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Abstract. We review the use of block diagonal and block lower/upper triangular splittings for
constructing iterative methods and preconditioners for solving stabilized saddle point problems. We
introduce new variants of these splittings and obtain new results on the convergence of the associated
stationary iterations and new bounds on the eigenvalues of the corresponding preconditioned matri-
ces. We further consider inexact versions as preconditioners for flexible Krylov subspace methods,
and show experimentally that our techniques can be highly effective for solving linear systems of sad-
dle point type arising from stabilized finite element discretizations of two model problems, one from
incompressible fluid mechanics and the other from magnetostatics.
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1 Introduction

Consider a stabilized saddle point problem of the form

Au ≡
(

A B
−BT C

)(
x
y

)
=

(
b
−q

)
≡ c, (1)

where A ∈ Rm×m is symmetric positive definite, B ∈ Rm×n is of full column rank and C is symmetric
positive semidefinite. We are especially interested in the case C 6= 0, although our theory also applies
to the (non-stabilized) case where C = 0. Under these assumptions, (1) admits a unique solution; see,
e.g., [4, Lemma 1.1].

Large linear systems of the form (1) arise in several areas of computational science and engineering,
including computational fluid dynamics, constrained optimization, regularized least-squares problems,
geomechanics, electromagnetics, and so on; see, e.g., [5, 6, 16, 17] and references therein for further
details.

Over the years, a number of methods have been proposed in the literature for solving (1): we refer
the reader to the survey [5] for developments up to about 2005. More recently, several authors have
studied different variants of the classical Uzawa method, mostly for the case C = 0; see, for instance
[27, 29, 31] and references therein. Moreover, several new preconditioners for Krylov subspace methods
have been introduced in recent years, For example, Cao et al. [9] have studied the performance of a
preconditioner obtained based on shift-splitting of the saddle point coefficient matrix. Then, Chen
and Ma [12] have proposed a general class of preconditioners which incorporates as a special case the
preconditioner given in [9]. We mention that the results in [9, 12] have been derived for the case that
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the (2, 2)-block C is zero and the (1, 1)-block is symmetric positive definite. For a unified treatment of
algebraic preconditioners for matrices with a two-by-two block structure, we refer to [1]. We further
mention preconditioners for saddle point problems based on the Hermitian/skew-Hermitian splitting;
see, e.g., [2, 3, 4]. Recently, Salkuyeh et al. [25] have proposed a modified generalized shift-splitting
(MGSS) preconditioner for solving (1) where the (1, 1)-block is symmetric positive definite and C 6= 0.
The MGSS preconditioner is obtained based on a splitting of the saddle point matrix which results
in an unconditionally convergent stationary iterative method. In addition, a relaxed version of the
MGSS preconditioner has been examined.

Despite this activity, techniques based on block diagonal and block triangular splittings and pre-
conditioners remain among the most popular and effective means of solving problems of the form (1),
particularly in the field of incompressible fluid mechanics [15]. It should be mentioned that block
triangular methods, Uzawa-type methods [8, 13] and the SOR-type method studied by Golub et al.
[18] are all closely related. Some of these methods, however, are restricted to the case where C = 0.

In this paper we revisit the use of block diagonal and block triangular splittings and preconditioners
for problems of the form (1), with special attention to the stabilized case C 6= 0. We introduce new
variants of these splittings and establisj new results on the convergence of the associated stationary
iterations and on the eigenvalues of the corresponding preconditioned matrices. We further consider
inexact versions as preconditioners for flexible Krylov subspace methods, and show experimentally
that our techniques can be highly effective for solving saddle point linear systems of the form (1)
arising from stabilized finite element discretizations of two model problems, one from fluid mechanics
and the other from magnetostatics.

Before ending this section, we briefly recall some definitions and properties which will be useful
for deriving our main results.

For a given matrix A ∈ Rn×n, the additive decomposition A = M − N is called a splitting if
M,N ∈ Rn×n and M is nonsingular. For an arbitrary given splitting A = M −N , a basic stationary
iterative method for solving Ax = b has the following form:

x(k+1) = Gx(k) +M−1b, k = 0, 1, 2, . . . , (2)

where x(0) is given and G = M−1N is called the iteration matrix. It is well-known that the iterative
method (2) is convergent for any initial guess x(0) if and only if ρ(G) < 1 where ρ(G) stands for the
spectral radius of the iteration matrix G; for further details see [24].

The remainder of this paper is organized as follows. In the next section, the idea of the classical
block diagonal (Jacobi) and block triangular (Gauss–Seidel) matrix splittings are utilized to construct
three iterative schemes for solving (1). Furthermore, we show that the corresponding iterative meth-
ods are convergent under certain (mild) conditions to the solution of (1). In Section 3, we briefly
discuss how the proposed iterative methods can be exploited to obtain preconditioners to speed up
the convergence of Krylov subspace methods such as the Generalized Minimum Residual (GMRES)
method [24]. In Section 4, we report some numerical results for two different model problems to
illustrate the efficiency of the proposed preconditioners. Finally, we briefly state our conclusions in
Section 5.

Notation. Throughout the paper, for a given matrix A with real eigenvalues, the notations λmin(A)
and λmax(A) denote the minimum and maximum eigenvalues of A, respectively. Moreover, the set of
all eigenvalues of A is represented by σ(A). For an m × n matrix B, the null space (or kernel) of B
is denoted by Ker(B). For x a complex vector, the conjugate transpose of x is denoted by x∗. For
two arbitrary complex vectors x and y of the same dimension, the inner product 〈x, y〉 is defined by
〈x, y〉 = y∗x. For given vectors x and y of dimensions m and n, (x; y) will denote a column vector of
dimension m+ n.
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2 The GJ and GGS-type methods for saddle point problems

The present section consists of two main parts. In Subsection 2.1, the Generalized Jacobi (GJ) block
diagonal iterative method for solving (1) is introduced and its convergence properties are discussed.
The second subsection is concerned with the Backward and Forward Generalized Gauss–Seidel (BGGS
and FGGS) block triangular iterative schemes and their convergence properties.

Let us first consider the following splittings of the coefficient matrix A in (1):

A = D − L− U = D − L̃ − Ũ , (3)

where

D =

(
A 0
0 M

)
, L =

(
0 0
BT 0

)
, U =

(
0 −B
0 N

)
,

L̃ =

(
0 0
BT N

)
and Ũ =

(
0 −B
0 0

)
.

in which M,N ∈ Rn×n are given symmetric positive definite and symmetric matrices, respectively,
such that C = M −N . The underlying assumption is that A is relatively easy to invert (for example,
A could be a mass matrix), and so is M (recall that C is generally singular). In the sequel, the kth
approximate solution of (1) is denoted by z(k) = (x(k); y(k)).

2.1 The GJ iterative method and its convergence analysis

By extending the idea of the well-known block Jacobi method, the following iterative scheme can be
constructed:

z(k+1) = Gz(k) + f, k = 0, 1, 2, . . . , (4)

where z(0) ∈ Rn×n is arbitrary and

G = D−1(L+ U) =

(
0 −A−1B

M−1BT M−1N

)
, f =

(
A−1b
−M−1q

)
.

We observe that D−1(L + U) = D−1(L̃ + Ũ). Straightforward computations show that the iterative
scheme (4) can be recast as follows:

{
x(k+1) = A−1(b−By(k)),
y(k+1) = M−1Ny(k) +M−1(BTx(k) − q), (5)

(k = 0, 1, 2, . . .). Next, we recall a lemma which has a key role for analyzing the convergence properties
of the iterative scheme (5).

Lemma 2.1. [28, Section 6.2] Consider the quadratic equation x2− bx+ c = 0, where b and c are real
numbers. Both roots of the equation are less than one in modulus if and only if |c| < 1 and |b| < 1 + c.

The following theorem supplies sufficient conditions under which the iterative scheme (5) converges
to the unique solution of (1).

Theorem 2.2. Let A and C be symmetric positive definite and semidefinite matrices, respectively,
and let B be a full column rank matrix. Suppose that C = M − N where M and N are respectively
symmetric positive definite and symmetric matrices. Assume that M and N satisfy the following
conditions:

λmax(BTA−1B) < λmin(M), (6)

and

ρ(N) < λmin(M) + λmin(BTA−1B). (7)

Then the iterative method (5) converges to the unique solution of (1) for any initial guess.
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Proof. Let λ be an arbitrary eigenvalue of G = D−1(L+U) and (x; y) be its corresponding eigenvector.
Consequently, we have (L+ U)(x; y) = λD(x; y), which is equivalent to say that

−By = λAx, (8)

BTx+Ny = λMy. (9)

If λ = 0, then |λ| < 1. Therefore, we only need to consider the case that λ 6= 0. Notice that y = 0
is equivalent to Ax = 0 which implies x = 0 and it is contrary to our assumption that (x; y) is an
eigenvector. Hence, we can suppose that y 6= 0 and in the sequel, without loss of generality, we assume
that ‖y‖2 = 1. From (8), it can be seen that

x = − 1

λ
A−1By,

and substituting the above relation into (9), we get

−BTA−1By + λNy = λ2My.

Multiplying both sides of the preceding relation on the left by y∗, we obtain

−y∗BTA−1By + λy∗Ny = λ2y∗My. (10)

Next, we set a = y∗My, b = y∗Ny, and c = y∗BTA−1By. Evidently, a and c are positive constants.
In view of (10), λ satisfies the following quadratic equation:

λ2 − b

a
λ+

c

a
= 0.

Notice that |b| ≤ ‖N‖2 = ρ(N) which together with (7) implies that |b| < λmin(M) +λmin(BTA−1B).
The result follows from Lemma 2.1, using the assumptions and the fact that

0 < λmin(M) ≤ a ≤ λmax(M) and 0 < λmin(BTA−1B) ≤ c ≤ λmax(BTA−1B).

Remark 2.3. We note that the given sufficient condition (7) can be replaced by the more stringent
condition ρ(N) ≤ λmin(M), which may be easier to check in practice.

Remark 2.4. In view of Eqs. (8) and (9), it can be observed that if λ = 0 is an eigenvalue of G then
its corresponding eigenvector is of the form (x; 0), where 0 6= x ∈ Ker(BT ).

It is immediate to derive the following corollary from the proof of the previous theorem.

Corollary 2.5. Under the same assumptions of Theorem 2.2, let λ be an arbitrary nonzero eigenvalue
of the iteration matrix G and (x; y) its corresponding eigenvector such that ‖y‖2 = 1.

1. If 〈Ny, y〉2 ≥ 4 〈My, y〉
〈
BTA−1By, y

〉
, then λ is real.

2. If 〈Ny, y〉2 < 4 〈My, y〉
〈
BTA−1By, y

〉
, then λ has non-zero imaginary part.

Evidently, the inequalities in the above two statements can be respectively restricted as follows:

1. If 〈Ny, y〉2 ≥ 4λmax(M)λmax(BTA−1B), then λ is real.

2. If 〈Ny, y〉2 < 4λmin(M)λmin(BTA−1B), then λ is complex (i.e., not real).

As discussed earlier, if (6) and (7) are satisfied, then the iterative scheme (5) converges to the
unique solution of (1). In the following remark, we mention three possible choices for the splitting
C = M −N and rewrite the sufficient conditions for the convergence of (5) accordingly.



Block iterative methods for stabilized saddle point problems 5

Remark 2.6. Suppose that α is a given positive constant. Let us consider the following three possible
instances for choosing the splitting C = M −N :

• Case I. If M = αI + C and N = αI, then (7) is satisfied immediately. The relation (6) can be
rewritten as follows:

α > λmax(BTA−1B)− λmin(C).

Hence if we choose the parameter α so that the above inequality holds, then the iterative method
(5) is convergent. Notice that since λmin(C) ≥ 0, the preceding condition in this case can be
replaced by the more stringent one α > λmax(BTA−1B).

• Case II. Suppose M = αI and N = αI −C. Clearly, (6) is equivalent to α > λmax(BTA−1B).
Also, condition (7) can be restated as

α+ λmin(BTA−1B) > max {|α− λmax(C)|, |α− λmin(C)|} .

With easy manipulations it can be seen that this condition reduces to

α >
1

2

(
λmax(C)− λmin(BTA−1B)

)
.

Consequently, conditions (6) and (7) both hold as soon as the parameter α satisfies the following
inequality:

α > max

{
λmax(BTA−1B),

1

2

(
λmax(C)− λmin(BTA−1B)

)}
.

In view of the fact that BTA−1B is positive definite, we may consider instead the following more
strict condition instead of the preceding one:

α > max

{
λmax(BTA−1B),

1

2
λmax(C)

}
.

• Case III. If M = 1
2 (αI +C) and N = 1

2 (αI −C) then conditions (6) and (7) are equivalent to
the following inequality:

α > max

{
2λmax(BTA−1B)− λmin(C),

1

2
(λmax(C)− λmin(C))− λmin(BTA−1B)

}
.

From the positive definiteness of BTA−1B and positive semi-definiteness of C, it follows that
the above inequality is certainly satisfied when

α > max

{
2λmax(BTA−1B),

1

2
λmax(C)

}
.

2.2 The BGGS and FGSS iterative methods and their convergence analysis

Before presenting the BGGS and FGGS iterative methods, we give a brief overview of the Uzawa and
generalized parameterized inexact Uzawa (GPIU) methods so as to emphasize the differences between
the Uzawa-type methods and our proposed two GGS-type methods.

The classical Uzawa method produces the approximate solutions of (1) with the following iterative
scheme:

{
x(k+1) = A−1(b−By(k)),
y(k+1) = y(k) + α(BTx(k+1) − Cy(k) − q), (11)

(k = 0, 1, 2, . . .). Here α > 0 is a prescribed parameter. We refer to [13] and the references therein for
further details.
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In [31], Zhang et al. have proposed the GPIU method for solving a class of two-by-two linear
systems which includes (1). More precisely, first, the splitting A = M̃ − Ñ is considered for the
coefficient matrix of (1), where

M̃ =

(
A+ P1 0
P2 C + P3

)
and Ñ =

(
P1 −B

P2 +BT P3

)
.

Then the GPIU method for solving (1) is given by

{
x(k+1) = x(k) + (A+ P1)−1(b−Ax(k) −By(k)),
y(k+1) = y(k) + (C + P3)−1(−P2x

(k+1) + (P2 +BT )x(k) − Cy(k) − q),

(k = 0, 1, 2, . . .), where the Pi are given matrices for i = 1, 2, 3, with P1 and P2 assumed to be
symmetric positive definite. When P1 = 0, then the subsystem Ax(k+1) = b − Ay(k) needs to be
solved at each step, similar to the Uzawa method. For the case that the (2, 2)-block C is nonzero, the
convergence properties of the method and the eigenvalue problem corresponding to the preconditioned
matrix M̃−1A have been investigated only for the case that P3 = 1

δC where δ > 0 and C is a symmetric
positive definite matrix; see [31, Theorems 3.2 and 3.3]. We stress here that in the convergence analysis
of the BGGS and FGGS methods, we do not set require C to be nonsingular.

On the basis of (3) and following the idea of the block Gauss–Seidel method [24], the following
backward and forward iterative schemes can be constructed to solve (1), respectively.

• The Backward Generalized Gauss–Seidel (BGGS ) iterative scheme is given by

z(k+1) = H̃z(k) + f̃ , k = 0, 1, 2, . . . , (12)

where

H̃ = (D − Ũ)−1L̃ =

(
−A−1BM−1BT −A−1BM−1N

M−1BT M−1N

)
, (13)

and

f̃ = (D − Ũ)−1c =

(
A−1b+A−1BM−1q

−M−1q

)
.

• The Forward Generalized Gauss–Seidel (FGGS ) iterative scheme is given by

z(k+1) = Hz(k) + f, k = 0, 1, 2, . . . , (14)

where

H = (D − L)−1U =

(
0 −A−1B
0 −M−1BTA−1B +M−1N

)
, (15)

and

f = (D − L)−1c =

(
A−1b

M−1BTA−1b−M−1q

)
.

Letting z(k) = (x(k); y(k)), where x(0) and y(0) are given, it is not difficult to see that (12) and (14)
can be respectively reformulated as follows:

{
y(k+1) = M−1Ny(k) +M−1(BTx(k) − q),
x(k+1) = A−1(b−By(k+1)), k = 0, 1, 2, . . . ,

(16)

and
{
x(k+1) = A−1(b−By(k)),
y(k+1) = M−1Ny(k) +M−1(BTx(k+1) − q), k = 0, 1, 2, . . . .

(17)
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Remark 2.7. The FGSS iterative scheme (17) reduces to the Uzawa iterative method given by (11)
when

M =
1

α
I and N =

1

α
I − C,

where α > 0.

Remark 2.8. Let H̄ = L̃(D− Ũ)−1. It is straightforward to see that H̄ is similar to the matrix H̃ in
(12), hence σ(H̃) = σ(H̄). Therefore, in order to study the convergence of the BGGS scheme, we can
analyze the spectrum of

H̄ =

(
0 0

BTA−1 −BTA−1BM−1 +NM−1

)
. (18)

Now we recall the following useful lemmas, which are crucial for obtaining bounds on the eigen-
values of both H̄ (hence, H̃) and H. The first one is an immediate consequence of Weyl’s Theorem,
see [19, Theorem 4.3.1].

Lemma 2.9. Suppose that A and B are two Hermitian matrices. Then,

λmax(A+B) ≤ λmax(A) + λmax(B),

λmin(A+B) ≥ λmin(A) + λmin(B).

Lemma 2.10. [30] Suppose that A is a Hermitian negative definite matrix and B is Hermitian positive
semidefinite. Then the eigenvalues of AB are real and satisfy

λmin(A)λmin(B) ≤ λmax(AB) ≤ λmax(A)λmin(B),

λmin(A)λmax(B) ≤ λmin(AB) ≤ λmax(A)λmax(B).

Remark 2.11. From (15) and (18), we observe that at least m eigenvalues of H and H̄ are zero. If
we define the matrices G and Ḡ as follows:

G = −M−1BTA−1B +M−1N and Ḡ = −BTA−1BM−1 +NM−1, (19)

then the remaining eigenvalues of H and H̄ are the eigenvalues of G and Ḡ, respectively. On the
other hand, G and Ḡ are similar and therefore have the same spectrum. Consequently, without loss
of generality, we only need to analyze the spectrum of G, and all of the obtained results hold for Ḡ as
well. We further observe that since M is positive definite and N − BTA−1B symmetric, G has only
real eigenvalues. In particular, this holds for all choices of M listed in Remark 2.6.

Remark 2.12. Consider now the case where M and N commute: MN = NM . Then M−1N is
symmetric, and Lemmas 2.9 and 2.10 imply that

λmax(G) ≤ −λmin(M−1)λmin(BTA−1B) + λmax(M−1N),

λmin(G) ≥ −λmax(M−1)λmax(BTA−1B) + λmin(M−1N).

The above two inequalities provide an interval containing the spectrum of H which is also valid for H̃
in view of Remark 2.8 and the earlier discussions of this remark. Of course, we may also consider the
following larger intervals, which may be more practical to determine as they only require knowledge
of the spectral radius of M−1N and of the largest eigenvalues of M and BTA−1B:

• when M−1N is symmetric,

[λmin(H̃), λmax(H̃)] = [λmin(H), λmax(H)] ⊂ [η1, η2], (20)

where η1 = −λmax(M−1)λmax(BTA−1B)− ρ(M−1N) and η2 = max{0, λmax(M−1N)}.
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• when M−1N is symmetric positive definite, we can use a smaller interval than (20) given as
follows:

[λmin(H̃), λmax(H̃)] = [λmin(H), λmax(H)] ⊂ [ξ1, ξ2], (21)

where ξ1 = −λmax(M−1)λmax(BTA−1B) and ξ2 = λmax(M−1N).

We comment here that if M is chosen as in Cases I, II, or III of Remark 2.6, then M−1N is symmetric.
Moreover, M−1N is positive definite in Case I. Note that for these cases, we only need to know the
value of λmin(C) and λmax(BTA−1B). Note that ξ2 = η2 = 1 when C is singular, i.e., λmin(C) = 0.

Next, we establish a sufficient condition for the convergence of the BGGS iterative method in the
special case when M = αI + C and N = αI, which is of particular interest when solving certain
problems, e.g., the stabilized discrete Stokes problem.

Theorem 2.13. Suppose that M = αI + C and N = αI in (16). If

α > λmax

(
BTA−1B

)
,

then the iterative scheme (16) is convergent for any initial choices of x(0) and y(0).

Proof. In view of Remark 2.8, we need to show that ρ(H̄) < 1 (or, equivalently, that ρ(G) < 1). Let
λ be an arbitrary eigenvalue of H̄. Then either λ = 0, or λ is a nonzero eigenvalue of

G = (N −BTA−1B)M−1. (22)

Substituting N = αI in the above relation, we have G = −G1M
−1 where G1 = BTA−1B − αI is

negative definite under our assumption on α. Now, Lemma 2.10 implies that

α− λmax(BTA−1B)

α+ λmax (C)
≤ λmin(G) ≤ α− λmin(BTA−1B)

α+ λmax (C)
, (23)

and

α− λmax(BTA−1B)

α+ λmin (C)
≤ λmax(G) ≤ α− λmin(BTA−1B)

α+ λmin (C)
. (24)

From the above bounds and in view of the positive definiteness of BTA−1B, we deduce immediately
that all the nonzero eigenvalues of G, and therefore of H̄, fall in the open interval (0, 1). This completes
the proof.

Remark 2.14. From Remark 2.8 and discussions of Remark 2.11, we observe that σ(H̃) = σ(H). As
a result, under the same assumptions of Theorem 2.13, we conclude that the FGGS iterative method
(17) also converges for any initial guess.

Remark 2.15. In view of (19), if we set M = C+BTA−1B and N = BTA−1B then the (2,2)-blocks
of H̄ and H̃ become zero. Consequently, all of the eigenvalues of H̄ and H̃ are zero and both BGSS
and FGSS iterative methods reach the exact solution in two steps. Indeed, both methods reduce to
a form of block Gaussian elimination and they become in fact direct, rather than iterative solvers.
In general, however, both M and N would be dense matrices and therefore this approach is not a
practical one for large problems. Nevertheless, these observations suggest that approximations to such
choices of M and N can lead to good preconditioners for Krylov subspace methods; see, e.g., [5] or
[15] as well as the following section for additional discussion.
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3 Block preconditioners for stabilized saddle point matrices

In general terms, given a splitting A = M−N , the matrix M−1 can be used as a preconditioner
for the linear system of equations (1); see, e.g, [4, 9, 10, 12] and the references therein for further
discussion.

In this paper we investigate the performance of three kinds of preconditioners based on the GJ
splitting (A = MGJ − NGJ), BGGS splitting (A = MBGGS − NBGGS) and FGGS splitting (A =
MFGGS −NFGGS) where

MGJ =

(
A 0
0 M

)
, MBGGS =

(
A B
0 M

)
, and MFGGS =

(
A 0
−BT M

)
.

We recall that the matricesM,N ∈ Rn×n are given symmetric positive definite and symmetric matrices
(respectively) such that C = M −N .

While the preconditioner MGJ is an example of a block diagonal preconditioner, MBGGS and
MFGGS belong to the class of upper and lower block triangular preconditioners, respectively; see
[5, 15, 23] and the references therein. In Subsection 3.1 we briefly discuss some previous work on block
triangular preconditioners for stabilized saddle point problems. Subsection 3.2 is mainly devoted to a
discussion of how the proposed preconditioners can be implemented in practice.

3.1 Block triangular preconditioners for stabilized saddle point problems

Preconditioners with block triangular structure have been shown to be among the most effective for
solving problems of saddle point type, and as a result they have been widely investigated in the
literature; see, e.g., [11, 15, 20, 23, 26] and the references therein. In the case of the stabilized system
(1), the “ideal” block upper and lower triangular preconditioners are

PU =

(
A B
0 C +BTA−1B

)
and PL =

(
A 0
−BT C +BTA−1B

)
,

respectively. It is immediate to see that σ(AP−1
U ) = σ(P−1

U A) = {1} and σ(AP−1
L ) = σ(P−1

L A) = {1}.
Moreover, the minimal polynomial of these matrices has degree two, which implies that a method like
GMRES with these preconditioners will reach the exact solution in at most two steps [21]; see also
Remark 2.15. Practical versions of these preconditioners rely on suitable approximations of the action
of the inverses of the diagonal blocks A and S = C +BTA−1B.

In [20], symmetric linear systems with coefficient matrix

At =

(
A B
BT −t2C

)
. (25)

(with t 6= 0) arising from linear elasticity problems are considered. Note that At(x; y) = (b; q) is
equivalent to (1) for t = 1. In [20] the matrix C is assumed to be symmetric positive definite (hence,
nonsingular) and the following preconditioners are analyzed in combination with an appropriate Krylov
subspace method:

B̂U =

(
Â B

0 −Ĉ

)
and B̂L =

(
Â 0

BT −Ĉ

)
.

Here Â and Ĉ are symmetric positive definite and it is assumed that A−Â is positive definite (see also
[7]). Under these assumptions, it is shown in [20] that the eigenvalues of the preconditioned matrix
are all real and positive.

In [26], the author studied the solution of the symmetric saddle point problem (25) with t = 1 and
C assumed to be symmetric positive semidefinite using the preconditioner

P =

(
Â B

0 −Ĉ

)
, (26)



10 F. P. A. Beik, M. Benzi, and S.-H. A. Chaparpordi

where Â and Ĉ are symmetric positive definite, but without assuming that A− Â is positive definite.
It is shown in [26] that the eigenvalues of A−1P, while generally complex, have positive real part.
For suitable choices of Â ≈ A and Ĉ ≈ C convergence rates independent of mesh discretization
parameters can be obtained for saddle point systems arising from certain types of problems arising
from the discretization of partial differential equations (PDEs).

For the same class of symmetric saddle point problems, Cao [11] has investigated block triangular
preconditioners of the form (

Â B

0 Ĉ

)
, (27)

and established that all eigenvalues of the preconditioned matrix are real (though not all of them
positive). Numerical experiments in [11] show that the block upper triangular preconditioner (27)
works slightly better than the block upper triangular preconditioner (26). We comment that both
Cao and Simoncini have taken the matrix Â to be an incomplete Cholesky factorization of A in their
numerical tests. In [11], the matrix Ĉ was chosen so that Ĉ = C +BT Â−1B. In addition to such Ĉ,
Simoncini has also experimented with Ĉ = C+BTB. The reported numerical experiments, in both of
these works, illustrate that these choices for Â and Ĉ do not provide “optimal” preconditioners, as the
number of iterations for solving the preconditioned system grows as the grid is refined. Nevertheless,
these sub-optimal solvers often outperformed, in terms of CPU time, optimal (but expensive) solvers
based on spectrally equivalent approximations to A and C +BTA−1B.

We end this subsection with three separate remarks and a brief note.

Remark 3.1. It follows from the proof of Theorem 2.13 that for the choice M = C + αI, the
eigenvalues of the preconditioned saddle point matrix MBGGS

−1A (and thus those of AMBGGS
−1)

all fall in the interval (0, 1) for α > λmax(BTA−1B).

Remark 3.2. Considering the preconditioners (26) and (27) for solving the symmetric saddle point
problem (25) with t = 1, it is seen that these preconditioners only differ in the sign of (2, 2)-block.
Similarly, we can consider the situation where the (2, 2)-block of P̃U := MBGGS applied to (1) is
replaced by a symmetric negative definite matrix instead of a symmetric positive definite one. In
other words, we assume that C = M − N where M is a symmetric negative definite matrix. It is
obvious that σ(AP̃−1

U ) = σ(P̃−1
U A) and that σ(AP̃−1

U ) = σ(I − H̄) where H̄ is defined by (18). Now,

it can be verified that AP̃−1
U has m eigenvalues equal to 1 and its remaining eigenvalues are of the

form 1 + µ with µ ∈ σ(G), where G = (BTA−1B −N)M−1. Evidently, M−1 and BTA−1B −N are,
respectively, symmetric negative definite and symmetric matrices. Consequently, Lemma 2.10 ensures
that all eigenvalues of AP̃−1

U are real. Notice that one may establish bounds for the eigenvalues of

AP̃−1
U with the same arguments utilized in Remark 2.11.

Remark 3.3. As we have seen, there are two different types of preconditioners corresponding to
P̃U = MBGGS and P̃L = MFGGS , i.e., block upper and block lower triangular preconditioners,
respectively. From Remark 2.14, we conclude that

σ(AP̃−1
U ) = σ(AP̃−1

L ).

We note that for the symmetric saddle point problem (25) with t = 1, Pestana has already estab-
lished that the spectrum of the preconditioned matrix using the block lower triangular preconditioner
coincides with that obtained using the corresponding block upper triangular preconditioner, see [23,
Proposition 1]. Of course, the results obtained may not be the same when these preconditioners are
applied in conjunction with a given Krylov subspace method because in general the convergence be-
havior does not depend only on the eigenvalues of the preconditioned coefficient matrix. However,
as pointed out in [23], in practice the difference between applying block lower and upper triangu-
lar preconditioners should not be very significant. We experimentally study the performance of the
preconditioners PU and PL used with the GMRES and flexible GMRES (FGMRES) methods [24] in
Section 4.
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Finally, we point out that in practice, unless A is trivial to invert (e.g., diagonal), it is more efficient
to use our proposed block triangular preconditioners “inexactly”, i.e., in the form

MBGGS ≈
(
Â B
0 M

)
and MFGGS ≈

(
Â 0
−BT M

)
, (28)

where Â−1 consists of a few iterations of preconditioned CG (PCG), where the preconditioner can be
an incomplete Cholesky factorization or one or more (algebraic) multigrid V-cycles . In our numerical
experiments we also report the corresponding results for the performance of the exact versions of our
proposed preconditioners, in order to illustrate the superiority of using inexact versions over the exact
ones. We note that for large problems associated with PDEs in three space dimensions, only these
inexact variants are feasible in practice.

3.2 Applying the preconditioners

In this section, we briefly discuss how the GJ, BGGS and FGGS splittings can serve as preconditioners
for a Krylov subspace method such as GMRES. Consider the preconditioner P =M−1 corresponding
to a given splitting A = M−N . To apply the preconditioner P within a Krylov subspace method,
one needs to compute vectors of the form z = Pr. That is, we require to solve the linear system of
equations Mz = r. In the sequel, we assume that r = (r1; r2) and z = (z1; z2) where r1, z1 ∈ Rm and
r2, z2 ∈ Rn.

For the preconditioners associated with the GJ, BGGS, and FGGS splittings, the vectors z =
M−1

GJr, z = M−1
BGGSr, and z = M−1

FGGSr must be computed, respectively. Therefore, we need to
solve the following linear systems of equations,

(
A 0
0 M

)(
z1
z2

)
=

(
r1
r2

)
, (29)

(
A B
0 M

)(
z1
z2

)
=

(
r1
r2

)
, (30)

and
(

A 0
−BT M

)(
z1
z2

)
=

(
r1
r2

)
, (31)

respectively. In view of (29), (30), and (31), we can derive simple algorithms for computing z =M−1
GJr,

z =M−1
BGGSr, and z =M−1

FGGSr, which are respectively given in Algorithms 1, 2, and 3.

Algorithm 1: Computation of z =M−1
GJr.

Solve Az1 = r1 by the preconditioned CG method for z1;
Solve Mz2 = r2 using the Cholesky factorization of M for z2.

Algorithm 2: Computation of z =M−1
BGGSr.

Solve Mz2 = r2 using the Cholesky factorization of M for z2;
Solve Az1 = r1 −Bz2 by the preconditioned CG method for z1.

Remark 3.4. We comment that Algorithms 1–3 are called “inexact” when in at least one line of the
algorithms, the PCG method is utilized (with early termination). In contrast, the “exact” version
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Algorithm 3: Computation of z =M−1
FGGSr.

Solve Az1 = r1 by the preconditioned CG method for z1;

Solve Mz2 = BT z1 + r2 using the Cholesky factorization of M for z2.

of the algorithm is obtained by using the Cholesky factorization in both lines of the algorithms. Of
course, if a strict convergence tolerance is used to terminate the PCG iteration, the two approaches
become equivalent. In practice, however, the PCG iteration will be terminated quite early (see next
section for details).

Remark 3.5. We point out that when we use the PCG method to solve each of the subsystems in
the preceding algorithms, a flexible Krylov method (like FGMRES [24]) needs to be used instead of
the standard GMRES algorithm for the outer iteration, in view the fact that the CG method is a
non-stationary iterative method, unless a very stringent inner tolerance is used to terminate PCG
(which would be unnecessarily expensive). It is important to note that if the inner tolerance (in the
inner PCG method) is chosen higher than the outer tolerance (in the outer preconditioned GMRES
method), then the preconditioned GMRES iterations will converge to an inaccurate solution.

Remark 3.6. Obviously, the convergence theory developed for the stationary iterations based on the
GJ, FGGS and BGGS splittings does not apply to the inexact variants of these methods, which are
only used as preconditioners for FGMRES. In practice, however, the results on the eigenvalues of the
iteration (or preconditioned) matrices remain approximately true in the inexact case. In particular,
AM−1

FGSS and AM−1
BGSS will have at least m eigenvalues clustered near 1.

4 Numerical experiments

In this section, we experimentally study the performance of the FGMRES method with the proposed
inexact GJ and GGS-type preconditioners on a stabilized finite element discretization of the 2D Stokes
problem and on a test problem arising from 3D magnetostatics. Moreover, the exact versions of these
preconditioners are also examined in conjunction with the standard GMRES method. In this case,
for solving the subsystems arising in the preconditioning step, we use a sparse Cholesky factorization
with the symmetric approximate minimum degree (SYMAMD) reordering.

All of the reported experiments were performed on a 64-bit 2.45 GHz core i7 processor and 8.00GB
RAM using Matlab version 8.3.0532.

In all of the following experiments, the initial guess is taken to be the zero vector and the (outer)
iterations are stopped once ‖c − Az(k)‖ < 10−6‖c‖, where ‖ · ‖ stands for the Euclidean norm and
z(k) = (x(k); y(k)) denotes the current iterate. In the tables, the entries under “Iter” refer to the total
number of required iterations for the GMRES method and its exactly preconditioned version. Under
“Iters”, we report two values, the number of required iterations for the FGMRES method and, in
parenthesis, the total number of inner PCG iterations performed in all the FGMRES steps. Note
that no restarting is used. Under “CPU” we report the total CPU-time (in seconds) required for
the convergence of the various iterative methods. This includes the time needed to compute all the
necessary Cholesky factorizations (complete or incomplete). The notation DC stands for the diagonal
matrix consisting of the diagonal entries of C.

Example 4.1. Consider the following Stokes problem [15],

{
−∆u +∇p = f ,

∇ · u = 0,
(32)

in a bounded domain Ω ⊂ R2 with suitable boundary conditions. Here u and p stand for the velocity
vector field and the pressure scalar field, respectively.
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Discretization of the Stokes problem (32) using stabilized finite element methods leads to a sad-
dle point system of the form (1) with symmetric positive definite (1, 1)-block and symmetric positive
semidefinite (2, 2)-block. Here we use the Matlab package IFISS by Elman et al. [14] to produce
discretizations of the classic leaky lid driven cavity problem on the unit square using the stabilized
Q1-P0 finite element method. The resulting saddle point problems are used to investigate the perfor-
mance of the proposed preconditioners for improving the convergence rate of GMRES applied to (1)
with nonzero (2, 2)-block. We comment here that in all of the examined instances, the default value of
the stabilization parameter was used.

For this example, the (2, 2)-block C is block diagonal with small blocks, see [15, Section 3.3.2].
Therefore, the Cholesky factorization was used in all the block preconditioners to solve the subsystems
corresponding to the (2, 2)-block. In addition, we used the PCG method in Algorithm 1 (Line 1),
Algorithm 2 (Line 2), and Algorithm 3 (Line 3). To this end, an incomplete Cholesky factorization
of the (1,1)-block of A is first computed using the MATLAB function ichol(.,struct(‘droptol’,1e-
3,‘michol’,‘on’). Then, the incomplete factors are utilized as preconditioner in the inner PCG itera-
tions. These iterations were terminated when the residual norm had been reduced by a factor of 100
or when the maximum number of 40 iterations was reached.

First, in order to check tightness of the bounds ξi and ηi (i = 1, 2) discussed in Remark 2.11, we
report the corresponding computations for the case of a 32× 32 grid in Tables 1–3. The matrices M
and N were chosen as in Cases I, II and III in Remark 2.6. Notice that the interval (20) is derived for
more general cases than in (21), that is, M−1N can be either definite or indefinite when (20) is used.
Therefore, it is expected that the established interval (21) will provide a better approximation for the
interval containing the spectrum of H̃ (or H) and our experimental results confirm this. It can be
seen that the values of ξ2 and η2 are equal to 1, which follows from the fact that in Example 4.1 the
(2, 2)-block C in (1) is singular. As observed, the presented intervals (20) and (21) provide reasonable
approximations for [λmin(H), λmax(H)] = [λmin(H̃), λmax(H̃)] and they shrink when the value of α
increases. Note that for values of α resulting in convergence, the spectral radius of the iteration matrix
is very close to 1, indicating slow convergence of the corresponding stationary iteration. The eigenvalue
distributions of the preconditioned matrices corresponding to the BGGS (FGGS) preconditioner for
different values of α are depicted in Figure 1. Note the increased clustering of the spectrum for
increasing values of α.

Next, we examine the performance of exact and inexact GJ, BGGS and FGGS types precondi-
tioners to improve the rate of convergence of GMRES and FGMRES methods. We generate saddle
point problems using a sequence of 2` × 2` uniform grids, with ` = 4, 5, 6, 7. The corresponding
sizes for the coefficient matrix A of (1) are given in Table 4. The eigenvalue distributions of the
(exactly) preconditioned matrices for the mentioned preconditioners with α∗ = 1/(2`−1 × 2`−1) and
α̃∗ = 1/(2`−2 × 2`−2) (2` × 2` grid) are plotted in Figure 2 where ` = 5.

We recall that a preconditioner is said to be optimal if the number of preconditioned iterations
is independent of the size of the problem (in our case, on the mesh size h) and the amount of work
per iteration scales linearly with the size of the problem. This means that the total work (and,
approximately, the corresponding CPU-time) should grow by a factor of 4 (for 2D problems) or 8 (for
3D problems) each time the mesh size is halved.

In Tables 5 and 6 we report the number of iterations for the GMRES method without precon-
ditioning and with the block diagonal GJ preconditioner, both for the exact (Table 5) and inexact
(Table 6) versions, for the choices M = αI + C and M = DC . We note that strictly speaking, it
would make more sense to use the symmetric formulation (25) of the saddle point problem and to use
MINRES instead of GMRES, since the exact block diagonal preconditioner is symmetric and positive
definite [15]. However, since we are mostly interested in using the inexact versions of the proposed
preconditioners, which require the use of FGMRES, we present results for GMRES instead, in order
to have a more meaningful comparison of the performance differences between the exact and inexact
variants.

The value used for the parameter α has been computed according to the rule α̃∗ = 1/(2`−2×2`−2) =
16h2 for a uniform 2` × 2` grid. This value is very close to the experimentally obtained best value
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M = αI and N = αI − C
α λmin(H̃) λmax(H̃) η1 η2

1e-05 -2.0325e+03 0 -2.3211e+03 1
1e-04 -202.3500 0 -231.2137 1
1e-03 -19.3350 0.7187 -22.2214 1
1e-02 -1.0335 0.9719 -1.7596 1
1e-01 -1.0325 0.9719 -1.7596 1
1e+00 0 0.9997 -1.0076 1
1e+01 0 0.9999 -1.0008 1

Table 1: Computations of the established interval (20) for Example 4.1.

M = 0.5(αI + C) and N = 0.5(αI − C)

α λmin(H̃) λmax(H̃) η1 η2
1e-05 -1.1133e+03 0 -1.5203e+03 1
1e-04 -110.5771 0 -152.9274 1
1e-03 -10.3312 0.4501 -16.1927 1
1e-02 -0.6769 0.9439 -2.5193 1
1e-01 0 0.9944 -1.1519 1
1e+00 0 0.9994 -1.0152 1
1e+01 0 0.9999 -1.0015 1

Table 2: Computations of the established interval (20) for Example 4.1.

M = αI + C and N = αI

α λmin(H̃) λmax(H̃) ξ1 ξ2
1e-05 -556.1622 0 -759.6368 1
1e-04 -54.7885 0.0046 -75.9637 1
1e-03 -4.6656 0.7251 -7.5964 1
1e-02 0 0.9719 -0.7596 1
1e-01 0 0.9972 -0.0760 1
1e+00 0 0.9997 -0.0076 1
1e+01 0 0.9999 -7.5964e-05 1

Table 3: Computations of the established interval (21) for Example 4.1.

` m n m+ n
4 578 256 834
5 2178 1024 3202
6 8450 4096 12546
7 33282 16384 49666

Table 4: Size of matrices for grid 2` × 2`.
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Figure 1: Eigenvalues distribution corresponding to the BGGS (FGGS) preconditioner for Example
4.1 (32× 32 grid).
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Figure 2: Eigenvalues distribution of A (top left) and the preconditioned matrices using GJ with
M = α̃∗I + C (top center), M = DC (top right), and GGS with M = α∗I + C (bottom left), GGS
with M = α∗I+DC (bottom center) and GGS with M = α̃∗I (bottom right) for Example 4.1 (32×32
grid).
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` GMRES GMRES (M = α̃∗I + C) GMRES (M = DC)
Iter CPU Iter CPU Iter CPU

4 86 0.089 20 0.015 26 0.018
5 182 0.591 24 0.029 31 0.036
6 365 6.953 28 0.169 36 0.205
7 691 115.826 31 0.985 40 1.261

Table 5: Numerical results for solving Example 4.1 by GMRES and its preconditioned version with
exact GJ preconditioner and α̃∗ = 1/(2`−2 × 2`−2).

` FGMRES (M = α̃∗I + C) FGMRES (M = DC)
Iters CPU Iters CPU

4 19(74) 0.029 27(107) 0.037
5 20(117) 0.059 26(153) 0.071
6 22(178) 0.207 29(232) 0.269
7 23(267) 1.096 30(348) 1.372

Table 6: Numerical results for solving Example 4.1 by FGMRES with inexact GJ preconditioner on
a 2` × 2` grid with α̃∗ = 1/(2`−2 × 2`−2).

of α which yields the smallest number of required iterations in the GMRES and FGMRES methods.
The experimental results show that the examined GJ type preconditioners, while not quite optimal,
scale quite well with increasing size, especially for the choice M = αI + C. It is also interesting to
note that for this test problem and preconditioner type, the inexact variant requires slightly higher
CPU times than the exact one.

In Tables 7, 9, 11 and 13, we report the results obtained with the block triangular preconditioners
corresponding to the BGGS and FGGS splittings in their exact (Tables 7 and 11) and inexact (Tables
9 and 13) versions.

We recall that for the Stokes problem, problem, Elman et al. [15] suggest using a block diagonal
preconditioner of the form (

Â 0
0 M

)
, (33)

to be used in conjunction with the MINRES method (applied to the symmetric form of the saddle
point problem). In (33), Â is an optimal preconditioner for A (such as a multigrid V-cycle) and M an
approximation to the (negative) Schur complement C +BTA−1B. In practice, using M = diag(Q) ≈
h2I (for a uniform mesh) where diag(Q) denotes the diagonal part of pressure mass matrix Q yields
an essentially optimal preconditioner. Motivated by this, we examined the performance of BGGS
and FGGS preconditioners for the case that M ≈ h2I; the results obtained are reported for both
exact (Tables 8 and 12) and inexact (Tables 10 and 14) versions, respectively. As seen, the numerical
experiments illustrate that these types of preconditioners are almost perfectly scalable. We also observe
that the inexact block triangular preconditioners (with FGMRES) are faster than the corresponding
exact version (with GMRES) and about twice as fast as the block diagonal preconditioner. The
reported results appear to be quite competitive with those reported (for the same problem) in [15,
Table 4.1], where MINRES with block diagonal preconditioning is used. Finally, we note that the
block upper triangular (BGGS) variant appears to be slightly superior to the block lower triangular
one (FGGS).

Example 4.2. In this example we consider a saddle point problem which arises from a mixed finite
element discretization of a 3D electromagnetics application. Specifically, the problem consists in com-
puting the magnetic field in a system given by a cube of iron of relative magnetic permeability 103

surrounded by air, immersed in an imposed uniform field. For more details about the problem and
the properties of the coefficient matrix of the resulting saddle point system we refer to Example 2 in
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` GMRES (M = α∗I + C) GMRES (M = α∗I +DC)

Iter CPU Iter CPU

4 10 0.098 17 0.115

5 13 0.155 21 0.177

6 15 0.497 24 0.513

7 16 1.813 26 2.139

Table 7: Numerical results for solving Example 4.1 by GMRES with exact BGGS preconditioner with
α∗ = 1/(2`−1 × 2`−1).

` GMRES (M = α∗I) GMRES (M = α̃∗I)

Iter CPU Iter CPU

4 18 0.104 17 0.095

5 22 0.188 21 0.175

6 25 0.493 23 0.525

7 28 2.139 26 2.159

Table 8: Numerical results for solving Example 4.1 by GMRES with exact BGGS preconditioner with
α∗ = 1/(2`−1 × 2`−1) and α̃∗ = 1/(2`−2 × 2`−2).

` FGMRES (M = α∗I + C) FGMRES (M = α∗I +DC)

Iters CPU Iters CPU

4 10(39) 0.025 14(55) 0.027

5 9(52) 0.038 14(76) 0.046

6 9(70) 0.117 15(112) 0.152

7 10(107) 0.544 15(156) 0.717

Table 9: Numerical results for solving Example 4.1 by FGMRES with inexact BGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1).

` FGMRES (M = α∗I) FGMRES (M = α̃∗I)

Iters CPU Iter CPU

4 17(67) 0.031 14(55) 0.028

5 15(78) 0.048 14(76) 0.046

6 15(112) 0.154 17(129) 0.166

7 15(156) 0.719 17(180) 0.799

Table 10: Numerical results for solving Example 4.1 by FGMRES with inexact BGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1) and α̃∗ = 1/(2`−2 × 2`−2).
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` GMRES (M = α∗I + C) GMRES (M = α∗I +DC)

Iter CPU Iter CPU

4 9 0.106 17 0.129

5 12 0.167 20 0.173

6 14 0.466 23 0.519

7 15 1.768 25 2.129

Table 11: Numerical results for solving Example 4.1 by GMRES with exact FGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1).

` GMRES (M = α∗I) GMRES (M = α̃∗I)

Iter CPU Iter CPU

4 18 0.105 16 0.096

5 21 0.181 20 0.171

6 24 0.516 23 0.491

7 27 2.110 25 2.047

Table 12: Numerical results for solving Example 4.1 by GMRES with exact FGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1) and α̃∗ = 1/(2`−2 × 2`−2).

` FGMRES (M = α∗I + C) FGMRES (M = αI +DC)

Iters CPU Iter CPU

4 11(43) 0.027 15(59) 0.029

5 12(70) 0.045 17(100) 0.052

6 12(102) 0.141 18(145) 0.181

7 13(155) 0.703 19(222) 0.935

Table 13: Numerical results for solving Example 4.1 by FGMRES with inexact FGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1).

` FGMRES (M = α∗I) FGMRES (M = α̃∗I)

Iters CPU Iter CPU

4 20(79) 0.034 15(59) 0.029

5 21(124) 0.056 16(94) 0.051

6 20(163) 0.205 18(145) 0.183

7 21(245) 1.101 18(208) 0.878

Table 14: Numerical results for solving Example 4.1 by FGMRES with inexact FGGS preconditioner
with α∗ = 1/(2`−1 × 2`−1) and α̃∗ = 1/(2`−2 × 2`−2).
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Method GMRES GMRES GMRES

Preconditioner No GJ BGGS

size Iter CPU Iters CPU Iter CPU

1119 231 0.414 25 0.039 13 0.026

2208 223 0.642 21 0.054 11 0.054

4371 350 2.743 25 0.416 13 0.223

8622 432 7.574 29 1.716 15 0.895

22675 968 82.593 43 11.329 22 5.816

Table 15: Numerical results for solving Example 4.2 by GMRES method.

Method FGMRES FGMRES

Preconditioner GJ (Case A) GJ (Case B)

size Iters CPU Iters CPU

1119 28(122) 0.063 28(129) 0.062

2208 26(119) 0.095 26(121) 0.077

4371 28(143) 0.185 28(146) 0.164

8622 32(168) 0.396 34(190) 0.427

22675 48(316) 1.722 48(324) 1.731

Table 16: Numerical results for solving Example 4.2 by FGMRES method.

[22, page 610]; see also [26, Example 10]. For this problem the matrix B in (1) is not full rank and
C 6= 0 is symmetric positive semidefinite and such that BTB + C is symmetric positive definite. The
nonzero matrix C arises from the need to stabilize the discrete saddle point problem.

First, we consider the GJ and BGGS preconditioners with two different choices of the splitting
C = M −N , given as follows:

• Case a. M = BTB + C.

• Case b. M = −(BTB + C).

We utilize the PCG method in both lines of Algorithms 1 and 2. Here, incomplete Cholesky
factorizations of the (1,1)-block A in (1) and BTB + C in Cases A and B are computed using the
MATLAB functions ichol(A, struct(‘droptol’,1e-2)” and ichol(BTB +C, struct(‘droptol’,1e-
4)”, respectively. Then, the incomplete factors are utilized as preconditioners in the inner PCG
iterations for solving subsystems in both lines of the algorithms. Similar to the previous example, the
iterations in the PCG method are stopped when the residual norm is reduced by a factor of 100 or
when the maximum number of 40 iterations is reached.

In Table 15 we report the results corresponding to GMRES and its preconditioned versions where
the subsystems are solved exactly via sparse Cholesky factorization with SYMAMD reordering. With
“size” we denote the total number (= n + m) of unknowns in the saddle point system. Notice that
when the subsystems are solved exactly, the results for Cases A and B are identical.

In Tables 16 and 17 we report results for FGMRES with the inexact GJ and BGGS preconditioners,
respectively. For each preconditioner we show the results for both Cases A and B. It can be seen that
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Method GMRES FGMRES

Preconditioner BGGS (Case A) BGGS (Case B)

size Iters CPU Iters CPU

1119 18(80) 0.047 13(58) 0.047

2208 17(77) 0.069 12(53) 0.051

4371 19(96) 0.134 13(65) 0.093

8622 21(114) 0.284 16(87) 0.236

22675 32(214) 1.325 23(157) 1.016

Table 17: Numerical results for solving Example 4.2 by FGMRES method.

for FGMRES with inexact BGGS preconditioning, case B appears to provide superior performance.
When the problem size is scaled by a factor of about 21 (from smallest to largest), the CPU time
increases by a factor of 22 — a nearly optimal scaling.

Moreover, it can be seen that the inexact approach is, again, much faster than the exact one.
We also tried replacing the incomplete Cholesky preconditioner for the inner PCG iterations with a
standard algebraic multigrid (AMG) solver, but we found that this approach was far more expensive
and not competitive in terms of both CPU time and storage with the IC-based one.

We conclude this section by mentioning that our approach (particularly the inexact BGSS precon-
ditioner, Case B) was found to outperform the block diagonal and block triangular preconditioners
proposed in [22] and [26] which, to the best of our knowledge, represented the fastest methods available
in the literature up to now for this problem.

5 Conclusions

In this paper we have revisited the use of block diagonal and block triangular splittings and precon-
ditioners for solving stabilized saddle point problems.

At the outset we considered the case where the (1, 1) block is assumed to be inverted exactly,
while the (generally singular) (2, 2) block is split as C = M − N . Various choices of M have been
considered. We have addressed the theoretical question of which choices of M can be expected to
provide convergent splittings, obtaining some new results. In particular, bounds on the eigenvalues of
the (exactly) preconditioned matrices were derived.

Next, we investigated the performance of both exact and inexact variants of these block diagonal
and block triangular preconditioners for methods like GMRES and FGMRES. We have tested these
methods on two types of test problems, a 2D Stokes problem and a 3D magnetostatics problem. Our
experiments show that certain inexact variants of the upper triangular block preconditioner work very
well in practice, outperforming some of the best methods previously available for solving these two
problems. For the Stokes problem these preconditioners contain a user-defined parameter, however,
it is easy to find (nearly) optimal values of the parameter in terms of the mesh size.

Although in this paper we have focused primarily on saddle point problems arising from the use
of stabilized finite elements, the convergence theory and eigenvalue bounds apply to any saddle point
problem of the form (1), including those arising from regularized least-squares and other optimization
problems, as long as the conditions on the matrices A, B, and C are satisfied. Whether the solvers
studied in this paper would prove competitive on such problems is, however, a different matter, which
we leave for future investigation.
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