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ABSTRACT

Context. The study of galaxy formation and evolution critically depends on our understanding of the complex photo-chemical pro-
cesses that govern the evolution and thermodynamics of the interstellar medium (ISM). In a computational sense, resolving the
chemistry is among the weightiest tasks in cosmological and astrophysical simulations.
Aims. Astrophysical simulations can include photo-chemical models that allow for a wide range of densities (n), abundances of dif-
ferent species (ni/n) and temperature (T ), and plausible evolution scenarios of the ISM under the action of a radiation field (F) with
different spectral shapes and intensities. The evolution of such a non-equilibrium photo-chemical network relies on implicit, precise,
computationally costly, ordinary differential equations (ODE) solvers. Here, we aim to substitute such procedural solvers with fast,
pre-trained emulators based on neural operators.
Methods. We emulated a non-equilibrium chemical network up to H2 formation (9 species, 52 reactions) by adopting the DeepONet
formalism, namely: by splitting the ODE solver operator that maps the initial conditions and time evolution into a tensor product
of two neural networks (named branch and trunk). We used KROME to generate a training set, spanning −2 ≤ log(n/cm−3) ≤ 3.5,
log(20) ≤ log(T/K) ≤ 5.5, −6 ≤ log(ni/n) < 0, and adopting an incident radiation field, F, sampled in 10 energy bins with a continuity
prior. We separately trained the solver for T and each ni for ≃4.34 GPUhrs.
Results. Compared with the reference solutions obtained by KROME for single-zone models, the typical precision obtained is of the
order of 10−2, that is, it is 10 times better when using a training that is 40 times less costly, with respect to previous emulators that only
considered a fixed F. DeepONet also performs well for T and ni outside the range of the training sample. Furthermore, the emulator
aptly reproduces the ion and temperature profiles of photo dissociation regions as well; namely, by giving errors that are comparable to
the typical difference between various photo-ionization codes. The present model achieves a speed-up of a factor of 128× with respect
to stiff ODE solvers.
Conclusions. Our neural emulator represents a significant leap forward in the modelling of ISM chemistry, offering a good balance
of precision, versatility, and computational efficiency. Nevertheless, further work is required to address the challenges represented by
the extrapolation beyond the training time domain and the removal of potential outliers.
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1. Introduction

Non-equilibrium photo-chemistry plays a crucial role in many
astrophysical and cosmological environments. Chemistry regu-
lates the physical processes starting from cosmological scales
(Galli & Palla 1998; Glover & Abel 2008) and it is key to under-
standing the evolution of the intergalactic medium (IGM) during
the Epoch of Reionization (EoR, Theuns et al. 1998; Maio et al.
2007; Rosdahl et al. 2018). It has a significant impact in the
formation and evolution of galaxies (Pallottini et al. 2017; Lupi
2019), in particular, by regulating the birth of giant molecular
clouds (GMC, Decataldo et al. 2019; Kim et al. 2018) in the inter-
stellar medium (ISM), and it continues to play a vital role down
to the formation of planets (Caselli & Ceccarelli 2012).

From a theoretical point of view, these widely different
environments are studied by developing astrophysical and cos-
mological simulations. To follow the thermo-chemical evolution
in such simulations, it is necessary to solve the system of ordi-
nary differential equations (ODEs) associated with it. Depending
on the specific problem, various software has been developed
and used to include chemical non-equilibrium chemistry in

numerical codes. On the one hand, some codes allow for exten-
sive photo-chemical network and offer a high level of precision;
thus, they are expensive, such as CLOUDY (Ferland et al. 2017),
UCLCHEM (Holdship et al. 2017), and MAIHEM (Gray et al. 2019).
This kind of approach (see Olsen et al. 2018, for a review) is typi-
cally more suitable for post-processing astrophysical simulations
to obtain emission lines (e.g. Vallini et al. 2018), since on-the-
fly direct coupling is commonly limited to 1D simulations, such
as photo-chemical evolutionary patterns that are solved during
shock processes (e.g. Danehkar et al. 2022). On the other hand,
some software are designed to be coupled to code for full 3D
hydrodynamic evolution, such as ASTROCHEM (Kumar & Fisher
2013) and KROME (Grassi et al. 2014). These interfaces take,
as their input, a user defined chemical network to prepare the
code needed to solve the associated ODE system. We also have
NIRVANA (Ziegler 2016) and GRACKLE (Smith et al. 2017), which
are libraries that provide subroutines to solve selected types of
chemical networks that are of astrophysical interest.

Coupling the chemistry evolution with an astrophysical code
is challenging, mainly since the chemical ODE system is often
stiff and the typical timescales are much shorter than the
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dynamical and hydrodynamic time, for instance: ∆tchem ≪

10−4∆thydro. This implies that robust, multi-step, embedded,
high-order (and, thus, costly) numerical solvers should be
selected (e.g. Hindmarsh 2019). Furthermore, in terms of num-
ber of reactions, the complexity of the system grows more
than linearly with respect to the number of species included
in the chemical network. Finally, we consider that in numer-
ical simulations, the domain is usually split on the basis of
the time-steps hierarchy to balance between different processors
the cost of gravity evaluation and hydrodynamical computation
(Springel et al. 2021), while it is difficult to estimate the time-to-
completion of the chemistry solver given the initial conditions
(Branca & Pallottini 2023), implying the inclusion of such a task
can spoil the load balancing. To overcome these limitations, var-
ious methods based on deep learning have been developed in
recent years. In Holdship et al. (2021), the CHEMULATOR algo-
rithm is introduced in order to emulate UCLCHEM (Holdship et al.
2017); it utilizes a combination of autoencoders and principal
component analysis (PCA) to reduce the dimensionality of the
chemical network (from 33 down to 8 dimensions); subsequently,
a standard feed-forward neural network (FNN) is employed to
predict the evolution of latent space variables. For the same kind
of complex chemical system, in Heyl et al. (2023) the inter-
pretability of the network is showcased by applying the SHAP
coefficient calculation (Lundberg et al. 2018) to UCLCHEM pre-
computed tables interpolated via the eXtreme Gradient Boosting
XGboost (Chen & Guestrin 2016) regressor. Further, machine
learning techniques such as random forest (RF) can be used in
conjunction with libraries of precise photoionization models in
order to quickly predict the line emission from numerical simu-
lations (Katz et al. 2019) or infer the basic ISM properties from
observed line ratios (Ucci et al. 2018). Heading in the direc-
tion of a coupling with numerical simulation, Robinson et al.
(2024) presented the feasibility of constructing an emulator uti-
lizing XGboost for computing gas heating and cooling tables
obtained from Gnedin & Hollon (2012). This approach relies
on accurate CLOUDY (Ferland et al. 2017) models for the train-
ing, however, it does not account for the evolution of chemical
species (see also Galligan et al. 2019, for an emulator for cool-
ing). Meanwhile, Grassi et al. (2022) investigates the application
of autoencoders to simplify the chemical network’s complexity
and solve the associated system of reduced ODEs within the
encoded latent space. This concept shows promise, especially
for intricate and large chemical networks, such as those with
over 400 reactions (Glover et al. 2010), suitable for molecular
cloud and clump studies. However, the current implementation
lacks support for temperature evolution and rate-dependent coef-
ficients. In Branca & Pallottini (2023), the possibility to use
physics-informed neural networks is explored; the method con-
sists in preparing a neural network by embedding the residual of
the ODE associated chemical system directly in the loss func-
tion (the physically informed part). While such a method can
be regarded as elegant, since it does not require a pre-calculated
training set, the training is costly (∼2kGPUhr to reach a 10% rel-
ative accuracy); thus, it is difficult to achieve an accuracy level
high enough to be competitive with respect to procedural solvers.

Furthermore, an additional complication is given by the
coupling between chemistry and radiation. Up to now, chem-
ical emulators prepared for hydrodynamical coupling (Grassi
et al. 2022; Branca & Pallottini 2023) allowed only for a fixed
shape and intensity of the incident radiation. Instead, it ought
to be feasible to fully pair a more refined model with an
arbitrary radiation field, expressed, for instance, as a function
of frequency; this is what would be required for a coupling

appropriate for radiation hydrodynamic simulations (e.g.
Rosdahl et al. 2018; Pallottini et al. 2019; Decataldo et al. 2020;
Trebitsch et al. 2021; Katz 2022; Obreja et al. 2019, 2024). How-
ever, this adds a further degree of complexity to a problem that
has not been fully explored thus far; indeed, to our knowledge,
the only example of such exploration is given in Robinson et al.
(2024), where cooling and heating tables from Gnedin & Hollon
(2012) were emulated. These tables were computed by assum-
ing photo-ionization equilibrium conditions as a function of the
incident radiation field; however, in Gnedin & Hollon (2012) the
radiation is approximated by adopting a limited number of photo-
ionization rates. Thus, by construction, the model cannot yield
the evolution of the ISM chemistry.

To this end, a novel possibility consists of exploiting neu-
ral operators to emulate the photo-chemical ODEs system. The
use of neural operators could be crucial in learning the differ-
ential operator that describes the chemical network, giving the
emulator the flexibility required to be effectively used in simu-
lations. In particular, in this work we want to explore the usage
of a particular architecture, namely, deep neural operator (Deep-
ONet), first introduced in Lu et al. (2021). It is a versatile and
robust tool that already showed good performance both for rela-
tively simple case of studies, such as a diffusion-reaction system
(Lu et al. 2021), and for more complex problems, such as
hyper-sonic shocks (Mao et al. 2021).

By exploiting the DeepONet architecture, this study is aimed
at developing a model capable of improving the quality and effi-
ciency of the results obtained in Branca & Pallottini (2023).
We focus on: i) emulating a relatively complex chemical net-
work (up to H2 formation); ii) allowing for a dependence from
a general incident radiation; and iii) improving upon the cost
of reaching high precision with the training. In summary, we
strive to obtain an efficient emulator that is ready to be coupled
with hydrodynamical simulations, including radiative transfer on
the fly.

2. Method

The aim of this work is to prepare an emulator for ISM pho-
tochemistry. First we summarize the chemical network selected
(Sect. 2.1), then we detail the implementation used for this work
(Sect. 2.2). Finally, we present the setup of the dataset used for
the training of the emulator (Sect. 2.3).

2.1. ISM photo-chemistry

Similar to Branca & Pallottini (2023), we adopted the ISM
photo-chemical network described in Bovino et al. (2016) and
summarized below. As such a chemical network has been used
both in studies on molecular cloud (Decataldo et al. 2019, 2020)
and galaxy (Pallottini et al. 2017, 2019, 2022) scales, we con-
sider it a good example for kick-starting the coupling with
astrophysical simulations.

The network tracks the evolution of e−, H−, H, H+, He,
He+, He++, H2, and H+2 , which evolve according to 46 reac-
tions1, involving dust processes, namely: H2 formation on dust
grains (Jura 1975), photo-chemistry (see Table 1), and cosmic
rays ionization. Similarly to Branca & Pallottini (2023), we
consider only solar metallicity, along with specific abundances
(Z = Z⊙, Asplund et al. 2009) and dust to gas ratio ( fd = 0.3,

1 The reaction rates are taken from Bovino et al. (2016): reactions 1 to
31, 53, 54, and from 58 to 61 in their Tables B.1 and B.2, photo-reactions
P1 to P9 in their Table 2.
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Table 1. Photo-chemical reactions included in the chemical network
adopted in the present work and corresponding minimum frequency
(νmin) of the photon for its activation (see Sect. 2.1 for details).

Photo-reaction hνmin/eV

H− + γ → H + e 0.76
H+2 + γ → H+ + H 2.65
H2 + γ → H + H (Solomon) 11.2
H + γ → H+ + e 13.6
H2 + γ → H + H (direct) 14.2
H2 + γ → H+2 + e 15.4
He + γ → He+ + e 24.6
H+2 + γ → H+ + H+ + e 30.0
He+ + γ → He++ + e 54.4

Hirashita & Ferrara 2002). The chemical network includes two-
body reactions and an interaction with an input radiation field, F,
that quantifies the photon and cosmic ray flux in various energy
bins, thus the evolution of the species can be expressed as:

ṅk =
∑
i, j

Ai j
k nin j +

∑
i

Bi
kni , (1)

where Ai j
k = Ai j

k (T,n) represents the temperature (T ) dependent
two-body reaction coupling coefficients; Bi

k = Bi
k(F) describe

the photo-reactions rates and the index range on all the nine
included species. For the radiation field, we selected a constant
cosmic ray flux of ξ = 3 × 10−17 s−1, which is appropriate for
the Milky Way (Webber 1998) and we set the coupling with the
gas adopting the kida database (Wakelam et al. 2012); for the
photons, we selected ten radiation bins, such that all the nine
photo-reaction included in the chemical network are fully cov-
ered (see Table 1). The spectral shape of the incident radiation is
further detailed in Sect. 2.3.

The system can be considered complete once T is simultane-
ously evolved,

Ṫ =
(γ − 1)
kb
∑

i ni
(Γ − Λ) , (2)

where kb is the Boltzmann constant, γ is the gas adiabatic index,
and Γ = Γ(T,n,F) and Λ = Λ(T,n,F) are the heating and cool-
ing functions, respectively. Here, Γ includes contribution from
photoelectric heating from dust (Bakes & Tielens 1994), cosmic
rays (Cen 1992), and photo-reactions (Table 1). Also,Λ accounts
for cooling from atoms (Cen 1992), molecules (only molecular
hydrogen here, Glover & Abel 2008), metal lines (Shen et al.
2013), and the Compton effect. Additionally, exothermic and
endothermic chemical reactions give contributions to the heating
and cooling terms, respectively.

2.2. Deep operator network for photo-chemistry

Thanks to the universal approximation theorem (UAT, Cybenko
1989), we can assume that a neural network can approximate
any continuous function. A more general result was previously
demonstrated by Chen & Chen (1995), namely, with the so-
called UAT for operators. In principle, such an extension allows
for neural networks to be used not only as function approximator,
but also to learn maps between functional spaces; in particular,
it allows for a family of functions to be approximated.

However, only years after the proof of UAT for operator
was given, the extended theorem has yielded practical applica-
tions, as in Lu et al. (2021). In that work, the authors presented
DeepONet, an architecture capable of exploiting the idea of the
original theoretical result from Chen & Chen (1995) to solve 2D
Riesz fractional Laplacian, nonlinear diffusion-reaction PDEs
with a source term, as well as stochastic PDEs for popula-
tion growth model. We note that DeepONet is not the only
proposed implementation for neural operators. Another very
popular application is the Fourier neural operator (FNO), orig-
inally proposed in Li et al. (2020). We note that a comparison
between the two architectures can be found in Lu et al. (2022),
where the authors also show the ability for neural operators to
solve a 1D Euler equation coupled with a simple three-species
chemical network.

For this work, we adopted the DeepONet implementation,
which is fully described in Lu et al. (2021) and can be summa-
rized as follows (see also Lu et al. 2019a). Our task consists
of emulating the operator, G, which maps the variable in the
domain x to G(p)(x), depending on the vector, p, which con-
tains the so-called sensor, which, in general, can be made up of
functions. In our case, G is the ODE system describing the evo-
lution of a photo-chemical network and the domain, x, is limited
to time. A family of solutions for our ODEs system is considered
to be well defined once the initial conditions are given; thus, the
sensor p includes i) the initial temperature and density of the
chemical species (IC) and ii) the photon flux as a function of
frequency (F). As illustrated in Fig. 1, the notion behind Deep-
ONet consists of splitting the emulation in two. This is a feature
that can be formalized by defining the loss function as:

L = ∥G(p)(x) − g(p) ⊗ f (x)∥ < ϵ, (3)

where ∥ denotes a yet to be defined norm, ϵ is a target value
for the training, ⊗ denotes the tensor product, functions g and
f represent the branch and trunk neural networks, respectively,
and G(g)(x) is the pre-computed ground truth solution (see later
Sect. 2.3). The inequality in Eq. (3) is motivated precisely by the
universal approximation theorem for operators.

We developed our emulator using DeepXDE (Lu et al. 2019b)
with the TensorFlow backend (Abadi et al. 2015), a Python
package (Van Rossum & Drake 2009) that provides a high-
level application programming interface for the implementation
of deep learning methods both for solving forward and inverse
problems that can be described by differential equations; other
tools designed for this purpose are MODULUS (Hennigh et al.
2020) that is provided by NVIDIA and sciML (Rackauckas et al.
2019) written for julia (Bezanson et al. 2017).

The two feed-forward neural networks, referred to as branch
and trunk, each consist of 6 dense layers with 128 neurons,
employing the rectified linear unit (ReLU) activation function.
We initialized the weights using the Glorot normal prescrip-
tion (Glorot & Bengio 2010), now considered a standard2 for
these kinds of architectures (Lu et al. 2021). We set the initial
learning rate to lr = 10−3 and utilized the ADAM optimization
algorithm with default hyper-parameters initialization (Kingma
& Ba 2014). To mitigate overfitting on the training data, we
incorporated a regularization technique; specifically, we aug-
mented the loss function (Eq. (3)) with two additional terms,
implementing L1 and L2 regularization techniques. We trans-
formed all the quantities in a non-dimensional logarithmic space

2 See https://github.com/lululxvi/deeponet/tree/master
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Fig. 1. Scheme of the emulator implemented in this work. The system’s ODE describing the ISM chemical network (Sect. 2.1) is emulated via the
DeepONet formalism (Sect. 2.2) by splitting the dependence i) from the initial conditions (T , and densities n of each chemical species, i.e. e−, H−,
H, H+, He, He+, He++, H2, and H+2 ) and the radiation flux (F) with the branch network (g) and ii) from the temporal evolution in the time (t) domain
with a trunk network ( f ); f and g are feed-forward neural networks, each consisting of 6 dense layers with 128 neurons: the tensor product (⊗) of
the branch and the trunk is adopted to compute the loss function (Eq. (3)). We individually trained the networks for the temperature and each of
the chemical species; the dataset adopted to train DeepONet is described in Sect. 2.3 and its main properties are summarized in Table 2.

as follows:

y = 2
xi − xmin

i

xmax
i − xmin

i

− 1, (4)

where i ranges across all ion densities and T , and we have xi =
log(ni/cm−3) and xi = log(T/K), respectively.

It is important to point out that to approximate the differ-
ential operator G, we pre-computed a sub-set of solutions to
use as training data, which makes this method data-driven (see
Sect. 2.3). Furthermore, a specific emulator is dedicated to each
different chemical species (and temperature). This choice allows
us to have a better sampling in the space of the initial parameters
here, since the training on a single species requires ten times less
GPU memory than the multi-output model.

2.3. Data-set generation

The data used to train and test sets for our models were pro-
duced using KROME following the model described in Sect. 2.1.
KROME3 (Grassi et al. 2014) is a Python interface that generates
the fortran code to solve an input chemical model. The asso-
ciated ODE system is evolved in time by adopting a fifth-order
version of LSODES (Hindmarsh 2019), an implicit, robust, multi-
step, iterative4 solver that takes advantage of the sparsity of the
Jacobian matrix contructed with the chemical fluxes. For the gas
number density, n, and initial temperature, T, we randomly sam-
pled5 64 points in the log-spaced range −2 ≤ log(n/cm−3) ≤ 3.5

3 https://bitbucket.org/tgrassi/krome/src/master/
4 We adopted the default errors for KROME, i.e. relative and absolute
tolerances are fixed at 10−4 and 10−20 respectively.
5 In principle, the validity of the UAT for operators does not depend
on the distribution of the training data. For DeepONet, a uniform ran-
dom sampling is generally adopted in the literature; see Prasthofer et al.
(2022, in particular, theorem 3.1) for an example of non-uniform data
sampling.

and log(20) ≤ log(T/K) ≤ 5.5, respectively, by extracting the
points within the variables range. Similarly, the initial fractions
of each species ni/n are log-sampled in 512 bins in the range6

−6 ≤ log(ni/n) < 0; we added constraints to ensure that the total
hydrogen and helium abundances are close to primordial and that
global charge neutrality is respected.

The radiation field, F, is composed of ten energy bins for
the photons (see Table 1) and treated as follows7. For a full gen-
eralization, each component of the incident flux, Fi, should be
treated similarly to the other inputs (n, ni, and T ); that is, by ran-
domly extracting the value in a pre-established range. However,
this approach would likely generate a completely non-physical
spectrum in the vast majority of cases: difference between con-
tiguous Fi would be unbound; for instance, a fully random
spectrum might contain He ionizing photons and have a negligi-
ble flux in the Habing (1968) band (6.0–13.6 eV). Furthermore,
the sampling of Fi should be as refined as the one for the rel-
ative abundances, which would increase the size of the dataset
and make it harder to load it efficiently in the GPU memory.

Therefore, we adopted the following method. First, we gen-
erated 64 flux values Fi in any of the bins in a range Fi ∈

[10−15, 10−5]eV cm−2 s−1 Hz−1. Then, we extracted a flux value
in the adjacent bin such that | log(Fi/Fi±1)| ≤ 0.15. In this way,
the stochasticity of the incoming flows is maintained, without
having completely non-physical spectra. In this way, we substan-
tially reduced the size of the dataset, making it possible to refine
the sampling of the initial conditions on the fractions. We note
that imposing such a constraint for the flux is somewhat similar

6 Note that the limit on the fraction is applied only to the initial condi-
tions, because of the chemical evolution individual species are allowed
to be as low down to nmin = 10−10cm−3.
7 Note that in KROME, the radiation field is a pure input, i.e. individual
fluxes Fi are not directly evolved by the system. In the typical usage
case, KROME is coupled to a numerical simulation, the former provides
the opacities, the latter include the radiative transfer modules for the
evolution of Fi (e.g. Pallottini et al. 2019).
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Table 2. Summary of the properties used to generate the training set for
this work.

Quantity Variable Bins Min Max

Gas density log(n/cm−3) 64 –2 3.5
Abundances log(ni/n) 512 –6 0
Temperature log(T/K) 64 log(20) 5.5
Radiation log(Fi/eV cm−2 s−1 Hz) 64 –15 –5
Time t/kyr 16 0 1

Notes. As detailed in Sect. 2.3, we vary the initial gas density (n),
species abundances (ni/n), and temperature (T ), by allowing a for a
radiation field split in 10 energy bins (Fi) and by solving the chemical
evolution up to a time t. Each model is generated with KROME for a chem-
ical network up to H2 formation (9 species, 52 reactions; see Sect. 2.1 for
details.) In total, the dataset contains 644 245 094 ≃ 6.4 × 108 models.

to the selection of a continuity prior in spectral energy density
fitting when exploring non-parametric star formation rate histo-
ries by allowing for burstiness (Tacchella et al. 2020; Ciesla et al.
2024).

The time evolution was evaluated in 16 random uniformly
sampled points in the range of 0 ≤ t/kyr ≤ 1. In total, the
training set comprises 30% of the dataset and the remaining
70% is used for on-the-fly (during the training) validation, total-
ing 644 245 094 ≃ 6.4 × 108 points. A summary of the adopted
parameters is provided in Table 2.

3. Results

Here, we present the results of our emulator. We start by check-
ing the precision of the model on the training set and validating
it outside the training data range (Sect. 3.1), then showcasing
the emulator on a physically relevant case of study (Sect. 3.2).
Finally, we make a comparison with other tools aimed at solving
ISM photo-chemistry (Sect. 3.3).

In this work, each model is trained for a total of 5 × 104

epochs on a single NVIDIA A100 GPU (40GB), for approxi-
mately ≃4.34 GPUhrs per each chemical output (temperature and
species); namely, for a total of ≃43.39 GPUhrs for the full set.

3.1. Model testing and validation

For the testing, we assessed the robustness of our results by
comparing them against a subset of the KROME-generated data,
excluded from the training phase. We start our analysis by show-
ing (in Fig. 2) the results from DeepONet versus KROME in the
prediction versus true plane, visualized via a bi-dimensional
probability distribution function (PDF). We note that in Fig. 2,
we also plot the sum of temperatures and all the species normal-
ized via Eq. (4), while individual PDFs are reported in Figs. A.1
and A.2.

For both the normalized version and individual species, the
2D PFDs are strongly peaked around the predicted=true bisector
(dashed black line), with a density that decreases by four orders
of magnitude already ∼0.1 dex away from the true solution. We
note that the stripe features seen in the lower left corners of Fig. 2
are due to the sparse sampling of the extrema of the parameter
space and is mostly stemming from the summed combination
of H, He, and He++ (see Fig. A.2). Qualitatively, this analy-
sis (in particular, the small distance between bisector and PDF
peaks in the whole axis) start to reveal the good accuracy of the

Fig. 2. Predicted vs. true test for the DeepONet model. Logarithmic
densities for each ion (H, H+, ...) and the temperature (T ) are normal-
ized in the full dataset range (Table 2) and summed (y, see Eq. (4))
for both the true value from KROME and the predicted value from Deep-
ONet. The image shows the 2D probability distribution function (PDF)
of the summed dataset and it is normalized such that the maximum is
1 to better appreciate the dynamical range. To guide the eye, we have
added a dashed black line to mark the KROME = DeepONet region.
See Fig. A.2 for the same diagnostic for individual ions.

Table 3. Quantitative summary of the distribution of relative errors, i.e.
for the temperature and each chemical species emulated we report the
mean relative error (MRE) and the quantiles of the relative errors for
50% (median), 75%, and 90% of the testing cases.

Input MRE 50% 75% 90%

T 0.0179 0.0114 0.0211 0.0353
e− 0.0074 0.0044 0.0078 0.0151
H− 0.0176 0.0076 0.0183 0.0398
H 0.0269 0.0190 0.0375 0.0547
He 0.0213 0.0150 0.0258 0.0422
H2 0.0274 0.0167 0.0292 0.0548
H+ 0.0099 0.0060 0.0101 0.0178
He+ 0.0148 0.0082 0.0177 0.0314
H+2 0.0255 0.0146 0.0267 0.0552
He++ 0.0234 0.0125 0.0220 0.0436

predictions as a function of the physical ranges of density and
temperature (see Table 2).

Quantitative, a summary of the accuracy is provided in
Table 3, which reports the performance in terms of relative errors
defined as:

∆r =

√( xtrue − xpred

xtrue

)2
, (5)

where xtrue represents values computed with KROME and xpred
indicates predictions made by our model. Table 3 shows that
the quantitative representation of error distribution for all species
has mean relative errors of less than 3%, with a median below
2% and a 90% quantile under 6%.

To visualize such a benchmark, in Fig. 3, we plot the PDF
of the relative errors for T and all ni. All the PDFs are peaked
around ∆r ∼ 10−2, with the exception for the error distribution
of neutral hydrogen, which presents a peak at higher values, but
still less than ∆r ∼ 10−1 (i.e. 10%). In most cases, each PDF
resembles a Gaussian, which thus can be characterized by its
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Fig. 3. PDF of the relative error (∆r) for the testing set. Each output from
the emulator (T and density for each species) is shown independently,
with the color-code indicated in the legend. The PDFs are computed
using a testing set of ≃2 × 107 of points.

width; the typical width of the distribution can be expressed
in terms of standard deviation and, on average, it is approxi-
matelyσ ≃ 1.3 in log(∆r) space. Thus, a typical error of 0.05% =
10−3.3 <

∼ ∆r
<
∼ 10−0.7 ≃ 0.2 can be expected for each species, for

the adopted ≃4.34 GPUhrs of training.
Considering that the training for each species can be per-

formed independently, with the idea that when coupling with
a simulation, it is possible and relatively straightforward to use
the ∆r PDF (as Fig. 3) as a guideline to seek which species can
benefit from further training (as is likely the case with neutral
hydrogen here). Moreover, it is important to identify the inci-
dence of outliers, which can be defined as cases with a large
relative error greater than, for instance, ∆r > 1. With the cur-
rent training, such outliers constitute approximately 10−6% of
the total, as can be qualitatively inferred from the rapid drop of
the PDF in Fig. 2. This implies, for instance, that in a numeri-
cal simulation with ∼106 finite elements, a few outliers are likely
to affect the results every ∼100 time step. For the coupling with
numerical simulations such outliers should be prevented (see e.g.
Galligan et al. 2019). This can be prevented by simply furthering
the training (e.g. with an additional training phase using a second
order optimizer, such as L-BFGS). More precisely, an anomaly
detector (Pang et al. 2021) can be used, which should be cou-
pled directly with the DeepONet structure. This method will be
explored in a future work.

To have a practical idea of the accuracy and performance of
the emulator and to validate our model, we illustrate the evolu-
tion of chemical species up to 1 kyr for a couple of single set
of initial conditions. We can check two different examples. In
the first scenario (see the left panel of Fig. 4), the initial condi-
tions include a total gas density of n = 104cm−3, a temperature
of T = 103 K, and a (nearly negligible) photon flux intensity of
G = 10−1 G0. The second scenario (right panel of Fig. 4) features
n = 102 cm−3, T = 106 K, and G = G0.

We note that these examples act as a test since the evalua-
tion has been done at times, t, which are different with respect
to the 16 linearly sampled data points included in the train-
ing set. Moreover, both scenarios can be taken as validations,
since some species have initial condition outside the training and
testing range, namely, in the first case, the gas number density is
n = 104 cm−3, while in the second, it is T = 106 K (Table 2).

The results are presented in Fig. 4, where T and each ni are
plotted as a function of t. The solid lines report the outcomes
computed using the KROME software, while the dashed lines illus-
trate the predictions from our DeepONet emulator. The overall
evolution is accurately captured by our model as seen by the
small, namely, <

∼ 0.1 dex, distance between the DeepONet and
KROME solutions, with errors that tend to decrease at higher times
(t ≃ 1 kyr). For the second example, some larger discrepancies
are present in the early stages (up to approximately 1 yr) for He;
this inaccuracy reflects the fact that the error distribution of He
is among the worst (see Fig. 3), namely, ∆r peaks at 10−1.7. Fur-
thermore, we recall that the t training set is extracted from the
linearly spaced range of 0 to 1 kyr; thus, the sampling of the data
is expected to be lower at early times. These two facts combined
can lead to larger errors in the prediction phase.

Indeed, adopting a linear sampling of the training space in
the time domain implies a better sampling at high t, thus explain-
ing why the errors seems to decrease with increasing t for most
of the species in both examples. Moreover, it is important to note
that our emulator captures the sharp turns of some species very
well. For instance, in the case of He++ (in the left panel) and H+2
(in the right panel), both feature a numerical gradient of about
10 order of magnitude at t ∼ 10 yr, hinting at the fact that our
method does not suffer too much from the stiffness of the system.

Errors are small despite the initial density and temperature
exceeding the maximum values in the training set (Table 2),
indicating that the model not only interpolates the training data,
but also seems to gain a good understanding of the influence
of initial conditions (the sensors) on the evolution operator. In
general, the problem of extrapolating the solutions of neural
operators is complex to quantify. Zhu et al. (2023) meticulously
analyzed the capability of DeepONet to extrapolate solutions,
also proposing experimental methods to enhance the adaptabil-
ity of trained models to receive unexpected inputs, namely, ones
that are beyond the initial dataset. As shown in Fig. 4, our model
seems to generalize quite well within a range about half a dex
(both for n and T ) outside the initial conditions covered by the
training set; this can serve as a safety insurance if, for instance,
a model reaches an unexpected input value during a numerical
simulation. This ability to extrapolate outside the range of initial
conditions worsens further away from the limits of the training
set. For instance, the accuracy decreases by a factor of 10 if we
take an initial T ≃ 107.5 K, that is, with respect to the upper
bound of the training dataset, going beyond (by a factor of 2)
the normalized log space (see Sect. 2.2).

However, the above discussion does not apply to time extrap-
olation. In general, it is more challenging for the operator to
extrapolate in the time domain. This is primarily due to the non-
linear structure of the ODEs system, which may present sharp
turns at late times; thus, it is not included in the testing set for
a particular combination of initial conditions. In principle, it is
possible to enhance the time extrapolation capability of Deep-
Onet by increasing the number of sensors (Lu et al. 2021, in
particular, see Sect. 12.1 in the supplementary material). Possi-
bly, a more cost-effective approach for longer time integration
would consist of concatenating the solution of the emulator,
using the prediction in the first time step as initial conditions
for the second iteration and so on, thereby exploiting the fact
that no explicit time dependence is present in the photo-chemical
network. However, it is unclear how such a concatenation would
affect the error propagation and we leave this analysis for a future
work.
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Fig. 4. Examples of the time (t) evolution of temperature (T ) and the density (n, see the legend) of all the species in the chemical network. The
solid lines represent the solutions computed using KROME, while the dashed lines depict the predictions of our models, with each line being a single
solution from the emulator. In the left (right) panel the gas number density is n = 104 cm−3 (initial temperature is T = 106 K), namely, outside the
range of the training dataset (see Table 2).

Fig. 5. Photo-dissociation region (PDR) benchmark. Temperature (T ,
right axis) and density of main hydrogen species (H, H+, and H2, left
axis) profiles as a function of column density (N) obtained for an
impinging radiation flux of 10 G0 propagating in a Z = Z⊙ slab (see
Sect. 3.2 for details of the model). Solid lines represent the numerical
solutions computed with KROME at equilibrium (t ∼ 1 Kyr), dashed lines
represent the solution predicted by the emulator. Note: each point in the
profile at a given N is treated independently by the emulator.

3.2. Photo-dissociation region benchmark

For a physically relevant benchmark, we simulated a photo-
dissociation region (PDR, see Wolfire et al. 2022 for a review),
similarly to the test presented in the photoionization code com-
parison study from Röllig et al. (2007). Adopting a planar
geometry, we took a slab of gas with constant gas density

n = 102 cm−3 and a maximum column density of N = 5 ×
1021 cm−2. We assumed a constant metallicity Z = Z⊙ with solar
abundances (Asplund et al. 2009) and linearly scaled the dust
content with the solar value. We set an input radiation field
with the spectral shape of a black body of a temperature, T =
3 × 105 K; namely, with the intention of mimicking a massive
star that is able to efficiently ionize up to He+. Its intensity is
normalized by setting the flux in the Habing band to G = 10 G0,
where G0 = 1.6 × 10−3 erg cm−2 s−1 is the average Milky Way
value (Habing 1968). Here, the radiation field has ten frequency
bins: one for each of the photo-chemical reaction included in the
chemical network (see Sect. 2.1). We split the slab in optically
thin cells and allow for the radiation to propagate trough the slab
assuming an infinite speed of light; as the radiation propagates,
it is absorbed by dust and gas, whereby the chemical composi-
tion and temperature is evolved until equilibrium (t ∼ 1 kyr) by
KROME. We note that the incident spectrum of the photon (an
attenuated black body) can, in principle, be significantly differ-
ent with respect to the one used for the training; namely, the
constrained extraction of the fluxes (see Sect. 2.3).

In Fig. 5, we show the temperature and the main hydrogen
ion and molecule profiles as a function of the column density, N.
It is important to recall that the profiles do not represent a sin-
gle solution of the system of ODEs, but a collection of different
solutions evaluated at the same t by adopting different attenua-
tion for the incident radiation field, which yield a different local
radiation field F and, thus, different thermodynamic conditions.
The dashed lines representing the predictions of our emulator
reproduce well the general trend of the numerical solution from
KROME (solid lines), with errors typically of the order of 7% in
the ionized (N <

∼ 1018.5 cm−2) and molecular (N >
∼ 1019.5 cm−2)

regions. However, we see a larger discrepancy in the transition
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between the ionized and PDR region (N ∼ 1019.3 cm−2), on the
order of 30%; namely, with errors that are generally larger than
expected from the testing (see Sect. 3.1).

From a numerical point of view, we can interpret such a
discrepancy as follows. As noted by Lu et al. (2021, in partic-
ular see the supplementary material, Sect. 18 therein) DeepONet
respects (by constrution) the Holder condition, which in our case
translates to:

∥G(pa)(x) − G(pb)(x)∥ ≤ C ∥pa − pb∥ , (6)

where C is a positive scalar and pa and pb are two different sets
of initial conditions and photon fluxes. The Holder condition
(Eq. (6)) implies that the solutions predicted by DeepONet tend
to be smooth with respect to changes in the initial data, making
it more difficult to predict discontinuities. Stating it differently,
if the training set is not sampling a region of input parameters
with large variations of the outputs finely enough, the emulator
will tend to average out the predictions. A general discussion is
more complex, as this feature is due to the phenomenon of neu-
ral network smoothness (Jin et al. 2020). This discrepancy can
likely be ameliorated by having a finer sampled training set in
the discontinuity region and/or increasing the architecture size
to improve the expressivity.

From a PDR modeling point of view, we note that the dis-
crepancy at the ionized-neutral interface is compatible with the
differences between the various photoionization codes adopted
in the post-benchmark comparison from (Röllig et al. 2007, see
in particular the top panel of Fig. 11 therein). Such differences
are due different implementations and assumptions regarding
the photo-chemical rates in the various codes. Thus, we can
consider as a minor issue the discrepancy we find between Deep-
ONet and the reference KROME solution. Furthermore, adopting
a finer grid of initial conditions sampling the ionized-neutral
transition and/or expanding the depth of the neural network
(currently, six layers have been adopted) should ameliorate
the issue.

3.3. Comparisons with other models

In Branca & Pallottini (2023), physics-informed neural networks
(PINN) were adopted to emulate a photo-chemical network that
is very similar to the one in the present; with respect to the results
from Branca & Pallottini (2023), DeepONet achieves a typical
accuracy that is about 10 times better, with a computational train-
ing cost that is about 40 times lower. We consider this to be a
stark improvement for the performance; however, training the
DeepONet requires pre-computation of a dataset. In principle,
this can be expensive (in this case, only ≃100 CPUhr are actu-
ally used), while PINNs are completely data-independent. The
observed performance disparity between the neural operator and
the PINN can be attributed to the following factors. The efficacy
of the PINN method is known to heavily rely on the initial condi-
tions set selected during training. In Branca & Pallottini (2023),
we developed a technique to generalize for initial conditions
that are unknown at the time of training, by elevating the ini-
tial condition to a vector. However, there is no strict theoretical
guarantee for the feasibility of this approach and we hypothesize
that this limitation is the primary cause of the lower accuracy
observed in the PINN, compared to DeepONet when trained
for an equivalent duration. In addition to enhanced precision,
with respect to the PINN from Branca & Pallottini (2023),
a significant advancement would be the possibility of having
an explicit dependency on incident radiation. This allows the

DeepONet model to be effectively coupled with real-time radia-
tive transfer codes, for instance, in following the evolution of
local molecular clouds (Decataldo et al. 2020). Instead, in order
to use DeepONet to study the formation and evolution of galax-
ies in the EoR (Pallottini et al. 2022), variations of the metallicity
should be allowed and we plan to explore this in a future work.

In Grassi et al. (2022) and Sulzer & Buck (2023), the capa-
bilities of autoencoders to compress a large chemical network
(29 chemical species and 224 reactions) into a latent space were
explored; subsequently, the latent variables were evolved using
both standard stiff ODE integrator (Grassi et al. 2022) and a neu-
ral ODE approach (Sulzer & Buck 2023). The chemical network
in these works is larger than the one adopted here (9 chemical
species and 52 reactions; see Sect. 2.1). This difference natu-
rally favors the compression approach; however, in these models,
the evolution of temperature, dependence of the evolution on the
initial total density, dependence of the coupling coefficient on
temperature, and the impact of incident radiation are not con-
sidered. Furthermore, another limitation is given by the fact that
the size of the latent space is fixed a priori. Keeping these differ-
ences in mind, compared to the present work the overall accuracy
is worse by a factor of ∼20 for the case of direct numerical inte-
gration in the latent space (Grassi et al. 2022, i.e. as for Branca
& Pallottini 2023), but similar to the case where the neural ODE
solver is implemented (Sulzer & Buck 2023).

Furthermore, comparing our results on the PDR with those
obtained by CHEMULATOR (Holdship et al. 2021), we obtained
a better agreement with the numerical solutions, for instance,
a ∆r ≃ 7% compared to a ∆r ≃ 20% errors with respect to the
reference solutions; however, it is notable that our chemical
network contains a lower number of species and reactions, com-
pared to the system with 30 species and 330 reactions adopted in
Holdship et al. (2021). Moreover, in addition to smaller relative
errors, a notable difference is in the regularity of our solutions,
which are much smoother than those from CHEMULATOR. Such
a difference is likely driven by the fact that CHEMULATOR is
a purely data driven method. Instead, DeepONet also tries to
reproduce the map between the initial conditions and the family
of solutions of the ODE system (Lu et al. 2021), since it is an
application of the UAT for operators (Chen & Chen 1995). This
implies DeepONet is expected to follow the Holder condition
(see Eq. (6)).

Finally, we note that the time required to make ≃2 × 107

predictions is about 25.36 CPU seconds. Compared to the
3240.0 CPUs needed by KROME, this gives us an approximate
speed-up of ≃128, effectively making the chemical-evolution
task inexpensive. Such a speed-up with respect to a traditional
stiff ODE solver is of the same order of magnitude as the
ones reported in Branca & Pallottini (2023) and Grassi et al.
(2022). However, it is lower by a factor of ∼10 than the one
found in Sulzer & Buck (2023), in the case where the integra-
tion in the latent space is replaced by a linear fitting function.
In the case of CHEMULATOR (Holdship et al. 2021), the authors
reported a remarkable speed-up factor of 5 × 104 compared to
UCLCHEM (Holdship et al. 2017), which significantly surpasses
our results. However, drawing a direct comparison is challenging
as UCLCHEM and KROME are very distinct codes, each employ-
ing different underlying ODEs solvers and with a different usage
case in numerical simulation, namely, with post-processing and
on-the-fly usage, respectively, in most instances. Indeed, even
with the low 128× speed-up obtained by DeepONet, substitut-
ing a traditional ODE solver with our method would effectively
make inexpensive the thermo-chemical step in a numerical
simulation.
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4. Conclusions

In this work, we develop a non-equilibrium photo-chemical
emulator to cure the computational bottlenecks that hinder the
inclusion of detailed chemistry in state-of-the-art astrophysi-
cal simulations. This study pioneers the exploration of a neural
operator, specifically, DeepONet, for this application.

We adopted the ISM photo-chemical network from Bovino
et al. (2016, with 9 species and 52 reactions) that has been
used for studies of Giant Molecular Cloud (GMC, Decataldo
et al. 2019) and galaxies (Pallottini et al. 2019). We trained
DeepONet with dataset generated by solving the ISM photo-
chemistry via KROME (Grassi et al. 2014), by adopting for the
initial conditions a gas number density, n, temperature, T ,
and fractions of each species, ni/n, that are sampled in log-
spaced range −2 ≤ log(n/cm−3) ≤ 3.5, log(20) ≤ log(T/K) ≤
5.5, and −6 ≤ log(ni/n) < 0, respectively. Furthermore, we
allowed for a varying radiation field, F, composed of 10 energy
bins for the photons, with each sampled in the range of Fi ∈

[10−15, 10−5] eV cm−2 s−1 Hz−1 by imposing a continuity prior;
such that [log(Fi/Fi±1)] ≤ 0.15 in adjacent bins. Time was sam-
pled in the 0 ≤ t/kyr ≤ 1 range and the full dataset contains
≃6.4 × 108 models. The model was tested and validated both
with idealized and physically motivated scenarios, and the key
results can be summarized as follows:

– Our deep learning model for ISM chemistry has given results
that are both accurate (relative error ∆r ∼ 10−2) and fast to
compute (∼128 times faster than a traditional solver) with a
relatively low training time (total of ∼eq43.4 GPUhrs);

– By employing DeepONet, we have realized significant
enhancements over previous models, particularly when
compared with physics-informed neural networks (PINNs,
Branca & Pallottini 2023), with our approach showing a
higher accuracy (10×) at a reduced computational cost (40×)
during the training phase, alongside a streamlined model
parameter framework;

– A critical innovation is the integration of arbitrary radia-
tion fields, a considerable leap beyond the constraints of
traditional chemical emulators. This adaptability to diverse
radiation fields is a substantial breakthrough, enabling more
accurate modeling in scenarios where radiation significantly
influences astrophysical dynamics, such as in the dynamics
of GMC (e.g. Decataldo et al. 2020).

In summary, the present approach seems to surpass the perfor-
mance of PINNs (Branca & Pallottini 2023) in terms of precision
and incorporates a direct dependence on radiation fields, out-
performing autoencoder-based methods (Grassi et al. 2022) for
problems with relatively small chemical networks (i.e. 9 species
and 52 reactions).

However, a few limitations affect the current emulation.
For instance, we observed larger discrepancies in the transition
between ionized and photo-dissociation regions (PDRs), which
could be attributed to DeepONet’s inherent inclination towards
smooth, continuous solutions. While such discrepancy is of the
same order of magnitude as the difference between different pho-
toionization codes (Röllig et al. 2007), this characteristic may
influence the model’s efficacy in predicting abrupt transitions in
chemical profiles. Our model shows robustness in extrapolating
beyond the initial condition (density and temperature) ranges,
indicating its potential applicability across a broader spectrum
of astrophysical scenarios; however, the model’s extrapolation
capabilities are limited in the temporal domain. This issue can
be mitigated by iteratively applying the trained model multi-
ple times, effectively extending its predictive reach. To couple

it effectively in a numerical simulation, the propagation of
the error should be carefully tested and outliers (rare, large
deviations with respect to the average errors) should be pre-
vented; for instance, via anomaly detection or further training.
An avenue for future enhancement might involve the exploration
of multi-output DeepONet models, which could potentially offer
increased precision by harnessing inherent conservation laws
within the system, thereby addressing the challenges associated
with sharp transitions between various astrophysical conditions.

In conclusion, the present work implies a significant leap for-
ward in the modeling of ISM chemistry, offering an emulator
with a good balance of precision, versatility, and computational
efficiency. However, addressing the challenges of better manag-
ing transitions between distinct regions and refining the model’s
capability in handling extrapolation beyond the training domain
remains a vital area for future research. Such endeavors not
only promise to refine the existing model but also pave the way
for more comprehensive simulations of complex astrophysical
processes.

Acknowledgements. We gratefully acknowledge computational resources of the
Center for High Performance Computing (CHPC) at SNS. We acknowledge the
CINECA award under the ISCRA initiative, for the availability of high perfor-
mance computing resources and support from the Class C project PINNISM
HP10CB99R0 (PI: Branca). Supported by the Italian Research Center on High
Performance Computing Big Data and Quantum Computing (ICSC), project
funded by European Union – NextGenerationEU – and the National Recovery
and Resilience Plan (NRRP) – Mission 4 Component 2 within the activities of
Spoke 3 (Astrophysics and Cosmos Observations)

References
Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale

Machine Learning on Heterogeneous Systems, https://www.tensorflow.
org/

Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481
Bakes, E. L. O., & Tielens, A. G. G. M. 1994, ApJ, 427, 822
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. 2017, SIAM Rev., 59, 65
Bovino, S., Grassi, T., Capelo, P. R., Schleicher, D. R. G., & Banerjee, R. 2016,

A&A, 590, A15
Branca, L., & Pallottini, A. 2023, MNRAS, 518, 5718
Caselli, P., & Ceccarelli, C. 2012, A&A Rev., 20, 56
Cen, R. 1992, ApJS, 78, 341
Chen, T., & Chen, H. 1995, IEEE Transactions on Neural Networks, 6, 911
Chen, T., & Guestrin, C. 2016, KDD ’16: Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data
Mining, 785

Ciesla, L., Ilbert, O., Buat, V., et al. 2024, A&A, in press, https://doi.org/
10.1051/0004-6361/202348091

Cybenko, G. 1989, Math. Control Signals Syst., 2, 303
Danehkar, A., Oey, M. S., & Gray, W. J. 2022, ApJ, 937, 68
Decataldo, D., Pallottini, A., Ferrara, A., Vallini, L., & Gallerani, S. 2019,

MNRAS, 487, 3377
Decataldo, D., Lupi, A., Ferrara, A., Pallottini, A., & Fumagalli, M. 2020,

MNRAS, 497, 4718
Ferland, G. J., Chatzikos, M., Guzmán, F., et al. 2017, Rev. Mex. Astron. Astrofis.,

53, 385
Galli, D., & Palla, F. 1998, A&A, 335, 403
Galligan, T. P., Katz, H., Kimm, T., et al. 2019, arXiv e-prints

[arXiv:1901.01264]
Glorot, X., & Bengio, Y. 2010, in Proceedings of Machine Learning Research,

Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, eds. Y. W. Teh & M. Titterington, Chia Laguna Resort,
Sardinia, Italy, 9, 249

Glover, S. C. O., & Abel, T. 2008, MNRAS, 388, 1627
Glover, S. C. O., Federrath, C., Mac Low, M. M., & Klessen, R. S. 2010,

MNRAS, 404, 2
Gnedin, N. Y., & Hollon, N. 2012, ApJS, 202, 13
Grassi, T., Bovino, S., Schleicher, D. R. G., et al. 2014, MNRAS, 439, 2386
Grassi, T., Nauman, F., Ramsey, J. P., et al. 2022, A&A, 668, A139
Gray, W. J., Oey, M. S., Silich, S., & Scannapieco, E. 2019, ApJ, 887, 161
Habing, H. J. 1968, Bull. Astron. Inst. Netherlands, 19, 421

A203, page 9 of 12

http://linker.aanda.org/10.1051/0004-6361/202449193/1
http://linker.aanda.org/10.1051/0004-6361/202449193/1
https://www.tensorflow.org/
https://www.tensorflow.org/
http://linker.aanda.org/10.1051/0004-6361/202449193/2
http://linker.aanda.org/10.1051/0004-6361/202449193/3
http://linker.aanda.org/10.1051/0004-6361/202449193/4
http://linker.aanda.org/10.1051/0004-6361/202449193/5
http://linker.aanda.org/10.1051/0004-6361/202449193/6
http://linker.aanda.org/10.1051/0004-6361/202449193/7
http://linker.aanda.org/10.1051/0004-6361/202449193/8
http://linker.aanda.org/10.1051/0004-6361/202449193/9
http://linker.aanda.org/10.1051/0004-6361/202449193/10
http://linker.aanda.org/10.1051/0004-6361/202449193/10
http://linker.aanda.org/10.1051/0004-6361/202449193/10
https://doi.org/10.1051/0004-6361/202348091
https://doi.org/10.1051/0004-6361/202348091
http://linker.aanda.org/10.1051/0004-6361/202449193/12
http://linker.aanda.org/10.1051/0004-6361/202449193/13
http://linker.aanda.org/10.1051/0004-6361/202449193/14
http://linker.aanda.org/10.1051/0004-6361/202449193/15
http://linker.aanda.org/10.1051/0004-6361/202449193/16
http://linker.aanda.org/10.1051/0004-6361/202449193/16
http://linker.aanda.org/10.1051/0004-6361/202449193/17
https://arxiv.org/abs/1901.01264
http://linker.aanda.org/10.1051/0004-6361/202449193/19
http://linker.aanda.org/10.1051/0004-6361/202449193/20
http://linker.aanda.org/10.1051/0004-6361/202449193/21
http://linker.aanda.org/10.1051/0004-6361/202449193/22
http://linker.aanda.org/10.1051/0004-6361/202449193/23
http://linker.aanda.org/10.1051/0004-6361/202449193/24
http://linker.aanda.org/10.1051/0004-6361/202449193/25
http://linker.aanda.org/10.1051/0004-6361/202449193/26


Branca, L. and Pallottini, A.: A&A, 684, A203 (2024)

Hennigh, O., Narasimhan, S., Nabian, M. A., et al. 2020, arXiv e-prints
[arXiv:2012.07938]

Heyl, J., Butterworth, J., & Viti, S. 2023, MNRAS, 526, 404
Hindmarsh, A. C. 2019, Astrophysics Source Code Library [record
ascl:1905.021]

Hirashita, H., & Ferrara, A. 2002, MNRAS, 337, 921
Holdship, J., Viti, S., Jiménez-Serra, I., Makrymallis, A., & Priestley, F. 2017,

AJ, 154, 38
Holdship, J., Viti, S., Haworth, T. J., & Ilee, J. D. 2021, A&A, 653, A76
Jin, P., Lu, L., Tang, Y., & Karniadakis, G. E. 2020, Neural Networks, 130,

85
Jura, M. 1975, ApJ, 197, 575
Katz, H. 2022, MNRAS, 512, 348
Katz, H., Galligan, T. P., Kimm, T., et al. 2019, MNRAS, 487, 5902
Kim, J.-G., Kim, W.-T., & Ostriker, E. C. 2018, ApJ, 859, 68
Kingma, D. P., & Ba, J. 2014, arXiv e-prints [arXiv:1412.6980]
Kumar, A., & Fisher, R. T. 2013, MNRAS, 431, 455
Li, Z., Kovachki, N., Azizzadenesheli, K., et al. 2020, arXiv e-prints

[arXiv:2010.08895]
Lu, L., Jin, P., & Karniadakis, G. E. 2019a, arXiv e-prints [arXiv:1910.03193]
Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. 2019b, arXiv e-prints

[arXiv:1907.04502]
Lu, L., Jin, P., Pang, G., Zhang, Z., & Karniadakis, G. E. 2021, Nat. Mach. Intell.,

3, 218
Lu, L., Meng, X., Cai, S., et al. 2022, Comp. Methods Appl. Mech. Eng., 393,

114778
Lundberg, S. M., Erion, G. G., & Lee, S.-I. 2018, arXiv e-prints

[arXiv:1802.03888]
Lupi, A. 2019, MNRAS, 484, 1687
Maio, U., Dolag, K., Ciardi, B., & Tornatore, L. 2007, MNRAS, 379, 963
Mao, Z., Lu, L., Marxen, O., Zaki, T. A., & Karniadakis, G. E. 2021, J. Comput.

Phys., 447, 110698
Obreja, A., Macciò, A. V., Moster, B., et al. 2019, MNRAS, 490, 1518

Obreja, A., Arrigoni Battaia, F., Macciò, A. V., & Buck, T. 2024, MNRAS, 527,
8078

Olsen, K. P., Pallottini, A., Wofford, A., et al. 2018, Galaxies, 6, 100
Pallottini, A., Ferrara, A., Bovino, S., et al. 2017, MNRAS, 471, 4128
Pallottini, A., Ferrara, A., Decataldo, D., et al. 2019, MNRAS, 487, 1689
Pallottini, A., Ferrara, A., Gallerani, S., et al. 2022, MNRAS, 513, 5621
Pang, G., Shen, C., Cao, L., & van den Hengel, A. 2021, ACM Comput. Surv.,

54, 1
Prasthofer, M., De Ryck, T., & Mishra, S. 2022, arXiv e-prints

[arXiv:2205.11404]
Rackauckas, C., Innes, M., Ma, Y., et al. 2019, arXiv e-prints

[arXiv:1902.02376]
Robinson, D., Avestruz, C., & Gnedin, N. Y. 2024, MNRAS, 528, 255
Röllig, M., Abel, N. P., Bell, T., et al. 2007, A&A, 467, 187
Rosdahl, J., Katz, H., Blaizot, J., et al. 2018, MNRAS, 479, 994
Shen, S., Madau, P., Guedes, J., et al. 2013, ApJ, 765, 89
Smith, B. D., Bryan, G. L., Glover, S. C. O., et al. 2017, MNRAS, 466, 2217
Springel, V., Pakmor, R., Zier, O., & Reinecke, M. 2021, MNRAS, 506, 2871
Sulzer, I., & Buck, T. 2023, arXiv e-prints [arXiv:2312.06015]
Tacchella, S., Forbes, J. C., & Caplar, N. 2020, MNRAS, 497, 698
Theuns, T., Leonard, A., Efstathiou, G., Pearce, F. R., & Thomas, P. A. 1998,

MNRAS, 301, 478
Trebitsch, M., Dubois, Y., Volonteri, M., et al. 2021, A&A, 653, A154
Ucci, G., Ferrara, A., Pallottini, A., & Gallerani, S. 2018, MNRAS, 477, 1484
Vallini, L., Pallottini, A., Ferrara, A., et al. 2018, MNRAS, 473, 271
Van Rossum, G., & Drake, F. L. 2009, Python 3 Reference Manual (Scotts Valley,

CA: CreateSpace)
Wakelam, V., Herbst, E., Loison, J. C., et al. 2012, ApJS, 199, 21
Webber, W. R. 1998, ApJ, 506, 329
Wolfire, M. G., Vallini, L., & Chevance, M. 2022, ARA&A, 60, 247
Zhu, M., Zhang, H., Jiao, A., Karniadakis, G. E., & Lu, L. 2023, Comput.

Methods Appl. Mech. Eng., 412, 116064
Ziegler, U. 2016, A&A, 586, A82

A203, page 10 of 12

https://arxiv.org/abs/2012.07938
http://linker.aanda.org/10.1051/0004-6361/202449193/28
http://www.ascl.net/1905.021
http://www.ascl.net/1905.021
http://linker.aanda.org/10.1051/0004-6361/202449193/30
http://linker.aanda.org/10.1051/0004-6361/202449193/31
http://linker.aanda.org/10.1051/0004-6361/202449193/32
http://linker.aanda.org/10.1051/0004-6361/202449193/33
http://linker.aanda.org/10.1051/0004-6361/202449193/33
http://linker.aanda.org/10.1051/0004-6361/202449193/34
http://linker.aanda.org/10.1051/0004-6361/202449193/35
http://linker.aanda.org/10.1051/0004-6361/202449193/36
http://linker.aanda.org/10.1051/0004-6361/202449193/37
https://arxiv.org/abs/1412.6980
http://linker.aanda.org/10.1051/0004-6361/202449193/39
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/1910.03193
https://arxiv.org/abs/1907.04502
http://linker.aanda.org/10.1051/0004-6361/202449193/43
http://linker.aanda.org/10.1051/0004-6361/202449193/43
http://linker.aanda.org/10.1051/0004-6361/202449193/44
http://linker.aanda.org/10.1051/0004-6361/202449193/44
https://arxiv.org/abs/1802.03888
http://linker.aanda.org/10.1051/0004-6361/202449193/46
http://linker.aanda.org/10.1051/0004-6361/202449193/47
http://linker.aanda.org/10.1051/0004-6361/202449193/48
http://linker.aanda.org/10.1051/0004-6361/202449193/48
http://linker.aanda.org/10.1051/0004-6361/202449193/49
http://linker.aanda.org/10.1051/0004-6361/202449193/50
http://linker.aanda.org/10.1051/0004-6361/202449193/50
http://linker.aanda.org/10.1051/0004-6361/202449193/51
http://linker.aanda.org/10.1051/0004-6361/202449193/52
http://linker.aanda.org/10.1051/0004-6361/202449193/53
http://linker.aanda.org/10.1051/0004-6361/202449193/54
http://linker.aanda.org/10.1051/0004-6361/202449193/55
http://linker.aanda.org/10.1051/0004-6361/202449193/55
https://arxiv.org/abs/2205.11404
https://arxiv.org/abs/1902.02376
http://linker.aanda.org/10.1051/0004-6361/202449193/58
http://linker.aanda.org/10.1051/0004-6361/202449193/59
http://linker.aanda.org/10.1051/0004-6361/202449193/60
http://linker.aanda.org/10.1051/0004-6361/202449193/61
http://linker.aanda.org/10.1051/0004-6361/202449193/62
http://linker.aanda.org/10.1051/0004-6361/202449193/63
https://arxiv.org/abs/2312.06015
http://linker.aanda.org/10.1051/0004-6361/202449193/65
http://linker.aanda.org/10.1051/0004-6361/202449193/66
http://linker.aanda.org/10.1051/0004-6361/202449193/67
http://linker.aanda.org/10.1051/0004-6361/202449193/68
http://linker.aanda.org/10.1051/0004-6361/202449193/69
http://linker.aanda.org/10.1051/0004-6361/202449193/70
http://linker.aanda.org/10.1051/0004-6361/202449193/71
http://linker.aanda.org/10.1051/0004-6361/202449193/72
http://linker.aanda.org/10.1051/0004-6361/202449193/73
http://linker.aanda.org/10.1051/0004-6361/202449193/74
http://linker.aanda.org/10.1051/0004-6361/202449193/74
http://linker.aanda.org/10.1051/0004-6361/202449193/75


Branca, L. and Pallottini, A.: A&A, 684, A203 (2024)

Appendix A: Individual predicted versus true tests

In this Appendix, we report the individual predicted vs true
analysis for the temperature (Fig. A.1) and all ions (Fig. A.2)
included in the photo-chemical network. The plot scheme is the
same one adopted for the composed analysis shown in Fig. 2 in
the main text.

Fig. A.1. Predicted vs true data shown as 2D PDF for the temperature
with respect to KROME data. The black dashed line is the bisector and
represent a region without dicrepancy between data and predictions.
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Fig. A.2. Predicted vs true data for all the species with respect to KROME data. The colorbar is given in Fig. A.1.
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