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The development of efficient techniques to distinguish mirror images of chiral molecules (enantiomers) is
very important in both chemistry and physics. Enantiomers share most molecular properties except, for
instance, the absorption of circularly polarized light. Enantiomer purification is therefore a challenging task that
requires specialized equipment. Strong couplingbetweenquantized fields andmatter (e.g., in optical cavities) is
a promising technique to modify molecular processes in a noninvasive way. The modulation of molecular
properties is achieved bychanging the field characteristics. In thiswork,we investigatewhether strong coupling
to circularly polarized electromagnetic fields is a viable way to discriminate chiral molecules. To this end,
we develop a nonperturbative framework to calculate the behavior ofmolecules in chiral cavities.We show that
in this setting the enantiomers have different energies—that is, one is more stable than the other. The field-
induced energy differences are also shown to give rise to enantiospecific signatures in rotational spectra.
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I. INTRODUCTION

The study of strongly coupled light-matter systems is
becoming a well-established area in both physics and
chemistry [1–6]. Through the interaction with the quantized
field, it is indeed possible to modify both macroscopic
material features, for example, conductivity or phase
transitions [7,8], or to influence microscopic properties
like the chemistry of single molecules [9–11]. The easiest
way to reach the strong coupling regime is through optical
cavities, composed of two highly reflective mirrors placed
in front of each other [12]. Because of the mirrors, the
electromagnetic fields inside the cavity must fulfill specific
boundary conditions. The modulation of the boundary
conditions allows for a fine-tuning of the main field
properties. For example, choosing a certain geometry of
the device, specific sets of frequencies can be selected. On
the other hand, an opportune engineering of the mirrors can
also lead to changes in the shape of the field or selection of
its polarization [13–15]. The confinement of photons in a

small quantization volume leads to an increase in the light-
matter interaction [16,17] with the consequent formation of
hybrid states called polaritons [18]. Polaritons represent an
effective way to modulate matter properties in a noninva-
sive way. In fact, the characteristics of the mixed electron-
photon states can be manipulated by tuning the field
properties [19,20]. In recent years, experimental develop-
ments have dramatically improved our control of the
cavity field, opening the way to a wide range of new
applications [13,14,16,21–29]. Theoretical modeling of
strong coupling phenomena is urgently needed to advance
our intuitive understanding of what happens inside cavities
and to assist the experimental design. Many remarkable
efforts have already been presented in the literature, with
the introduction of both ab initio electronic structure
methods [22,30–35] and molecular dynamics techniques
[36,37] for strongly coupled systems. Nonetheless, a
comprehensive framework for arbitrary field shapes is still
not available and requires further theoretical developments.
One of the most intriguing perspectives in molecular

polaritonics is the possibility of enhancing the spectroscopic
techniques through the interaction with quantized fields.
Pioneering works have indeed shown that upon coupling
with the quantized fields it is possible to increase the spectral
resolution by amplifying the signal intensities [38,39],
even at the level of single molecule imaging [40–42]. In
this regard, a particularly interesting perspective is to use
strong coupling to discriminate among chiral molecules
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(systems that are nonsuperimposable with their mirror
image), for example, through the formation of chiral
polaritonic states [43–47]. The two different configurations
of a chiral molecule, called enantiomers, share most physical
properties and can be distinguished when they interact with
circularly polarized light [48,49]. In particular, chiral mol-
ecules interact and absorb differently left- or right-handed
circular polarized (LHCP or RHCP) light [50]. This suggests
that in chiral cavities [14,43–45,51,52], devices where the
electromagnetic field has a fixed circular polarization, it
might be possible to create energy differences between two
enantiomers even in the ground state.
In this work, we present an ab initio theoretical

framework to study the strong coupling regime in chiral
cavities. We first give a general introduction to chiral
cavities and discuss the formal properties that a cavity
quantum electrodynamics model must obey. Afterward,
we develop a novel ab initio methodology that enables
the study of such systems. We demonstrate that, even
when no real photons are present in the cavity, coupling to
a circularly polarized field induces energy differences
between the enantiomers. Finally, we show that the
energy differences produce enantiospecific signatures
in the molecular rotational spectra.

II. CHIRAL CAVITIES

Chiral cavities are optical devices that allow only one
circular polarization of light to exist within a certain volume
(quantization volume). Construction of these structures has
been a significant challenge for researchers over the past
10 years [14,53,54]. Indeed, the mirrors of a chiral cavity
must fully reflect light of one circular polarization and
preserve the field handedness, the property that describes the
direction of rotation of the electric field vector. At the same
time, they must absorb or transmit the fields of the opposite
circular polarization [14,46,55,56]. These are quite stringent
constraints. The most used metallic mirrors, for example,
cannot differentiate among the field’s handedness [14,54].
Moreover, the circular polarization of the wave is reversed
upon reflection. Indeed, normal mirrors usually reverse the
direction of either the electric E or the magnetic B field.
Since the angular momentum of light J is equal to [57]

J ¼ 1

4π

Z
r × ðE ×BÞd3r; ð1Þ

the handedness is reversed if either E or B changes sign.
The main idea in the realization of a chiral mirror is to place a
metamaterial with some convenient properties in front of a
conventional mirror. Differentiation between LHCP and
RHCP light is achieved using optically active media.
Three-dimensional optically active media are not suitable
for chiral mirrors [14,47,55,58]. The desired additional layer,
instead, is a two-dimensional chiral metamaterial that inverts
its transmission and reflection properties based on the

propagation direction of the wave. These objects are
obtained using patterns that cannot be superimposed with
their mirror images without being lifted out of the plane.
Since the pattern inverts its chirality on the two opposite
sides of the surface, such structures preferentially reflect,
for example, LHCP light on one side and RHCP light on
the other, increasing the handedness selectivity of the
chiral mirror. An example of such a pattern, taken from
an experimentally realized mirror [58,59], is shown in Fig. 1.
A detailed and exhaustive discussion of the response proper-
ties of such mirrors can be found in Refs. [44,56]. Placing
two chiral mirrors in front of each other allows for the
creation of chiral cavities. While so far many works have
mainly focused on the creation of more efficient chiral
mirrors, experimental demonstrations of chiral cavities
have also been presented in recent years, i.e., from
Voronin et al. [55] and from Tarandin and Baranov [59].
Alternative possibilities for the production of chiral cavities
that do not use chiral mirrors have recently been proposed by
Gautier et al. [47]. In particular, their optical device is
composed of a normal set of Fabry-Perot mirrors with a layer
of the 2D chiral polystyrene inserted in the middle of the
cavity. Using the unique properties of the 2D chiral objects,
the authors manage to isolate two regions of space where
only one field handedness is present.

III. THEORETICAL MODELING

The interaction between photons and matter is described
using the minimal coupling Hamiltonian [60,61]:

H ¼ 1

2

X
i

½pi −AðriÞ�2 þ
X
I

1

2MI
½pI þ ZIAðRIÞ�2

þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ 1

8π

Z
½E2ðrÞ þ c2B2ðrÞ�d3r; ð2Þ

FIG. 1. Example of a chiral pattern as seen from the two
opposite sides of the metasurface. No in-plane rotation can
superimpose the two patterns.
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where i and j label electrons while I and J label nuclei with
charges ZI and ZJ. The vector potential and the electric and
the magnetic fields are denoted by AðrÞ, EðrÞ, and BðrÞ,
respectively. Since in the strong coupling regime the
electromagnetic field is a critical component of the system,
it must be treated on the same footing as the electrons by
means of quantum electrodynamics (QED) [50]. The optical
properties of a cavity are encoded in the vector potential
AðrÞ [and consequently in the EðrÞ and BðrÞ fields].
Specifically, in a chiral cavity only one of the two possible
circular polarizations of the field is allowed. The second
quantized vector potential can therefore be written as

AðrÞ ¼
X
k

λffiffiffiffiffiffiffiffi
2ωk

p ðϵk�bkeikr þ ϵ�k�b
†
ke

−ikrÞ; ð3Þ

where k spans all the possible wave vectors and ϵk� denotes
the field polarization. In Eq. (3), ωk is the frequency of the
field. The parameter λ quantifies the strength of the light-
matter coupling. This quantity is related to the quantization
volume (V) of the electromagnetic field, and λ is equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=ϵ0VÞ
p

. The coupling value significantly affects the
magnitude of the cavity-induced effects; i.e., large λ imply
strong field effects. When λ is zero, instead, the cavity and
the molecule are completely decoupled. For this reason, a lot
of research is devoted toward the confinement of electro-
magnetic fields in smaller volumes. New experimental
techniques keep pushing the boundaries of the ultrastrong
coupling regime by extreme confinement of the field
quantization volume, using, for instance, nanoplasmonic
picocavities [62,63]. In some cases, the cavity volume, and
therefore the quantization volume, can be reduced below the
nm3 limit, i.e., λ > 0.05 au [16]. Reported realizations
of chiral cavities have so far only reached couplings of
0.01 au [46,55]. However, there are no theoretical limitations
that prevent us from reducing the quantization volume of
such fields below the nm3 limit. In this paper we assume,
without loss of generality, that the wave vector k is aligned
along the z axis and the field polarization is

ϵk� ¼ ϵ� ¼ 1ffiffiffi
2

p

0
B@

1

�i

0

1
CA: ð4Þ

In the Born-Oppenheimer approximation, Eq. (2) takes
the form

H ¼ 1

2

X
i

�
pi −

X
k

λffiffiffiffiffiffiffiffi
2ωk

p ðϵ�bkeikri þ ϵ��b
†
ke

−ikriÞ
�
2

þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ
X
k

ωk

�
b†kbk þ

1

2

�
; ð5Þ

where we use that the nuclear mass MI > c in atomic units
and the nuclei are kept fixed. Since the full Hamiltonian in
Eq. (5) involves an infinite number of modes, it is computa-
tionally unfeasible to determine the eigenvalues and eigen-
functions. However, we expect that restricting Eq. (5) to
include only one field frequency, i.e., two modes, k and −k,
will be sufficient to obtain a qualitatively correct description
of the field effects. A two-mode picture for the field is the
theoretical minimum to model strong coupling in chiral
cavities. Choosing only one mode of the field would indeed
break the natural symmetry of the Hamiltonian in Eq. (5),
where left and right are the same. This aspect is discussed in
more detail in Appendix A. The vector potential for a chiral
cavity is therefore given by

AðrÞ ¼ λffiffiffiffiffiffiffiffi
2ωk

p ½ϵ�ðbk þ b†−kÞeikr þ ϵ��ðb†k þ b−kÞe−ikr�:

ð6Þ

Upon truncation, the Hamiltonian for a molecular system in
the chiral cavity [Eq. (5)] is

H ¼
X
i

p2
i

2
þ Neλ

2

2ω
ðbk þ b†−kÞðb−k þ b†kÞ

þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jri − RIj

þ λffiffiffiffiffiffi
2ω

p
X
i

ðpi · ϵ�Þðbk þ b†−kÞeikri

þ λffiffiffiffiffiffi
2ω

p
X
i

ðpi · ϵ��Þðb†k þ b−kÞe−ikri

þ ωðb†kbk þ b†−kb−k þ 1Þ; ð7Þ

whereNe is the number of electrons in the system and and ω
is used to denote ωk. From the properties of the Hamiltonian
in Eq. (7), we can infer some of the characteristic features
of a chiral cavity. Upon a reflection of the total system
(molecule plus cavity) the molecule transforms into its
mirror image while the cavity polarization is inverted
(LHCP ↔ RHCP). The energy of the system remains the
same because there is no parity-violating interaction in the
Hamiltonian [64]. However, while a nonchiral molecule
is indistinguishable from its mirror image, performing a
reflection of a chiral system will produce a different
enantiomer, nonsuperimposable with the original molecule.
Therefore, nonchiral molecules have the same energy inside
two differently circularly polarized cavities. On the other
hand, a chiral molecule in a chiral cavity, e.g., a LHCP
cavity, has the same energy as the other enantiomer in a
cavity with the opposite polarization, e.g., a RHCP cavity.
Most importantly, there is no symmetry of the Hamiltonian
that requires the two enantiomers to have the same energy
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in the same chiral cavity, unlike in the vacuum case.
Strong coupling between circularly polarized light and chiral
molecules might therefore be a viable way to create an
energy difference between enantiomers, as shown in Fig. 2.
We refer to these cavity-induced energy differences as the
discrimination power of the cavity.
The discriminating properties disappear when the dipole

approximation is adopted, even if the field polarization
remains chiral. This can be verified by setting eikr equal to
one in Eq. (7). In this case, the Hamiltonians for the LHCP
and RHCP cavities can be transformed into each other by
relabeling the wave vectors (k ↔ −k) and therefore they
have the same eigenvalues. Thus, the exponential eikr in the
field parametrization plays a critical role for the discrimi-
nating power of the cavity. Modeling the chiral nature of the
electromagnetic field, therefore, requires that we go beyond
the dipole approximation in the description of the cavity
field. These effects have not been included in ab initioQED
methodologies previously [31,33,65]. Moreover, due to the
nature of the chiral field, it is essential to use a complex

Hamiltonian. This is a delicate aspect to take into account
when designing a new wave function approach as discussed
in Sec. IV.
We employ the Hamiltonian in Eq. (7) to study a chiral

molecule in a chiral cavity. The eigenvalue problem of
this Hamiltonian becomes easier if we remove the
quadratic term in the field. This can be accomplished by
a Bogoliubov transformation [66] that introduces two new
bosonic operators α and β,

�
bk

b†−k

�
¼

�
cosh θ − sinh θ

− sinh θ cosh θ

��
α

β†

�
;

�
α

β†

�
¼

�
cosh θ sinh θ

sinh θ cosh θ

��
bk

b†−k

�
; ð8Þ

that also satisfy the bosonic commutation relation:

½α; α†� ¼ 1; ½α; β� ¼ 0; ½α; β†� ¼ 0: ð9Þ

FIG. 2. The L enantiomer of proline in a cavity with a LHCP field has the same energy as the R enantiomer in a cavity with a RHCP.
However, no symmetry in the Hamiltonian ensures that the L enantiomer has the same energy in the LHCP cavity as in a RHCP
polarized cavity.
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If tanh 2θ ¼ ðNeλ
2=Neλ

2 þ 2ω2Þ in Eq. (8), the
Hamiltonian can be rewritten as

H ¼
X
i

p2
i

2
þ ω̃ðα†αþ β†β þ 1Þ þ

X
i>j

1

jri − rjj

þ
X
I>J

ZIZJ

jRI − RJj
−
X
jI

ZI

jrj − RIj

þ λffiffiffiffiffiffi
2ω̃

p
X
i

ðpi · ϵ�Þðαþ β†Þeikri

þ λffiffiffiffiffiffi
2ω̃

p
X
i

ðpi · ϵ��Þðα† þ βÞe−ikri ; ð10Þ

where ω̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Neλ

2
p

and the A2 term in Eq. (7) has
been reabsorbed [66]. Note that, since the transformation
in Eq. (8) can be expressed as a unitary transformation
of the photonic creation and annihilation operators (e.g.,
α ¼ U†

kbkUk) using

Uk ¼ exp½θðb†kb†−k − bkb−kÞ�; ð11Þ

the Hamiltonians in Eqs. (7) and (10) have the same
eigenvalues. The form in Eq. (10) is particularly interesting
since the zero-point energy term explicitly depends on the
number of electrons. This result is relevant for two main
reasons.

(i) When the cavity frequency is approaching zero,
numerical methods based on the minimal coupling
approach in Eq. (7) become unstable because the
light-matter coupling term diverges as ω−1=2

while the quadratic term in the field diverges as ω−1.
The Hamiltonian in Eq. (10) does not diverge
for ω ¼ 0 eV.

(ii) The Hamiltonian in Eq. (10) is explicitly non-size-
extensive due to the contributions from ω̃, which is
nonlinear in the number of electrons. We note that in
the limit of λ ¼ 0 au the Hamiltonian becomes size
extensivity as in the no-cavity case.

In Appendix B, we show that tanh2θ ¼ Nλ2=ðNλ2 þ 2ω2Þ
minimizes the zero-point energy and that the non-size-
extensive effects obtained from the zero-point energy
contribution in Eq. (10) have the correct dependence on
the number of electrons when λ=ω ≪ 1. The transforma-
tion in Eq. (11) is also useful when more modes are
included in the minimal coupling Hamiltonian, as shown in
Appendix C.

IV. QED COUPLED CLUSTER FOR THEMINIMAL
COUPLING HAMILTONIAN

We now present a QED coupled cluster (QED-CC)
framework for the minimal coupling Hamiltonian
[31,35,67–69]. This approach is referred to as minimal

coupling QED-coupled cluster singles and doubles (MC-
QED-CCSD). The starting point is the electron-photon
wave function:

jψi ¼ exp½ðS1α þ γαÞα† þ ðS1β þ γβÞβ†�
exp ðT1 þ T2ÞjHFi ⊗ j0; 0i; ð12Þ

where jHFi is the no-cavity Hartree-Fock Slater determi-
nant while j0; 0i denotes the photonic vacuum for the α
and β photons introduced in Eq. (8). The operators in
the exponential of Eq. (12) are electron (T1 and T2)
and electron-photon (Sα1α

† and Sβ1β
†) excitation operators

defined explicitly as

T1 ¼
X
ai

tai Eai;

T2 ¼
1

2

X
abij

tabij EaiEbj;

S1αα† ¼
X
ai

saiαEaiα
†;

S1ββ† ¼
X
ai

saiβEaiβ
†: ð13Þ

The amplitude parameters tai , t
ab
ij , s

a
iα, s

a
iβ as well as γα and γβ

are determined in the ground state calculation. In Eq. (13),
we use second quantization for the electrons [70] with

Epq ¼
X
σ

a†pσaqσ; ð14Þ

where a†pσ creates and apσ annihilates an electron in orbital p
with spin σ. The indices i, j and a, b label occupied and
virtual orbitals in the HF reference, respectively. In the limit
where all excitations are included in the wave function in
Eq. (12), the coupled cluster expansion is exact and gives the
same result as QED full configuration interaction [24,31,32].
The optimal values for the coupled cluster parameters are
obtained by solving the projection equations [70],

Ωμ;n;m ¼ hμ; n; mj exp ð−TÞH expðTÞjHF; 0; 0i ¼ 0; ð15Þ

with

jHF;0;0i¼ jHFi⊗ j0;0i;
jμ;n;mi¼ jμi⊗ jm;ni;

T¼T1þT2þðS1αþγαÞα†þðS1βþγβÞβ†; ð16Þ

where μ labels an electronic excitation while n and m are
photonic excitations in α and β. The ground state energy
is equal to

E ¼ hHF; 0; 0j exp ð−TÞH expðTÞjHF; 0; 0i: ð17Þ
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The energy in Eq. (17) can be rewritten in terms of the cluster
amplitudes and the two electron integrals gpqrs [70] as

E ¼ EHF þ
X
aibj

ðtabij þ tai t
b
j Þð2giajb − gibjaÞ

þ λffiffiffiffiffiffi
2ω̃

p
X
ai

½ðp · ϵÞeikr�iaðsaiα þ γαtai Þ

þ λffiffiffiffiffiffi
2ω̃

p
X
ai

½ðp · ϵ�Þe−ikr�iaðsaiβ þ γβtai Þ; ð18Þ

where

EHF ¼ hHFjHejHFi: ð19Þ

The electronic Hamiltonian He is given by the standard
expression,

He ¼
X
pq

hpqEpq þ
1

2

X
pqrs

gpqrsðEpqErs − δqrEpsÞ; ð20Þ

and hpq are the one electron integrals [70].
Because of the non-Hermiticity of the approach, the

coupled cluster method can give complex energies when
the Hamiltonian is complex, e.g., for molecules in external
magnetic fields [71–73]. Since this case is implicitly
contained in our framework, we must ensure that the
energy in Eq. (18) is real. This condition is satisfied if
S1α and S1β (as well as γα and γβ) fulfill the relations

saiα ¼ −sa�iβ ; γα ¼ −γ�β; ð21Þ

for real tai and tabij . These conditions are not accidental
as the same relationship holds between the integrals
½ðp · ϵ�Þe−ikr�pq and ½ðp · ϵÞeikr�pq when the orbitals p
and q are real. Therefore, the conditions in Eq. (21) must
arise from a symmetry in the Hamiltonian.
In the following, we demonstrate that Eq. (21) holds in

the exact limit where

jψi ¼ exp

�X
mn

ðSmα;nβ þ γmα;nβÞα†mβ†n
�

ð22Þ

expðTÞjHF; 0; 0i; ð23Þ

with T and Smα;nβ containing all the electronic excitations.
The exact eigenfunction jψi satisfies

Hjψi ¼ Ejψi; ð24Þ

with a real E. Introducing the unitary transformation V,

V ¼ exp½iπðα†β þ β†αÞ=2� exp½iπðα†αþ β†βÞ=2�; ð25Þ

we obtain the following relations:

V†αV ¼ −β;

V†βV ¼ −α: ð26Þ

Applying the transformation on both sides of Eq. (24),
we obtain

V†HVV†jψi ¼ EV†jψi; ð27Þ

and we can now use Eq. (26) to exchange α with −β and
vice versa in both the Hamiltonian and the wave function.
Complex conjugation of the transformed Hamiltonian in
Eq. (27) gives

ðV†HVÞ� ¼Heþ ω̃ðα†αþβ†βþ1Þ

þ λffiffiffiffiffiffi
2ω̃

p
X
pq

½ðpi ·ϵÞeikri �pqEpqðαþβ†Þ

þ λffiffiffiffiffiffi
2ω̃

p
X
pq

½ðpi ·ϵ�Þe−ikri �pqEpqðα†þβÞ; ð28Þ

where we assume the orbitals are real. On the other hand,
the transformed wave function equals

ðV†jψiÞ� ¼ exp

�X
mn

ðS�mα;nβ þ γ�mα;nβÞα†nβ†mð−1Þmþn

�

expðT�ÞjHF; 0; 0i: ð29Þ

Since the Hamiltonians in Eqs. (10) and (28) are identical,
the eigenfunctions in Eqs. (23) and (29) must also be equal
to each other. This implies that the amplitudes satisfy the
relations

Sm;n ¼ ð−1ÞmþnS�n;m;

γm;n ¼ ð−1Þmþnγ�n;m;

T ¼ T�; ð30Þ

which proves the assertion.
Considering the well-know problems in using coupled

cluster with complex Hamiltonians [74,75], this represents
a very interesting outcome. Our results show that when
the imaginary part of the Hamiltonian is introduced
through bosonic operators, such complications can be
overcome by choosing an appropriate shape of the cluster
operator. This is, to our knowledge, the first observation
of these symmetries. In future work, we will explore the
potential applications of these findings for molecules in
static magnetic fields.
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V. MECHANISM BEHIND THE CAVITY-INDUCED
ENANTIOMER DISCRIMINATION

In the section above, we showed no symmetry of the
Hamiltonian enforces two enantiomers to have the same
energy in a chiral cavity. In this section, we focus more on
the mechanism that allows circularly polarized fields to
differentiate among optically active molecules. It is a well-
known fact that chiral molecules can be identified based on
the direction they rotate the polarization plane of linearly
polarized light [76]. This property is, in particular, linked to
the optical rotatory tensor R0n

ij , that in velocity gauge [50]

R0n
ij ¼ Rehψ0jmijψnihψnjpjjψ0i

ω̃
; ð31Þ

where mi and pj denote the i and j spacial components of
the magnetic and electric dipole. In Eq. (31), ψ0 and ψn
label electronic ground and excited state wave functions.
For different enantiomers of the same molecule, the optical
rotatory tensor changes its sign. The optical rotatory tensor
is also linked to another critical property of chiral mole-
cules, the circular dichroism. This is the differential
absorption of left- and right-handed light. Inside an optical
cavity, the photonic and molecular degrees of freedom mix
up to create a wave function that features both photons and
electrons. The photonic contributions to the wave function
are strongly influenced by the response properties of the
molecular system in the cavity. This can be seen by treating
the electron-photon interaction perturbatively. For example,
the excited state coefficient cn to first order equals

cð1Þn ¼ −
hψnjVjψ0i
En þ ω̃ − E0

; ð32Þ

where we observe that the magnitude of the photonic
contributions depends on the transition moment and
En − E0 is the excitation energy. Since enantiomers interact
differently with circularly polarized light, they are dressed
differently by LHCP and RHCP light. The energy
differences between enantiomers can also be, in a first
approximation, linked to the optical rotatory tensor.
Indeed, the second order perturbation expression for the
energy equals

Eð2Þ ¼ −
λ2

2ω̃

X
n

�hψ0jðp · ϵÞeikrjψnihψnjðp · ϵ�Þe−ikrjψ0i
En þ ω̃ − E0

þ hψ0jðp · ϵ�Þe−ikrjψnihψnjðp · ϵÞeikrjψ0i
En þ ω̃ − E0

�
; ð33Þ

which, after rotational averaging and expansion in k,
becomes

hEð2Þi ¼ −
λ2

3ω̃

X
n

X3
i¼1

hψ0jpijψnihψnjpijψ0i
En þ ω̃ − E0

−
λ2k
3

X
n

X3
i¼1

R0n
ii

En þ ω̃ − E0

þOðk2Þ; ð34Þ

as shown in Appendix D. Since the contribution from the
optical rotatory tensor changes sign depending on the
enantiomer, some chiral molecules will be stabilized by
the circularly polarized field, while others will be desta-
bilized. We notice that the mixed electron-photon excited
states provide the critical contribution for determining
the field-induced discrimination. The differential photon
dressing is the cause of the field-induced energy differences
as the second order perturbation energy can be rewritten as

Eð2Þ ¼ hψ0jV
X
n

jψnicð1Þn : ð35Þ

In Eq. (35), the terms on the left-hand side of the
summation are identical for both enantiomers and it is
therefore only the perturbed wave function, i.e., the photon
dressing, that changes. The MC-QED-CCSD method
includes the electron-photon excited states responsible
for the effects discussed in Eq. (34) through the mixed
electron-photon operators S1αα† and S1ββ†. Once applied to
the reference state jHF; 0; 0i, indeed, the cluster terms
populate the full set of electon-photon excited states:

jψi ¼ exp½ðS1α þ γαÞα† þ ðS1β þ γβÞβ†�
exp ðT1 þ T2ÞjHFi ⊗ j0; 0i

¼ ½1þ ðS1α þ γαÞα† þ ðS1β þ γβÞβ† þ � � ��jHFi; ð36Þ

with coefficients that depend on the amplitudes.

VI. RESULTS

In this section, we apply the MC-QED-CCSD method-
ology on a set of chiral molecules interacting with a
handedness-preserving cavity. Specifically, we perform a
detailed quantitative analysis of the cavity-induced dis-
crimination effects and we show that rotational spectra
present enantioselective signatures in a chiral cavity. The
calculations have been performed using a development
version of the ET program [77] using the cc-pVDZ basis
set [78,79]. The molecular structures have been optimized
with the ORCA software package [80] at the DFT-B3LYP/
def2-SVP level [81]. The basis set effects on the cavity
calculations are discussed in Appendix E. To uniquely
define the enantiomers of a chiral molecule we use the
absolute configuration notation [82] explained in Fig. 3.
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A. Cavity-induced discrimination power

Strong coupling with circularly polarized electromag-
netic fields creates energy differences between enantio-
meric pairs. Since this is a field-induced effect, the cavity
properties strongly influence the magnitude of the dis-
criminating power. In Fig. 4, we show the frequency
dispersion of the energy difference between R and S
enantiomers of proline, ΔðR − SÞ, in a LHCP cavity.
The sign ofΔðR − SÞ remains the same for every frequency
of the field and for every coupling value. The function
changes sign when the circular polarization of the field is

reversed. The magnitude of the discrimination is strongly
affected by both ω and λ and shows the same qualitative
behavior for all coupling values. Specifically, ΔðR − SÞ is
equal to zero for ω ¼ 0 eV, then reaches a minimum (or a
maximum) for an intermediate frequency and approaches
zero again for ω → ∞. The curve shape can be explained
using the previously developed theory. The discriminating
power of the cavity approaches zero at small ω because the
exponential eikr ≈ 1 (see Sec. III). On the other hand,
ΔðR − SÞ also approaches zero for large cavity frequencies
because the photonic component of the wave function
becomes very small for very high-energy fields [the
coefficient of the first order perturbed wave function in
Eq. (32) vanishes if ω approaches infinity]. The position
of the curve minimum is the most interesting feature of the
dispersion curve. Photons with high frequency, i.e., large k,
have high discriminating power per photon because the
second term in Eq. (34) becomes increasingly larger.
However, since the population of the photonic states
decreases when the field energy increases, an optimal point
is found. This point depends on the coupling factor as shown
in Fig. 4(b). In particular, we notice that the minimum
location is shifted to higher frequencies when the coupling
increases because λ enhances the population of higher-
energy and more discriminating photonic states. We point
out that while the effect is still nonresonant, the optimal
frequency value is system or cavity dependent; see Fig. 4.
The chiral discriminating powers reported in Fig. 4

are very small for realistic values of the light-matter
coupling (λ ≤ 0.05 au). In particular, the field-induced
energy differences are significantly smaller than the aver-
age thermal energy at room temperature. However, it is well

FIG. 4. (a) Frequency dispersion of the discriminating power in a LHCP cavity at coupling λ ¼ 0.005. The discriminating power
reaches its minimum value around ω ¼ 4 eV. (b) Frequency dispersion of the discriminating power for different values of the coupling
strength. The size of the discriminating power increases with the coupling, but the qualitative shape of the dispersion is the same for all
the analyzed cases. The minimum in ΔðR − SÞ is shifted at higher frequencies as the coupling increases.

FIG. 3. Identification of the absolute configuration of a chiral
molecule. We first assign a priority number to each atom attached
to the chiral center based on the atomic number (from largest to
smallest). The structure is then rotated such that the lightest
element (H in this case) is pointing backward. Finally, an arrow is
drawn from the highest to the lowest priority element. If the arrow
rotates clockwise, we refer to the enantiomer as R, otherwise we
refer to the enantiomer as S. This procedure provides a unique
identification of the molecular structure [82].
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known that field-induced modifications can be amplified by
many orders of magnitude through cooperation mecha-
nisms between multiple molecules and field modes
[19,83–87]. This class of phenomena is commonly called
collective effects [86,88]. Even though the term collective
effects is typically associated with excited states in the
strong coupling community [19,89], optical cavities are
known to induce long-range correlation between molecular
systems even in their ground state [24,25,90,91]. It is
therefore interesting to investigate how the number of
strongly coupled enantiomers influences the discriminating
power of the cavity. In Fig. 5 we plot the dependence of
ΔðR − SÞ with respect to the number of chiral molecules in
the cavity. Specifically, we perform calculations on a set of
1-fluoroethylamine (both R and S) separated by 200 Å
either along the wave vector direction, Fig. 5(a), or
perpendicularly to k, Fig. 5(b). The coupling is fixed to
λ ¼ 0.05 au while the frequency of the cavity is equal
to 1.36 eV. In both directions the discriminating power of
the cavity is enhanced as the number of chiral centers
increases. The dispersions in Fig. 5 are slower than linear
and the effect is dominated by the square root of the number
of enantiomers in the cavity. This trend is in line with the
behavior shown in Ref. [45]; see Appendix F for additional
details. We note, however, that the enantiomeric discrimi-
nation discussed here is a nonresonant effect, showing the
typical ground state dependence from the cavity parame-
ters, i.e., ΔðR − SÞ ∝ Oðλ2Þ. The fitting functions in Fig. 5
have been chosen considering that the main energy con-
tribution from the light-matter interaction term scales asffiffiffiffi
N

p
. Moreover, for Neλ

2 ≫ ω2 we have

λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Neλ

2
pq ≈

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ

ffiffiffiffiffiffi
Ne

pp �
λ −

ω2

2Ne

�
; ð37Þ

which justifies the second contribution in the fit. The field-
induced energy differences are slightly stronger when
molecules are displaced along k. Although the effect
becomes infinitely large as the number of molecules
increases, the cavity-induced differences are not extensive.
Our results are in disagreement with those reported in
Ref. [20], where the authors show that ground state
properties do not depend on the number of molecules in
the cavity. This disagreement, in our opinion, is due to the
inclusion of the squared field term, A2, in the Hamiltonian;
see Eq. (6). This contribution, which is on par with the
dipole self-energy in the formalism of Ref. [20], changes
the effective frequency of the cavity from ω to ω̃ intro-
ducing a dependence on the number of molecules also for
ground state properties. Differently from resonant effects,
therefore, it is not the effective coupling with the field that
changes, but the frequency. Since the frequency variations
are proportional to λ2, neglecting such terms becomes more
and more exact as the coupling decreases and the approach
in Ref. [20] is obtained. If the chiral molecule is dissolved
in a liquid, the solvent too plays a significant role in
enhancing the field-discriminating power. Indeed, when the
solute is chiral, the solvent arranges in a chiral structure
itself, at least in the first few solvation shells. Under these
conditions the field interacts with a significantly larger
chiral system increasing the discriminating effect. For
example, in Fig. 6 we show that when 10 water molecules
solvate 1-fluoroethylamine, the cavity effect almost dou-
bles. We envision that the solvent enhancement should
become even more intense if additional chiral molecules are
added in the solution or if a chiral solvent is used in the first
place. This topic will be the subject of a future publication.
Additional anisotropy factors, like magnetic fields or pulses
of external circularly polarized light, could also enhance the
cavity-discriminating power similarly to what happens for

FIG. 5. Effect of the number of molecules on the cavity discriminating power for R and S 1-fluoroethylamine displaced by 200 Å
along or perpendicularly to the wave vector. The fitting functions for the observed effects are (a) ΔðR − SÞ ¼ 0.0013þ
0.0015

ffiffiffiffi
N

p
− 0.001=

ffiffiffiffi
N

p
and (b) ΔðR − SÞ ¼ 0.0013þ 0.0014

ffiffiffiffi
N

p
− 0.001=

ffiffiffiffi
N

p
.
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magnetic circular dichroism spectroscopy [92–94]. All the
factors discussed above should increase the field-induced
energy differences in chiral cavities, potentially to the
kJ=mol range.

B. Rotational spectra in chiral cavities

Inside an optical cavity, the molecular energy is highly
dependent on the molecular orientation because the quan-
tization direction of the cavity field k naturally introduces a
spacial anisotropy [24]. For example, in Fig. 7 we show
how the energy of 1-fluoroethylamine in a LHCP field
changes upon rotation of the molecule around an arbitrary
axis. The photons, indeed, dress molecules differently
depending on their orientation. Using the concepts dis-
cussed in Sec. V, this follows from the idea that a molecule
does not interact with light in the same way in all

orientations. Some configurations are therefore stabilized
more than others by the cavity resulting in preferential
orientations of the system. This should have a significant
effect on the rotational spectrum of the system in the cavity.
We point out that we expect modifications in the rotational
spectrum even for strong coupling to linearly polarized
fields. However, different enantiomers would surely exhibit
the same rotational levels upon strong coupling to linearly
polarized fields. Inside, a chiral cavity, instead, due to the
differential photon dressing of the enantiomers, the field-
induced orientational stabilization should differ for the two
enantiomers. In particular, the orientational effects reported
in Fig. 7 for the R and S enantiomers are not exactly the
same, confirming that the rotational surfaces differ for the
two mirror images. These variations should induce enan-
tioselective signatures in the rotational spectra. In this
section, we compute the cavity-induced orientational
effects on the two enantiomers of alanine (see Fig. 8)
and the relative rotational spectra. All the possible molecu-
lar orientations are obtained varying the three Euler
angles ϕ, θ, and χ describing a rotation around z, a rotation
around x, and a rotation on around z again, respectively
(see Fig. 9). The energy is invariant with respect to χ for
symmetry reasons. The Hamiltonian used to describe the
nuclear motion is

H ¼
X
I

p2
I

2MI
þ VðRÞ; ð38Þ

where VðRÞ is the potential energy surface obtained
performing a MC-QED-CCSD calculation for every ori-
entation of the molecule. The interactions between the
nuclei and the field in Eq. (38) are neglected because the
nuclear motion is much slower than the electronic one.
Once the motion of the center of mass has been removed,
the kinetic contribution in Eq. (38) can be split into a
vibrational Hvib and a rotational Hrot part (the mixed
rovibrational contribution are neglected in this analysis).
The Hamiltonian in Eq. (38) is therefore rewritten as

H ¼ Hrot þHvib;

Hrot ¼
J2ξ
2Iξ

þ J2η
2Iη

þ J2ζ
2Iζ

þ Vrotðθ;ϕÞ; ð39Þ

FIG. 7. Orientational effects for R and S enantiomers of
1-fluoroethylamine upon rotation around an arbitrary axis shown
above of an angle θ.

FIG. 6. Solvent-induced enhancement of the chiral discrimi-
nating effect. The solvent arranges in a chiral configuration
around the chiral solute and the field interacts with a larger chiral
system.

FIG. 8. S enantiomer of the alanine molecule.
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where ξ, η, and ζ are the principal axes of inertia of the
molecule, treated as a rigid body [95]. A detailed discussion
of how to compute the rotational energy levels from
Eq. (39) is reported in Appendix G. The rotational potential
energy surface, Vrotðθ;ϕÞ, for the S enantiomer of alanine
in a LHCP cavity is shown in Fig. 10(a). Differently from
the no-cavity case, the surface is not flat and presents two
maxima and two minima: the most destabilized and
stabilized configurations, respectively. The difference in
the orientational effects for the two enantiomers [ΔðR − SÞ]
is plotted in Fig. 10(b). In particular, the results shown in
Fig. 10 are obtained summing up the cavity orientational
effects obtained from the first 20 modes of a chiral cavity
with fundamental excitation at 2.7 eV. The coupling

has been set to λ ¼ 0.05 au. We note that in Fig. 10(b),
ΔðR − SÞ does not have a constant sign implying that the
surfaces are not just shifted by a constant. Specifically, the
potential of the S enantiomer has higher maxima and lower
minima when compared to the surface obtained for the R
enantiomer. The rotational spectra of the two mirror images
are shown in Fig. 11. Because of the orientational effects in
the cavity, the peaks are shifted to higher energies than in
standard rotational spectroscopy. We highlight that R and S
spectra are not identical. While the intensities are mostly
unchanged, the peak positions are slightly different with the
largest modifications observed on the signals around 55,
70, and 100 cm−1. The shifts are not always in the same
direction and we observe that the R enantiomer spectrum
has a lower excitation around 70 cm−1 while the S
enantiomer spectrum shows lower transitions at 55 and
100 cm−1. Differences in the peak positions are on the
order of 0.5 cm−1, which is still large enough to be detected
experimentally. However, the shifts can be enhanced by
solvent and collective effects as discussed in the previous
section. Together with the data shown before, these
results confirm that chiral cavities can be used to create
energy differences between enantiomers and that they
induce enantiospecific shifts in their rotational spectra.
Observation of the enantiospecific signatures in rotational
spectroscopy would be a clear experimental proof of the
effects described in this paper. We point out, however, that
dissipative channels might be open for polaritonic states
and that they might affect the spectral resolution achievable
experimentally. The eventual broadening of the peaks,
indeed, has not been included in Fig. 11. We envision
that the cavity-induced discrimination effects described in
this section might be used to improve processes where
enantiomers need to be separated [96]. As discussed in the
Introduction, this is a critical process for nonenantioselective

FIG. 9. Pictorial representation of the Euler angles.

FIG. 10. (a) Rotational surface for S alanine in a LCHP cavity. The surface is not flat; instead some configurations are stabilized by the
field. (b) Difference in the rotational surfaces of R and S alanine. We observe that the energy difference does not have a constant sign.
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synthesis methods where the differentiation among enan-
tiomers has to be performed after a 50%=50%mixture of the
two mirror images has been formed. Moreover, in future
works we will test whether the use of chiral cavities can be
used to induce enantioselectivity in chemical reactions.

VII. CONCLUSION

In this work, we present the first ab initio framework to
model strong coupling between molecules and circularly
polarized light. We show that the simplest theoretical
approach to properly describe these systems requires the
inclusion of two cavity modes to ensure the correct field
symmetry. We also discuss how inclusion of the beyond
dipole contributions is critical to capture the chiral nature of
the field. Our implementation is, to our knowledge, the first
report of an ab initio QED approach where the full field
shape is used. This is a significant improvement over
previous methodologies since the inclusion of the full field
shape allows for the treatment of any kind of cavity
dimension and field frequency. This choice also solves
serious issues with beyond dipole QED approaches, e.g.,
multipolar expansion, that introduce an expansion point
dependence in the results. We investigate the formal
properties of the chiral cavity Hamiltonian and argue that,
using circularly polarized electromagnetic fields, it is
indeed possible to discriminate between the two mirror
images of a chiral molecule. To perform numerical simu-
lations on realistic systems we develop a complex QED
coupled cluster approach. This is a new critical develop-
ment as the non-Hermiticity of the approach makes it
challenging to deal with complex Hamiltonians without
unphysical complex energies. We show that for QED
methods the energy remains real if an appropriate form
of the cluster operator is employed. Our results demonstrate
that chiral cavities create energy differences between
enantiomers. The sign of the chiral discrimination does
not depend on the frequency of the field or the coupling
strength. Instead, it is only affected by the circular

polarization of the cavity. This is an essential observation
for future experimental applications as the effects are stable
for very large variations of the cavity parameters.
The dependence of the discrimination on the number of

strongly coupled chiral molecules has also been inves-
tigated. In particular, we observe an increase in the
discriminating power with the number of chiral systems
in the cavity. The solvent also enhances the enantioselective
effect by creating a chiral solvation shell around the chiral
solute. Finally, we demonstrate that enantiomers do not
have the same rotational spectra in chiral cavities.
Specifically, the circularly polarized field induces enantio-
specific shifts in the peak positions.
Our results suggest that interesting phenomena should be

observable when molecules are placed in chiral cavities.
Future developments will tackle the calculation of excited
states for chiral molecules in chiral cavities [45,46].
Moreover, future investigations will deal with the possibil-
ity to use circularly polarized fields to induce enantiose-
lectivity in chemical reactions [45,52,97]. We believe that,
together with other reported findings [96], our results
provide the necessary motivation for further investigations
of strong coupling in enantiomeric separation.

The geometries can be found in Ref. [98].
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APPENDIX A: SINGLE-MODE APPROXIMATION

The single-mode approximation is widely used together
with the dipole approximation (e�ikr ¼ 1) [99–101]. In the
single-mode approximation, the Hamiltonian in Eq. (5)
becomes

Hk ¼
1

2

X
i

�
pi −

λffiffiffiffiffiffiffiffi
2ωk

p ðϵ�bkeikri þ ϵ��b
†
ke

−ikriÞ
�
2

þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ ωk

�
b†kbk þ

1

2

�
ðA1Þ

FIG. 11. Rotational spectra of R and S alanine inside a LCHP
cavity.
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or

Hk ¼
1

2

X
i

�
pi −

λffiffiffiffiffiffiffiffi
2ωk

p ðϵ∓b−ke−ikri þ ϵ�∓b†−keikriÞ
�
2

þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ ωk

�
b†−kb−k þ

1

2

�
; ðA2Þ

depending on which mode is retained, either the one
going from left to right or vice versa. Although these
Hamiltonians seem to be theoretically consistent with each
other, they do not have the same eigenvalues, as there is no
unitary transformation connecting them. Choosing one
mode of the field only would therefore break the natural
symmetry of the Hamiltonian where left and right are the
same. Therefore, at least two different modes of the
electromagnetic field are needed to characterize a chiral
cavity. Specifically, such modes should have the same
frequency but opposite wave vector. So far, we have shown
that two modes are necessary to describe the chiral field
consistently. A similar line of arguments shows that the
two-mode treatment is also required when the dipole
approximation is applied in Eq. (5). A pictorial represen-
tation of the results discussed in this appendix is reported in
Fig. 12. In particular, we highlight that, when the field is

circularly polarized, the photons moving to the right are
different from those moving to the left even in the dipole
approximation. Therefore, both modes need to be included
explicitly in our description of the vector potential. In the
case of a linearly polarized field, instead, the left- and right-
moving photons can only be distinguished if we go beyond
the dipole approximation.

APPENDIX B: ZERO-POINT ENERGY
AND NON-SIZE-EXTENSIVE EFFECTS

The θ value in the Bogoliubov transformation, Eq. (11),
has been chosen to remove the quadratic contribution in
Eq. (7). The same θ value is obtained when minimizing the
zero-point energy. Indeed, after the Bogoliubov transfor-
mation, the zero-point energy becomes equal to

Eðθ; NeÞ ¼
Neλ

2

2ω
ðcosh θ − sinh θÞ2 þ 2ω sinh2 θ þ ω

2
;

ðB1Þ

which has a minimum for

tanh 2θ ¼ λ2Ne

λ2Ne þ 2ω2
: ðB2Þ

Using Eq. (B2), the zero-point energy becomes equal to

E0ðNeÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Neλ

2

q
¼ ω

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Neλ

2

ω2

s
; ðB3Þ

which is non-size-extensive due to the square root depend-
ence on the number of molecules. The non-size-extensize
contribution to the zero-point energy equals

Ense ¼ E0ðNeÞ − NeE0ð1Þ þ
ðNe − 1Þω

2
; ðB4Þ

where the last term has been added to avoid overcounting
of the cavity zero-point energy. When ðNeλ

2=ω2Þ ≪ 1,
Eq. (B4) can be expanded in a Taylor series leading to

Ense ≈ −
NeðNe − 1Þλ4

8ω3
; ðB5Þ

which shows the same NeðNe − 1Þ behavior already
reported in Ref. [24].

APPENDIX C: BOGOLIUBOV
TRANSFORMATION FOR THE

MULTIMODE CASE

The transformation in Eq. (11) is also useful when more
modes are included in the minimal coupling Hamiltonian:

FIG. 12. In a chiral cavity (left-hand side) the left- and right-
moving photons are different even in dipole approximation (the
two arrows rotate in a different way) and both the modes must
therefore be included in the Hamiltonian. In a linearly polarized
cavity, instead, once the dipole approximation has been adopted
the contribution from the two photons is exactly the same.
Therefore a one-mode picture is enough to describe the system.
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H ¼
X
i

p2
i

2
þ
X
k>0

ωkðb†kbk þ b†−kb−k þ 1Þ þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ λ
X
i

X
k>0

ðpi · ϵ�Þeikri
ðbk þ b†−kÞffiffiffiffiffiffiffiffi

2ωk
p þ λ

X
i

X
k>0

ðpi · ϵ��Þe−ikri
ðb†k þ b−kÞffiffiffiffiffiffiffiffi

2ωk
p

þ
X
k>0

Neλ
2

2ωk
ðbk þ b†−kÞðb−k þ b†kÞ þ

X
i

X
k≠k0>0

Neλ
2eiðk−k0Þri

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ωkωk0

p ðbk þ b†−kÞðb−k0 þ b†k0 Þ: ðC1Þ

In this case the squared term couples different field modes. Because of the presence of electronic operators, the quadratic
contributions in the field cannot be fully reabsorbed using a unitary bosonic transformation similar to Eq. (11). However, a
product of those rotations leads to

U ¼
Y
k>0

exp½θkðb†kb†−k − bkb−kÞ�; ðC2Þ

which can be used to reabsorb the purely photonic terms of Eq. (C1) leading to

H ¼
X
i

p2
i

2
þ
X
k

ω̃kðα†kαk þ β†kβk þ 1Þ þ
X
i>j

1

jri − rjj
þ
X
I>J

ZIZJ

jRI − RJj
−
X
i;I

ZI

jRI − rij

þ λ
X
i

X
k

ðpi · ϵ�Þeikri
ðαk þ β†kÞffiffiffiffiffiffiffiffi

2ω̃k
p þ λ

X
i

X
k

ðpi · ϵ��Þe−ikri
ðα†k þ βkÞffiffiffiffiffiffiffiffi

2ω̃k
p

þ
X
i

X
k≠k0

Neλ
2eiðk−k0Þri

2
ffiffiffiffiffiffiffiffiffiffiffiffi
ω̃kω̃k0

p ðαk þ β†kÞðβk0 þ α†k0 Þ: ðC3Þ

Again, the frequencies have been redefined as ω̃k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
k þ Neλ

2
q

.

APPENDIX D: SECOND ORDER PERTURBATIVE ENERGY EXPANSION

In this appendix, we explicitly report the field expansion leading from Eq. (33) to Eq. (34). Keeping only theOðkÞ terms
in the expansion of the exponential eikr, Eq. (33) becomes

Eð2Þ ¼ −
λ2

2ω̃

X
n

�hψ0jðp · ϵÞeikrjψnihψnjðp · ϵ�Þe−ikrjψ0i
En þ ω̃ − E0

þ hψ0jðp · ϵ�Þe−ikrjψnihψnjðp · ϵÞeikrjψ0i
En þ ω̃ − E0

�

≈ −
λ2

2ω̃

X
n

hψ0jðp · ϵÞð1þ ik · rÞjψnihψnjðp · ϵ�Þð1 − ik · rÞjψ0i
En þ ω̃ − E0

−
λ2

2ω̃

X
n

hψ0jðp · ϵ�Þð1 − ik · rÞjψnihψnjðp · ϵÞð1þ ik · rÞjψ0i
En þ ω̃ − E0

: ðD1Þ

This expression can be separated into a contribution that is independent of k and related to the molecular polarizability,

Eð2Þ
plus ¼ −

λ2

2ω̃

X
n

�hψ0jðp · ϵÞjψnihψnjðp · ϵ�Þjψ0i
En − E0 þ ω̃

þ hψ0jðp · ϵ�Þjψnihψnjðp · ϵÞjψ0i
En − E0 þ ω̃

�
; ðD2Þ

and a wave vector dependent term Eð2Þ
k ,

Eð2Þ
k ¼ −

λ2i
2ω̃

X
n

�hψ0jðp · ϵÞðk · rÞjψnihψnjðp · ϵ�Þjψ0i
En − E0 þ ω̃

−
hψ0jðp · ϵÞjψnihψnjðp · ϵ�Þðk · rÞjψ0i

En − E0 þ ω̃

�

−
λ2i
2ω̃

X
n

�hψ0jðp · ϵ�Þjψnihψnjðp · ϵÞðk · rÞjψ0i
En − E0 þ ω̃

−
hψ0jðp · ϵ�Þðk · rÞjψnihψnjðp · ϵÞjψ0i

En − E0 þ ω̃

�
: ðD3Þ
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Rewriting Eq. (D3) using the definition of the velocity-gauge quadrupole and angular momentum operators,

Qlk ¼ rlpk þ rkpl Lk ¼ ϵklmrlpm; ðD4Þ

and further assuming that

ϵ ¼ 1ffiffiffi
2

p ð1;�i; 0Þ; k ¼ ð0; 0; kÞ; ðD5Þ

we obtain

Eð2Þ
k ¼ ∓ λ2

4ω̃

X
n

�hψ0jLxjψnihψnjpxjψ0i
En − E0 þ ω̃

þ hψ0jLyjψnihψnjpyjψ0i
En − E0 þ ω̃

�

∓ λ2

4ω̃

X
n

�hψ0jpxjψnihψnjLxjψ0i
En − E0 þ ω̃

þ hψ0jpyjψnihψnjLyjψ0i
En − E0 þ ω̃

�

∓ λ2

4ω̃

X
n

�hψ0jQyzjψnihψnjpxjψ0i
En − E0 þ ω̃

þ hψ0jQxzjψnihψnjpyjψ0i
En − E0 þ ω̃

�

∓ λ2

4ω̃

X
n

�hψ0jpxjψnihψnjQyzjψ0i
En − E0 þ ω̃

þ hψ0jpyjψnihψnjQxzjψ0i
En − E0 þ ω̃

�
: ðD6Þ

After averaging over all molecular orientations, we obtain
the expression

Eð2Þ
k ¼ ∓ λ2

3ω̃

X
n

X3
i¼1

hψ0jLijψnihψnjpijψ0i
En − E0 þ ω̃

: ðD7Þ

APPENDIX E: BASIS SET EFFECTS
IN QED CALCULATIONS

Usually, the minimal coupling Hamiltonian is not
employed to describe the interaction between light and
matter, as it involves the complex momentum operator.
Instead, it is customary to perform calculations using
the unitarily transformed version of the minimal coup-
ling Hamiltonian, called the Power-Zienau-Woolley
Hamiltonian. When the dipole approximation is adopted,
the Power-Zienau-Woolley Hamiltonian is equal to

HLG ¼ He þ λ

ffiffiffiffi
ω

2

r XNe

i

ðdi · ϵÞðbþ b†Þ

þ λ2

2

XNe

ij

ðdi · ϵÞðdj · ϵÞ þ ωb†b; ðE1Þ

whereHe is the standard electronic Hamiltonian and di is the
molecular dipole operator. This Hamiltonian is referred to as
length-gauge form (LG). Extension of Eq. (E1) beyond the
dipole approximation is a relatively easy task if a multipole
expansion is applied. However, this approach breaks the
origin invariance of the problem. This is why we have

chosen to use a modified minimal coupling Hamiltonian to
describe strongly coupled systems in chiral cavities. The two
approaches (multipole expansion and minimal coupling) are
completely equivalent in theory, but the basis truncation in
real calculations makes them differ.
In this appendix, we therefore compare the QED

effects obtained using the minimal coupling Hamiltonian
in the dipole approximation, also called the velocity-gauge
Hamiltonian, and the length-gauge Hamiltonian in

FIG. 13. Dispersion of the QED effects for a system of water
molecules displaced of 10 Å from each other. The coupling is
equal to 0.1 au while the frequency is equal to 13.6 eV.
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Eq. (E1). In Fig. 13 we show the dispersion of the QED
effects for an increasing number of water molecules spaced
by 10 Å along the ϵ direction. As expected, the results
obtained using the different gauges are not the same. In
particular, the velocity gauge consistently predicts larger
field contributions than length gauge. However, the agree-
ment improves as the basis set is enlarged. While the QED
effects computed using velocity gauge decrease when the
basis is enlarged, the effects computed using length gauge
increase. From Fig. 13 we infer that both gauges converge
in the complete basis limit, one from above, and the other
from below. Because of the nonvariational character of the
coupled cluster approach, gauge invariance is not neces-
sarily reached in the complete basis unless the full set of
excitations are included [102]. However, as shown in
previous works [103], reasonable agreement between the
two gauges can be reached with large basis sets, and the
two frameworks describe the same qualitative effects
regardless of the basis size.

APPENDIX F: SMALL COUPLING EFFECTS

In Fig. 5, we show how the field-induced energy
differences are affected by the number of chiral molecules
in the cavity. In particular, we find out that the discrimi-
nation power grows as the square root of the number of
enantiomers in the cavity for a large number of molecules.
In this appendix, we additionally show that in the limit of
small coupling the effects grows almost linearly; see
Fig. 14. In this setting, Neλ

2 ≪ ω2, we have that

λffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ Neλ

2
pq ≈

λffiffiffiffiffiffi
2ω

p
�
1 −

Neλ
2

2ω2

�
: ðF1Þ

The linearity effect is lost when the number of molecules is
such that Neλ

2 ≈ ω2 and the
ffiffiffiffi
N

p
effect dominates at large

number of molecules. This result is in agreement with what
is reported in Ref. [45].

APPENDIX G: CALCULATION OF THE
ROTATIONAL SPECTRUM

The molecular rotational spectra shown in this paper
are obtained treating the molecule as an asymmetrical top,
following the theory in Ref. [95]. In particular, the rota-
tional Hamiltonian Hrot is equal to

Hrot ¼
1

4
ðJ2 − J2ζÞ

�
1

Iξ
þ 1

Iη

�
þ J2ζ
2Iζ

þ 1

8
ðJ2þ þ J2−Þ

�
1

Iξ
−

1

Iη

�
þ Vðθ;ϕÞ; ðG1Þ

expressed in terms of angular momentum operators Jþ
and J−. The angular momentum component M along the
fixed z axis is a good quantum number for the stationary
states of Eq. (G1). The eigenvalues and eigenvectors of
Eq. (G1) are obtained solving the eigenvalue problem,

X
Jk0

ðhJMkjHrotjJ0Mk0i − Eδkk0 ÞcJ0k0 ¼ 0; ðG2Þ

where fjJMkig are the eigenfunctions of the symmetric top
problem [95]:

Dj
Mkðχ; θ;ϕÞ ¼ expðiMχÞdjMn expðikϕÞ: ðG3Þ

While the matrix elements for the J operators are
obtained using the angular momentum properties, the
contribution arising from the cavity-induced potential is
more difficult to account for. To include the contribution

FIG. 14. Dispersion of ΔðR − SÞ with respect to the number of chiral centers in the cavity for the case of λ ¼ 0.001au and
ω ¼ 0.68 eV. The fitting functions are (a) ΔðR − SÞ ¼ 0.00096þ 0.00160N and (b) ΔðR − SÞ ¼ −0.00215þ 0.00050N þ
0.00386

ffiffiffiffi
N

p
.
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from the cavity potential, we perform a discrete Fourier
transform in θ and ϕ,

Vðθ;ϕÞ ≈
X
ln

Vlneilθeinϕ; ðG4Þ

where we have only retained the Vln such that jVlnj >
0.001. The diagonalization is performed in Mathematica
for quantum numberM ¼ 0, 1, 2 and states with J ≤ 4. The
intensities in the spectra have been computed using the
oscillator strength:

feg ¼
2

3
ðEe − EgÞ

X
n¼x;y;z

jhψejdnjψgij2; ðG5Þ

where ψg and ψe are the ground and excited state wave
functions, respectively, with energies Eg and Ee.
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