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Abstract

Spectral projectors of Hermitian matrices play a key role in many ap-

plications, and especially in electronic structure computations. Linear

scaling methods for gapped systems are based on the fact that these spe-

cial matrix functions are localized, which means that the entries decay

exponentially away from the main diagonal or with respect to more gen-

eral sparsity patterns. The relation with the sign function together with

an integral representation is used to obtain new decay bounds, which turn

out to be optimal in an asymptotic sense. The influence of isolated eigen-

values in the spectrum on the decay properties is also investigated and a

superexponential behaviour is predicted.

1 Introduction

The a priori knowledge of decay bounds for matrix functions of banded or sparse
matrices is important for many applications and has been the subject of many
papers over the years. An exponential decay holds in general for f(A), where A is
Hermitian and banded (or sparse) and f is analytic over an ellipse containing the
spectrum of A [6]. Specific bounds are given for important matrix functions, like
the matrix inverse [1, 11] or entire functions, like the matrix exponential, which
exhibit superexponential decay [8, 22]. Further results for classes of functions
defined by an integral transform, such as Laplace-Stieltjes and Cauchy-Stieltjes
functions, are given in [8, 15], where the analysis makes use of results for the
inverse or the exponential. Less regular functions, like fractional powers, lead
to power-law decays and are used to describe non-local dynamics; see [4, 28].

Another important case is the spectral projector of a banded Hermitian
matrix, which is the orthogonal projector onto the subspace spanned by the
eigenvectors associated with the eigenvalues below a certain value [5]. This pro-
jector, also known as the density matrix in the chemistry and physics literature,
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is of central importance in electronic structure computations [9, 23, 26]. In
[5] one can find rigorous proofs of exponential decay for gapped systems, like
insulators. One approach is based on the approximation of the step function
with the Fermi-Dirac function, the other is inspired by [10, 20] and makes use
of the polynomial approximation of piecewise constant function over the union
of disjoint intervals.

Most of the existing bounds for f(A) depend only on partial information
about the spectrum of A, for example, the spectral interval [λmin(A), λmax(A)]
if A is Hermitian and positive definite [8, 11] or the field of values in the general
case [3, 27]. For the spectral projector, a key role is played by the spectral
gap, see below. However, numerical experiments show that the bounds are
often pessimistic and do not capture the actual decay behaviour, which seems
to depend also on the distribution of the eigenvalues within the spectral sets. A
first step in this direction is taken in [16], where the authors show a connection
between the decay in the inverse of a positive definite Hermitian matrix and the
distribution of the eigenvalues near the upper end of the spectrum.

In this paper we will make use of the expression of the spectral projector in
terms of the matrix sign function to refine the existing bounds by exploiting an
integral representation of the sign function. This will allow us to analyze how
the distribution of the eigenvalues of the original Hermitian matrix affects the
rate of decay in the entries of the associated spectral projector. In particular,
we will show a connection between the decay properties and the eigenvalue
distribution.

The paper is organized as follows. In section 2 we recall basic definitions
and the standard techniques that have been used to obtain decay bounds. In
section 3 we recall existing decay bounds for the inverse function and spectral
projectors. In section 4 we give new decay bounds for spectral projectors. In
section 5 we show how the eigenvalue distribution is connected with the decay
properties for spectral projectors.

2 Preliminaries

Let us recall some definitions and previous results concerning the localization
in matrix functions of Hermitian matrix arguments. For a detailed survey, see
[2].

2.1 Matrices with exponential decay

We say that a sequence of n×n matrices An has the exponential off-diagonal
decay property if there are constants C > 0 and α > 0 independent of n such
that

|[An]ij | ≤ Ce−α|i−j|, for all i, j.
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Corresponding to each matrix An we define for a nonnegative integer m the

matrix A
(m)
n = ([A

(m)
n ]ij) as follows:

[A(m)
n ]ij =

{

[An]ij if |i− j| ≤ m,

0 otherwise.

Each matrix A
(m)
n is m-banded since [A

(m)
n ]ij = 0 for |i − j| > m. Moreover,

if An has the exponential decay property, then for all ε > 0 there is an m̄

independent of n such that ‖An−A
(m)
n ‖1 ≤ ε for m ≥ m̄. See [7] for more details.

The same conclusion holds for the ∞-norm by considering the sequence A∗
n,

and for the 2-norm, owing to the inequality ‖A‖2 ≤
√

‖A‖1‖A‖∞. Obviously,
being able to approximate a full matrix with exponential decay with a banded
matrix (with bandwidth independent of the matrix dimension) can lead to huge
computational savings.

The foregoing considerations can be extended to matrices with more general
decay patterns. For instance, let Gn be a sequence of graphs with {1, 2, . . . , n}
as the set of nodes and graph distances dn(i, j) [12]. We say that a sequence of
n×n matrices An has the exponential decay property relative to the graph Gn if
there are constants C > 0 and α > 0 independent of n such that

|[An]ij | ≤ Ce−αdn(i,j) for all i, j.

In this more general setting, some restrictions on the graphs must be imposed to
obtain sparse approximations of the matrix sequence, see [17] for more details.

2.2 Connection between polynomial approximation and

decay properties

A classical approach to derive decay bounds for a matrix function f(A) is to
bound the error of the best uniform polynomial approximation of f over a suit-
able set containing the spectrum of A. Denote with Πk the set of all polynomials
with degree at most k. Denote the error of the best uniform approximation in
Πk of a function f continuous over a set S as

Ek(f,S) = inf
Pk∈Πk

sup
z∈S

|f(z)− Pk(z)|. (2.1)

Notice that if S is a real compact interval and f is real valued over S and
continuous, then there exists a unique solution to the minimization problem
(2.1), which becomes a minimum [25]. In general (2.1) is not a minimum.

An argument that is often used [2, 5, 6, 15] in order to obtain decay bounds
for matrix functions is described in the following lemma.

Lemma 2.1. Let A ∈ Cn×n be Hermitian and m-banded with σ(A) ⊂ S, and
let f(z) be defined over S. Let i, j be two indices such that i 6= j and let

k :=
⌊

|i−j|
m

⌋

. Then

|[f(A)]ij | ≤ Ek(f,S). (2.2)
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If there are C > 0 and 0 < ρ < 1 such that

Ek(f,S) ≤ Cρk, for all k ≥ 0, (2.3)

then

|[f(A)]ij | ≤ Cρ
|i−j|
m

−1 for i 6= j.

Proof. Let Pk ∈ Πk. Then [Pk(A)]ij = 0 since Pk(A) is km-banded and |i−j| >
km. Therefore

|[f(A)]ij | = |[f(A)]ij − [Pk(A)]ij | ≤ ‖f(A)− Pk(A)‖2 = max
x∈σ(A)

|f(x)− Pk(x)|.

≤ max
x∈S

|f(x)− Pk(x)|.

Since the inequality holds for any Pk ∈ Πk, by the definition of Ek(f,S) we
conclude that (2.2) holds.

The second part follows from the inequality
⌊

|i−j|
m

⌋

≥ |i−j|
m −1 and (2.2).

A bound like (2.3) for the uniform polynomial approximation holds if S is
a closed interval and f can be extended to an analytic function over an ellipse
strictly containing S [25], but it can hold also for more general domains [10, 25].

Remark 2.1. The same approach works for a general matrix A by taking
k = d(i, j)−1, where d(i, j) is the geodesic distance between i and j in the graph
associated with the matrix A. See [5, 7, 17]. In fact we have that [Pk(A)]ij = 0
for any Pk ∈ Πk and i, j such that d(i, j) > k, then the proof proceeds as in
Lemma 2.1. Although all the results of the next sections will be given only for
banded case, they also hold for general sparsity patterns by slightly modifying
the estimates.

Remark 2.2. The result of Lemma 2.1 implies that if we are given a sequence
of n×n matrices {An} of increasing size, all Hermitian, uniformly m-banded
and such that σ(An) ⊂ S for all n, then f(An) is well defined for all n and the
bound (2.2) holds for all the matrices in the sequence, since it depends only on
the set S and on the bandwidth, and not on n.

3 Previous work

Here we recall some known decay bounds for the matrix inverse and for spectral
projectors.

3.1 Decay bounds for the inverse

The error for the polynomial approximation of the inverse function over an
interval is explicitly known [25].
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Theorem 3.1. Consider the function 1/x defined over [a, b], where 0 < a < b.
Let

r =
b

a
, C =

(1 +
√
r)2

2b
, q =

√
r − 1√
r + 1

. (3.1)

Then

Ek(1/x, [a, b]) = Cqk+1 for all k. (3.2)

Theorem 3.1 has been used in [11] to obtain the following result regarding
the entries of the matrix inverse.

Theorem 3.2. Let A ∈ Cn×n be Hermitian, positive definite and m-banded.
Let a = λmin(A), b = λmax(A). Let r, C, q be defined as in (3.1). Then, for any
i and j such that i 6= j,

|[A−1]ij | ≤ Cq
|i−j|
m . (3.3)

In [11] the authors choose a different constant in order to capture the case
i = j. In fact |[A−1]ii| ≤ ‖A−1‖2 = 1/a for any i, so if we choose the maximum
between 1/a and the value of C in (3.1) we obtain a bound which holds for any
i, j. Here it is more convenient to distinguish the two cases.

A reader familiar with Krylov methods will recognize in the expression for q
given in (3.1) the geometric rate of the bound for the error reduction (measured
in the A-norm) of the conjugate gradient method applied to a linear system
Ax = b with a positive definite A. See, for example, [24]. It is also well known
that this bound can be overly pessimistic, and that much faster convergence
can occur for certain distributions of the eigenvalues of A, for instance when the
eigenvalues are clustered in the lower end of the spectrum. The following result
[16] shows that this phenomenon holds also for the decay in the entries of the
inverse.

Theorem 3.3. Let A ∈ Cn×n be Hermitian, positive definite and m-banded
with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Let

rℓ =
λn−ℓ

λ1
, qℓ =

√
rℓ − 1√
rℓ + 1

, C =
2

λ1
.

Then the entries of A−1 are bounded by

|[A−1]ij | ≤ Cq
|i−j|
m

−ℓ

ℓ for all ℓ = 0, 1, . . . ,

⌊ |i− j|
m

⌋

. (3.4)

The family of bounds given in Theorem 3.3 tells us that we can remove some
eigenvalues in the upper end of the spectrum and obtain a bound like the one in
(3.3) with a smaller geometric rate, but paying the price of a smaller exponent.
This means that, if some of the largest eigenvalues are isolated, the decay can
be predicted much more accurately than (3.3), which is a special case of (3.4)
with ℓ = 0 up to a constant factor. We will return on this in Section 5.
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3.2 Properties of spectral projectors

The ability to approximate spectral projectors associated with banded or sparse
matrices is crucial to the development of linear scaling methods in electronic
structure computations; see [5, 9, 23, 26].

Let H ∈ Cn×n be Hermitian with eigenvalues λ1 ≤ · · · ≤ λne
< λne+1 ≤

· · · ≤ λn, and let vi, i = 1, . . . , ne be an orthonormal basis for the H-invariant
subspace associated with the first ne eigenvalues (counting multiplicities). Then
the spectral projector associated with this H-invariant subspace can be repre-
sented as

P = v1v
∗
1 + · · ·+ vne

v
∗
ne

=

ne
∑

i=1

viv
∗
i .

In electronic structure computations, we deal with sequences of matrices
of increasing size {Hn} and their projectors {Pn}. In particular, each Hn is
Hermitian. These matrices arise as a Galerkin discretization of a continuous
operator, and n = nb · ne, where nb is the number of basis functions used for
the projection and is fixed, while ne is the number of electrons of the starting
system and increases. See [5] for more details.

In order to derive a common exponential decay for all the projectors Pn we
need that

• the matrices Hn have uniformly bounded bandwidth;

• there exist four parameters b1 < a1 < a2 < b2 independent of n such
that σ(Hn) ⊂ [b1, a1] ∪ [a2, b2] and, for all ne, [b1, a1] contains the first ne

eigenvalues of Hn while [a2, b2] contains the remaining n− ne.

The key quantity here is the relative spectral gap γ = (a2 − a1)/(b2 − b1).
If this quantity is not too small (e.g., insulators or semiconductors) then the
projector exhibits exponential decay, while for small or vanishing gap (e.g.,
metallic systems) the decay cannot be fast [5].

Under the assumptions above, any projector can be written as Pn = h(Hn),
where h(x) is the Heaviside function:

h(x) =











1 if x < µ,
1
2 if x = µ,

0 if x > µ,

(3.5)

where µ is such that a1 < µ < a2. Throughout this paper, we will consider a
single Hermitian, banded matrix H ∈ C

n×n with spectrum contained in [b1, a1]∪
[a2, b2] and its projector P = h(H), but keeping in mind that in the applications
it is an element of a matrix sequence satisfying the two properties above.

Since the Heaviside function is discontinuous over the interval [b1, b2], the
quantity Ek(h, [b1, b2]) does not converge to 0, so we cannot use directly Lemma
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2.1 to obtain decay bounds for P . As a first approach, in [5] it is considered the
approximation of h(x) over the spectrum of H with the Fermi-Dirac function

fFD(x) =
1

1 + eβ(x−µ)
,

that is analytic over a family of ellipses containing [b1, b2], so the entries of
fFD(H) decay exponentially [5, 6]. Usually, a large value of β is required to
have a good approximation, and this leads to pessimistic decay bounds.

Since the spectral projector of H depends only on the eigenvectors associated
with the first ne eigenvalues, a scaled and shifted modification such as

H̃ = cH + d I, c > 0, d ∈ R,

has the same spectral projector. This allows us to make convenient assumptions
on the spectrum. For instance, if d = −(a2+a1)/2 then σ(Ĥ) ⊂ [b̂1,−a]∪[a, b̂2],
with a = (a2 − a1)/2, so we can choose µ = 0 in (3.5). Then, by putting

b = max{b̂2,−b̂1}, we have σ(Ĥ) ⊂ [−b,−a] ∪ [a, b]. When dealing with a
sequence of matrices, the transformation must be the same for all the matrices.
This can be done under the assumptions above.

Another approach, which turns out to be better than the one based on
the Fermi-Dirac approximation, consists in estimating directly the error of the
polynomial approximation of the Heaviside function over [−b,−a] ∪ [a, b]. If
µ = 0, then the identity h(x) = (1− sign(x))/2 holds, where

sign(x) =











−1 if x < 0,

0 if x = 0,

1 if x > 0.

Moreover, sign(x) = x/|x| = x/(x2)
1

2 for any x 6= 0. The main idea is to

consider a polynomial Qk(x) ∈ Πk which approximates x− 1

2 over [a2, b2], and
then construct P2k+1(x) =

1
2 (1 − xQk(x

2)) to approximate h(x). This leads to
the following result [5].

Theorem 3.4. Let H be Hermitian and m-banded with σ(H) ⊂ [−b,−a] ∪
[a, b], and let P = h(H) be the spectral projector associated with the negative
eigenvalues of H. Then, for 1 < ξ < ξ̄ := b+a

b−a , we have

|[P ]ij | ≤
2bξM(ξ)

ξ − 1

(

1

ξ

)

|i−j|
2m

for all i, j, (3.6)

where

M(ξ) =
1√
z0

, z0 =

[

b2 + a2

b2 − a2
− ξ2 + 1

2ξ

]

b2 − a2

2
.

Remark 3.1. Theorem 3.4 gives us a parametrized family of bounds and not
a single one like in (3.3) for the inverse. For values of ξ near to ξ̄, the constant
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factor in (3.6) blows up and the bound becomes unusable. What can be done is
to optimize for any i, j the right-hand side in (3.6) among all the possible values
of ξ, so one obtains

|[P ]ij | ≤ inf
1<ξ<ξ̄





2bξM(ξ)

ξ − 1

(

1

ξ

)

|i−j|
2m



 . (3.7)

Remark 3.2. Other features of the spectral projector follow from the fact that
P = P 2. An important consequence of this identity is that |[P ]ij | ≤ 1 for any
i, j. This means that any bound for the entries of P is useless unless it is less
than 1 too.

4 New decay bounds for spectral projectors

In this section we establish new decay bounds for the spectral projector P =
h(H), where H is banded, Hermitian and with spectrum contained in the union
of two symmetric intervals and h(x) is the Heaviside function defined as in (3.5)
with µ = 0. For this purpose, since the identity h(x) = 1

2 (1− sign(x)) holds, it
is equivalent to study the decay properties of sign(H) instead of P . Numerical
validation of the results is given at the end of this section with some experiments.

4.1 Exploiting an integral representation of the sign func-

tion

Let H ∈ Cn×n be Hermitian and banded with σ(H) ⊂ [−b,−a] ∪ [a, b], where
0 < a < b. Consider the representation for sign(x) [21]

sign(x) =
2

π

∫ ∞

0

x

x2 + t2
dt,

which leads to

sign(H) =
2

π

∫ ∞

0

H(H2 + t2I)−1 dt. (4.1)

The integral (4.1) is well defined componentwise since

|[H(H2 + t2I)−1]ij | ≤ ‖H(H2 + t2I)−1‖2 ≤ b

a2 + t2

and the right-hand side is integrable. From (4.1), one can bound the entries of
sign(H) as follows:

|[sign(H)]ij | ≤
∫ ∞

0

|[H(H2 + t2I)−1]ij | dt. (4.2)

Let ft(x) = x(x2 + t2)−1, so we have ft(H) = H(H2 + t2I)−1. Notice that
ft(x) = xgt(x

2) where gt(x) = (x + t2)−1. In order to bound the entries of
ft(H) we can use the following results.
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Lemma 4.1. Let f(x) = xg(x2) be defined for x ∈ [−b,−a]∪ [a, b], where g(x)
is continuous over [a2, b2]. Suppose that

Ek(g, [a
2, b2]) ≤ Cqk, for all k ≥ 0,

where C > 0, 0 < q < 1 are independent of k. Then, for any k ≥ 1,

Ek(f, [−b,−a] ∪ [a, b]) ≤ b · Cq
k−1

2 for k odd, (4.3)

Ek(f, [−b,−a] ∪ [a, b]) ≤ b · Cq
k−2

2 for k even.

In particular:

Ek(f, [−b,−a] ∪ [a, b]) ≤ b · Cq⌊ k−1

2 ⌋ ≤ b · Cq
k−2

2 for all k ≥ 0. (4.4)

Proof. Suppose that k is odd, so k = 2s+ 1 with s ≥ 0. Since g is continuous,
there exists Qs ∈ Πs such that

Es(g, [a
2, b2]) = max

x∈[a2,b2]
|g(x)−Qs(x)|.

Let Pk(x) := xQs(x
2). Since Pk ∈ Πk we have

Ek(f, [−b,−a] ∪ [a, b]) ≤ max
x∈[−b,−a]∪[a,b]

|f(x)− Pk(x)|

= max
x∈[−b,−a]∪[a,b]

|x
(

g(x2)−Qs(x
2)
)

|

≤ b max
x∈[a2,b2]

|g(x)−Qs(x)|

= bEs(g, [a
2, b2])

≤ bCqs = bCq
k−1

2 .

If k is even, then k − 1 is odd and we can use the inequality

Ek(f, [−b,−a] ∪ [a, b]) ≤ Ek−1(f, [−b,−a] ∪ [a, b]) ≤ bCq
k−2

2 .

From these two inequalities and
⌊

k−1
2

⌋

≥ k−2
2 we obtain (4.4).

Now we can combine Lemma 4.1 and Lemma 2.1 in order to obtain bounds
for the entries of H(t2I +H2)−1.

Lemma 4.2. Let H ∈ Cn×n be Hermitian and m-banded with σ(H) ⊂ [−b,−a]∪
[a, b]. For any t ≥ 0, let

r(t) =
b2 + t2

a2 + t2
, C(t) =

(1 +
√

r(t))2

2(b2 + t2)
, q(t) =

√

r(t) − 1
√

r(t) + 1
. (4.5)

Then

|[H(H2 + t2)−1]ij | ≤ bC(t)q(t)
|i−j|
2m

− 1

2 for i 6= j. (4.6)
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Proof. Consider the identity ft(x) = xgt(x
2) with gt(x) = (x + t2)−1. Since

Ek((x+ t2)−1, [a2, b2]) = Ek(x
−1, [a2 + t2, b2 + t2]), from (3.2) we have

Ek(gt, [a
2, b2]) = C(t)q(t)k+1 = C(t)q(t) · q(t)k,

for all k. Therefore, by applying Lemma 4.1,

Ek(ft, [−b,−a] ∪ [a, b]) ≤ bC(t)q(t)q(t)
k−2

2 = bC(t)q(t)
k
2 .

Since i 6= j and H is m-banded, from Lemma 2.1 we obtain that

|[ft(H)]ij | ≤ bC(t)q(t)
|i−j|
2m

− 1

2 .

This concludes the proof.

Now we can bound the entries of sign(H).

Theorem 4.3. Let H be Hermitian and m-banded with σ(H) ⊂ [−b,−a]∪[a, b].
Let C(t), q(t) be defined as in (4.5). Then, for |i− j| ≥ m,

|[sign(H)]ij | ≤
2b

π

∫ ∞

0

C(t)q(t)
|i−j|
2m

− 1

2 dt, (4.7)

and

|[sign(H)]ij | ≤ Ĉq̂
|i−j|
2m

− 1

2 , (4.8)

where

Ĉ =
1

2

(

1 +

√

b

a

)2

, q̂ = q(0) =
b− a

b+ a
.

Proof. The inequality (4.7) follows directly from (4.2) and Lemma 4.2. For
(4.8), it holds that

2b

π

∫ ∞

0

C(t)q(t)
|i−j|
2m

− 1

2 dt ≤
(

2b

π

∫ ∞

0

C(t)dt

)

q(0)
|i−j|
2m

− 1

2 .

In order to estimate the integral, we can expand C(t) in the integral as follows:

∫ ∞

0

C(t)dt =

∫ ∞

0

(1 +
√

r(t))2

2(b2 + t2)
dt

=
1

2

(

∫ ∞

0

1

b2 + t2
dt+

∫ ∞

0

1

a2 + t2
dt+ 2

∫ ∞

0

1
√

(b2 + t2)(a2 + t2)
dt

)

,

where r(t) is given in (4.5). The first two integrals can be explicitly computed:

∫ ∞

0

1

b2 + t2
dt =

π

2b
,

∫ ∞

0

1

a2 + t2
dt =

π

2a
.
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The third can be bounded by using the Cauchy-Schwarz inequality:

∫ ∞

0

1
√

(b2 + t2)(a2 + t2)
dt ≤

(
∫ ∞

0

1

b2 + t2
dt

)
1

2

·
(
∫ ∞

0

1

a2 + t2
dt

)
1

2

=
π

2
√
ab

.

Therefore

2b

π

∫ ∞

0

C(t)dt ≤ 1

2

(

1 +
b

a
+ 2

√

b

a

)

=
1

2

(

1 +

√

b

a

)2

. (4.9)

This concludes the proof.

By exploiting the relation between the spectral projector and the matrix
sign, we obtain the following result.

Theorem 4.4. Let H ∈ Cn×n be as in Theorem 4.3, and let P = 1
2 (I−sign(H))

be the spectral projector associated with the negative eigenvalues of H. Then

|[P ]ij | ≤ Ĉq̂
|i−j|
2m

− 1

2 , (4.10)

where

Ĉ =
1

4

(

1 +

√

b

a

)2

, q̂ =
b− a

b+ a
.

Proof. If |i− j| ≥ m, the inequality follows directly from Theorem 4.3 and the
identity |[P ]ij | = |[sign(H)]ij |/2. For |i − j| < m, note that |[P ]ij | ≤ 1 for all
i, j [5] and the right hand side of (4.10) is greater than 1.

Remark 4.1. This result improves the bound in (3.4) since all the geometric
rates are smaller than the one in (4.10). Moreover, one doesn’t need to choose
the better estimate among a family of bounds.

4.2 An asymptotically optimal bound

Although the bound given in Theorem (4.3) behaves well in practice, it is not
optimal from an asymptotic point of view. Hasson showed in [20] that there
exists C > 0 such that

Ek(sign(x), [−b,−a] ∪ [a, b]) ≤ C√
k

(

b− a

b+ a

)
k
2

. (4.11)

By Lemma 2.1, this leads to

|[sign(H)]ij | ≤
C

√

|i−j|
m − 1

(

b− a

b+ a

)

|i−j|
2m

− 1

2

, (4.12)
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that is asymptotically faster than the bound in (4.10). This is actually the best
result we can obtain by using polynomial approximations of the sign function,
since

√
k

(

b+ a

b− a

)
k
2

· Ek(sign(x), [−b,−a] ∪ [a, b]) = O(1) as k → ∞.

See [13] for more details. Here the disadvantage is that is not possible to compute
or estimate the constant C. We will obtain, by manipulating the integral in
(4.7), a decay that is asymptotically equivalent to (4.12) but with computable
parameters.

In order to obtain better bounds we start with the inequality (4.7). In the
proof of Theorem 4.3, a key argument is the inequality

q(t)
|i−j|
2m

− 1

2 ≤ q(0)
|i−j|
2m

− 1

2 for any t ≥ 0. (4.13)

The next result gives us a better estimate of the left-hand side in (4.13).

Lemma 4.5. Let q(t) be defined as in (4.5) and let α > 0 be real. Then

q(t)α ≤ e−αt2(C1−t2C2)q(0)α for all t ≥ 0,

where

C1 =
1

2ab
, C2 =

a2 + ab+ b2

8a3b3
.

Moreover, for any fixed τ such that 0 < τ <
√

C1

C2

, we have

q(t)α ≤ e−αt2(C1−τ2C2)q(0)α for any 0 ≤ t ≤ τ. (4.14)

Proof. Let t ≥ 0 be fixed. We have

q(t)α =

(√
b2 + t2 −

√
a2 + t2√

b2 + t2 +
√
a2 + t2

)α

≤
(

1

b+ a

)α

·
(

√

b2 + t2 −
√

a2 + t2
)α

,

so

q(t)α

q(0)α
≤
(√

b2 + t2 −
√
a2 + t2

)α

(b− a)
α . (4.15)

Consider the function s(x) =
√
b2 + x−

√
a2 + x, and its Taylor expansion with

Lagrange remainder centered in 0:

s(x) = b− a− 1

2

b− a

ab
x+

1

6
s′′(ξ)x2, 0 ≤ ξ ≤ x.

12



Since

s′′(ξ) =
3

4

(

1

(a2 + ξ)3/2
− 1

(b2 + ξ)3/2

)

≤ 3

4

(

1

a3
− 1

b3

)

=
3

4

(b − a)(a2 + ab+ b2)

a3b3
,

we have

s(x) ≤ (b − a)

[

1− 1

2ab
x+

1

8

a2 + ab+ b2

a3b3
x2

]

= (b − a)(1− C1x+ C2x
2).

Since the numerator in (4.15) is s(t2)α, we have

q(t)α

q(0)α
≤ (1− C1t

2 + C2t
4)α

= eα log(1−C1t
2+C2t

4)

≤ eα(−C1t
2+C2t

4) = e−αt2(C1−C2t
2),

where for the last inequality we have used that log(x) ≤ x− 1 for all x > 0.
For (4.14), observe that if 0 ≤ t ≤ τ then C1 − t2C2 achieves its minimum

in τ , so C1 − t2C2 ≥ C1 − τ2C2 for 0 ≤ t ≤ τ . This concludes the proof.

Remark 4.2. The inequality (4.14) is uniform in t as long as 0 ≤ t ≤ τ .

Moreover, for τ <
√

C1

C2
, we have that C1 − τ2C2 > 0. This means that q(t)α is

bounded by q(0)α times a Gaussian factor.

Now we can proceed with the estimate for the entries of sign(H).

Theorem 4.6. Let H ∈ Cn×n be Hermitian and m-banded with σ(H) ⊂
[−b,−a] ∪ [a, b]. Let C1 = 1

2ab , C2 = a2+ab+b2

8a3b3 and 0 < τ < τ̄ :=
√

C1

C2

. Then

|[sign(H)]ij | ≤
K1(τ)

√

|i−j|
m − 1

q(0)
|i−j|
2m

− 1

2 +K2q(τ)
|i−j|
2m

− 1

2 ,

where q(t) is defined as in (4.5) and

K1(τ) =

√

2

π

(

1 +
b

a

)2

· 1√
C1 − τ2C2

,

K2 =
1

2

(

1 +

√

b

a

)
1

2

.
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Proof. Let α := |i−j|
2m − 1

2 . From the hypothesis |i − j| ≥ m we have α ≥ 0.
From Theorem 4.3, we have

|[sign(H)]ij | ≤
2b

π

∫ ∞

0

C(t)q(t)α dt. (4.16)

Then we split the integral in two terms as follows:
∫ ∞

0

C(t)q(t)α dt =

∫ τ

0

C(t)q(t)α dt+

∫ ∞

τ

C(t)q(t)α dt.

The first term can be bounded by using Lemma 4.5, as t ranges from 0 to τ ,
and the inequality C(t) ≤ C(0):

2b

π

∫ τ

0

C(t)q(t)α dt ≤ 2b

π
C(0)

∫ τ

0

q(t)α dt

≤ 2b

π
C(0)q(0)α

∫ τ

0

e−α(C1−τ2C2)t
2

dt

≤ 2b

π
C(0)q(0)α

∫ ∞

0

e−α(C1−τ2C2)t
2

dt

=
b

π
C(0)q(0)α ·

√

π

α(C1 − τ2C2)

=
1√
π

(

1 +
b

a

)2
1√

C1 − τ2C2

1
√

|i−j|
2m − 1

2

q(0)α,

where we have used that
∫∞
0 e−σx2

dx =
√
π

2
√
σ

for any σ > 0.

For the second term:

2b

π

∫ ∞

τ

C(t)q(t)α dt ≤ 2b

π

∫ ∞

0

C(t)dt · q(τ)α

≤ 1

2

(

1 +

√

b

a

)2

q(τ)α,

where we have used (4.9). Combining these two inequalities with (4.16), we
conclude.

Theorem 4.7. Let H ∈ Cn×n be as in Theorem 4.6 and let P = (I−sign(H))/2
be the spectral projector associated with the negative eigenvalues of H. Then

|Pij | ≤
1

2





K1(τ)
√

|i−j|
m − 1

q(0)
|i−j|
2m

− 1

2 +K2q(τ)
|i−j|
2m

− 1

2



 , (4.17)

where all the parameters are defined as in Theorem 4.6.

Remark 4.3. Since q(τ) < q(0) for any τ > 0, the second term in (4.17) decays
faster than the first. Hence, the asymptotic behaviour of this bound is equal to
the one in (4.12), but with computable parameters. This new bound depends
on the choice of τ , that ranges between 0 and τ̄ . As in 3.4, we have a whole
family of bounds which can be optimized among the admissible values of τ .
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4.3 Comparison of existing bounds

For the next experiments we will assume that σ(H) ⊂ [−1,−a]∪ [a, 1], so b = 1.
This is not restrictive, since we can scale and shift the matrix in order to satisfy
the condition.

Since any bound for a generic entry [P ]ij of the spectral projector depends
only on the value |i− j|, in order to study the exact decay of P we can consider
the quantities

DP (k) := max
|i−j|=k

|[P ]ij |, for any k ≥ 0.

Let us denote the bounds for DP (k) induced by (3.7), (4.10) and (4.17) for
|i − j| = k as B1(k), B2(k) and B3(k), respectively. The third is optimized
among the admissible values of τ as described in Remark 4.3. The components
of P satisfy |Pij | ≤ 1 for all i, j, so it is convenient to use the following bound:

DP (k) ≤ min{1, Bs(k)},

for any s = 1, 2, 3.
For the tests we have constructed Hermitian matrices with prescribed size,

bandwidth and spectrum in the following way:

• A unitary matrix Q ∈ Cn×n is taken as the Q factor of the QR factorization
of a random matrix with prescribed size.

• A symmetric, dense matrix is computed as QΛQ∗, where Λ is diagonal
with the prescribed eigenvalues.

• On QΛQ∗ we have used similarity transformations with Householder ma-
trices as in [19, Section 7.4.3] in order to obtain a matrix with prescribed
bandwidth.

With this technique, we have constructed a 2000 × 2000 Hermitian matrix
H which is 20-banded and such that σ(H) ⊂ [−1,−0.3] ∪ [0.3, 1]. In Figure 1
the exact decay is compared with the bounds. We can see that the decay rate
seems to be captured by all the bounds, although B3(k) < B2(k) < B1(k) for
all k.

The bounds can be used to truncate the projector to a banded matrix with
a small error. Let us see how the bounds behave in order to truncate P to
P (m) where m is chosen in order to have [P (m)]ij = 0 for |Pij | ≤ ε for a fixed
threshold ε. Let us define

mi(ε) = min{k̄ : Bi(k) ≤ ε for k ≥ k̄}, i = 1, 2, 3,

mP (ε) = min{k̄ : DP (k) ≤ ε for k ≥ k̄}.

The value mi(ε) is the first for which the bound Bi becomes definitively smaller
than a threshold ε, and mP (ε) does the same with Dp. The values of mi(ε),
i = 1, 2, 3, and mP (ε) associated with the previous example are displayed in

15
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a = 0.3, m = 20

Figure 1: Logarithmic plot of the bounds compared with the exact decay for the
spectral projector associated with the negative eigenvalues of a 20-banded, 2000×2000
Hermitian matrix with uniformly distributed eigenvalues in [−1,−0.3] ∪ [0.3, 1].

Table 1. We note that m3(ε) provides the best estimate in all cases. Once again,
it should be emphasized that for a given accuracy ε, the estimated bandwidth
is independent of n. We can also notice that the exact decay has an oscillatory
behaviour with period equal to the original bandwidth m. This is reflected in
the fact that mP (ε) is always a multiple of m.

ε = 1e− 1 ε = 1e− 2 ε = 1e− 3 ε = 1e− 4 ε = 1e− 5
m1(ε) 419 577 733 887 1041
m2(ε) 270 419 568 717 865
m3(ε) 218 347 483 623 764
mP (ε) 60 180 300 420 540

Table 1

4.4 Other approaches

Our approach strongly relies on the fact that σ(H) is contained in the union
of two symmetric intervals. Although this hypothesis is always satisfied by
choosing suitable values of a and b, the bound does not behave like the real
decay when b (or −b) is not close to the maximum (resp., minimum) eigenvalue.
If σ(H) ⊂ [−b1,−a]∪ [a, b2] with b1 6= b2, it would be preferable to consider this
domain instead of [−b,−a] ∪ [a, b] with b = max{b1, b2}.

It is shown [14, 18] that there exist positive constants C1, C2 and η such that

C1k
− 1

2 e−ηk ≤ Ek(sign(x), [−b1,−a] ∪ [a, b2]) ≤ C2k
− 1

2 e−ηk. (4.18)
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The rate η is computable and given by

η =

∫ K

−1

K − x
√

(1− x2)(x + b1/a)(x− b2/a)
dx,

where

K =

∫ 1

−1
x((1 − x2)(x+ b1/a)(x− b2/a))

−1/2 dx
∫ 1

−1((1 − x2)(x + b1/a)(x− b2/a))−1/2 dx
.

However, the arguments in [18] do not give the values of C1 and C2, so they are
unknown.

As an example, we constructed a 300×300, 20-banded, Hermitian matrix H
such that σ(H) ⊂ [−0.5,−0.1]∪ [0.1, 1]. In Figure 2 the real decay is compared
with the asymptotic rate in (4.18) and the rate in (4.12), that is asymptotically
equivalent to the bound (4.17). All the constant factors are put to 1 to compare
only the asymptotic behaviour.

0 50 100 150 200 250 300

10-15

10-10

10-5

100

Figure 2: Logarithmic plot of the decay rates (4.18) and (4.12) compared with the exact
decay of the spectral projector associated with the negative eigenvalues of a 300 × 300
tridiagonal matrix with spectrum in [−0.5,−0.1] ∪ [0.1, 1].

5 Bounds that take into account the eigenvalue

distribution

In this section we will give bounds for the entries of spectral projectors which
take account of more spectral information than the previous techniques.

First, we study the case of the matrix inverse. The result of Theorem 3.3
can be refined by directly working on the best polynomial approximation.
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Theorem 5.1. Let A ∈ Cn×n be Hermitian positive definite and m-banded
with distinct eigenvalues λ1 < λ2 < · · · < λν , with ν ≤ n. For ℓ < ν define
σℓ(H) = {λ1, . . . , λν−ℓ} and

rℓ =
λν−ℓ

λ1
, qℓ =

√
rℓ − 1√
rℓ + 1

, Cℓ =

(

1 +
√
rℓ
)2

2λν−ℓ
.

Then

Ek(1/x, σ(A)) ≤ Ek−ℓ(1/x, σℓ(H)) ≤ Cℓq
k+1−ℓ
ℓ , (5.1)

for all k and ℓ = 0, . . . , k. Moreover, we have that

|[A−1]ij | ≤ Cℓq
|i−j|
m

−ℓ

ℓ , (5.2)

for |i− j| > m and ℓ = 0, 1, . . . ,
⌊

|i−j|
m

⌋

.

Proof. Let Qk−ℓ be a polynomial of degree k − ℓ. Define

Rℓ(x) =

ν
∏

i=ν−ℓ+1

(

1− x

λi

)

and let

Pk(x) =
1

x
(1−Rℓ(x)) +Rℓ(x)Qk−ℓ(x). (5.3)

Since Rℓ(0) = 1, we have that 1 − Rℓ(x) is a multiple of x so the first term
in (5.3) is a polynomial of degree ℓ − 1. Then Pk(x) has degree k. From the
identity

1

x
− Pk(x) = Rℓ(x)

(

1

x
−Qk−ℓ(x)

)

and by using that Rℓ(λi) = 0 for i = n − ℓ + 1, . . . , n and |Rℓ(x)| ≤ 1 for any
x ∈ σℓ(H), we have

Ek(1/x, σ(A)) ≤ max
x∈σ(A)

∣

∣

∣

∣

1

x
− Pk(x)

∣

∣

∣

∣

= max
x∈σ(A)

[

|Rℓ(x)| ·
∣

∣

∣

∣

1

x
−Qk−ℓ(x)

∣

∣

∣

∣

]

≤ max
x∈σℓ(A)

∣

∣

∣

∣

1

x
−Qk−ℓ(x)

∣

∣

∣

∣

.

Since the inequality holds for any Qk−ℓ(x) ∈ Πk−ℓ and by using Theorem 3.1,
we have that

Ek(1/x, σ(H)) ≤ Ek(1/x, σℓ(A)) ≤ Ek(1/x, [a, λν−ℓ])

= Cℓq
k+1−ℓ
ℓ ,

so (5.1) holds. For (5.2) it is sufficient to apply Lemma 2.1.

Remark 5.1. With Theorem 5.1 we have refined the result of Theorem 3.3,
since Cℓ ≤ 2/λ1 for any ℓ. This is not a big improvement since Cℓ increases with
ℓ and the values of these two constants do not differ much in practice. Moreover,
in Theorem 3.3 no attention is given to the case of multiple eigenvalues.
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5.1 Sign function and spectral projector

As in Section 4.1, we study the matrix sign by using the integral representation
(4.1), so we can reduce the problem to analyzing the entries of H(H2 + t2I)−1.

We want to extend the results valid for the inverse function concerning the
decay with respect to the effective condition number to the case of spectral pro-
jectors. As in section 4, we consider a banded, Hermitian matrix with spectrum
contained in two symmetric intervals and study its matrix sign. In the spirit of
Theorem 3.3, we can bound the entries of H(H2 + t2I)−1 using the following
result.

Lemma 5.2. Let H ∈ Cn×n be Hermitian and m-banded with σ(H) ⊂ [−b,−a]∪
[a, b]. Let a = µ1 < µ2 < · · · < µν = b, with ν ≤ n, be the distinct values of |λ|
for λ ∈ σ(H), and let bℓ = µν−ℓ. For any t ≥ 0 let

rℓ(t) =
b2ℓ + t2

a2 + t2
, Cℓ(t) =

(1 +
√

rℓ(t))
2

2(b2ℓ + t2)
, qℓ(t) =

√

rℓ(t)− 1
√

rℓ(t) + 1
.

Then

|[H(H2 + t2I)−1]ij | ≤ bℓCℓ(t)qℓ(t)
|i−j|
2m

− 1

2
−ℓ, (5.4)

for any ℓ = 0, 1, . . . ,
⌊

|i−j|
2m − 1

2

⌋

.

Proof. From the definition of µi, we have σ(H2 + t2I) = {µ2
1 + t2, . . . , µ2

ν + t2}.
Moreover, in the same notation of Theorem 5.1, we have that σℓ(H) = {µ2

1 +
t2, . . . , µ2

ν−ℓ + t2}. Consider the function 1/x defined over σ(H2 + t2I). By
proceeding as in Theorem 5.1, we can construct Pk(x) ∈ Πk such that

1

x
− Pk(x) = Rℓ(x)

(

1

x
−Qk−ℓ(x)

)

, (5.5)

where Rℓ(x) ∈ Πℓ satisfies |Rℓ(µ
2
i +t2)| < 1 for i = 1, . . . , n−ℓ and Rℓ(µ

2
i +t2) =

0 for i = ν− ℓ+1, . . . , ν, and Qk−ℓ(x) ∈ Πk−ℓ is the polynomial of best uniform
approximation for 1/x over the interval [µ2

1 + t2, µ2
ν−ℓ + t2]. Then

max
x∈σ(H2+t2I)

∣

∣

∣

∣

1

x
− Pk(x)

∣

∣

∣

∣

≤ max
x∈σℓ(H2+t2I)

∣

∣

∣

∣

1

x
−Qk−ℓ(x)

∣

∣

∣

∣

≤ Cℓ(t)qℓ(t)
k+1−ℓ.

In order to approximate ft(x) over σ(H), consider S2k+1(x) := xPk(x
2 + t2) ∈

Π2k+1. In view of (5.5), we have

ft(x) − S2k+1(x) = x

(

1

x2 + t2
− Pk(x

2 + t2)

)

= xRℓ(x
2 + t2)

(

1

x2 + t2
−Qk−ℓ(x

2 + t2)

)

.
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Therefore,

E2k+1(ft, σ(H)) ≤ max
x∈σ(H)

|ft(x) − S2k+1(x)|

= max
x∈σ(H)

(

|x| · |Rℓ(x
2 + t2)| ·

∣

∣

∣

∣

1

x2 + t2
−Qk−ℓ(x

2 + t2)

∣

∣

∣

∣

)

≤ max
x∈{µ1,...,µν−ℓ}

(

|x| ·
∣

∣

∣

∣

1

x2 + t2
−Qk−ℓ(x

2 + t2)

∣

∣

∣

∣

)

≤ bℓ · max
x∈{µ1,...,µν−ℓ}

∣

∣

∣

∣

1

x2 + t2
−Qk−ℓ(x

2 + t2)

∣

∣

∣

∣

≤ bℓCℓ(t) qℓ(t)
k+1−ℓ.

By proceeding as in Lemma 4.1, we obtain that

Ek(ft(x), σ(H)) ≤ bℓCℓ(t) qℓ(t)
k
2
−ℓ.

Then, by applying Lemma 2.1 we conclude that (5.4) holds.

Now we can state the analogue of Theorem 4.3.

Theorem 5.3. Under the same hypotheses of Lemma 5.2, we have that

|[sign(H)]ij | ≤ Ĉℓq̂
|i−j|
2m

− 1

2
−ℓ

ℓ ,

where

q̂ℓ = qℓ(0) =
bℓ − a

bℓ + a
, Ĉℓ =

1

2

(

1 +

√

bℓ
a

)2

.

Proof. By applying (4.2) and Lemma 5.2, we have

|[sign(H)]ij | ≤
2

π

∫ ∞

0

Cℓ(t)qℓ(t)
|i−j|
2m

− 1

2
−ℓ dt

≤
(

2

π

∫ ∞

0

bℓCℓ(t)dt

)

qℓ(0)
|i−j|
2m

− 1

2
−ℓ.

By proceeding as in Theorem 4.3, we obtain the desired bound.

Theorem 5.4. Let H ∈ Cn×n be as in Theorem 5.3, and let P = 1
2 (I−sign(H))

be the spectral projector. Then

|[Pij ]| ≤ Ĉℓq̂
|i−j|
2m

− 1

2
−ℓ

ℓ . (5.6)

where

Ĉℓ =
1

4

(

1 +

√

bℓ
a

)2

, q̂ℓ =
bℓ − a

bℓ + a
.
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Theorem 5.4 gives us a family of bounds parametrized by ℓ. Hence, for fixed
i, j, the corresponding entry of the projector is bounded by

|[Pij ]| ≤ min
ℓ=0,...,⌊ |i−j|

2m
− 1

2⌋
Ĉℓq̂

|i−j|
2m

− 1

2
−ℓ

ℓ . (5.7)

Depending on the eigenvalue distribution of H , this can predict a much faster
decay than the results of Section 4. For instance, increasing ℓ gives a smaller
geometric rate q̂ℓ but also a smaller exponent. If some of the eigenvalues that are
largest in magnitude are isolated, qℓ becomes much smaller even for moderate
values of ℓ. In case of a cluster of eigenvalues near the spectral gap, we can
also predict a superexponential decay. We will see some examples in the next
section.

In all the results in this section, a special attention is given to the case where
the absolute value |λ| of an eigenvalue λ ∈ σ(H) appears more than once. In
practice, it is usual to have isolated eigenvalues with largest absolute value that
have an high multiplicity. See [5].

5.2 Numerical experiments

Here we see how the bound (5.6) works on some examples. The matrices are
generated with the method described in Section 4.3.

For the first example we consider a 2000 × 2000, 20-banded matrix H for
which −1 is an eigenvalue with multiplicity 10 and all the other eigenvalues
are uniformly distributed over [−0.5,−0.1] ∪ [0.1, 0.5]. In order to apply the
results of Section 4 we must consider the inclusion σ(H) ⊂ [−1,−0.1]∪ [0.1, 1].
However, if we apply Theorem 5.4 with ℓ = 1 we obtain b1 = 0.5 that leads to
a much faster bound, as we can see in Figure 3.

0 500 1000 1500 2000 2500 3000
10-15

10-10

10-5

100

Figure 3: Logarithmic plot of the bounds given by Theorem 5.4 applied with ℓ = 0, 1
compared with the exact decay of the spectral projector associated with the negative
eigenvalues of a 20-banded, 3000 × 3000 Hermitian matrix with spectrum contained in
{−1} ∪ [−0.5,−0.1] ∪ [0.1, 0.5].

21



Now we show that Theorem 5.4 can predict a superexponential decay be-
haviour if the eigenvalues are clustered near the spectral gap. We first consider
the case where the spectrum is symmetric with respect to the origin, so, in the
notation of Lemma 5.2, any µi corresponds to two eigenvalues, one positive and
one negative. More precisely, we consider a 300 × 300, tridiagonal matrix H
with eigenvalues

λ
(j)
i = (−1)j

[

1 + 0.9

(

1− i− 1

299
− 2

√

1− i− 1

299

)]

∈ [−1,−0.1]∪ [0.1, 1],

for i = 1, . . . , 150 and j = 0, 1. In the notation of Lemma 5.2 we have that

ν = 150 and µi = λ
(0)
i = |λ(1)

i | for i = 1, . . . , 150. In Figure 4 the decay of
the spectral projector is compared with the bounds given by Theorem 5.4 for
ℓ = 0, . . . , 50, and with a bound that is optimized among the values of ℓ. We
see that the behaviour is captured and that the optimized bound differs from
the exact decay by a few orders of magnitude.
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Figure 4: Left: Plot of the spectrum of H. Note that it is symmetric with respect to
the origin and that the cluster near the spectral gap. Right: Exact decay of the projector
compared with the bounds (5.6) for ℓ = 0, 1, . . . , 50. The dotted line, which corresponds
to ℓ = 0, is the bound (4.10). The dashed line corresponds to the best bound among the
values of ℓ.

The situation is different if the eigenvalues are not symmetric. For instance,
consider a 300× 300, tridiagonal, Hermitian matrix H with eigenvalues

λi = (−1)i

[

1 + 0.9

(

1− i− 1

299
− 2

√

1− i− 1

299

)]

∈ [−1,−0.1] ∪ [0.1, 1],

for i = 1, . . . , 300.
For this case, the comparison is shown in Figure 5. We can see that the

optimized bound has a superexponential decay but does not capture the exact
behaviour.
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Figure 5: Left: Plot of the spectrum of H. In this case no symmetry is present but
we still have the cluster near the spectral gap. Right: Exact decay of the projector
compared with the bounds (5.6) for ℓ = 0, 1, . . . , 50.

6 Conclusions

We have developed new computable bounds for the entries of spectral projectors
which improve and refine the existing ones. The first one has the advantage to
be a single bound and not a parametrized family and describes well the decay
rate. The second one is asymptotically optimal in the sense of polynomial
approximation, although it is not as easy to compute as the first one.

We have also shown that, like for the matrix inverse, the decay properties
of the projector are connected to the full spectral information. As a result, we
are able to predict superexponential decay behaviour in the presence of isolated
eigenvalues at the extremes of the spectrum.
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