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The quantum battery capacity is introduced in this letter as a figure of merit that expresses the
potential of a quantum system to store and supply energy. It is defined as the difference between the
highest and the lowest energy that can be reached by means of the unitary evolution of the system.
This function is closely connected to the ergotropy, but it does not depend on the temporary level
of energy of the system. The capacity of a quantum battery can be directly linked with the entropy
of the battery state, as well as with measures of coherence and entanglement.

Quantum thermodynamics is a blossoming field that
aims to bridge the gap between quantum physics and
thermodynamics. The growing interest in quantum tech-
nologies has created fertile ground for the theoretical and
experimental study of quantum batteries, i.e., of quan-
tum devices that can store and release energy in a con-
trollable manner [1–7]. Thanks to their capability of
exploiting coherence, quantum batteries could facilitate
faster, higher-power charging than their classical coun-
terparts.

A central quantity in the study of quantum batteries is
the ergotropy [8], which represents the amount of energy
that can be extracted from a given quantum battery state
by means of cyclic modulations of the battery’s Hamilto-
nian (or, equivalently, by unitary evolution). As the bat-
tery releases or stores energy [9–18], its ergotropy may
change from zero (in which case the battery is said to be
in its zero-charge passive state) [19, 20], to a maximum

value C(ϱ̂; Ĥ) that can be calculated from the eigenval-
ues of the battery’s density matrix ϱ̂ and from the energy
levels of the Hamiltonian Ĥ.

In this paper, we discuss the quantum battery capac-
ity C(ϱ̂; Ĥ) as a figure of merit linking its work storage
capacity to quantum features such as quantum entropies
[21–23], or quantum coherences [24–28]. Although most
of the properties of the battery capacity can be derived
from the properties of the ergotropy, we argue that the
battery capacity is in some sense a more fundamental
quantity as it does not change when the battery is uni-
tarily charged or discharged. Furthermore, at variance
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with the ergotropy, as a spectral functional of state ϱ̂ and
Hamiltonian Ĥ, the battery capacity can be a simpler
quantity from a theoretical point of view. The fact that
the battery capacity depends on the state only through
its eigenvalues makes it easy to operationally connect it
with entropy and coherence measure for general battery
system with equally spaced energy levels.

More recently, composite quantum systems have been
considered for work storage [5, 29–37], tapping into the
resource of quantum entanglement. The amount of work
that can be extracted from a composite quantum system
is usually bigger if we are allowed to perform global oper-
ations on the system, than if we can only act locally on its
subsystems. This advantage is reflected in a bigger value
of the ergotropy (called the ergotropic gap [30, 37]), and
in different statistics of work extraction with respect to
random unitary transformations [38, 39]. This advantage
of global operations is also reflected in a gap in battery
capacity; here we show, inspired by the known results for
the ergotropic gap, that also the battery capacity gap can
serve as a witness of bipartite entanglement and genuine
multipartite entanglement.

Extracting and injecting work in a quantum battery.—
Consider an isolated d-dimensional quantum battery sys-
tem equipped with a bare Hamiltonian Ĥ that deter-
mines its energy spectrum and an initially prepared state
ϱ̂ that determines how much useful energy charge the bat-
tery can carry. Our aim is to assess the amount of charge
that can be added or removed from the battery in con-
trol protocols that do not involve heat exchange with a
thermal environment.

When the battery is subjected to a cyclic driving of
the system Hamiltonian, its state undergoes an unitary
evolution ϱ̂→ Û ϱ̂Û† and its mean energy changes by

WÛ (ϱ̂; Ĥ) ≡ Tr[ϱ̂Ĥ]− Tr[Û ϱ̂Û†Ĥ], (1)
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FIG. 1: Pictorial representation of the charging and dis-
charging of a two-level quantum battery under cyclic evo-
lution. Given an initial state ϱ̂ with eigenvalues λmin and
λmax ≥ λmin, the energy of the battery can vary between en-
ergy of the passive state λminE and the energy of the active
state λmaxE.

which we identify, following the paradigm introduced in
[19, 20], with the amount of work extracted from the bat-
tery. The work extraction functional (1) is bounded by
the inequalities

E(ϱ̂; Ĥ) ≥WÛ (ϱ̂; Ĥ) ≥ A(ϱ̂; Ĥ) , (2)

where the quantities E(ϱ̂; Ĥ) and A(ϱ̂; Ĥ) are called the
ergotropy and the antiergotropy [13] of the quantum state

ϱ̂ with respect to the Hamiltonian Ĥ:

E(ϱ̂; Ĥ) ≡ max
Û∈U(d)

WÛ

(
ϱ̂; Ĥ

)
; (3)

A(ϱ̂; Ĥ) ≡ min
Û∈U(d)

WÛ (ϱ̂; Ĥ) . (4)

Here, U(d) represents the unitary group of d×dmatrices.

Let Û (↓) and Û (↑) denote, respectively, the unitary
transformation that realize the maximum (3) and the
minimum (4) of the work extraction functional. The

state ϱ̂↓ ≡ Û (↓)ϱ̂Û (↓)† is called the passive state asso-
ciated with ϱ̂, and it is the state with lowest energy in
the unitary orbit of ϱ̂. If a state is passive, then no more
energy can be extracted from it using unitary transforma-
tions; it has zero ergotropy. Thus, E ≥ 0 describes how
much work can be discharged from the battery state.

Conversely, the state ϱ̂↑ ≡ Û (↑)ϱ̂Û (↑)† is known as the
active state associated with ϱ̂ [13, 40, 41], and it is the
state with the highest energy in the unitary orbit of ϱ̂.
A state ϱ̂↑ is active if and only if no further energy can
be injected into it by means of unitary evolution; it has
zero antiergotropy. Hence, A ≤ 0, and its magnitude
quantifies by how much the battery state can be charged.

Letting λ0 ≤ λ1 ≤ . . . ≤ λd−1 denote the eigenvalues
of the quantum state ϱ̂, and ϵ0 ≤ ϵ1 ≤ . . . ≤ ϵd−1 the

eigenenergies of the Hamiltonian Ĥ =
∑

i ϵi|ϵi⟩⟨ϵi|, the
energy content of the extremal states becomes

Tr[ϱ̂↓Ĥ] =

d−1∑
i=0

λiϵd−1−i ; (5)

Tr[ϱ̂↑Ĥ] =

d−1∑
i=0

λiϵi . (6)

Accordingly, the ergotropy (antiergotropy) is obtained
by subtracting the energy content of the passive (active)

state from the initial mean energy Tr[ϱ̂Ĥ].
The ergotropy is a sublinear and convex functional [1],

given the Hamiltonian Ĥ =
∑

i ϵi|ϵi⟩⟨ϵi| with ϵi ≤ ϵi+1,

for any ϱ̂ and τ̂ such that Tr[ϱ̂Ĥ] = Tr[τ̂ Ĥ], then we have

E(tϱ̂+ (1− t)τ̂ ; Ĥ) ≤ tE(ϱ̂; Ĥ) + (1− t)E(τ̂ ; Ĥ) . (7)

Using (7) and the identity A(ρ̂; Ĥ) = −E(ρ̂;−Ĥ) it is
also immediate to see that the opposite holds for the
antiergotropy,

A(tϱ̂+ (1− t)τ̂ ; Ĥ) ≥ tA(ϱ̂; Ĥ) + (1− t)A(τ̂ ; Ĥ) . (8)

The quantum battery capacity.—Both the ergotropy
and antiergotropy of a quantum system are not constant
during an isentropic thermodynamic cycle. However,
their difference is constant during any unitary evolution.
Here we call it the battery capacity of the system.

Definition 1. The battery capacity of a quantum state
ϱ̂ with respect to a Hamiltonian Ĥ is given by

C(ϱ̂; Ĥ) = E(ϱ̂; Ĥ)−A(ϱ̂; Ĥ) = Tr[ϱ̂↑Ĥ]− Tr[ϱ̂↓Ĥ] . (9)

The battery capacity represents the amount of work
that a quantum system can transfer during any thermo-
dynamic cycle that keeps the battery’s evolution unitary
(as is the case for a quantum battery which is thermally
isolated, but mechanically coupled to work source or a
load). We can write C(ϱ̂; Ĥ) as the difference between
the energies of the two extremal states in the unitary
orbit of ϱ̂: the active state ϱ̂↑, which realizes the maxi-
mum possible energy (6), and the passive state ϱ̂↓, with
energy (5); see Fig. 1. Equivalently, the work capacity
of a state ϱ̂ is equal to the ergotropy of the active state
associated with ϱ̂ minus the antiergotropy of the relative
passive state.
It is apparent from the definition that C(ϱ̂; Ĥ) is an

unitarily invariant functional of the state, i.e, C(ϱ̂; Ĥ) =

C(Û ϱ̂Û†; Ĥ). The battery capacity thus admits a simple
expression in terms of the eigenvalues {λi} of the density
matrix and of the energy levels {ϵi} of the Hamiltonian.
From (5), (6), and from the definition (9), we deduce

C(ϱ̂; Ĥ) =

d−1∑
i=0

ϵi (λi − λd−1−i)

=

d−1∑
i=0

λi (ϵi − ϵd−i−1) . (10)

Moreover, from (9), (7), and (8) the battery capacity is,
like the ergotropy, a convex and sublinear functional,

C(tϱ̂+ (1− t)τ̂ ; Ĥ) ≤ tC(ϱ̂; Ĥ) + (1− t)C(τ̂ ; Ĥ). (11)

Finally, the invariance with respect to unitary transfor-
mation results in the following property:
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Proposition 1. The battery capacity is a Schur-convex
functional of ϱ̂. That is, if a state ϱ̂ is majorized by τ̂ ,
(ϱ̂ ≺ τ̂), then C(ϱ̂; Ĥ) ≤ C(τ̂ ; Ĥ).

Proof. From Ref.[42] the passive-state energy Tr[ϱ̂↓Ĥ] is

a Schur-concave functional of ϱ̂, implying that −Tr[ϱ̂↓Ĥ]
is Schur-convex [43]. Given that the passive state of ϱ̂

with respect to the Hamiltonian Ĥ is the active state
of ϱ̂ with respect to −Ĥ, the energy of the active state
Tr[ϱ̂↑Ĥ] is Schur-convex. Therefore the battery capacity,
as the sum of two Schur-convex functionals, is Schur-
convex.

An important lower bound on the battery capacity can
be given in terms of the state purity and the spread of the
battery’s energy spectrum, as measured by the variance
of the Hamiltonian, σ2

Ĥ
= Tr[Ĥ2]− Tr[Ĥ]/d[13].

Proposition 2. Letting σĤ =
√
σ2
Ĥ

and σϱ̂ =√
Tr[ρ2]− 1/d, the capacity of a d-dimensional battery

is bounded by

C(ϱ̂; Ĥ) ≥ 2
σĤσϱ̂√
d2 − 1

. (12)

See Appendix A for the proof.
Battery capacity of many battery copies.—It is possible

to extract more work from, or charge more work to, an
ensemble of n identical copies of a quantum battery by
using global operations on the whole ensemble [11, 32,
56]. The figure of merit that quantifies the maximum
work that can be extracted in this regime is the total
ergotropy, defined as [41]:

Etot(ϱ̂; Ĥ) ≡ lim
n→∞

1

n
E
(
ϱ̂⊗n; Ĥ(n)

)
, (13)

with Ĥ(n) the Hamiltonian of n non-interacting copies of
the system. The total ergotropy can also be expressed as

Etot(ϱ̂; Ĥ) = Tr[ϱ̂Ĥ]− Tr[ω̂β(ϱ̂)Ĥ], (14)

where ω̂β(ϱ̂) = e−β(ϱ̂)Ĥ/Z is the Gibbs state of thermal
equilibrium with a unique inverse temperature β(ϱ̂) such
that the von Neumann entropies match, S(ω̂β(ϱ̂)) = S(ϱ̂).
(Equivalently, the Gibbs state is the state of lowest en-
ergy among those with the same entropy as ϱ̂.)
Similarly, we can define and express the total antier-

gotropy as

Atot(ϱ̂; Ĥ) ≡ lim
n→∞

1

n
A
(
ϱ̂⊗n; Ĥ(n)

)
(15)

= Tr[ϱ̂Ĥ]− Tr[ω̂−β∗(ϱ̂); Ĥ] ,

where ω̂−β∗(ϱ̂) is the inverse Gibbs state with negative
inverse temperature such that S(ω̂−β∗(ϱ̂)) = S(ϱ̂), which
is also the state of highest energy among those with the
same entropy as ϱ̂.

The battery capacity of an ensemble of n≫ 1 identical
quantum systems will tend to the “entropy-dependent
battery capacity” defined in Ref.[57],

Ctot(ϱ̂; Ĥ) = lim
n→∞

1

n
C
(
ϱ̂⊗n; Ĥ(n)

)
= Tr[ω̂−β∗(ϱ̂); Ĥ]− Tr[ω̂β(ϱ̂); Ĥ] . (16)

The capacity of a two-level battery.—We now consider
the simplest example of a battery: a quantum system
made of two levels |0⟩ and |1⟩, with corresponding Hamil-

tonian Ĥ = E|1⟩⟨1|. The battery capacity can be re-
lated to entropic quantities and measures of coherence
[44, 58, 59]. We generalize our findings to a d-dimensional
battery with equally spaced energy levels in Section B of
the supplemental material.
The density matrix ϱ̂ on a two-level system can be

written as

ϱ̂ =

[
1− q ceiθ

ce−iθ q

]
; (17)

with q ∈ [0, 1] the population of the excited state, c ∈
[0,
√
q(1− q)] the amount of coherence in the state, and

θ ∈ [0, 2π]. Herein, the governing Hamiltonian is Ĥ =
E|1⟩⟨1|. The two eigenvalues of the density matrix (17)

are λ± = [1±
√
(2q − 1)2 + 4c2]/2, with λ+ ≥ max{q, 1−

q} and λ− ≤ min{q, 1−q}. The ergotropy of this state is

E(ϱ̂; Ĥ) = E(q−λ−), while its antiergotropy isA(ϱ̂; Ĥ) =
E(q − λ+). Hence, the battery capacity is

C(ϱ̂; Ĥ) = E(1− 2λ−) = E
√
(2q − 1)2 + 4c2 . (18)

This simple quantum battery is represented graphically
in Fig. 1.
We observe that the base-2 von Neumann entropy

S(ϱ̂) = −Tr(ϱ̂ log2 ϱ̂) and the capacity of a two-level bat-
tery satisfy the inequality:

C(ϱ̂; Ĥ)

E
+ S(ϱ̂) ≥ 1, (19)

with equality only for pure states or the completely mixed
state. This follows by virtue of (18) with the inequality
S(ϱ̂) ≥ 2λ− for λ− ∈ [0, 1/2].
A similar inequality, but in the opposite direction,

holds for a range of Tsallis entropies, defined by [22]:

Tp(ϱ̂) =
1− Trϱ̂p

p− 1
=

1− λp− − (1− λ−)
p

p− 1
. (20)

For orders p ≥ 2, we find

C(ϱ̂; Ĥ)

E
+ Tp(ϱ̂) ≤ 1 . (21)

This can be proven by using the function gp(ϱ̂) = 2λ− −
Tp(ϱ̂), which is monotonically increasing in λ− ∈ [0, 1/2]
whenever p ≥ 2.
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Finally, for the special case of the linear entropy,
L(ϱ̂) ≡ T2(ϱ̂) = 1 − Tr[ϱ̂2] = 1 − λ2− − λ2+ [23], one
easily obtains the equality:

C2(ϱ̂; Ĥ)

E2
+ 2L(ϱ̂) = 1 . (22)

We prove similar operational relationships for equidistant
d-level batteries in Appendix B.

We now turn to the relations between capacity and
coherence. Three of the most common measures of co-
herence for quantum states are: the l1-norm of coher-
ence measuring the overall magnitude of off-diagonal el-
ements, Cohel1(ϱ̂) =

∑
i ̸=j |ϱi,j |; the robustness of coher-

ence [44, 58],

CoheRoC(ϱ̂) = min
τ̂∈D(Cd)

{
s ≥ 0

∣∣∣∣ ϱ̂+ sτ̂

1 + s
∈ F

}
, (23)

with D(Cd) the convex set of d-dimensional density op-
erators and F ⊂ D(Cd) the subset of incoherent states;
and the relative entropy of coherence [26], Cohere(ϱ̂) =
S(ϱ̂inc)−S(ϱ̂), where ϱ̂inc is the state obtained by deleting
all the off-diagonal elements from ϱ̂.
For qubit states (17), the first two measures are equiv-

alent,

Cohel1(ϱ̂) = CoheRoC(ϱ̂) = 2c . (24)

Hence the capacity (18) of a qubit battery can be decom-
posed into an incoherent and a coherent part,

C2(ϱ̂; Ĥ) = C2(ϱ̂inc; Ĥ) + E2Cohe2l1(ϱ̂)

= C2(ϱ̂inc; Ĥ) + E2Cohe2RoC(ϱ̂) , (25)

where the incoherent part, C(ϱ̂inc; Ĥ) = (1 − 2q)E for
q ∈ [0, 12 ], is the battery capacity of the diagonal state
ϱ̂inc.

A similar decomposition does not hold for the rela-
tive entropy of coherence; however, a simple substitution
from (19) yields the inequality

1 + Cohere(ϱ̂) ≤
C(ϱ̂; Ĥ)

E
+ S(ϱ̂inc). (26)

General cases of d-dimensional batteries are shown in
Section B.

The capacity gap as an entanglement measure.—In the
case of composite quantum batteries comprised of two
or more local Hamiltonians, an entangled battery state
can accommodate non-local work storage that is more
than the sum of its local parts. This gives rise to energy-
based entanglement criteria for bipartite and multipartite
systems.

Consider first a bipartite state ϱ̂ on the Hilbert space
HA ⊗HB, with Hamiltonian Ĥ = ĤA ⊗ IB + IA ⊗ ĤB .
The ergotopic gap δout is the difference of the ergotropy
obtained by global unitary operations and local unitary
operations:

δout(ϱ̂; Ĥ) ≡ E(ϱ̂; Ĥ)− EL(ϱ̂; Ĥ)

= max
Û∈U(d2)

WÛ (ϱ̂; Ĥ)− max
Ûℓ∈UL(d2)

WÛℓ
(ϱ̂; Ĥ) , (27)
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FIG. 2: Two-atom battery capacity as a function of inter-
action time with a resonant single-mode field in (a) a ther-
mal state and (b) a coherent state of mean photon number
n0 = 0.5. We compare the capacity in units E (C/E, solid
line) to the base-2 von Neumann entropy (S, dotted), the l1-
coherence (Cohel1 , dashed), and the concurrence (Conc, dash-
dotted). The battery starts in the maximum-capacity state
|eg⟩.

where UL(d
2) is the group of local unitary operations of

the form Ûℓ = ÛA ⊗ ÛB . Similarly, we can define the
difference of the antiergotropy as

δin(ϱ̂; Ĥ) ≡ AL(ϱ̂; Ĥ)−A(ϱ̂; Ĥ)

= min
Ûℓ∈UL(d2)

WÛℓ
(ϱ̂; Ĥ)− min

Û∈U(d2)
WÛ (ϱ̂; Ĥ) . (28)

The sum of δin and δout corresponds to the difference
between the global capacity of the battery state and the
battery capacity restricted to local operations. The latter
is the sum of the individual capacities of the reduced
battery states. We call the difference in global and local
capacities the bipartite battery capacity gap:

∆A|B(ϱ̂; Ĥ) ≡ δin(ϱ̂; Ĥ) + δout(ϱ̂; Ĥ) (29)

= C(ϱ̂; Ĥ)− C(ϱ̂A; ĤA)− C(ϱ̂B ; ĤB) .

This definition naturally extends to multipartite systems:
the fully separable capacity gap of an n-partite battery
state ϱ̂ with Hamiltonian Ĥ =

∑
i ĤAi

⊗ 1 will be

∆A1|···|An
(ϱ̂; Ĥ) ≡ C(ϱ̂; Ĥ)−

n∑
i=1

C(ϱ̂Ai
; ĤAi

) . (30)

Proposition 3. The fully separable battery capacity gap
∆A1|···|An

of a pure state |Ψ⟩ on Hilbert space H =
⊗n

i=1HAi
, is non-increasing under local operations and

classical communications (LOCC).

Thanks to Proposition 3 (proven in Appendix C, the
battery capacity gap can serve as a witness of entangle-
ment in bipartite or multipartite systems. In Appendix
C, we propose measures of genuine multipartite entan-
glement and give some elementary examples for bipartite
and tripartite states.
As a physical example, we consider a battery com-

prised of two two-level atoms interacting with a reso-
nant, thermally or coherently populated cavity mode.
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The mode could serve to charge, discharge, or readout
the battery state, but it also acts as a source of entropy
and mediates coherence and entanglement, all affecting
the battery capacity over time [5, 54, 55]. Given a uni-
form coupling rate g, we model this by a Tavis-Cummings
Hamiltonian in the rotating wave approximation,

Ĥ = E

(
â†â+

σ̂z
1 + σ̂z

2

2

)
+ ℏg

2∑
i=1

(
âσ̂+

i + h.c.
)
, (31)

with â the cavity ladder operator, σ̂z
i the Pauli-z matrix

of the i-th atom, and σ̂+
i = |e⟩i⟨g| the i-th excitation op-

erator. Starting from a maximum-capacity state of the
battery and a thermal cavity state with mean popula-
tion n0, ρ̂(0) = |eg⟩⟨eg| ⊗

∑∞
n=0 |n⟩⟨n|nn0/(n0 + 1)n+1,

the reduced battery state ϱ̂(t) =
∑

n⟨n|ρ̂(t)|n⟩ evolves as
a mixed, symmetric two-qubit state over time t [54, 55],
with varying amounts of coherence and atom-atom en-
tanglement.

In Fig. 2, we compare the two-atom battery capacity in
E-units, C(ϱ̂(t), (σ̂z

1 + σ̂z
2)/2), against the von Neumann

entropy, the l1-coherence, and the atom-atom entangle-
ment in terms of the concurrence [60], for n0 = 0.5. The
capacity for an initially thermal cavity state in (a) drops
to lower values and oscillates more strongly than the case
of a coherent state in (b). Both examples illustrate that,
while the rise in entropy as well as the transient oscil-
lations of coherence and entanglement clearly influence
the capacity, neither of those quantities alone can ade-
quately predict its behaviour. See Appendix D for more
examples at other temperatures, couplings, and for other
squeezed cavity states.

Conclusions.—We have introduced the capacity of a
quantum battery system as the difference between the

maximal and the minimal energy that can be reached
from it by unitary evolution. It quantifies the amount of
work that a quantum battery can at most supply during
operation cycles. The battery capacity does not depend
on the actual battery charge at any given moment, mak-
ing it a suitable figure of merit for comparing different
quantum battery models.

Due to its unitary invariance, the battery capacity can
be put in relation with the entropy of the battery state,
and with measures of coherence and entanglement, as
we have discussed for simple models with an equidistant
energy level spectrum. We hope that extending this anal-
ysis to other quantum battery models will lead to deeper
insights into the connection between quantum thermody-
namics, work storage, and quantum information theory.
Future works could explore similar figures of merit for the
capacity of quantum systems to store other resources.
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from correlations, Phys. Rev. X 5, 041011 (2015).

[2] S. Vinjanampathy, and J. Anders, Quantum thermody-
namics, Contemp. Phys. 57, 545 (2016).

[3] M. A. Ciampini, L. Mancino, A. Orieux, C. Vigliar, P.
Mataloni, M. Paternostro, and M. Barbieri, Experimen-
tal extractable work-based multipartite separability cri-
teria, npj Quant. Inf. 3, 10 (2017).

[4] G. Francica, J. Goold, F. Plastina, and M. Paternostro,
Daemonic ergotropy: Enhanced work extraction from
quantum correlations, npj Quant. Inf. 3, 12 (2017).

[5] G. M. Andolina, M. Keck, A. Mari, M. Campisi, V. Gio-
vannetti, and M. Polini, Extractable work, the role of
correlations, and asymptotic freedom in quantum bat-
teries, Phys. Rev. Lett. 122, 047702 (2019).

[6] J. Monsel, M. Fellous-Asiani, B. Huard, and A. Auffèves,
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Goold, S. Vinjanampathy, and K. Modi, Enhancing the
charging power of quantum batteries, Phys. Rev. Lett.
118, 150601 (2017).

[11] F. Campaioli, F. A. Pollock, and S. Vinjanampa-
thy, Thermodynamics in the quantum regime, Springer,
Cham, 2018, pp. 207-225.

[12] D. Rossini, G. M. Andolina, D. Rosa, M. Carrega, and
M. Polini, Quantum Advantage in the Charging Process
of Sachdev-Ye-Kitaev Batteries, Phys. Rev. Lett. 125,
236402 (2020).

[13] R. Salvia and V. Giovannetti, On the distribution of
the mean energy in the unitary orbit of quantum states,
Quantum 5, 514 (2021).

[14] S. Seah, M. Perarnau-Llobet, G. Haack, N. Brunner, and
S. Nimmrichter, Quantum speed-up in collisional battery



6

charging, Phys. Rev. Lett. 127, 100601(2021).
[15] V. Shaghaghi, V. Singh, G. Benenti, and D. Rosa, Micro-

masers as quantum batteries, Quantum Sci. Technol. 7,
04LT01 (2022).

[16] R. Salvia, M. Perarnau-Llobet, G. Haack, N. Brun-
ner, and S. Nimmrichter, Quantum advantage in charg-
ing cavity and spin batteries by repeated interactions,
arXiv:2205.00026 (2022).

[17] G. Francica, Quantum correlations and ergotropy, Phys.
Rev. E 105, L052101(2022).

[18] C. Rodriguez, D. Rosa, and J. Olle, AI-discovery of a
new charging protocol in a micromaser quantum battery,
arXiv:2301.09408 (2023).

[19] W. Pusz and S. L. Woronowicz. Passive states and KMS
states for general quantum systems, Commun. Math.
Phys. 58, 273-290 (1977).

[20] A. Lenard, Thermodynamical proof of the Gibbs formula
for elementary quantum systems, J. Stat. Phys. 19, 575
(1978).

[21] J. von Neumann, Thermodynamik quantummechanis-
cher Gesamtheiten, Gott. Nach. 1, 273-291(1927).

[22] C. Tsallis, Possible generalization of Boltzmann-Gibbs
statistics, J. Stat. Phys. 52, 479 (1988).

[23] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[24] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium:
Quantum coherence as a resource, Rev. Mod. Phys. 89,
041003 (2017).

[25] K. Bu, U. Singh, S.-M. Fei, A. K. Pati, and J. Wu, Max-
imum relative entropy of coherence: an operational co-
herence measure, Phys. Rev. Lett. 119, 150405(2017).

[26] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantify-
ing coherence, Phys. Rev. Lett. 113, 140401 (2014).

[27] J. Aberg, Quantifying superposition, arXiv:quant-
ph/0612146, 2006.

[28] K. Southwell, Quantum coherence, Nature 453, 1003
(2008).

[29] A. Delmonte, A. Crescente, M. Carrega, D. Ferraro, and
M. Sassetti, Characterization of a Two-Photon Quantum
Battery: Initial Conditions, Stability and Work Extrac-
tion, Entropy 23, 612 (2021).

[30] A. Mukherjee, A. Roy, S. S. Bhattacharya, and M. Banik,
Presence of quantum correlations results in a nonvanish-
ing ergotropic gap, Phys. Rev. E 93, 052140 (2016).

[31] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information. Cambridge University Press,
Cambridge, 2000.

[32] R. Alicki and M. Fannes, Entanglement boost for ex-
tractable work from ensembles of quantum batteries,
Phys. Rev. E 87, 042123 (2013).

[33] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber,
and A. Acin, Entanglement generation is not neces-
sary for optimal work extraction, Phys. Rev. Lett. 111,
240401(2013).

[34] M. Alimuddin, T. Guha, and P. Parashar, Bound on er-
gotropic gap for bipartite separable states, Phys. Rev. A
99, 052320 (2019).

[35] M. Alimuddin, T. Guha, and P. Parashar, Independence
of work and entropy for equal-energetic finite quantum
systems: Passive-state energy as an entanglement quan-
tifier, Phys. Rev. E 102, 012145 (2020).
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Appendix A: Proof of the inequality (12)

To prove the inequality (12), consider the probabil-

ity distribution P (E; ϱ̂; Ĥ) of the work extracted with
a random unitary transformation; i.e., the probability
distribution of WÛ (ϱ̂; Ĥ) when Û is sampled uniformly
with respect to the Haar measure. In Ref.[13] it has been

proven that the variance of P (E; ϱ̂; Ĥ) is given by

Var
Û∼Haar(U(d))

[
WÛ (ϱ̂; Ĥ)

]
=

σ2
ϱ̂σ

2
Ĥ

d2 − 1
. (S1)

We invoke Popoviciu’s inequality on variance:

Var
x∼P (x)

[f(x)] ≤ 1

4

(
max

x∼P (x)
f(x)− min

x∼P (x)
f(x)

)2

(S2)

with the identifications x = Û , P (x) = Haar(U(d)), and

f(Û) = WÛ (ϱ̂; Ĥ). Combined with (2) and (9), this im-
plies that

Var
Û∼Haar(U(d))

[
WÛ (ϱ̂; Ĥ)

]
≤ 1

4
C2(ϱ̂; Ĥ) , (S3)

which combined with (S1) proves the inequality (12) in
the main text.

Appendix B: Battery capacity for equally spaced
energy levels

Here we provide bounds for the battery capacity as
well as relations to entropy and coherence functionals
for a d-level battery with an equally spaced spectrum,

Ĥ =
∑d−1

j=0 jE|j⟩⟨j|.

Proposition 4. Given a state ϱ with d eigenvalues
{λ1, · · · , λd−1} arranged in an increasing order and

Hamiltonian Ĥ =
∑d−1

j=1 jE|j⟩⟨j|, we have

Tr(ϱ̂↑Ĥ) + Tr(ϱ̂↓Ĥ) = (d− 1)E. (S1)

Proof. The energies of the states ϱ↓ and ϱ↑ are given by

Tr(ϱ̂↓Ĥ) =

d−1∑
i=0

iλd−1−iE, (S2)

and

Tr(ϱ̂↑Ĥ) =

d−1∑
i=0

iλiE. (S3)

Summing (S2) and (S3) we obtain

Tr(ϱ̂↑Ĥ) + Tr(ϱ̂↓Ĥ) = dE − 1

d−1∑
i=0

λiE = (d− 1)E. (S4)

We also remark that, in a Hamiltonian with equispaced
energy levels, the ergotropic and antiergotopic gap coin-
cide:

Proposition 5. Given the HamiltonianS ĤA =∑dA−1
j=1 jE|j⟩⟨j| and ĤB =

∑dB−1
j=1 jE|j⟩⟨j|, for any state

ϱ̂ it holds

δin(ϱ̂AB ; ĤAB) = δout(ϱ̂AB ; ĤAB). (S5)

Proof. It follows from the fact that this Hamiltonian
satisfies Ĥ = −Ĥ + C1, where C = (d − 1)E is the

value of the largest energy level. Therefore δin(ϱ̂; Ĥ) =

δout(ϱ̂;−Ĥ) = δout(ϱ̂; Ĥ − C) = δout(ϱ̂; Ĥ), where in the
last passage we have used the invariance of the ergotropic
gap with respect to shifts of the system Hamiltonian.

Example S1. Consider the system Hamiltonian ĤA =
ĤB = E|1⟩⟨1| and the family of Werner states [49] given
by

ϱ̂v = v|ψ⟩⟨ψ|+ 1− v

4
1, (S6)

where |ψ⟩ = cos θ|00⟩ + sin θ|11⟩, with θ ∈ (0, π/4] and
v ∈ [0, 1]. The spectral values are { 1+3v

4 , 1−v
4 , 1−v

4 , 1−v
4 },

for this entire class of states, its reduced density matrix
has the spectra {v cos2 θ + 1−v

2 , v sin2 θ + 1−v
2 }, it turns

out to be

δin(ϱ̂v) = δout(ϱ̂v) = 2v sin2 θE. (S7)

It is easy to bound the quantum battery capacity of
this system with

C(ϱ̂) =

d−1∑
j=0

jE(λj − λd−1−j) (S8)

=

⌊d/2⌋∑
j=0

E(d− 1− 2j)(λd−1−j − λj)

≤
⌊d/2⌋∑
j=0

E(d− 1− 2j)(λd−1 − λ0),
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and similarly

C(ϱ̂) =

d−1∑
j=0

jE(λj − λd−1−j) (S9)

=

⌊d/2⌋∑
j=0

E(d− 1− 2j)(λd−1−j − λj)

≥
⌊d/2⌋∑
j=0

E(d− 1− 2j)(λ⌊d/2⌋+1 − λ⌊d/2⌋).

From (S8) and (S9) we have the following simple bounds
for the battery capacity in a system with equispaced en-
ergy levels:

(⌊
d
2

⌋)2
(λd−1 − λ0) ≥ C(ϱ̂; Ĥ)

E

≥
(⌊

d
2

⌋)2 (
λ⌊d/2⌋+1 − λ⌊d/2⌋

)
.

(S10)

1. Relationships between battery capacity and
entropic functionals

In this section we shall use the inequality (12) to derive
an inequality between battery capacity and entropy for

an equispaced Hamiltonian Ĥ =
∑d−1

j=1 jE|j⟩⟨j|. The
variance of an equispaced Hamiltonian is given by

σ2
Ĥ

= TrĤ2 −

(
TrĤ

)2
d

=

d−1∑
j=0

j2E2 − E2

d

d−1∑
j=0

j

2

=
(d2 − 1)(2d− 3)

6
. (S11)

Moreover, it is always true that

σ2
ϱ = Trϱ2 − (Trϱ)2

d

=
d− 1

d
− L(ϱ̂), (S12)

where L(ϱ̂) = 1− Tr[ϱ̂2] is the linear entropy.
Replacing (S11) and (S12) into the inequality (12) we

obtain the inequality

C2(ϱ̂)

E2
≥ 2(2d− 3)(d− 1)

3d
− (4d− 6)

3
L(ϱ̂), (S13)

and therefore

C2(ϱ̂)

E2
+

4d− 6

3
L(ϱ̂) ≥ 2(2d− 3)(d− 1)

3d
. (S14)

Using (S14) together with the inequailty S(ϱ̂) ≥ L(ϱ̂)
we get a similar inequality for the Von Neumann entropy:

C2(ϱ̂)

E2
+

4d− 6

3
S(ϱ̂) ≥ 2(2d− 3)(d− 1)

3d
. (S15)

For the Tsallis entropy defined by Tq(ϱ̂) = 1
q−1 (1 −

Trϱq) [22], it is easy to show that Tq(ϱ̂) ≥ 1
q−1L(ϱ̂) for

any q ≥ 2. Therefore, from the inequality (S14) we also
get

C2(ϱ̂)

E2
+

(4d− 6)(q − 1)

3
Tq(ϱ̂)

≥ 2(2d− 3)(d− 1)

3d
. (S16)

2. Relationships with coherence

In this subsection we explore the quantum battery
capacity and quantum coherence in high-dimensional
Hilbert spaces with equispaced energy levels.
From the definition of l1-coherence we have

Cohel1(ϱ̂) + 1 = ∥ϱ̂∥1 ≥ ∥ϱ̂∥∞ (S17)

where ∥ϱ̂∥∞ = max{λ(ϱ̂)}, is the maximum eigenvalue of
ϱ̂. From (S17) and (S8) follows that

C(ϱ̂)
E

≤
(⌊

d

2

⌋)2

(Cohel1(ϱ̂) + 1) . (S18)

From the inequality (S15) we also get a simple rela-
tionship for the relative entropy of coherence Cohere(ϱ̂) =
S(ϱ̂ic)− S(ϱ̂), namely

1

E2
C2(ϱ̂) +

4d− 6

3
S(ϱ̂ic)−

4d− 6

3
Cohere(ϱ̂)

≥ 2(2d− 3)(d− 1)

3d
. (S19)

For the robustness of coherence (RoC) of a quantum
state ϱ̂ we use the following inequality, proven in Ref.[?
]:

Coheroc(ϱ̂) ≥ ∥ϱ̂− ϱ̂ic∥22 ≥ ∥ϱ̂∥2 − ∥ϱ̂ic∥22. (S20)

Using (S20) into (S8) we can see that

C(ϱ̂)
E

≤
(⌊

d

2

⌋)2

(Coheroc(ϱ̂) + ∥ϱ̂ic∥22) . (S21)

Moreover, it has shown that RoC and l1 norm coherence
[? ] satisfy

1

d− 1
Cohel1(ϱ̂) ≤ Coheroc(ϱ̂) ≤ Cohel1(ϱ̂). (S22)

Combining the above inequalities with (S18) we get

C(ϱ̂)
E

≤
(⌊

d

2

⌋)2

((d− 1)Coheroc(ϱ̂) + 1) . (S23)
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TABLE I: The quantum quantities of Werner state (S24). WC
denotes the quantum battery capacity. VE denotes the von
Neumann entropy. LE denotes the linear entropy. TE denotes
the Tsallis entropy. L1C denotes the l1 norm coherence. ROC
denotes the robustness of coherence.

Quantities relationships
WC =E× L1C
VE ≥ LE,TE
LE = TE(q = 2)
TE ≤ VE
L1C =WC /E
ROC WC /E

Example S2. Consider the Hamiltonian Ĥ =∑d−1
j=1 jE|j⟩⟨j| and the Werner state [49]:

ϱ̂v =
1− v

d
1+ v|ϕ⟩⟨ϕ|, (S24)

where |ϕ⟩ = 1√
d

∑d−1
i=0 |i⟩ and v ∈ [0, 1]. The eigenval-

ues of (S24) are given by { 1+(d−1)v
d , 1−v

d , · · · , 1−v
d }. The

quantum battery capacity is given by

C(ϱ̂v) = (d− 1)vE (S25)

from (S8). The von Neumann entropy is given by

S(ϱ̂v) = −1 + (d− 1)v

d
(log2(1 + (d− 1)v)− log2 d)

− (d− 1)(1− v)

d
(log2(1− v)− log2 d). (S26)

For the linear entropy we get

L(ϱ̂v) = 1− 1
d2 ((1 + (d− 1)v)2

+(d− 1)(1− v)2), (S27)

while the Tsallis entropy is

Tp(ϱ̂v) =
1

p− 1
(1− 1

dp
((1 + (d− 1)v)p

+(d− 1)(1− v)p)). (S28)

For the coherence the l1 norm coherence we get

Cohel1(ϱ̂) = v(d− 1). (S29)

For the relative entropy of coherence we have

Cohere(ϱ̂) = log2 d− S(ϱ̂). (S30)

The robustness of coherence is given by

Coheroc(ϱ̂) ≤ Cohel1(ϱ̂) = v(d− 1). (S31)

All of these bounds are shown in Table I.

Appendix C: Entanglement measures for
multipartite entanglement

Consider an n-partite pure quantum state |Ψ⟩ on
Hilbert space H = ⊗n

i=1HAi
. The Hamiltonian for the

i-th subsystem is given by ĤAi =
∑di−1

j=0 jE|j⟩⟨j|. This
means the involved systems are not completely degener-
ate, i.e., that there are eigenstates with different energy.
Without loss of generality, we associate zero energy to
the lowest energetic state |0⟩. The total interaction-free

global Hamiltonian is given by Ĥ =
∑n

i=1 H̃Ai , where

H̃Ai = 1d1···di−1 ⊗ ĤAi ⊗ 1di+1···dn . The energy of a

global state ϱ̂ on H is given by Tr(ϱ̂Ĥ), and the energy
of a subsystem Ai in the state ϱ̂Ai = Tr∀Aj ,j ̸=i(ϱ̂) is given

by Tr(ϱ̂Ai
ĤAi

).

First we prove Proposition 3 given in the main text.

Proof of the Proposition 3. This property follows from
the fact that the fully separable ergotropic gap is non-
increasing under LOCC [37], and that the energy of

the active states, −Tr(ρ↑Ai
ĤAi

), is Schur-convex, see the
proof of Proposition 1. Moreover, all the pure states have
the same capacity of C(|Ψ⟩⟨Ψ|, Ĥ) for a given Hamilto-
nian due to its unitary invariance. □

In what follows, we extend bipartite entanglement
measures to genuine multipartite entanglement measures.

From a pure state |Ψ⟩A1···An both the maximum
work extraction (ergotropy) and maximum work injec-
tion (antiergotropy) are possible by global unitary op-
erations. Here, ϱ̂↓ := |0⟩⟨0|⊗n is the passive state
and ϱ̂↑ := |d1 − 1, · · · , dn − 1⟩⟨d1 − 1, · · · , dn − 1| is
the active state of |Ψ⟩⟨Ψ|. The maximum extractable

work is E(|Ψ⟩⟨Ψ|; Ĥ) = Tr(|Ψ⟩⟨Ψ|Ĥ) − Tr(ϱ̂↓Ĥ). Con-

versely, the maximum injectable work is A(|Ψ⟩⟨Ψ|; Ĥ) =

Tr(|Ψ⟩⟨Ψ|Ĥ)− Tr(ϱ̂↑Ĥ).

On the other hand, the local unitary operations of
⊗n

i=1UAi
cannot always turn a pure state |Ψ⟩⟨Ψ| into

the ground state of the system. For pure product states
(i.e., |Ψ⟩⟨Ψ| =

⊗n
i=1 |ψi⟩⟨ψi|), the fully separable bat-

tery capacity gap is zero, where all the subsystems are
pure and thus can be transformed into the lowest or high-
est energetic state by local unitary operations. But for
pure biseparable states the fully separable capacity gap
∆(|Ψ⟩⟨Ψ|; Ĥ) may be not zero.

Example S3. Consider the three-qubit pure state [50],

|Ψ⟩ABC = λ0|000⟩+ λ1e
iθ|100⟩+ λ2|101⟩

+λ3|110⟩+ λ4|111⟩, (S1)

where λi ≥ 0,
∑

i λ
2
i = 1 and 0 ≤ θ ≤ π. Since the

Hamiltonian for the marginal systems are ĤA = ĤB =
ĤC = E|1⟩⟨1|, passive state energy will be equal to the
smallest eigenvalue while active state energy will be equal
to the largest eigenvalue. In terms of the generalised
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Schmidt coefficients, we get the following energies as

Tr(ϱ̂↑ĤA) = E − δ
A|BC
in

2
(S2)

=
E

2

(
1 +

√
1− 4λ20(1− (λ20 + λ21))

)
,

Tr(ϱ̂↑BĤB) = E − δ
B|CA
in

2

=
E

2

(
1 +

√
1− 4(λ20(λ

2
3 + λ24) + γ)

)
,

Tr(ϱ̂↑CĤC) = E − δ
C|AB
in

2

=
E

2

(
1 +

√
1− 4(λ20(λ

2
2 + λ24) + γ)

)
,

where γ = |(λ1λ4eiθ − λ2λ3)|2 and δ
X|Y Z
in is the bisepa-

rable ergotropic gap of the maximum charging work.
This implies the tripartite battery capacity gap by

combining the ergotropic gap of extractable work [37]
as

∆A|B|C = δ
A|B|C
in + δ

A|B|C
out

=
δ
A|BC
in + δ

B|CA
in + δ

C|AB
in

2

+
δ
A|BC
out + δ

B|CA
out + δ

C|AB
out

2

= 3E − E
√
1− 4λ20(1− (λ20 + λ21))

−E
√

1− 4(λ20(λ
2
3 + λ24) + γ)

−E
√

1− 4(λ20(λ
2
2 + λ24) + γ)

=
E

2
(∆A|BC +∆B|CA +∆C|AB) (S3)

where ∆X|Y = δ
X|Y
out + δ

X|Y
in denotes the battery capacity

gap of biseparable system X and Y . Note that the state
(S1) is a pure product state for γ = λ0 = 0 or λ2 = λ3 =

λ4 = 0. This follows δ
A|B|C
in = 0. On the other hand, the

quantity is optimal for the maximally entangled GHZ
state [47] (λ0 = λ4 = 1√

2
) with the value ∆A|B|C = 3E.

The fully separable ergotropic gap or battery capacity
gap cannot be used to characterize the genuineness of
multipartite entanglement because it might be nonzero
for biseparable states. In what follows, we present some
entanglement measures inspired by the ergotropic gap of
extractable work [37].

Definition 2. The minimum of the biseparable battery
capacity gap (MBWCG) of pure state |Ψ⟩ on Hilbert space
H = ⊗n

i=1HAi
is defined by

∆G
min(|Ψ⟩) := min

X
∆X|Xc(|Ψ⟩) (S4)

for all X ⊂ {A1, A2, · · · , An}, where X and Xc denotes
a bipartition of {A1, A2, · · · , An}.

Similar to the ergotropic gaps of work extraction and
work injection, ∆G

min(·) provides a genuine measure for
n-partite entangled states [37, 48]. For tripartite states
it equals to double of genuinely multipartite concurrence
(GMC) [51]. The maximally entangled GHZ state [47]
yields to the maximum value of ∆G

min for any n-qubit
system.

Definition 3. The average biseparable capacity gap
(ABCG) of pure state |Ψ⟩ on Hilbert space H = ⊗n

i=1HAi

is defined by

∆G
avg(|Ψ⟩) := αΓ

(∏
X

∆X|Xc(|Ψ⟩)

)∑
X

∆X|Xc(|Ψ⟩)

(S5)

for X ⊂ {A1, A2, · · · , An}, where Γ(x) = 0 for x = 0,
and Γ(x) = 1 otherwise. α denotes a nonzero constant
for faithful entanglement measure.

Similar to the average ergotropic gap of maximum
work extraction [37], both entanglement measures turn
out to be genuine, faithful, LOCC monotone, and able to
distinguish tripartite GHZ and W states [50]. ∆G

avg and

∆G
min are independent measures and may fail to distin-

guish some genuinely entangled states [37].
Similar to the biseparable ergotropic gaps of work ex-

traction, the battery capacity gap satisfies the following
polygon inequality as

∆X|Y Z ≤ ∆Y |ZX +∆Z|XY (S6)

for X,Y, Z ∈ {A,B,C} because the ergotropic gaps of
work injection satisfies the same inequality. Inspired by
Refs. [37, 52, 53], we define the battery capacity fill for
tripartite states as follows.

Definition 4. The battery capacity fill (WCF) is defined
by

∆G
F (|Ψ⟩ABC) :=

1
3
Q

∏
X∈{A,B,C}

(
Q−∆X|XC

)1/2

,

(S7)
where Q =

∑
X∈{A,B,C} ∆X|XC .

It is obvious that WCF is zero for all product states.
It is also faithful, i.e., non zero for genuinely entangled
states. It can be used for distinguishing states like GHZ
and W states [37, 50].

Definition 5. The battery capacity volume (WCV) of an
n-qubit pure state is given by

∆G
V (|Ψ⟩) :=

(∏
X

∆X|Xc(|Ψ⟩)

)1/N

, (S8)

for X ⊂ {A1, A2, · · · , An}, where N denotes the combi-
nation number of all bipartition of {A1, A2, · · · , An}.
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WCV is genuine, faithful, and LOCC monotone, as all
the biseparable battery capacity gaps are LOCC mono-
tone [37]. Moreover, WCF is inequivalent to MBWCG,
ABCG, and WCV by proofs similar to the ones for the
ergotropic gap of work extraction [37].

Example S4. Consider the two-qubit pure state |ψ⟩ =√
λ|00⟩+

√
1− λ|11⟩. The battery capacity gap with re-

spect to the local Hamiltonians ĤA = ĤB = |1⟩⟨1| is
given by

∆A|B(|ψ⟩; Ĥ) = 4 (1−max{λ, 1− λ}) . (S9)

This can be extended to mixed states by the standard
method [23] as

∆A|B(ϱ̂, Ĥ) = min
∑
i

pi∆A|B(|ψi⟩; Ĥ), (S10)

where the minimum over all possible pure state decom-
positions, ϱ =

∑
i pi|ψi⟩⟨ψi|. In a similar manner with

the proof of Eq.(45) in ref. [45], we obtain

∆A|B(ϱ̂; Ĥ) = 2
[
1−

√
1− C2(ϱ̂)

]
, (S11)

where C(ϱ̂) denotes the concurrence. Consider the
isotropic state

ϱ̂v =
1

3
[(1− v)14 + (4v − 1)|ψ⟩⟨ψ|] (S12)

with the governing Hamiltonian Ĥ = |1⟩⟨1|, where In
denotes the n × n identity matrix and |Ψ−⟩ = (|01⟩ −
|10⟩)/

√
2. Equation (S11) and C(ϱv) = 2v − 1 yield a

positive gap given by

∆A|B(ϱ̂v; Ĥ) = 2(1− 2
√
v − v2) (S13)

for 1/2 < v ≤ 1 [46].
Example S5. Consider the generalized tripartite GHZ

state |ϕ⟩ = cos θ|000⟩ + sin θ|111⟩ [47] with θ ∈ (0, π/4].

For any bipartition, we obtain the gap ∆A|BC(|ϕ⟩; Ĥ) =

4 sin2 θ. The symmetry of the state then implies the gen-
uine multipartite entanglement measure [37, 48]

∆G
min(|ϕ⟩; Ĥ) := minX ∆X|Xc(|ϕ⟩; Ĥ)

= 4 sin2 θ > 0, (S14)

minimising over all X ⊂ {A,B,C}.

Appendix D: Case study: two two-level atoms in a
cavity

Here we provide details on the example battery model
in the main text, which consists of two two-level atoms
interacting with a single cavity mode via the resonant
Tavis-Cummings Hamiltonian in the rotating wave ap-
proximation,

Ĥ = E

(
â†â+

σ̂z
1 + σ̂z

2

2

)
+ ℏg

2∑
i=1

(
âσ̂+

i + h.c.
)
. (S1)
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FIG. S3: Two-atom battery capacity as a function of time
for (a) a thermal and (b) a coherent cavity state of average
photon numbers n0 = 0.1 (solid), n0 = 1 (dashed), and n0 =
10 (dotted). This plot assumes the initial pure (maximum-
capacity) battery state |eg⟩.

Here, â denotes the ladder operator of the cavity mode,
σ̂z
i = |e⟩i⟨e| − |g⟩i⟨g| the Pauli-z matrix of the i-th atom,

and σ̂+
i = |e⟩i⟨g| the i-th excitation operator. Given that

the free part of the Hamiltonian proportional to E and
the coupling term commute on resonance, the associated
unitary time evolution can be factorized into

e−iĤt/ℏ = e−iEâ†ât/ℏÛ†
0 (t)Û(t). (S2)

The unitary Û†
0 (t) = e−iE(σ̂z

1+σ̂z
2 )t/2ℏ describes the free

battery evolution, while Û(t) represents the time evo-
lution in the interaction picture, which can be given
as an operator-valued matrix in the atomic basis of
{|gg⟩, |ge⟩, |eg⟩, |ee⟩} as [54, 55]

Û(t) =


2âΓ̂â −iâΞ̂ −iâΞ̂ 2âΓ̂â† + 1

−iΞ̂â 1
2 Υ̂

−1Γ̂ 1
2 Θ̂ −iΞ̂â†

−iΞ̂â 1
2 Θ̂

1
2 Υ̂

−1Γ̂ −iΞ̂â†
2â†Γ̂â+ 1 −iâ†Ξ̂ −iâ†Ξ̂ 2â†Γ̂â†

 .

(S3)

Here, Γ̂ = Υ̂(cos(Ω̂gt) − 1), Θ̂ = cos(Ω̂gt) + 1, Ξ̂ =

Ω̂−1 sin(Ω̂gt), Ω̂ = Υ̂−1/2 =
√
4â†â+ 21, and 1 denotes

the identity operator.
For an initial product state ρ̂(0) = ϱ̂0 ⊗ ρ̂c, the time

evolution of the reduced battery state reads as

ϱ̂(t) = Trc

[
e−iĤt/ℏϱ̂0 ⊗ ρ̂ce

iĤt/ℏ
]

(S4)

= Û0(t)

∞∑
n=0

⟨n|Û(t)ϱ̂0 ⊗ ρ̂cÛ
†(t)|n⟩Û†

0 (t),

where we can ignore the free evolution term since it af-
fects neither of the state properties we are interested in.
In the main text, we focus on the case in which the

cavity is initially in a thermal state or coherent state.
Complementing the results shown there, we here provide
additional simulation data for different parameters and
initial battery states.
Figure S3 plots the battery capacity over time for var-

ious average photon numbers n0, comparing (a) an ini-
tially thermal to (b) a coherent cavity state. In both
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FIG. S4: Two-atom battery capacity over time for differ-
ent initial states: (a) pure product states |ee⟩ (solid), |eg⟩
(dashed, same as |ge⟩), and |gg⟩ (dotted). (b) entangled states
|ψ⟩ = cos θ|eg⟩ + sin θ|ge⟩ with θ = π/16 (solid), θ = π/8
(dashed), and θ = π/4 (dotted). Here, n0 = 0.5.
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FIG. S5: (a) Two-atom battery capacity over time for differ-
ent initial cavity states of the same average photon number
n0 = 0.5: thermal mixture (solid), coherent state (dashed),
and squeezed state (dotted). (b) Capacity over time for
an initially squeezed cavity state of mean photon numbers
n0 = sinh2 r = 0.1 (solid), 1 (dashed), and 10 (dotted). The
battery is initialized in |eg⟩.

cases, higher n0 generally lead to a stronger initial de-
crease of capacity and suppression of transient oscilla-
tions. In this example, the battery is initialized in the
state ϱ̂(0) = |eg⟩⟨eg|.

Figure S4 shows how the time-evolved capacity de-
pends on the initial battery state. In (a), we compare
initial pure product states and find that the greatest ca-
pacities are attained for |gg⟩, while |ee⟩ exhibits fast os-
cillations. In (b), we compare entangled initial states of
the form cos θ|eg⟩+sin θ|ge⟩ for different θ. More entan-
gled states with θ close to π/4 exhibit greater transient
capacity values.

Figure S5 (a) compares the time evolution of
the battery capacity for different cavity states of
the same average photon number n0. Apart from
the thermal state, we also consider ρc = |ψ⟩⟨ψ|
with ⟨n|ψ⟩ = e−n0/2n

n/2
0 /

√
n! (coherent state) and

⟨2n|ψ⟩ =
√

sech(r)[
√
(2n)!/n!]2−n tanhn(r) (squeezed

vacuum state) [29]. The three states result in notable
differences, with the squeezed state reaching the high-
est transient capacities. In (b), we compare different
degrees of squeezing: higher r-values lead to higher ef-
fective n0 = sinh2 r and thus lower transient capacities.
However, the transient oscillations are more pronounced
compared to thermal states of the same n0 in Fig. S3 (b).
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