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Abstract: Rett syndrome caused by MECP2 variants is characterized by a heterogenous clinical
spectrum accounted for in 60% of cases by hot-spot variants. Focusing on the most frequent variants,
we generated in vitro iPSC-neurons from the blood of RTT girls with p.Arg133Cys and p.Arg255*,
associated to mild and severe phenotype, respectively, and of an RTT male harboring the close
to p.Arg255*, p.Gly252Argfs*7 variant. Truncated MeCP2 proteins were revealed by Western blot
and immunofluorescence analysis. We compared the mutant versus control neurons at 42 days for
morphological parameters and at 120 days for electrophysiology recordings, including girls’ isogenic
clones. A precocious reduced morphological complexity was evident in neurons with truncating
variants, while in p.Arg133Cys neurons any significant differences were observed in comparison with
the isogenic wild-type clones. Reduced nuclear size and branch number show up as the most robust
biomarkers. Patch clamp recordings on mature neurons allowed the assessment of cell biophysical
properties, V-gated currents, and spiking pattern in the mutant and control cells. Immature spiking,
altered cell capacitance, and membrane resistance of RTT neurons, were particularly pronounced
in the Arg255* and Gly252Argfs*7 mutants. The overall results indicate that the specific markers
of in vitro cellular phenotype mirror the clinical severity and may be amenable to drug testing for
translational purposes.

Keywords: Rett syndrome; hot-spot MECP2 pathogenic variants; X inactivation mosaicism; genotype-
phenotype correlation; iPSC-neurons; early morphological neuronal biomarkers; mature neuron
e-recordings

1. Introduction

MECP2 gene (MIM #300005), mapping at Xq28, encodes the transcription regulator
and chromatin remodeler methyl-CpG-binding protein 2 (MeCP2), which is ubiquitously
expressed, but at particularly high levels in post-mitotic neurons in the brain [1–4]. Due to
the key role of MECP2 in the function of neuronal cells, pathogenic variants in heterozygous
females and rarely in hemizygous males are the most common cause of the rare (1:10,000
live births) neurodevelopmental Rett syndrome (RTT MIM #312750). RTT is characterized
by early developmental regression leading to loss of language, purposeful use of the
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hands, onset of typical stereotypies, gait abnormalities, seizures, apnea, hyperventilation,
and autonomic dysfunction [5]. A further common feature in RTT patients is post-natal
microcephaly, also observed in animal models, where the reduced brain volume has
been associated with abnormal morphology of neurons, which show reduced dendritic
branching, soma size, spine density, and synapse number [6,7].

To date, 3924 females and 345 males with MECP2 pathogenic variants have been
reported [8] outlining high male embryonic lethality or early post-natal death.

Eight hot-spot mutations (R106W, R133C, T158M, R168*, R255*, R270*, R294*, and
R306C) account for more than 60% of typical RTT cases [9]. A consistent clinical heterogene-
ity with a strong genotype-phenotype correlation is reported in the literature indicating
that early-truncating pathogenic variants, such as R168*, R255*, R270*, and large deletions
are associated with a more severe phenotype than R294*, R133C, R306C, and late-truncating
C-terminal variants [10]. MECP2 being subject to X chromosome inactivation (XCI), further
clinical expressivity is determined in RTT females by the variable ratio of the two cell
populations expressing the wild-type (WT) and the mutant (Mut) allele [11].

Similarly to all neurodevelopmental disorders the study of RTT has been challenging
for a long time due to the inaccessibility of the central nervous system and quantity and
quality limitations of post mortem human brain samples [12]. Engineered mouse models
have been useful to study RTT [13–15] despite poor translation of molecular observations
into the clinic. Furthermore, the inter-species differences in brain development, function,
and cell composition at fetal and adult stages [16,17] question the fidelity of the animal
studies in modeling human neurodevelopmental disorders.

An avenue to understand RTT pathogenesis and disclose potential actionable thera-
peutic targets has been opened by patient-specific models, generated by induced human
pluripotent stem cells (iPSCs) [18] differentiated to 2D neural cell cultures [19–21] or brain
organoids [17,22,23].

To date, several iPSC lines harboring a range of MECP2 mutations have been gener-
ated [21], mainly reprogrammed from patient-derived fibroblast cells. Most studies have
employed iPSC lines from female patients, with the exception of a few male patient-specific
iPSCs presenting the Q83* or the N126I mutation [24,25]. Several research groups have
demonstrated that neuronal models from RTT girls showed morphological defects, such as
fewer synapses, smaller soma size, reduced dendritic branching, and functional anomalies
ranging from reduced cell capacitance and altered calcium signaling to defective firing
activity and excitatory/inhibitory imbalance [11,19,26–28]. Conversely, morphological
parameters appear so far inconsistent across iPSC-derived neurons (i-neurons) from male
RTT patients. No differences were observed in two male cell lines harboring Q83* and
N126I variants compared to controls [29], while the average neurite length was reported to
be higher in control cells than in Q83* neurons [30].

Aiming at investigating whether the clinical heterogeneity observed in the patients
with different hot-spot pathogenic variants may be mirrored in their cellular phenotype
and to identify biomarkers tailored on specific variants, we compared iPSCs from a male
with Gly252Argfs*7, two girls with the nearby Arg255* hot-spot variant, and a female with
the Arg133Cys variant, this latter associated with mild clinical manifestations. According to
the MECP2 Variation Database (RettBASE), RettSyndrome.org (http://mecp2.chw.edu.au/
(accessed 1 June 2022) these three variants are representative of 18.7% of RTT cases.

We generated from peripheral blood mononuclear cells (PBMC) of MECP2 defective
girls isogenic WT or Mut iPSCs clones, then differentiated into prefrontal cortical neurons.
iPSC clones from the RTT male and isogenic WT and Mut clones from the females were
compared to sex-matched healthy controls to appoint morphological biomarkers in the
derived young neurons and electrophysiological biomarkers in the mature neurons. Our
findings reveal graded neuronal maturation deficits, informing on appropriate testing and
individualized efficacy of candidate drugs.

http://mecp2.chw.edu.au/
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2. Results
2.1. MECP2 Patients Selected for In Vitro Modeling

Out of 169 RTT girls with MECP2 pathogenic variants, we have diagnosed so far,
11 carriers of p.Arg168*, 15 carriers of p.Arg255*, and eight of p.Arg133Cys representing
20% of our cohort. Aiming at modelling hot-spot pathogenic variants to check whether
the in vitro neurons might reflect the clinical heterogeneity, we collected blood from two
girls with p.Arg168*, six with p.Arg255* and three with p.Arg133Cys. A boy with severe
encephalopathy, carrier of the p.Gly252Argfs*7 variant close to p.Arg255*, was also included
in the study. A schematic of the location of the selected MECP2 variants at the gene and
protein level is shown in Figure 1.

Figure 1. Representation of MECP2 gene structure and protein domains. (a) Schematic of MECP2 gene
organization with four exons and the two isoforms (E1 and E2). (b) Impact of the selected hot-spot
pathogenic variants on MeCP2-E2 protein isoform. NTD: N-Terminal Domain, MBD: Methyl CpG
Binding Domain, ID: Intervening Domain, TRD: Transcriptional Repressor Domain, NLS: Nuclear
Localization Signal, CTD: C-Terminal Domain.

DNAs from female lymphocytes were investigated for XCI inactivation by AR locus
(Figure 2a) and DXS6673E marker in the non informative cases. A selective skewing of
the MECP2 mutated allele was observed in all the girls with p.Arg168* and in 4/6 with
p.Arg255*, while all 3/3 patients with p.Arg133Cys were not selectively skewed. The cases
with balanced XCI were reprogrammed to iPSCs obtaining a minimum of five clones; also
lymphocytes from two patients with unbalanced XCI (PtA3 and PtC1) were reprogrammed,
but no mutant clones were obtained (Figure 2a).

cDNA sequencing to disclose whether each clone expressed either WT/MUT or both
alleles, confirmed the occurrence of isogenic clones expressing the variant or wild-type
allele in the girls with balanced XCI (Figure 2b), while only the wild-type allele was
expressed in the skewed cases. As regards the RTT male carrier of p.Gly252Argfs*7, two
clones (PtY1 and PtY2), out of several obtained by reprogramming peripheral blood cells to
iPSCs, were selected for this study. In parallel to RTT control, iPSC clones were obtained
and characterized from four healthy males and four healthy females (CTRLs).
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Figure 2. XCI pattern and selective expression of wild-type (WT) and pathogenic variant (MUT) allele
in RTT female iPSC lines. (a) The table sums up XCI analyses. Patients with XCI > 80–85% or <15–20%
were considered unbalanced and are highlighted by red characters. In patient A5, non-informative
for the AR locus (*), XCI was investigated at DXS6673E locus (XCI = 13.5%). The number of wild-type
and mutant clones obtained are reported respectively in the fourth and fifth column of the table.
(b) Electropherograms of cDNA sequences from p.Arg255* and p.Arg133Cys RTT girls displaying
biallelic expression of MECP2 allele in the blood and monoallelic expression of WT or MUT allele in
the iPSC isogenic clones.

2.2. Patients Clinical Phenotype

All the modeled RTT females were referred for clinical diagnosis and follow-up at the
Regional Epilepsy Center of Ospedale Santi Paolo e Carlo (Milan, Italy), while the boy was
referred to our lab by the Pediatric Unit of Clinica De Marchi (Milan, Italy) and his clinical
history was described in detail [31].

Table 1 reports the main clinical features of our patients. The RTT clinical severity scale
(CSS) [9], indicated in the last column, confirms the major severity of the patients harboring
the MeCP2 protein truncated at the NLS region. PtA2 appears very impaired, with absence
of eye contact and a never acquired deambulation. PtA1, with the same variant, is still
a child, and preserves eye contact and deambulation; epilepsy occurred not so early but
is drug-resistant. Patients B1, B2, B3 are currently adults, manifest a controlled epilepsy,
preserve independent walking and eye contact and, one of them, PtB1, is able to say single
words. Microcephaly is referred for patients A1, A2, and B1.

The clinical data of the male are reported in the last line of Table 1: decreased fetal
movements and fetal growth restriction were described during pregnancy; he suffered
from severe hypotonia and psychomotor retardation and died at 1 year and 3 months from
the severe and irreversible worsening of the encephalopathy.

2.3. From iPSCs to Neuron Differentiation

RTT- and CTRL-iPSC stemness was confirmed by immunostaining of the pluripotency
markers OCT3/4 and Tra-1-60 (Supplementary Figure S1a) and expression of OCT3/4,
SOX2, and NANOG by RT-PCR (Supplementary Figure S1b). Genomic stability of iPSCs
as compared to donor blood was assessed for each clone by karyotyping (Supplementary
Figure S1c) and SNP-array (data not shown) to exclude cytogenetic and submicroscopic
rearrangements which might have occurred during in vitro culture. The images are repre-
sentative of all clones analyzed. Expression of the proper MECP2 variant was proved by
DNA sequencing of all clones (Figure 2b for females and Supplementary Figure S1d for
male).
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Table 1. Clinical features of patients included in the study.

Pt Age Age at
Diagnosis Clinical Signs at Onset Epilepsy

Onset D.R. Motor
Function Speech Communication Behavioural

Problems S GI
Problems GF M CSS

A1 7 years 3 years Regression, hand stereotypies (24 months) 5 years Yes Independent
walking Absent Maintained through eye

contact Absent No No Yes Yes 20

A2 10
years 1 year Developmental delay, hand stereotypies

(12 months) 24 months Yes

Never
acquired

deambula-
tion

Absent Absent Yes Yes Mild No Yes 33

B1 19
years 5 years Regression, absent speech, hand

stereotypies (30 months) 24 months No Independent
walking

Single
words

Maintained through eye
contact Absent Mild Mild Yes Yes 17

B2 45
years 30 years Regression, autistic features, hand

stereotypies (18 months) 42 months No Independent
walking Absent Maintained through eye

contact Absent Mild Mild No NA 18

B3 22
years 3 years Regression, hand stereotypies (18 months) 18 months No Independent

walking Absent Maintained through eye
contact Absent Mild No Yes Yes 17

Y dead 11 months
Decreased fetal movements and fetal

growth restriction, oculogyric crisis and
generalized hypotonia (prenatal-neonatal)

- No NA NA NA NA NA Yes (con-
stipation) Yes Yes

DR: Drug Resistance, S: Scoliosis, GI: Gastrointestinal, GF: Growth Failure, M: Microcephaly, CSS: Clinical Severity Scale, NA: Not Applicable.
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Based on the XCI data, iPSC isogenic clones from the two patients with p.Arg255*
(named PtA1 and PtA2) and from the girl with p.Arg133Cys (PtB1) were obtained. We
differentiated and analyzed two independent clones (PtY1 and PtY2) of the male patient,
two WT and two Mut clones of PtA1 female patient, and one WT and one Mut clone of
PtA2. For the patients PtB2 and PtB3 only mutated clones were differentiated.

All the cortical i-neurons (iPSC-derived neurons) were investigated for morphological
and functional biomarkers.

2.4. MeCP2 Protein in RTT Patients

To compare the expression of MeCP2 in the WT and mutated mature neurons, nuclear
extracts at 100 days were analyzed by Western blot (WB) using N-ter (Figure 3a) and C-ter
(Figure 3c) antibodies.

Figure 3. MeCP2 protein in i-neurons from RTT cases with truncating and missense variants.
(a,c) Western blot on protein extracted from neurons of controls (CTRL), patients carriers of
p.Gly252Argfs*7 (PtY), p.Arg255* (PtA1), p.Arg133Cys (PtB1), wild type (WT) and mutant (Mut)
isogenic clones, using N-ter antibody (Ab) (a) and C-ter Ab (c). The blue rectangles frame the band
representative of the full-length protein (~75 kDa), while the red ones frame the 37 kDa truncated
isoform. Histone H3 (15 kDa) was used as loading control. Panels (b) and (d) show immunostaining
of mature neurons with beta 3 tubulin (TUJ1), highlighting the localization of MeCP2 (red). Nuclei
were counterstained with DAPI; scale bar: 20 µm.

A lower molecular weight (MW) band of about 37kDa was detected using N-ter
antibody in neurons from PtY and from mutant clones expressing p.Arg255* (PtA1 Mut),
proving that the truncated MeCP2 isoforms are detectable (Figure 3a); hybridization with
the C-ter antibody did not display signals for PtY and PtA1 Mut (Figure 3c), PtA2Mut
(data not shown) confirming truncation of the protein in these cells. Neurons from controls,
WT isogenic and missense p.Arg133Cys clones (PtB1) showed the band expected for
the full length protein (Figure 3c). To investigate whether the truncated isoforms are
correctly located in the nucleus, immunofluorescence (IF) with the same Abs was performed
proving their proper nuclear localization and confirming the lack of signal in the cases with
truncated isoforms (Figure 3b,d).
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2.5. Morphological Analyses of RTT Young Neurons

With the aim of comparing the in vitro neuronal phenotype of RTT patients to their
different degree of clinical severity, we investigated some morphological hallmarks of RTT
pathology in the i-neurons from the patients selected for hot-spot pathogenic variants. At
the 42th day, a week after the stage of progenitors (35 days of neuronal differentiation), a
restricted nuclear area size was observed in the i-neurons from the two independent PtY1
and PtY2 clones of the male patient expressing p.Gly252Argfs*7, and from the mutated
clones of all RTT girls. Figure 4a provides a representative overview of neurons of PtY, PtA
(p.Arg255*), and PtB (p.Arg133Cys) matched to 42 days healthy control neurons.

Figure 4. Nuclear area size of young RTT neurons. (a) IF staining with pan-neuronal markers
MAP2 (red) and TUJ1 (green), counterstaining with DAPI and analysis with Image J software of
single young neurons (top panels) and scanned nuclear area size (bottom panels) of a control, PtY2
(p.Gly252Argfs*7), PtA2 Mut and PtB1 Mut i-Neurons. Scale bar: 50 µm. (b) Box-plots representative
of the comparison for nuclear area of each mutant clone and a pool of eight healthy controls, four
males and four females (CTRLs), (c) each isogenic WT clone vs. the correspondent mutant carry-
ing the p.Arg255* and p.Arg133Cys, (d) between each isogenic WT clone and a pool of controls,
(e) across WT isogenic clones. Data were compared using Kruskal-Wallis test. **** p-value < 0.0001,
*** p-value = 0.0004, ** p-value = 0.0058. ns: not significant.

A comparison between the nuclear area of the pooled data of the two clones of PtY,
and all the mutant clones of the RTT females evidenced a significant nuclear size reduction
with the exception of PtB1 and PtB3, carriers of a variant associated to a milder phenotype
(Figure 4b). As shown in Figure 4c the areas of each isogenic mutant vs. its WT clone
are significantly different in carriers of p.Arg255*, whereas they do not differ in those
with p.Arg133Cys. The analysis of nuclear area size among the isogenic controls did not
evidence significant differences (Figure 4e), while the comparison between WT isogenic
clones and the pooled healthy controls data revealed a significant difference (Figure 4d).

At the same precocious neuronal differentiation stage, we analyzed dendritic complex-
ity and neuronal length, which have been reported as defective in mature neurons [32–34].
An overview of the morphological appearance of CTRL, PtY, PtA1, PtA2, and PtB1 neurons
is provided in Figure 5a, while panels b, c, and d summarize the results of the statistical
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analyses. The i-neurons from all the clones expressing p.Arg255* (PtA1 Mut and PtA2
Mut) appear to have the same morphological abnormalities of PtY whose MeCP2 protein is
altered from the 252 aa residue.

Figure 5. Morphological analysis of young RTT neurons. (a) IF of MAP2 (red), TUJ1 (green), and
DAPI (blue). Scale bar: 50 µm. (b–d) Box-plots from the comparison between mutant (red) versus
isogenic WT clones (light grey) of RTT females and between the male (blue) versus controls (dark
grey) for end points number, branches number and neuronal length. Decreased number of end points
(b), branches (c), and neuronal length (d) were highly significant in the Kruskal–Wallis test, while
no significance was proved in the comparison among wild-type clones. Data were compared using
Kruskal-Wallis test. In (b) **** p-value < 0.0001, *** p-value = 0.0005; in (c) **** p-value < 0.0001,
*** p-value = 0.0003; in (d) **** p-value < 0.0001, * p-value = 0.0475 and 0.0161. ns: not significant. A
correction was also introduced by Bonferroni test.

The box-plots in Figure 5 display a significant decrease in the number of end points
b and branches c, and a reduced neuronal length d in all mutant clones. Supplemen-
tary Figure S2a shows the data from the two clones of PtY (p.Gly252Argfs*7) and PtA1
(p.Arg255*), pointing out that the technical replicates behave similarly in almost all parame-
ters, with significant deregulation when compared to controls. Less severe alterations were
evidenced for i-neurons with p.Arg133Cys missense mutation (PtB1 Mut, PtB2 Mut, and
PtB3 Mut). Four comparisons were made for each parameter (Figure 5b–d). All mutant
clones were compared with a pool of healthy controls (upper-left box-plots). PtA1, PtA2,
and PtB1 were also compared with their specific isogenic WT clones (bottom-left). No
statistical significance (ns) was found among the WT clones (bottom-right graphs) which
also appeared similar to the CTRL pool (upper-right).
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2.6. Electrophysiology of MECP2 Defective Cortical Neurons

To assess the maturity of mutant and wild-type cells at functional level, we used
whole cell patch-clamp to record firing properties and voltage-gated currents. Spiking was
induced by applying a series of incremental current steps in current clamp mode. This
protocol tests the mature neurons’ (120 days) capability to fire multiple action potentials
(APs) as a sign of their maturation state. Cell firing pattern was divided into four categories:
A1 cells unable to trigger APs; A2 cells firing a single action potential; A3 cells generating
a series of APs but not able to regenerate completely this capability between an AP and
the following one, determining a decreasing amplitude of each AP and, in some cases, a
silencing of the neuron until the end of the current step; A4/A5 representing a mature
neuron firing tonically and phasically, respectively. Typical traces for each category are
depicted in Figure 6a. By comparing the frequency distributions of a pool of controls cells
(Pool CTRLs) with p.Gly252Argfs*7 mutant cells and two different case carriers of the
p.Arg255* variant, we observed (Figure 6b) a significant shift in the distribution towards a
less mature phenotype rich in A1, A2, and A3 classes and with fewer A4–A5 cells (X square
test: PtY p < 0.01, PtA1 Mut p = 0.02, PtA2 Mut p < 0.01). The comparison was performed
with respect to a pooled population of healthy control clones, not including isogenic clones,
that were shown to be not significantly different (Supplementary Figure S3a,b).

The Gly252Argfs*7 mutation also induced both reduced cell capacitance and increased
membrane resistance (Mann–Whitney p < 0.05, Figure 6c). The p.Arg255* variant showed
a reduction in cell capacitance and action potential threshold (Figure 6c). Comparison of
patient PtA2 with its isogenic control confirmed the reduced cell capacitance, but it also
showed increased membrane resistance and resting potential. However, these differences
were present only in one of the patients suggesting a possible involvement of the genetic
background (Figure 6c,e). The p.Arg133Cys cells displayed a different phenotype with
increased cell capacitance and a minimal, although statistically significant, reduction in
membrane resistance (Figure 6i). Overall, these results underscore the strong impairment
present in the male Gly252Argfs*7 mutant and the specific phenotype of the p.Arg133Cys
variant.

To strengthen our data, we also performed the following comparisons. First, con-
sidering that the cells carrying the Gly252Argfs*7 mutation derived from a male patient,
we compared it with a control male group (Figure 6f,g). The two distributions were sig-
nificantly different (Mann–Whitney test, PtY vs. CTRL-Y p < 0.01) confirming the strong
phenotype present in cells with this mutation. Then, in Figure 6d,e we compared one
of the two cases carrying the Arg255* mutation with its isogenic WT clone confirming
the different firing pattern induced by the mutation (Mann–Whitney test, PtA2 Mut vs.
Isogenic WT p < 0.01). Third, we exploited the availability of the isogenic control for the
PtB1 patient to test whether the spiking behaviour and other functional properties of PtB1
cells are also different from isogenic controls. The chi-square test revealed a significantly
different distribution of spiking pattern (p < 0.01, Figure 6h), and cell capacitance and
membrane resistance (p < 0.05 Figure 6i).

Finally, in Supplementary Figure 3c,d we compared data of two different clones
derived from the same patient with the mutation Gly252Argfs*7. No statistical difference
was present in the firing frequency and in the other functional properties between these
groups (PtY1 vs. PtY2 p > 0.05) confirming the robustness of this phenotype.

In some of the clones we also characterized possible differences in the voltage gated
currents underlying the action potential. The results, shown in Supplementary Figure 4,
revealed differences for the delayed V-dip K+ current of the Gly252Argfs*7 mutation (as
compared to the CTRL pooled cells), while the Arg255* (PtA1 Mut compared to the pooled
CTRL cells) mutation and the Arg133Cys mutation (compared to the isogenic control) were
characterized by an altered V-dip Na+ current.
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Figure 6. Differential alteration of firing and biophysical properties in neurons carrying different MECP2
mutations. (a) representative traces of four grades of firing classes using a code color from no firing
(A1 blue) to single firing (A2 grey), decreasing firing (A3 orange) until increasingly mature neurons
A4 and A5 (yellow) (calibration 1 s, 30 mV). (b,d,f,h): distribution according to the color code of the
four firing classes in the neuronal populations from controls and RTT cases. The chi-square test was
used to compare (b) mutated group versus controls pool (PtY p < 0.01, PtA1 Mut p = 0.02, PtA2 Mut
p < 0.01), (d) the PtA2 mutated group versus its WT isogenic control (p < 0.01), (f) the PtY mutated group
versus the male control group (p < 0.01), and (h) the PtB1 mutated group versus its isogenic WT control
(p < 0.01); (c,e,g,i): cell capacitance, membrane resistance, membrane potential, and action potential
voltage threshold for the clones shown in (b,d,f,h). Cell capacitance, membrane resistance, membrane
potential, and action potential voltage threshold data were not parametric and are reported as scatter
plot on box-plots in (c,e,g,i) representing 90, 75, 50, 25, and 10% of the distribution. Data were compared
using Mann–Whitney test. * p-value from 0.05 to 0.01, ** for p-value < 0.01.
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3. Discussion

The human brain is notably more complex than the brain of mouse and rat of which
engineered models have yielded crucial information on the comprehension of neurodevel-
opmental human disorders, even if with the limitation of difficult or incomplete translation
to the clinic [35]. The iPSC-based technology, suitable to generate patient-specific neuronal
models has provided a challenging opportunity to unravel the kind of disorders focusing
on the human brain cells along the differentiation pathway while also capturing intra-
patient clinical expressivity. During the last ten years, human stem cell-based neuronal
models have been generated from fibroblasts of patients with several MECP2 pathogenic
variants, enabling the knowledge of the causative mechanisms, the pathophysiology of
RTT syndrome, and the identification of actionable therapeutic drugs [21]. However, only a
small number of iPSC clones from girls carriers of a few hot-spot MECP2 variants has been
characterized, and to our knowledge, none of the clones were obtained from blood [20]. Our
study focused on p.Arg255* and p.Arg133Cys, two hot-spot MECP2 variants recognized as
representative of moderate and mild phenotypical expression of the disease, respectively.
Because taking a blood sample is a simpler and less invasive procedure than skin biopsy,
we generated iPSC clones from blood. Unexpectedly a skewed XCI leading to the selective
expression of the wild-type alleles was monitored in 6/8 (75%) girls, carriers of variants
associated with the more severe clinical phenotype, as p.Arg168* and p.Arg255* [9]. This
finding points to the deviation from the balanced XCI mosaicism which should be carefully
explored to comprehend its role in modulating the clinical expression of Rett syndrome.
In the context of in vitro modeling the XCI potential bias also deserves to be kept under
control for all X-linked disorders in order to interpret correctly the results on the prevalent
female cases.

By selecting for terminal differentiation only the randomly X inactivated cases, our
study succeeded in generating RTT in vitro cortical neurons from both the mutant and
the isogenic iPSC clones of two girls with p.Arg255* variants and two with p.Arg133Cys.
A male carrier of p.Gly252Argfs*7 variant truncating the protein close to the p.Arg255*
female mutation was modelled for cross comparison of the respective MeCP2-defective
neurons. To ascertain the effective deficit of MeCP2 in our patients’ i-neurons, we proved
by the combined use of N-ter and C-ter antibodies, the presence of a truncated MeCP2
protein only in the neurons derived from the clones expressing the variant and excluded a
phenomenon of non-sense mediated RNA decay. To our knowledge this is the first protein
assay on MeCP2-defective neurons, demonstrating truncated proteins. Further, using the
same antibodies in immunofluorescence, we observed that the MeCP2 protein encoded by
the missense variant is properly localized within the nucleus and the truncated MeCP2
proteins, despite terminating at the NLS, can reach the nucleus. In addition, the C-ter Ab
allowed follow-up of the expression of the WT MeCP2 whose presence may be considered
a potential biomarker in validating the efficacy of drugs administered to reactivate the WT
allele.

As the association between the heterogenous clinical expressivity of a neurological
disease and the cellular biomarkers observed in the patient’s i-neurons might be a helpful
tool to monitor the real efficacy of a treatment, the clinical histories of our patients were
revisited and aligned to the severity of their in vitro neuronal phenotype. In keeping with
the literature [9] the three girls with the missense p.Arg133Cys all displayed a lower clinical
severity scale, with regression occurring after 2.5 years, maintenance of the autonomous
walking in adult age, and drug-controlled seizures. Conversely PtA2, a girl of 10 years
carrier of the p.Arg255* variant and the male precociously presented a very severe phe-
notype, while the 7-year-old PtA1 showed a moderate RTT picture (Table 1). In order to
compare the cellular to the clinical phenotype, we measured morphological biomarkers in
young neurons, one week from the progenitor stage and the electrophyiological functional
markers at 120 days, when neurons should be definitely mature. Nuclear size reduction
is reported both in animal models and in other iPSC-derived neurons: Yazdani et al. [36]
observed in mouse embryonic stem cells that 3 days after plating WT and Mecp2-/y lines
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had the same nuclear size, which in the WT neurons rapidly increased during the differ-
entiation, while the defective lines remained significantly smaller. In our study, nuclear
size appears to be a robust biomarker, early appreciable, with a significant difference only
between WT and truncating variants. Neurons derived from clones expressing the mild
variant p.Arg133Cys show a nuclear size similar to that of the WT isogenic clones and of
neurons derived from healthy controls. Considering that the nuclear size correlates with
transcriptional activity [36], it is meaningful that our mildest variant impacts scarcely or
later on the MECP2 transcriptional activity. Some studies discriminate between nuclear
size and soma size [34], but according to our analyses the two parameters overlap. Chen
at al [34] noticed a similar nuclear size in iPSC neurons expressing the p.Arg106Trp and
isogenic WT lines, while it was consistently reduced in the neurons derived from knockout
iPSCs. Should our clones with the truncating variants be assimilated to a KO system, the
nuclear size could be considered a robust biomarker distinguishing MeCP2 missense from
truncating variants. Similar to nuclear area size, we observed a significantly shortened
neuronal length only in neurons of the case carrying the severe variant, consistent with
the correlation of this biomarker with intellectual disability [37]. Interestingly these mor-
phological parameters did not evidence heterogeneity across the isogenic WT neurons,
suggesting that the individual variability does not seem to influence their values, while
the comparison between WT isogenic neurons and neurons of healthy controls revealed a
significant difference in the nuclear size. To interpret this discrepancy, we may hypothesize
that the WT isogenic clones also expressed a minimum amount of the mutant MeCP2
protein, undetectable by Western blot, which influences the neuronal cells phenotype. As
nuclear size is a reversible marker, it should be carefully followed-up when in vitro models
are exposed to (epi) drugs. The study of end point and branch number referring to the
dendritic harborization shows their homogeneous reduction in RTT neurons compared
to healthy controls, raising the conclusion that whatever the deficit of MeCP2 it leads to
impairment.

Moving to functional performance of RTT cells, the impairment of neuronal function-
ality was assessed at the late time point of 120 days [20] by testing the neurons’ capability
to fire multiple action potentials (APs) as a sign of their maturation state. The data were
compared to a pool of healthy wild type clones, and, when available, to isogenic controls
for female clones. The male mutant cells were also compared to a male healthy control to
take into consideration sex specific differences that were revealed by our study.

The distribution of cell firing patterns was unbalanced and indicates that maturation
of the spiking pattern is strongly affected and widespread across the different MeCP2
mutations. Statistical analyses allowed the observation of a percentage of mature neurons
decreasing from the girls with the p.Arg133Cys to those with the truncated variants reaching
the minimum in the male case. Despite the heterogeneity reported in in vitro models, we
incline to value the results obtained on the patients due to the lack of significant differences
across all healthy control and WT isogenic clones.

Morphological data show that at 42 days, the variants resulting in more dramatic symp-
toms, p.Gly252Argfs*7 and p.Arg255*, already show reduced cellular complexity, while
p.Arg133Cys does not display any difference. This differential phenotype is maintained
at 120 days, as cell capacitance, a parameter determined by cell surface area, is dramat-
ically decreased in the p.Gly252Argfs*7 and p.Arg255* neurons, whereas p.Arg133Cys
neurons display, if any, an increased capacitance, suggesting that p.Arg133Cys differs for a
qualitatively different effect on cell morphology.

Overall, our study on in vitro models from RTT cases, carriers of moderate and severe
MECP2 variants points to the reliability of specific morphological and functional markers,
to distinguish across the phenotypic expression of the disease.

Interestingly, the concordance of precocious and mature assessments enforces the
robustness of these models as well as the value of the identified biomarkers to measure the
potential phenotypical rescue effected by novel drugs.
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4. Materials and Methods
4.1. iPSC Generation and Characterization

Peripheral blood mononuclear cells (PBMCs) from RTT patients recruited for the
study were collected and isolated with SEPMATE TM tubes (STEMCELL) according to the
protocol. Erythroblast population was enriched by maintaining PBMCs for 10 days in SFEM
Medium (STEMCELL) and then transducing with Cytotune 2.0 Sendai Reprogramming
Kit (Life Technologies). After about 3 weeks the first iPSC colonies appeared on the mouse
embryonic fibroblast (MEF) layer. Single clones were expanded and characterized for
stemness and genomic stability.

Pluripotency marker expression was confirmed through immunofluorescence (using
antibody against OCT3/4 and TRA-1-60) and RT-PCR (with primers for OCT3/4, SOX2
and NANOG). Karyotype analysis on at least 20 metaphases/sample allowed visualization
of chromosome aberrations occurring during reprogramming. Refer to [38] for further
details.

4.1.1. SNP Array

Infinium HD Assay Ultra with Illumina multi-sample DNA Analysis BeadChips
was performed to detect copy number variants CNVs (duplications, deletions, loss of
heterozygosity) in iPSC clones compared with blood from the same case. The data were
imported from iScan Control Software into GenomeStudio 2.0 Genotyping Module Software
provided by Illumina for the analysis.

4.1.2. Mutation Sequencing

In order to characterize iPSCs clones as wild-type (WT) or mutant (Mut), we checked
the presence of the original MeCP2 mutation by comparing blood to iPSC cDNA. RNA
was isolated from blood and iPSC clones with Quick-RNATM Mini Prep (Zymo Research).
One µg was reverse-transcribed into cDNA by using SuperScript VILO cDNA Synthesis
Kit (Thermo Fisher, Waltham, MA, USA). MECP2 exon 4 was amplified with GoTaq DNA
Polymerase (PROMEGA), using the following primers:

Forward 5′ AAGCAAAGGAAATCTGGCCG 3′

Reverse 5′ GTCTCCTGCACAGATCGGAT 3′

The obtained PCR fragment was purified with IllustraTM ExoProStarTM enzyme (GE
Healthcare) and sequenced with the Sanger method, using the Big Dye Terminator (Ap-
plied Biosystems). The capillary electrophoresis was performed on the ABI PRISM 3500
Genetic Analyzer (Applied Biosystem), and output was analyzed with Sequencing Analysis
Software 6 (Applied Biosystem).

4.1.3. The Human Androgen Receptor Assay

To analyze X chromosome inactivation (XCI) patterns, the human androgen receptor
(AR) assay was performed on genomic DNA extracted from blood with Wizard Genomic
DNA Purification Kit (PROMEGA, Madison, WI, USA) according to manufacturer’s instruc-
tions. Then, 500 ng of genomic DNA was digested overnight at 37 ◦C with methylation-
sensitive restriction enzyme HhaI (PROMEGA, Madison, WI, USA). During the digestion,
the enzyme cuts only the unmethylated cytosines, preventing the subsequent amplification
reaction. An amount of 250 ng of both digested and undigested DNA was amplified with
primers designed on the polymorphic trinucleotide (CAG) repeats in the first exon of
the human androgen receptor locus (HUMARA-AR): Forward 5′ GCTGTGAAGGTTGCT-
GTTCCTCAT 3′; Reverse 5′ TCCAGAATCTGTTCCAGAGCGTGC 3′. PCR was performed
using a forward primer label with FAM fluorochrome on the 5′ end. PCR products were
separated on an ABI PRISM 310 genetic analyzer (Applied Biosystem). The percentage of
XCI was calculated as follows: (D1/U1)/(D1/U1 + D2/U2), where D1 and D2 are allele
peak heights of the digested samples and U1 and U2 are the peaks of undigested genomic
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DNA. The XCI is considered balanced if the value obtained is between 15 and 85%, while it
is considered unbalanced if >85% or <15%.

4.2. Cortical i-Neurons Generation

At least two characterized clones for each patient or control were differentiated into
cortical i-neurons according to monolayer protocol, as described in [39].

4.3. Protein Extraction and Western Blot

Nuclear and cytoplasmic protein fractions were extracted and separated from 100 day
i-neurons using NE-PERTM Nuclear and Cytoplasmic Extraction Reagents (Thermo Fisher,
Scientific, Waltham, MA, USA) supplemented with protease and phosphatase inhibitors
(Roche) following the manufacturer’s instructions. Protein concentration was determined
using DC Protein Assay (Biorad, Hercules, CA, USA). Nuclear extracts (15 µg) were sepa-
rated on a 10% SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose
(iBlot Gel Transfer Stacks Nitrocellulose, Thermo Fisher, Scientific Waltham, MA, USA).
After blocking with 5% non-fat dry milk, TS1X Buffer (20mM Tris-HCl pH 7.5, 150 mM
NaCl) and 0.3% Tween-20 for 1 h, membranes were incubated with primary antibodies
(Anti-MeCP2 C-ter (1:500) ab2829, Abcam; Anti-MeCP2 N-ter (1:500) M7443, Sigma-Aldrich;
Anti-Histone H3 (1:2000) ab1791, Abcam) overnight at 4 ◦C, and then with secondary an-
tibodies (goat Anti-Mouse HRP AP124P (1:3000), goat Anti-rabbit HRP AP307P (1:3000),
both from Millipore) for 2 h at RT. The ClarityTM Western ECL Substrate (Biorad, Hercules,
CA, USA) was used for detection of the HRP-conjugated secondary antibody.

4.4. Immunofluorescence Staining

i-Neurons were fixed in 4% paraformaldehyde (20 min, 37 ◦C) at 42 days for morpho-
logical analysis and 100 days for MeCP2 localization. Primary antibodies in gelatin dilution
buffer (0.2% gelatin, 0.3% Triton-X-100, 20 mM sodium phosphate buffer pH 7.4, 0.45 M
NaCl, all by Sigma) were incubated overnight at 4 ◦C. Anti-MAP2 (1:200, ab32454 Abcam)
and Anti-TUJ1 (1:200, MMS-435P, Covance) were used to identify neuronal cells, while
Anti-MeCP2 C-ter (1:100, ab2829, Abcam) and Anti MeCP2 N-ter (1:40, ab2828, Abcam)
were used to discriminate different portions of MeCP2 protein. Secondary antibodies
Goat Anti-Mouse-IgG (H + L) 488 (A-11001, Invitrogen) and F (ab’)2-Goat Anti-Rabbit-IgG
(H + L) 555 (A-21430, Invitrogen) were diluted 1:300 and incubated for 2 h at RT. Nuclei
were stained with DAPI, 1024 × 1024 pixel images were acquired with a Nikon Eclipse Ti
microscope, 40× objective was used for arborization and nuclear area measurement and
60× objective for MeCP2 localization. Scale bars are reported in all figures.

4.5. Morphological Analysis

Experiments to outline the morphology of cells were performed on 42 day-old neurons,
stained with antibodies against MAP2 and TUJ1 neuronal markers. The Skeletonize Image
J Plugin was used for the analysis of at least 50 cells selected for each sample and three
independent experimental repeats. Refer to [40] for further details.

4.6. Electrophysiological Recordings

When the i-neurons reached 120 days of differentiation electrophysiological exper-
iments were performed. Cell plates from the incubator were directly put under the mi-
croscope an Axioskop (Zeiss, Oberkochen, Germany) equipped with 60× lens. During
the experiment the neural differentiation medium (NDM) was replaced by artificial cere-
brospinal fluid (ACSF: in mM NaCl 119, KCl 2.5, NaHPO4 1.25, NaHCO3 15, HEPES 10,
glucose 12.5, CaCl2·4H2O2, MgSO4·7H2O2; pH = 7.3 ± 0.1; osmolarity: 295 ± 5 mOsm)
which was perfused continually at 1 ml/min at 35 ◦C. For the recording, borosilicate
pipettes with internal and external diameters respectively 0.86 mm and 1.5 mm (WPI)
were pulled using a P-97 (Sutter instruments) to reach resistance of 3–5 MΩ when filled by
internal solution (in mM: K-Gluconate 130, HEPES 10, EGTA 1, CaCl2 0.3, MgCl2 1, ATP 4,
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GTP 0.3, phosphocreatine 5; pH = 7.3 ± 0.1; osmolarity: 285 ± 5 mOsm). For experiments
on PtB1 (p.Arg133Cys) and isogenic WT we used the same external solution but a high
chloride internal solution (in mM: KCl 120, K-gluconate 10, HEPES 10, EGTA 1, CaCl2 0.3,
MgCl2 1, ATP 4, GTP 0.3, phosphocreatine 5; pH = 7.3 ± 0.1; osmolarity: 285 ± 5 mOsm).
During the recordings, somas of the neurons were reached by the tip of the recording
pipette and a positive pressure was applied. Quickly releasing the pressure allowed the
formation of the giga-seal after which a gentle positive pressure was applied to break the
membrane achieving the whole seal configuration. Recordings were made in voltage-clamp
and current-clamp mode holding potential of −75 mV using a Multiclamp 700 A amplifier
controlled from a PC by Clampex 9.2 via a Digidata 1322 A (Molecular Devices). LJP was
calculated a priori, and the recording adapted to reach wanted values. Data were low-pass
filtered at 1 kHz and sampled at 10 kHz.

4.7. Statistical Analysis

Statistical analysis was performed using Graph Pad Prism 7 program and Glabstab tool.
One-way ANOVA and Kruskal–Wallis post hoc test were chosen for multiple comparisons.
All data were expressed as mean +/− SEM. Data were obtained from three independent
experiments. Morphological alterations and nuclear size were evaluated by selecting at
least 50–80 neurons for each sample. E-recordings were evaluated on at least 20–30 cells for
a sample.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232214491/s1. Figure S1: iPSC characterization for stemness
and genome stability; Figure S2: morphological parameters in clones from the same patient at a
comparison; Figure S3: functional properties of healthy control clones and of Gly252Argfs*7 male
clones; Figure S4: voltage-gated K+ and Na+ currents in mutant cells.
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