
Counterfactual Situation Testing EAAMO ’23, October 30-November 1, 2023, Boston, MA, USA

A SUPPLEMENTARY MATERIAL

A.1 Working example for generating counterfactuals

We present a simple working example for counterfactual generation. Given the assumptions we undertake for (1) plus

the additional assumption of an additive noise model (ANM)—i.e., S = {𝑋 𝑗 ← 𝑓𝑗 (𝑋𝑝𝑎 (𝑗)) +𝑈 𝑗 }𝑝𝑗=1—the generating
procedure is straightforward. The ANM assumption is also assumed in Section 4 for the classification scenarios. It is

a common model specification assumption that allows to identify more easily the non-random parts of the equation.

Suppose we have the following structural causal modelM and corresponding directed acyclical graph G:

𝑋1

𝑋2

𝑋3

M


𝑋1 ← 𝑈1

𝑋2 ← 𝛼 · 𝑋1 +𝑈2

𝑋3 ← 𝛽1 · 𝑋1 + 𝛽2 · 𝑋2 +𝑈3

where 𝑈1,𝑈2,𝑈3 represent the latent variables, 𝑋1, 𝑋2, 𝑋3 the observed variables, and 𝛼, 𝛽1, 𝛽2 the coefficient for the

causal effect of, respectively, 𝑋1 → 𝑋2, 𝑋1 → 𝑋3, and 𝑋2 → 𝑋3. Suppose we want to generate the counterfactual for

𝑋3, i.e., 𝑋
𝐶𝐹
3

, had 𝑋1 been equal to 𝑥1 ∈ 𝑋1. In the abduction step, we estimate 𝑈1, 𝑈2, and 𝑈3 given the evidence or

what is observed under the specified structural equations:

𝑈1 = 𝑋1

𝑈2 = 𝑋2 − 𝛼 · 𝑋1

𝑈3 = 𝑋3 − 𝛽1 · 𝑋1 + 𝛽2 · 𝑋2

We can generalize this step for (1) as𝑈 𝑗 = 𝑋 𝑗 − 𝑓𝑗 (𝑋𝑝𝑎 (𝑗)) ∀𝑋 𝑗 ∈ 𝑋 . This step is an individual-level statement on the

residual variation under SCMM. It accounts for all that our assignment functions 𝑓𝑗 , which are at the population

level, cannot explain, or the error terms. In the action step, we intervene 𝑋1 and set all of its instances equal to 𝑥1 via

𝑑𝑜 (𝑋1 := 𝑥1) and obtaining the intervened DAG G′ and SCMM′:

𝑑𝑜 (𝑥1)

𝑋2

𝑋3

M′


𝑋1 = 𝑥1

𝑋2 ← 𝛼 · 𝑥1 +𝑈2

𝑋3 ← 𝛽1 · 𝑥1 + 𝛽2 · 𝑋2 +𝑈3

where no edges come out from 𝑋1 as it has been fixed to 𝑥1. Finally, in the prediction step, we combine these two steps

to calculate 𝑋𝐶𝐹
3

under the set of𝑈 and the intervenedM′:

𝑋𝐶𝐹
3
← 𝛽1 · 𝑥1 + 𝛽2 · 𝑋2 +𝑈3

← 𝛽1 · 𝑥1 + 𝛽2 · (𝛼 · 𝑥1 +𝑈2) +𝑈3

which is done for all instances in 𝑋3. This is what is done at a larger scale, for example, in [33] and [47], and also in this

paper. The same three steps can apply to 𝑋2 (also for 𝑋1, though it would be trivial as it is a root note).

We can view this approach as a frequentist10 one for generating counterfactuals, in particular, with regard to the

Abduction step. A more Bayesian approach is what is done by [39] where they use a Monte Carlo Markov Chain

(MCMC) to draw𝑈 by updating its prior distribution with the evidence 𝑋 to then proceed with the other two steps. In

10
This is not a formal distinction, but based on talks with other researchers in counterfactual generation. Such a distinction, to the best of our knowledge,

remains an open question.

17

EAAMO ’23, October 30-November 1, 2023, Boston, MA, USA Alvarez and Ruggieri

Section 4.2, we used both approaches for generating the counterfactuals and found no difference in the results. We only

present in this paper the first approach as it is less computationally expensive.

A.2 Sketch of Proof for Proposition 3.6

Consider the factual tuple (𝑥𝑐 , 𝑎𝑐 = 1, 𝑦𝑐 = 0) and assume the generated counterfactual is (𝑥𝐶𝐹𝑐 , 𝑎𝐶𝐹𝑐 = 0, 𝑦𝐶𝐹𝑐 = 0).
Since 𝑦𝑐 = 𝑦𝐶𝐹𝑐 , this is a case where counterfactual fairness holds. However, the decision boundary of the model 𝑏 () can
be purposely set such that the 𝑘-nearest neighbors of 𝑥𝑐 are all within the decision 𝑌 = 0, and less than 1 − 𝜏 fraction of

the 𝑘-nearest neighbors of 𝑥𝐶𝐹𝑐 are within the decision 𝑌 = 0. This leads to a Δ𝑝 > 1 − (1 − 𝜏) = 𝜏 , showing that there

is individual discrimination. The other way can be shown similarly by assuming 𝑦𝑐 ≠ 𝑦𝐶𝐹𝑐 but the sets of 𝑘-nearest

neighbors have rates of negative decisions whose difference is lower than 𝜏 .

B ALGORITHMS FOR K-NN CST IMPLEMENTATION

We present the relevant algorithms for the k-NN CST implementation (Section 3.4). The algorithm 1 performs CST while

algorithm 2 returns the indices of the top-𝑘 tuples with respect to the search centers based on the distance function 𝑑 .

Notice that the main difference in algorithm 1 when creating the neighborhoods is that the search centers are drawn

from the factual dataset for the control group D and the counterfactual dataset D𝐶𝐹
for the test group. Further, notice

that we use the same 𝑐 (i.e., index) for both as these two data-frames have the same structure by construction.

Algorithm 1: run_CST
Input :D, D𝐶𝐹

, 𝑘

Output : [𝑝𝑐 − 𝑝𝑡]
𝑝𝑟𝑜𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ← D[:, 𝑝𝑟𝑜𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] == 𝑝𝑟𝑜𝑡_𝑣𝑎𝑙𝑢𝑒

D𝑐 ← D[𝑝𝑟𝑜𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] // get protected (control) search space

D𝑡 ← D[¬ 𝑝𝑟𝑜𝑡_𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛] // get non-protected (test) search space

𝑝𝑟𝑜𝑡_𝑖𝑑𝑥 ← D𝑐 .𝑖𝑛𝑑𝑒𝑥 .𝑡𝑜_𝑙𝑖𝑠𝑡 () ; // get idx for all complainants

𝑑𝑖 𝑓 𝑓 _𝑙𝑖𝑠𝑡 = []
for 𝑐, 𝑟𝑜𝑤 ∈ 𝑝𝑟𝑜𝑡_𝑖𝑑𝑥 do

𝑟𝑒𝑠_1← 𝑔𝑒𝑡_𝑡𝑜𝑝_𝑘 (D [𝑐, :],D𝑐 , 𝑘) ; // idx of the top-k tuples for control group

𝑟𝑒𝑠_2← 𝑔𝑒𝑡_𝑡𝑜𝑝_𝑘 (D𝐶𝐹 [𝑐, :],D𝑡 , 𝑘) ; // idx of the top-k tuples for test group

𝑝𝑐 ← 𝑠𝑢𝑚 (D[𝑟𝑒𝑠1, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] == 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑜𝑢𝑡𝑐𝑜𝑚𝑒) / 𝑙𝑒𝑛 (𝑟𝑒𝑠_1)
𝑝𝑡 ← 𝑠𝑢𝑚 (D[𝑟𝑒𝑠2, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] == 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒_𝑜𝑢𝑡𝑐𝑜𝑚𝑒) / 𝑙𝑒𝑛 (𝑟𝑒𝑠_2)
𝑑𝑖 𝑓 𝑓 _𝑙𝑖𝑠𝑡 [𝑐] ← 𝑝𝑐 − 𝑝𝑡

end
return 𝑑𝑖 𝑓 𝑓 _𝑙𝑖𝑠𝑡

Algorithm 2: get_top_k
Input :𝑡 , 𝑡_𝑠𝑒𝑡 , 𝑘
Output : [𝑖𝑛𝑑𝑖𝑐𝑒𝑠]
(𝑖𝑑𝑥,𝑑𝑖𝑠𝑡) ← 𝑘_𝑁𝑁 (𝑡, 𝑡_𝑠𝑒𝑡, 𝑘 + 1) ; // run k-NN algorithm with 𝑘 + 1
if without search centers then

𝑟𝑒𝑚𝑜𝑣𝑒 (𝑡, 𝑖𝑑𝑥,𝑑𝑖𝑠𝑡) ; // remove the center t from idx

end
𝑖𝑑𝑥 ′ ← 𝑠𝑜𝑟𝑡 (𝑖𝑑𝑥,𝑑𝑖𝑠𝑡) ; // sort idx by the distance

return 𝑖𝑑𝑥 ′

Received 10 May 2023; revised 5 September 2023; accepted 20 September 2023

18

	A Supplementary Material
	A.1 Working example for generating counterfactuals
	A.2 Sketch of Proof for Proposition 3.6

	B Algorithms for k-NN CST Implementation

