a given BH mass,
i.e., U(MBH)=Uc(MBH)+Us(MBH), with Uc and Us the duty
cycles of, respectively, central and satellite galaxies above a
given luminosity or Eddington ratio threshold. We can then
define the parameter Q=Us/Uc as the relative probability of
satellite and central AGNs being active. Constraining the Q
parameter would be, of course, of key importance to shed light
on the different AGN triggering mechanisms. For example, a
high value of Q would point toward satellites being
preferentially active rather than centrals of similar mass, a

Figure 2. Duty cycle U as a function of MBH as derived in Schulze & Wisotzki
(2010, solid line) at z = 0.1, Man et al. (2019, dotted line) at z < 0.1, and
Goulding et al. (2010, dashed line).
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condition that would be difficult to reconcile with a strict
merger-only scenario but possibly still consistent with disk
instability processes (e.g., Gatti et al. 2016).

Previous studies in the literature always assumed Q= 1
(noticeable exceptions are Allevato et al. 2019; Shankar et al.
2020), implying that all central and satellite galaxies share
equal probabilities of being active (e.g., Comparat et al. 2019;
Aird & Coil 2021). The Q parameter can, in principle, be
directly measured from the fraction of satellite galaxies in
groups and clusters of galaxies fsat

AGN (see Gatti et al. 2016, and
references therein). In fact, the Q parameter can be expressed in
terms of fsat

AGN as ( ) [ ]= - -Q f f f f1 1sat
AGN

sat
BH

sat
AGN

sat
BH, where

( )= +f N N Ns s csat
BH is the total fraction of (active and

nonactive) BHs in satellites with host galaxy stellar masses
within Mstar and Mstar+ dMstar (for full details, see Shankar
et al. 2020).

3. Outputs

We then consider different outputs of our mock catalog of
galaxies and BHs at a given z.

1. The AGN XLF,
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where Ψ(MBH)=ΨAGN(MBH)/U(MBH) is the total (active and
nonactive) BH mass function, U(MBH) is the AGN duty cycle,
and P(λ) is the normalized Eddington ratio distribution
with llog min =−4.

1. The specific accretion rate distribution,

( ) ( )

( )
( )

/ /òl l

l

µ = µ

´
l

P L M P L M

U M dlog ,
9

AGN X star
log

X star

star

min

where λ∝ LX/Mstar defines the rate of accretion onto the
central BH scaled relative to the stellar mass of the host galaxy,
and PAGN describes the probability of a galaxy hosting an AGN
of a given LX/Mstar at a given redshift. We can also define the
characteristic lá ñ of the specific accretion rate distribution as
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At variance with many other previous approaches, our flexible
methodology based on an input duty cycle and Eddington ratio
distribution allows us to use the PAGN distribution as an output
rather than an input of our AGN mock catalog, thus providing
an additional valuable constraint independent of AGN cluster-
ing. We will show that the PAGN distribution is particularly
useful in constraining the viable duty cycles and the underlying
BH–galaxy scaling relations.

1. The large-scale bias of mock AGNs with BH mass (and,
similarly, stellar mass) in the range Mlog BH and

+M d Mlog logBH BH following the formalism of Shankar
et al. (2020),
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where ( ) ( ) ( ) ( ( ) ( ))/= +U M U M N M N M QN Mc c sBH BH BH BH BH

is the duty cycle of the central ( ) ( )=U M QU Ms cBH BH is the
duty cycle of the satellite AGN, and ( ) ( )= +N M N McBH BH

( )N Ms BH is the number of central and satellite galaxies in the
stellar mass bin MBH and +M dMBH BH. Similarly, the AGN
large-scale bias can be estimated as a function of BH mass.

4. Results

4.1. AGN XLF and PAGN

We now use the model described in the previous section to
create mock catalogs of AGNs. We vary the input parameters
and study how these changes affect the outputs, such as the
AGN XLF and the specific accretion rate distribution PAGN.
We consider various different cases, and each combination of
model input parameters is shown in Table 1.

Table 1
Model Input Parameters

Mstar–MBH U P(λ) logλå (or logμ) α (or σ) log lá ñAR

Sha16 (debiased) Schulze & Wisotzki (2010) Schechter −0.45 0.15 31.81
Sha16 (debiased) Man et al. (2019) Schechter −1.8 −0.15 31.56
Sha16 (debiased) Goulding et al. (2010) Schechter −1.9 0 31.56

SG16 (raw) Schulze & Wisotzki (2010) Schechter −1.3 −0.35 32.93
SG16 (raw) Man et al. (2019) Schechter −2.5 0.4 31.8
SG16 (raw) Goulding et al. (2010) Schechter −2.4 0.8 31.42

Sha16 (debiased) Schulze & Wisotzki (2010) Gaussian −2.8 1 31.69
Sha16 (debiased) Man et al. (2019) Gaussian −4 1 31.51
Sha16 (debiased) Goulding et al. (2010) Gaussian −4 1.1 31.24

SG16 (raw) Schulze & Wisotzki (2010) Gaussian −3 1.1 32.62
SG16 (raw) Man et al. (2019) Gaussian −4.5 1.3 31.71
SG16 (raw) Goulding et al. (2010) Gaussian −4.5 1.4 31.41
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We estimate the XLF ΦAGN (defined in Equation (8)) for the
different duty cycles, setting the free parameters of the input
P(λ) distribution in order to reproduce the observationally
inferred XLF of X-ray-selected AGNs at z= 0.1 (Miyaji et al.
2015). We infer the parameters of P(λ) based on an overall
match to an observational constraint, i.e. the AGN XLF, but we
do not attempt formal χ2 minimization because the errors
themselves are not well defined enough to do so. We note
where models fit observations within a plausible range of
systematic uncertainties and where they do not. Our objective
is to show how the different “observables” depend on the input
model parameters and delineate a guideline for the creation of
realistic AGN mock catalogs, so we are not inherently
interested in the free parameters of P(λ) that might better fit
the (real) observations.

As a first case, we consider a P(λ) described by a Schechter
function. As shown in Figures 3 and 4, we can reproduce the
observed AGN XLF as derived in Miyaji et al. (2015) for
AGNs at z= 0.1 (or, similarly, in Ueda et al. 2014)
independently of the choice of the input AGN duty cycle and

BH mass–stellar mass relation. In particular, if we assume
BHSMR–Sha16 (debiased), the input P(λ) is characterized by a
power-law index α∼ 0, i.e., an almost constant probability as a
function of Eddington ratio at λ< λå. Assuming the AGN duty
cycle U-SW10 (decr), the input P(λ) is almost consistent with
observations (i.e., Heckman & Kauffmann 2006; Hickox et al.
2009) with a knee logλå=−0.45. It is worth noting that these
observations are calibrated on the MBH–σ relation of Tremaine
et al. (2002) that would shift the Eddington ratio distribution to
higher λ by a factor of ∼2, still in agreement with our AGN
mock predictions. A smaller knee (logλå∼ −2) is obtained for
mock AGNs assuming U-M19 (incr) and U-G10 (const).
Similarly, we can reproduce the observed AGN XLF for
different AGN duty cycles when assuming SG16 (raw) (see
Figure 4). However, the corresponding input P(λ) distributions
of mock AGNs with U-M19 (incr) and U-G10 (const) are in
tension with the data at similar redshifts (i.e., Hickox et al.
2009; Kauffmann & Heckman 2009).
We also derived the corresponding specific accretion rate

distributions PAGN defined in Equation (9) as the convolution

Figure 3. Left panel: input Eddington ratio distribution P(λ), described by a Schechter function characterized by a knee λå and a power-law index α derived to
reproduce the AGN luminosity, when using the BH mass–stellar mass relation from Shankar et al. (2006, debiased) and the AGN duty cycle derived by Schulze &
Wisotzki (2010, solid line), Man et al. (2019, dotted line), and Goulding et al. (2010, dashed line), compared to the results of Kauffmann & Heckman (2009, dotted red
line) and Hickox et al. (2009, dashed red line). Right panel: corresponding XLF for mock AGNs at z = 0.1 compared to the XLF as derived for Compton-thin un/
obscured AGNs in Miyaji et al. (2015).

Figure 4. Left panel: input Eddington ratio distribution P(λ), described by a Schechter function characterized by a knee λå and a power-law index α derived to
reproduce the AGN luminosity function, when using the BH mass–stellar mass relation from Savorgnan & Graham (2016, raw) and the AGN duty cycle derived by
Schulze & Wisotzki (2010, solid line) and Man et al. (2019, dotted line) and assuming a constant U = 0.20 (Goulding et al. 2010, dashed line), compared to the results
of Kauffmann & Heckman (2009, dotted red line) and Hickox et al. (2009, dashed red line). Right panel: corresponding XLF for mock AGNs at z = 0.1 compared to
the XLF as derived for Compton-thin un/obscured AGNs in Miyaji et al. (2015).
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of an input normalized P(λ) and the AGN duty cycle U. We
also applied a luminosity cut at ( [ ]) >-Llog erg s 41X

1 to the
mock AGNs in order to compare with recent observations
based on X-ray-selected AGNs. As shown in Figures 5 and 6,
PAGN is affected by the input P(λ) and duty cycles (for a given
BH mass–stellar mass relation) and by the Mstar–MBH relation
(for a given duty cycle). It is immediately noteworthy that the
specific accretion rate distribution mimics the shape of the
input P(λ), while the AGN duty cycle affects the characteristic
lá ñ. In detail, assuming BHSMR–Sha16 (debiased) and setting
U-SW10 (decr), the PAGN distribution is more consistent
with observations at similar redshifts (e.g., Aird et al. 2017;
Georgakakis et al. 2017) and has a larger characteristic
log lá ñ (=31.8 and 31.7 for a Schechter and Gaussian P(λ),
respectively) than using different U (see Table 1). However, the
observationally derived specific accretion rate distributions are
characterized by tails at high LX/Mstar that are not present in
our mock AGN predictions (see Section 5 for more discussion).

When we use BHSMR-SG16 (raw), the PAGN distribution of
mock AGNs is almost 1 order of magnitude higher at all
LX/Mstar than the data when using U-SW10 (decr). The PAGN

distribution of mock AGNs is more in line with observations
when using U-M19 (incr) and U-G10 (const), at least at

logLX/Mstar� 33. However, the corresponding input Edding-
ton ratio distributions P(λ) are highly inconsistent with
observations (see Figure 4).
It is worth noting that all of these results are derived for an

Mstar–Mh relation given by Grylls et al. (2019) and independent
of the particular choice of the Q parameter.

4.2. AGN Large-scale Bias

Each mock AGN resides in satellite or central halos with a
given parent halo mass that corresponds to a specific value of
the large-scale bias via the numerically derived correlation
between halo mass and bias that we take from van den Bosch
(2002) and Tinker et al. (2005), in line with what is assumed in
the observational samples. We then derive the bias of the mock
AGNs as a function of the host galaxy stellar mass and BH
mass by using Equation (11) with different choices of the
underlying duty cycles U, input stellar mass–halo mass, BH
mass–stellar mass relations, and values of the Q parameter. In
all of the model renditions considered below, the P(λ)
parameters are fixed in order to reproduce the AGN XLF.
Figure 7 shows the AGN large-scale bias as a function of BH

mass and host galaxy stellar mass when using different (a) duty

Figure 5. Specific accretion rate distribution PAGN(λ ∝ LX/Mstar) defined as the probability that a galaxy of a given λ is an AGN and given by the convolution of the
input Eddington ratio distribution P(λ) and the AGN duty cycle (Equation (11)). The prediction from mock AGNs assuming a Schechter (left panel) and Gaussian
(right panel) input P(λ) and an MBH–Mstar relation as defined in Shankar et al. (2006, debiased) are compared with data from Aird et al. (2012, 2018), Bongiorno et al.
(2012, 2016), and Georgakakis et al. (2017), according to the legend.

Figure 6. Specific accretion rate distribution PAGN(λ ∝ LX/Mstar) defined as the probability that a galaxy of a given λ is an AGN and given by the convolution of the
input Eddington ratio distribution P(λ) and the AGN duty cycle (Equation (11)). The prediction from mock AGNs with a Schechter (left panel) and Gaussian (right
panel) input P(λ) and an MBH–Mstar relation as defined in Savorgnan & Graham (2016, raw) are compared with data from Aird et al. (2012, 2018), Bongiorno et al.
(2012, 2016), and Georgakakis et al. (2017), according to the legend.
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cycles (for fixed Mstar–Mh and MBH–Mstar relations and Q), (b)
input stellar mass–halo mass relations (for a fixed MBH–Mstar

relation, duty cycle, and Q), (c) input BH mass–stellar mass
relations (for a fixed duty cycle, Mstar–Mh relation, and Q), and
(d) Q values (for a fixed duty cycle and Mstar–Mh and
MBH–Mstar relations).

As expected, the large-scale bias as a function of BH mass
mainly depends on the input BH mass–stellar mass relation and
Q parameter, with a mild dependence on the Mstar–Mh relation
(top panels of Figure 7). Conversely, the bias as a function of
the AGN host galaxy stellar mass is only affected by Q, with a
weak dependence on the input stellar mass–halo mass relation
(bottom panels of Figure 7). In particular, mock AGNs with a
given BH mass reside in more massive parent halos when
assuming BHSMR–Sha16 (debiased) and/or Q 2. In the
former case, the effect is stronger at large BH masses, while in
the latter, it is mainly affecting small BH masses. These results
are independent of the shape of the input P(λ) distribution,
either Gaussian or Schechter.

The comparison of our model predictions with large-scale
bias estimates of X-ray-selected AGNs as a function of MBH in
the local universe (Powell et al. 2018) shows a degeneracy
among the input model parameters. In fact, the observations
can be reproduced by either BHSMR–Sha16 (debiased) with
Q= 1 (using Grylls et al. 2019) or BHSMR-SG16 (raw) with
Q> 2 and/or a stellar mass–halo mass relation given by

Moster et al. (2013). It is worth noting that the BH masses in
Powell et al. (2018) are derived by parameters calibrated on
relations close to BHSMR-SG16 (raw). A better comparison
with a model that assumes BHSMR–Sha16 (debiased) would
imply a correction that moves the data to lower BH masses,
strengthening the agreement among the observations and our
model predictions.
Unfortunately, only few measurements are available at

z� 0.1 of the AGN large-scale bias in bins of host galaxy
stellar mass. In particular, recent estimates of the hosting
central halo mass of SDSS AGNs (Zhang et al. 2021) suggest
an Mstar–Mh relation in agreement with Grylls et al. (2019). To
provide additional clustering constraints, we derived the two-
point projected correlation function wp(rp) in the range
rp= 0.1–30 h−1 Mpc as a function of stellar mass for the
SDSS galaxies at z< 0.1 (Domínguez Sánchez et al. 2018).
This sample has the same photometry and mass-to-light ratios
as those adopted in the Bernardi et al. (2017) stellar mass
function, which we adopt as a reference for our stellar mass–
halo mass relation (Figure 1). We then converted wp(rp) to bias
estimates by making use of the projected two-point correlation
function of the matter (Eisenstein & Hu 1999) with the same
cosmology as in our reference dark matter simulation. The
results are shown as red squares in the bottom left panel of
Figure 7. The errors on the SDSS galaxy clustering measure-
ments correspond to the square root of the covariance matrix

Figure 7. Large-scale bias of mock AGNs as a function of BH mass (upper panels) and host galaxy stellar mass (lower panels) when using different duty cycles, input
stellar mass–halo mass and BH mass–stellar mass relations, and Q (see text for more details). The bias estimates as a function of MBH from Powell et al. (2018) for
X-ray-selected AGNs at z ∼ 0.04, as a function ofMstar from SDSS AGNs (Zhang et al. 2021, orange circles) and SDSS galaxies (Domínguez Sánchez et al. 2018, red
squares; see the text for more details) in the local universe, are shown for comparison. The green dashed–dotted line shows the predictions when assuming a covariant
scatter in the Mstar–Mh and MBH–Mstar relations, as discussed in Section 5.
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diagonal elements calculated via the bootstrap resampling
method.

Our predicted bias as a function of stellar mass nicely lines
up with the SDSS galaxy bias measurements, especially for
galaxies with mass  M Mlog 11, and, as expected, in ways
fully independent of the duty cycle and the input BH mass–
stellar mass relation. Our results thus strongly suggest that
AGN mocks where the AGN activity is independent of
environment (i.e., Q∼ 1) will guarantee a match to the galaxy
clustering if the host galaxies are already turned against
clustering measurements (we discuss possible caveats to this
statement in Section 5).

Figure 6 shows that, despite the bias as a function of BH
mass and galaxy stellar mass being an excellent observable to
constrain the BH mass–stellar mass relation and the Q
parameter, it is insensitive to AGN duty cycle. We discuss
below how the AGN bias as a function of AGN luminosity can
help to break the degeneracies in this fundamental input
parameter.

As shown in Figure 8, the AGN bias as a function of Lx
depends mostly on the AGN duty cycle and Q parameter (first
and fourth panels), moderately on the BH mass–stellar mass
relation (first and second panels), and weakly on the stellar
mass–halo mass relation (third panel). The trends reported in
the left panels of Figure 8 can be readily understood from the
fact that an increasing duty cycle with BH mass (such as
U-M19; dotted lines) necessarily implies, on average, lower
Eddington ratios to reproduce the same luminosity function, as
proportionally more massive BHs will be active in this model.
In turn, lower Eddington ratios will map the same AGN
luminosities to more massive BHs residing, on average, in
more massive and clustered galaxies and dark matter halos. At
a fixed duty cycle and Eddington ratio distribution, a lower
normalization in the BH mass–stellar mass relation, such as in
our BHSMR–Sha16 (debiased) case, would map the same
luminosities to more massive/clustered galaxies.

At face value, the comparison with the large-scale AGN bias
as a function of LX estimated for X-ray-selected AGNs at
z� 0.1 (e.g., Krumpe et al. 2018; Powell et al. 2018) favors
models adopting the BHSMR–Sha16 (debiased) relation and
decreasing duty cycles, as in our U-SW10 (decr) model (left
panels), in ways largely independent of the shape of the input

P(λ) distribution. We note that the data could also be
reproduced by assuming BHSMR-SG16 (raw) and U-SW10
(decr) combined with Q> 3, as this model would boost the
clustering signal at all AGN luminosities due to a significant
increase in the relative fraction of satellites, hosted in more
massive/clustered parent halos, that are active (fourth panel).
However, this same model would also predict a PAGN

distribution an order of magnitude higher than the observa-
tionally derived specific accretion rate distributions (see
Figure 6), while models based on the BHSMR–Sha16
(debiased) relation and the U-SW10 (decr) duty cycle would
be consistent with it (see Figure 5).

5. Additional Dependencies in the Input Model Parameters

All of the reference models discussed so far to create AGN
mock catalogs assume that the input parameters are uncorre-
lated. In this section, we explore the impact of relaxing this
assumption in some of the key parameters in our modeling. As
a first case, we assume that the BH, stellar, and halo mass share
some degree of correlation. More specifically, we assume that
there exists a covariant scatter in the input stellar mass–halo
mass relation and the BH mass–stellar mass relation. In
practice, we assign to each halo mass a value of Mstar and MBH

from a multivariate Gaussian distribution following the
methodology described in Viitanen et al. (2021). A positive
covariance would imply that it would be more likely forMBH to
be scattered in the same direction as Mstar.
We find that the covariance scatter does not affect the AGN

large-scale bias as a function of BH mass and X-ray luminosity.
On the contrary, as shown in Figure 7 (lower panels), the AGN
bias dependence on host galaxy stellar mass is smoothed out
when assuming a covariant scatter, independent of the
particular choice of input stellar mass–halo mass and BH
mass–stellar mass relation or AGN duty cycle. This behavior is
expected, as the end effect of a covariant scatter is to generate a
larger scatter in the scaling relations, thus naturally reducing
the clustering strength, especially at larger stellar masses. In
particular, the covariant scatter model predicts an AGN bias
versus Mstar almost constant, and at Mstar∼ 1011.5 Me two
times smaller than what predicted by the case without
covariance. A model with covariant scatter, i.e., with a

Figure 8. Large-scale bias vs. X-ray (2–10 keV) luminosity (in units of erg s−1) for mock AGNs when using a decreasing (Schulze & Wisotzki 2010), increasing
(Man et al. 2019), and constant (U = 0.2; Goulding et al. 2010) duty cycle as a function of BH mass, compared with bias estimates from previous studies at similar
redshifts. For samples for which the AGN X-ray luminosity is estimated in an energy interval other than the 2–10 keV band, LX(2–10 keV) is derived assuming a
power-law X-ray spectrum with a photon index of Γ = 1.9.
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(positive) correlation between BH mass and galaxy mass at
fixed halo mass, would then imply a substantially different bias
as a function of the stellar mass at large stellar masses,
Mstar> 1011 Me, between AGNs and the overall population of
galaxies. In other words, a covariant scatter would inherently
imply that AGN host galaxies are not a random selection of
galaxies of the same stellar mass. The present data do not allow
us to clearly distinguish between models with and without a
covariant scatter. In fact, as shown in Figure 7 (lower first
panel), currently available AGN bias estimates as a function of
stellar mass of SDSS AGNs (Zhang et al. 2021) only extend up
to Mstar∼ 1011.3 Me, where the models have just started to
diverge (solid gray versus dotted–dashed green lines), although
the data tend to be closer to the model without covariant scatter.
An AGN clustering measurement at higher host galaxy stellar
mass bins will become available in the near future (e.g.,
Euclid), allowing us to rule out or confirm a covariant scatter at
a high confidence level. We stress that, as anticipated above,
the model without covariance is in good agreement, as
expected, with the bias of SDSS galaxies at z< 0.1 (red
squares in Figure 7, lower first panel). We will more
comprehensively discuss the consequences of a covariant
scatter in Viitanen et al. (2021).

As a second relevant case, we explore the effect of using an
input Eddington ratio distribution P(λ) that also depends on the
BH/stellar mass, i.e., P(λ, MBH). A mass dependence on the
input Eddington ratio distribution is expected from, e.g.,
continuity equation arguments (e.g., Shankar et al. 2013;
Aversa et al. 2015), as well as from direct observational
measurements (e.g., Kauffmann & Heckman 2009; Georgakakis
et al. 2017; Aird et al. 2018). Broadly following the continuity
equation model by Aversa et al. (2015; see their Figure 6), we
divide our BH mock sample into two groups above and below a
dividing mass of logMBH [Me]= 7 and then assign to each
group of BHs Eddington ratios extracted from a Schechter P(λ)
with the same power-law slope α and a higher characteristic lá ñ
for BHs in the lowest mass bin.

As discussed above, we expect that varying the input
Eddington ratio distribution will mainly affect two observables,
namely the specific accretion rate distribution PAGN and the
AGN large-scale bias as a function of X-ray luminosity.

Indeed, we verified that all of our main predictions remain
unaltered when adopting a mass-dependent P(λ, MBH) and
found only a moderate variation in PAGN (left panel of
Figure 9), with a more pronounced tail at higher LX/Mstar, in
somewhat better agreement with the data. Similarly, we find
that an input P(λ, MBH) only slightly increases the AGN bias
versus LX by ∼5%, compared to an input Eddington ratio
distribution independent of BH mass (right panel of Figure 9).
All in all, from the tests discussed above, we can conclude

that introducing reasonable correlations among the main
parameters at play in our model does not significantly alter
any of our main results.

6. How to Build Realistic AGN Mocks

In the previous sections, we showed that a large variety of
models characterized by distinct MBH–Mstar relations and
specific accretion rate distributions PAGN (obtained as a
convolution of the input P(λ) with the AGN duty cycle U)
can create AGN mocks matching the observed AGN XLF. In
addition, the corresponding large-scale bias at a given stellar
mass is independent of PAGN and the stellar mass–BH mass
relation, simply because the bias mostly depends on the
parameter Q and the input Mstar–Mh relation. Thus, having
characterized a given PAGN that, by design, observationally fits
the AGN XLF does not guarantee a unique and valid model to
create AGN mocks, even when we consider the clustering at
fixed stellar mass, simply because the latter is not affected by
the PAGN distribution and the stellar mass–BH mass relation.
The results summarized above imply strong degeneracies

among the input parameters used to create mock catalogs of
AGNs. Only by considering all of the observables, in particular
the AGN large-scale bias as a function of both BH mass and
X-ray luminosity, can we break such degeneracies in the input
model parameters. Figure 10 provides a summary of the
different dependencies of the observables considered in this
work on one or more of the model input parameters. Both the
AGN XLF and PAGN are highly degenerate, being dependent
on several input parameters. On the other hand, the AGN bias
as a function of stellar mass only depends on the stellar mass–
halo mass relation, once Q is fixed, once Q has been fixed, and
in turn also the AGN bias at fixed BH mass depends only on

Figure 9. Left panel: specific accretion rate distribution PAGN(λ, Mstar) given by the convolution of the input BH mass–dependent Eddington ratio distribution P(λ,
MBH) and AGN duty cycle. The prediction from mock AGNs with a Schechter (solid line) and Gaussian (dashed line) P(λ, MBH) and anMstar–MBH relation as defined
in Shankar et al. (2016) are compared with data as in Figure 4. Right panel: large-scale bias vs. X-ray (2–10 keV) luminosity (in units of erg s−1) for mock AGNs
when using an input Eddington ratio distribution that is independent of (dependent) the BH mass for a decreasing (Schulze & Wisotzki 2010) and constant (U = 0.2;
Goulding et al. 2010) duty cycle as a function of BH mass, compared with bias estimates from previous studies at similar redshifts.
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the MBH–Mstar relation, once both Q and the Mstar–Mh relation
have been fixed.

Based on the information contained in Figure 10, in what
follows, we provide the different steps to create a robust and
realistic mock catalog of AGNs. As sketched in Figure 11, the
stellar mass–halo mass relation and the Q parameter can be
constrained by combining the large-scale clustering as a
function of stellar mass for both galaxies and AGNs
(Figure 7, lower panel), at least in the limit in which AGN
hosts are a random subsample of all galaxies of similar stellar
mass. In particular, our results suggest a model with an input
Mstar–Mh relation as described in Grylls et al. (2019), and Q� 2
is broadly consistent with available data at z� 0.1.

After having fixed the input stellar mass–halo mass relation
and Q, the AGN large-scale bias as a function of BH mass can
be used to derive the input MBH–Mstar relation. As already

shown in Shankar et al. (2020), we found that a model with
a BHSMR–Sha16 (debiased) with Q� 2 better matches the
bias estimates as a function of BH mass (Figure 7, upper
panel).
Observational constraints on the AGN duty cycle can then be

derived from the comparison of the model predictions with the
measured AGN large-scale bias as a function of AGN luminosity
(Figure 8). A model with BHSMR–Sha16 (debiased), Q� 2,
and U-SW10 (decr) is able to reproduce the AGN bias as a
function of LX for both a Gaussian and a Schechter P(λ).
Finally, after having fixed the stellar mass–halo mass relation

(Grylls et al. 2019), BHSMR–Sha16 (debiased), Q� 2,
U-SW10 (decr), the combination of the AGN XLF and the
specific accretion rate distribution PAGN allow us to derive the
free parameters of the input Eddington ratio distribution,
independently of the exact shape of the input P(λ).

Figure 10. Dependence of the observables on the input model parameters.

Figure 11. Sketch of how to build realistic AGN mocks. Filled yellow boxes refer to the observables considered in this work. The dependence of each observable on
one or a few input model parameters (open black boxes) is shown as red lines. From the comparison of observationally derived relations and the AGN mock catalog
predictions, we can constrain (gray arrows) the input parameters. Additional observables, such as the fraction of satellite AGNs (filled yellow circle), can help in
breaking the degeneracies among the input model parameters.
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Estimates of the fraction of active satellites in groups and
clusters at the redshift of interest (e.g., Allevato et al. 2012;
Leauthaud et al. 2015) can further help to independently
constrain the Q parameter (e.g., Gatti et al. 2016). Additional
observables can be considered, such as the average
LX–SFR/Mstar relation, which mostly depends on P(λ) and the
Mstar–MBH relation (Carraro et al. 2021).

Our current work thus reveals the right observables that we
should focus on to break the degeneracies in the model input
parameters and provides the steps to build a robust and realistic
AGN mock consistent with many different observables. At the
same time, our framework represents an invaluable tool to shed
light on the cosmological evolution of BHs, providing key
constraints on the underlying scaling relations between BHs,
their galaxies, and host dark matter halos, along with
information on their accretion rates, frequency (the duty cycle),
and environmental dependence (via the Q parameter).

7. Discussion

7.1. Specific Accretion Rate Distribution

In this work, we showed how observables depend on the
input model parameters (Figure 10) and how to build step-by-
step robust mock catalogs of AGNs that minimize the danger of
inner degeneracies and include knowledge of the underlying
BH mass and Eddington ratio distributions (Figure 11).

The first observable we considered is the specific accretion
rate distribution PAGN, defined as the convolution of the input
AGN duty cycle U and normalized Eddington ratio distribution
P(λ). The PAGN distribution has been intensively studied in the
last decade, mostly in X-ray-selected AGN samples (e.g.,
Bongiorno et al. 2016; Aird et al. 2017, 2018; Georgakakis
et al. 2017), and it has been extensively used as the main key
observable to generate data-driven AGN mock catalogs (e.g.,
Comparat et al. 2019; Aird & Coil 2021).

However, when using models uniquely tuned to the
measured PAGN, we miss information on individual input
parameters, such as the AGN duty cycle U, the Eddington ratio
distribution, and the BH mass–stellar mass relation. We in fact
showed in the previous sections that, for a fixed MBH–Mstar

relation, widely different combinations of U and P(λ) can
provide very similar specific accretion rate distributions and
AGN XLFs consistent with the data. Moreover, any specific
accretion rate distribution PAGN that reproduces the AGN XLF
does not affect the AGN large-scale bias at a given stellar mass.
Thus, the PAGN distribution and AGN XLF are not suited to
constrain the input model parameters when used in isolation.

On the contrary, in this work, we explicitly consider the
AGN duty cycle, P(λ), and BH mass–stellar mass relation as
distinct input model parameters, which we tested against
several independent observables, including the large-scale bias
as a function of stellar/BH mass and X-ray luminosity. In
particular, we found that the comparison of observationally
derived PAGN with the predictions of AGN mock catalogs is in
better agreement with models that assume an input BH mass–
stellar mass relation lower in normalization (which we referred
to BHSMR–Sha16, debiased) with respect to what is usually
inferred in the local universe from early-type galaxies with
dynamically measured BHs (which we referred to as BHSMR-
SG16, raw). Our mock also prefers the AGN duty cycle
decreasing with BH mass (U-SW10), consistent with what was
also derived from continuity equation arguments (e.g., Shankar

et al. 2013). The agreement with the data, and in particular with
the measured PAGN function, further improves when the input
Eddington ratio distribution depends on the BH mass P(λ,
MBH) for both a Gaussian and a Schechter function or, for
example, assuming a double power-law distribution (Yang
et al. 2019). It is worth noticing that, when considered in
isolation, the PAGN distribution can also be reproduced, at least
at lower luminosities/stellar masses logλ� 33, by using in
input BHSMR-SG16 (raw) and U-M19 (incr) or U-G10 (const)
(for both a Gaussian and a Schechter P(λ)). This degeneracy
can be broken by testing the model against additional
independent observables, most notably the AGN large-scale
clustering.

7.2. Bias versus Mstar/MBH

The second key observable to consider is indeed the AGN
large-scale bias as a function of both stellar mass and BH mass,
which is not affected by the input AGN duty cycle and P(λ).
The large-scale bias as a function of the host galaxy stellar
mass is set by the stellar mass–halo mass relation and
independent of the AGN model (i.e., the AGN duty cycle,
BH mass–stellar mass relation, and Eddington ratio distribu-
tion) as long as, as discussed above, the AGN host galaxies are
a random subsample of the galaxies with similar stellar mass.
Georgakakis et al. (2019) also found that the level of clustering
of AGN samples primarily correlates with the stellar masses of
their host galaxies, rather than their instantaneous accretion
luminosities.
As shown in Shankar et al. (2020), the AGN large-scale bias

as a function of BH mass can instead effectively be used to put
constraints on the BH mass–stellar mass relation and the
parameter Q, the ratio of satellite and central active galaxies/
BHs. In detail, Shankar et al. (2020) found that the observed
bias of AGNs at z= 0.25 (Krumpe et al. 2015) can be
reproduced by assuming BHSMR–Sha16 (debiased) and Q�
2, which corresponds to satellite AGN fractions f 0.15sat

AGN .
A similar value ( f ~sat

AGN 0.18) has been suggested by Leauthaud
et al. (2015) for COSMOS AGNs at z< 1. Allevato et al. (2012)
performed direct measurement of the halo occupation distribu-
tion (HOD) for COSMOS AGNs based on the mass function
of galaxy groups hosting AGNs and found that the duty cycle
of satellite AGNs is comparable to or slightly larger than that
of central AGNs, i.e., Q� 2. A very low value of the
Q parameter would be in line with quasars hosted in central
galaxies that more frequently undergo mergers with other
galaxies (Hopkins et al. 2008). On the other hand, a relatively
high value of Q would suggest that triggering mechanisms other
than mergers, such as secular processes and bar instabilities, are
equally or even more efficient in producing luminous AGNs
(e.g., Georgakakis et al. 2009; Allevato et al. 2011; Gatti et al.
2016). The SEM model used in Georgakakis et al. (2019)
for populating halos with AGNs does not distinguish between
central and satellite active BHs; i.e., effectively, their model
adopts Q= 1, which implies a satellite fraction of ~fsat

AGN 10%–

20%. Georgakakis et al. (2019) claimed, as also found here,
that the fair agreement of their mocks with the observationally
derived AGN HOD (e.g., Allevato et al. 2012; Miyaji et al.
2011; Shen et al. 2013) supports low values of the Q parameter.
We find that a model with an input BHSMR–Sha16

(debiased) and Q� 2 does indeed better match the large-scale
bias as a function of BH mass of X-ray AGNs at z< 0.1
(Powell et al. 2018), further extending the results of Shankar
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et al. (2020) at even lower redshifts. Additionally, the same
model is in better agreement with observationally inferred
PAGN distributions. This model also assumes (i) a stellar mass–
halo mass relation as derived in Grylls et al. (2019), which
reproduces the most recent estimates of the local galaxy stellar
mass function by Bernardi et al. (2017), and it is consistent, as
shown in Figure 7, with the large-scale clustering of local
central AGNs in SDSS (Zhang et al. 2021) and SDSS galaxies
with photometry from Domínguez Sánchez et al. (2018); and
(ii) a parameter Q� 2 as suggested by observations of the
AGN satellite fraction at low redshifts (e.g., Allevato et al.
2012; Leauthaud et al. 2015).

A model with BHSMR-SG16 (raw) with U-M19 (incr) or
U-G10 (const) would instead require high values of the Q
parameter (Q> 3) and/or an input stellar mass–halo mass
relation as derived by Moster et al. (2013). More importantly,
the latter model is inconsistent with the large-scale bias versus
X-ray luminosity inferred for X-ray AGNs at similar redshift
(e.g., Krumpe et al. 2018; Powell et al. 2018), independent of
the choice of the input P(λ) distribution.

It is worth noticing that our results in terms of AGN large-
scale bias as a function of stellar/BH mass are not affected by
the choice of a BH mass–dependent input P(λ, MBH). On the
contrary, the covariant scatter smooths out the large-scale bias
dependence on the stellar mass for mock AGNs, especially at
Mstar> 1011 Me. Currently available bias estimates of SDSS
AGNs (Zhang et al. 2021) favor models for the creation of
mock catalogs without covariant scatter, at least at z∼ 0.1. In
the near future, clustering measurements of AGNs that extend
up to Mstar> 1011 Me will allow us to confirm these results
(see Viitanen et al. 2021, for a more comprehensive discussion
of the role of covariant scatter at z∼ 1).

7.3. Bias versus LX

The large-scale AGN bias as a function of X-ray luminosity
represents an additional crucial and powerful diagnostic to
constrain viable AGN models, as it is strongly dependent on
the input AGN duty cycle but weakly dependent on the input
stellar mass–halo mass relation or P(λ) distribution (Figure 8).
The large-scale bias as a function of luminosity for mock
AGNs has been investigated in Georgakakis et al. (2019) and
Aird & Coil (2021) at different redshifts. Their SEMs predict a
negligible or extremely weak dependence of the AGN
clustering on accretion luminosity. We also found an almost
constant relation between the bias and the AGN X-ray
luminosity, especially when using U-SW10 (decr), independent
of the particular choice of the stellar mass–halo mass relation,
BH mass–stellar mass relation, and P(λ).

Measurements of the bias dependence on LX for X-ray-
selected AGNs at z� 0.1 (e.g., Krumpe et al. 2018; Powell
et al. 2018) can be reproduced in the models presented in this
work assuming (i) U-SW10 (decr) and BHSMR–Sha16
(debiased) with Q� 2 or (ii) BHSMR-SG16 (raw) with
Q> 3. This is valid for both a Schechter and a Gaussian
P(λ) or P(λ, MBH). However, in the latter case, the corresp-
onding specific accretion rate distribution PAGN would be
almost an order of magnitude higher than observations.
Georgakakis et al. (2019) and Aird & Coil (2021) also
compared AGN bias estimates and/or halo mass as a function
of luminosity with mock AGN predictions. At redshift
z∼ 0.25–0.3, they found a small offset with respect to
measurements that requires revisiting some of their model

input assumptions and could be due to selection effects of
specific samples, e.g., redshift interval and X-ray flux limits.
As discussed in the previous section, only the combination

of all of the observables, namely the AGN XLF, the PAGN

distribution, the AGN large-scale bias as a function of stellar/
BH mass, and LX, can break the degeneracy in the input model
parameters and ensure the creation of realistic AGN mock
catalogs.

8. Conclusions

In this work, we describe a step-by-step methodology to
create robust, transparent, and physically motivated AGN mock
catalogs that can be safely used for extragalactic large-scale
surveys and as a test bed for cosmological models of BH
and galaxy coevolution. Our methodology, summarized in
Figure 11, allows us to minimize the danger of degeneracies
and pin down the underlying physical properties of BHs in
terms of their accretion distributions and links to their host
galaxies. More specifically, we find the following.

1. The AGN XLF and specific accretion rate distribution
PAGN depend on the input MBH–Mstar and Mstar–Mh

relations, Eddington ratio distribution P(λ), and AGN
duty cycle U and are independent of the particular choice
of Q, parameterizing the ratio between satellite and
central AGNs at a given host galaxy stellar mass.

2. The clustering at fixed stellar mass only depends on the
Mstar–Mh relation and the Q parameter.

3. The clustering at fixed BH mass only depends on the
MBH–Mstar and Mstar–Mh relations and the Q parameter.

4. All AGN mocks built on empirically based Mstar–Mh

relations will broadly match the AGN clustering at a
given stellar mass, provided the AGN hosts are a random
subsample of the underlying galaxy population of the
same stellar mass.

5. A large variety of specific accretion rate distributions
PAGN, defined as the convolution of the normalized
Eddington ratio distribution P(λ) and the AGN duty cycle
U, can reproduce the AGN XLF, even if characterized by
widely different underlying MBH–Mstar and/or duty
cycles and/or P(λ).

6. Only the combination with additional observables, most
notably the AGN large-scale bias as a function of BH
mass and X-ray luminosity, can break the (strong)
degeneracies in the input model parameters.

The results listed above indeed imply strong degeneracies
among the input parameters used to create mock catalogs of
AGNs. Having characterized a given PAGN that, by design,
observationally fits the AGN XLF does not guarantee a unique
and valid solution to create realistic AGN mocks, even when
we consider the clustering at fixed stellar mass, simply because
the latter is mostly dependent on Q and the Mstar–Mh relation.
The AGN large-scale bias as a function of both BH mass and

X-ray luminosity is a crucial diagnostic for all AGN models. In
particular, a model with an input stellar mass–halo mass
relation calibrated from detailed abundance matching (e.g.,
Grylls et al. 2019), an MBH–Mstar with lower normalizations
than those usually inferred for dynamically measured local BHs
(e.g., Reines & Volonteri 2015; Shankar et al. 2016), and an
AGN duty cycle decreasing with BH mass (e.g., Schulze &
Wisotzki 2010), combined with the assumption that central and
satellite BHs of equal mass share similar probabilities of being
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active (i.e., Q� 2), generates a mock catalog of AGNs that
matches the observationally constrained AGN XLF, PAGN, and
AGN large-scale bias as a function of the stellar/BH mass and
X-ray luminosity at z� 0.1. We stress that the methodology
outlined in this work is of wide applicability, and we expect it
to hold at all redshifts, thus allowing us to constrain the
evolution in the BH scaling relations, duty cycles, and
Eddington ratio distributions (e.g., Viitanen et al. 2021).

Additional observables, not included in the present work,
can also be considered to set stronger/additional constraints
on the input model parameters, for instance, the average
LX–SFR/Mstar relation, which mostly depends on the input
Eddington ratio distribution P(λ) and the MBH–Mstar relation
(Carraro et al. 2021). Estimates of the fraction of active
satellites in groups and clusters at low redshift (e.g., Allevato
et al. 2012; Leauthaud et al. 2015) are also key observables to
independently constrain the Q parameter (e.g., Gatti et al.
2016).

Our present study provides a complete framework to build
robust and realistic AGN theoretical samples consistent with
diverse and largely independent observables, and it is capable
of setting strong constraints on the main parameters controlling
the growth of BHs in galaxies. Our work can thus provide key
insights into cosmological galaxy evolution models while
defining a clear strategy to produce robust galaxy mock
catalogs for imminent large-scale galaxy surveys such as
Euclid and LSST.
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