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Abstract. The cognitive constraints that humans exhibit in their social
interactions have been extensively studied by anthropologists, who have
highlighted their regularities across different types of social networks.
We postulate that similar regularities can be found in other cognitive
processes, such as those involving language production. In order to provide
preliminary evidence for this claim, we analyse a dataset containing tweets
of a heterogeneous group of Twitter users (regular users and professional
writers). Leveraging a methodology similar to the one used to uncover
the well-established social cognitive constraints, we find that a concentric
layered structure (which we call ego network of words, in analogy to the
ego network of social relationships) very well captures how individuals
organise the words they use. The size of the layers in this structure
regularly grows (approximately 2-3 times with respect to the previous
one) when moving outwards, and the two penultimate external layers
consistently account for approximately 60% and 30% of the used words
(the outermost layer contains 100% of the words), irrespective of the
number of the total number of layers of the user.
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1 Introduction
Language production relies on many cognitive processes that unfold at every
sequential step of word retrieval, essentially during the selection of the lexical ele-
ment that will symbolize the concept that has to be expressed in the sentence [19].
The brain has acquired strategies to process efficiently the mental lexicon that
contains a large number of words (e.g., for retrieving a single word among 40K
others in less than 250ms). These strategies are executed unconsciously and they
take advantage of language properties such as word frequencies [4,23] (the brain
takes less time to retrieve words that are commonly used) to spend the least
amount of time and effort in this task. In this work, we are interested in finding
indirect traces of these cognitive processes in the written production. Specifically,
we aim at investigating, through a data-driven approach, whether a regular
structure can be found in the way people use words, as a “symptom” of cognitive
constraints in this mental process. We argue that words usage might present
similar properties to other mental processes which are known to be driven by
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Fig. 1: The ego network of social relationships. The red dot symbolizes the ego and
the blue dots the alters with whom the ego maintains an active social relationship.
The numbers correspond to the layers sizes.

cognitive constraints, specifically the way how humans allocate cognitive capacity
to maintaining social relationships.

The cognitive efforts that we allocate to socialization have been extensively
studied by anthropologists, and their findings [10] show that the social life of
humans is constrained, through time and cognitive capacity, to 150 meaningful
relationships per person (a limit that goes under the name of Dunbar’s number,
from the scientist who first postulated its existence). This limit is observable in
primates as well, where it is related to how many peers can be effectively groomed
by the animals to reinforce social bonds. In humans, these 150 social relationships
can be grouped into classes of different intimacy. Specifically, anthropologists
have found that the social relations around the average individual can be grouped
into at least 4 concentric layers [17,26], starting from the innermost one which
typically includes our closest family members. The typical sizes of these layers
are 5, 15, 50, 150. Many people also feature an additional layer, whose size
is around 1.5 people, included in the first layer, which comprises relationships
with extremely high social closeness [12]. This structure of social relationships,
illustrated in Figure 1, is typically referred to as ego network. A characteristic
fingerprint of these social circles is their scaling ratio (i.e. the ratio between the
sizes of consecutive layers), which has been found to be approximately around 3,
regardless of the specific social network considered. Interestingly, both real-life and
online social networks follow this social organization [12,16,21,15]. The discovery
of this social structure (stratified in concentric layers) and its invariants (in terms
of number of layers and scaling ratio across different and heterogeneous social
networks) has represented a breakthrough moment in this research area. Many
subsequent studies have leveraged this aggregate representation through social
circles to better understand social-dependent human behaviour, such as how
humans trust each other [24] or how they share resources and information [1,2].

Building upon the above considerations, in this work we set out to investigate
the presence of an analogous structure and structural invariants in cognitive
processes beyond the well-established social ones. Indeed, socialization is just
one of the many cognitive processes that we entertain in our daily life. Thus, it
is reasonable to expect that similar limitations in our cognitive capacity yield
characteristic structural properties in other domains as well. Here, we focus on the
cognitive process associated with language production, which, as described above,
is tightly related to our cognitive capacity. Moreover, language is intimately
linked to sociality, as there are hypotheses (that go under the name of social
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gossip theory of language evolution [11]) postulating that language has been
developed as a more efficient way for grooming social relationships: with vocal
grooming, we can reach more peers at the same time. We already had pieces of
evidence suggesting the existence of cognitive limits in language production. One
of the most prominent examples, which has been reported by G. Zipf [27] in 1932,
is the empirical observation that the frequency of words in a corpus is inversely
proportional to its position in the frequency table. It is also well-known that our
vocabulary size is limited: e.g., an average 20-year-old native speaker of American
English knows 42,000 words [6]. In this work, we try to go one step further and
investigate more complex structural properties, leveraging the approach used to
uncover cognitive constraints in the social domain. To the best of our knowledge,
this research perspective has never been tackled before in the related literature.
Please note that when we refer to the structural properties of language use, we
do not refer to grammar but to the language-agnostic way in which lemmas are
assigned a cognitive effort by their users.

An advantage of studying language production is that myriad textual datasets
are available online. In trying to find out which cognitive constraints affect the
production of language, our intuition is that the more spontaneous this production
is, the greater the time constraint, and the more visible the cognitive limit. We
argue that Twitter is a platform that facilitates a spontaneous writing style, much
more so than newspaper articles or speech transcripts (just to mention a few
other textual formats readily available online). For this reason, we choose Twitter
for this initial investigation of the cognitive constraints in language production,
leaving the analysis of other textual dataset as future work. We have collected a
diverse dataset of tweets for our analysis, including tweets from regular Twitter
users and professional writers (Section 2). Then, leveraging a methodology similar
to the one used to uncover social constraints, we study the structural properties
of language production on Twitter as a function of the individual word usage
frequency, and we provide preliminary evidence for a set of cognitive constraints
that naturally determine the way we communicate (Section 3). Specifically, our
main findings are the following:

– Similarly to the social case, we found that a regular concentric, layered
structure (which we call ego network of words in analogy to the ego networks
of the social domain) very well captures how an individual organizes their
cognitive effort in language production. Specifically, words can be typically
grouped in between 5 and 7 layers of decreasing usage frequency moving
outwards, regardless of the specific class of users (regular vs professional) and
of the specific time window considered.

– One structural invariant is observed for the size of the layers, which approxi-
mately doubles when moving from layer i to layer i + 1. The only exception
is the innermost layer, which tends to be approximately 5 five times smaller
than the next one. This suggests that the innermost layer, the one containing
the most used words, may be drastically different from the others.

– A second structural invariant emerges for the external layers. Users with
more clusters organise differently their innermost layers, without modifying
significantly the size of the most external ones. In fact, while the size of all
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layers beyond the first one linearly increases with the most external layer size,
the second-last and third-last layer consistently account for approximately
60% and 30% of the used words, irrespective of the number of clusters of the
user.

2 The dataset
The analysis is built upon four datasets extracted from Twitter, using the official
Search and Streaming APIs (note that the number of downloadable tweets is
limited to 3200 per user). Each of them is based on the tweets issued by users in
four distinct groups:

Journalists Extracted from a Twitter list containing New York Times journal-
ists1, created by the New York Times itself. It includes 678 accounts, whose
timelines have been downloaded on February 16th 2018.

Science writers Extracted from a Twitter list created by Jennifer Frazer2, a
science writer at Scientific American. The group is composed of 497 accounts
and has been downloaded on June 20th 2018.

Random users #1 This group has been collected by sampling among the
accounts that issued a tweet or a retweet in English with the hashtag #Mon-
dayMotivation (at the download time, on January 16th 2020). This hashtag
is chosen in order to obtain a diversified sample of users: it is broadly used
and does not refer to a specific event or a political issue. As the accounts are
not handpicked as in the two first groups, we need to make sure that they
represent real humans. The probability that an account is a bot is calculated
with the Botometer service [8], which is based not only on language-agnostic
features like the number of followers or the tweeting frequency, but also on
linguistic features such as grammatical tags, or the number of words in a
tweet [25]. The algorithm detects 29% of bot accounts, such that this dataset
is composed of 5183 users.

Random users #2 This group has been collected by sampling among the
accounts which issued a tweet or a retweet in English, from the United
Kingdom (we set up a filter based on the language and country), at download
time on February 11th 2020. 23% of the accounts are detected as bot, such
that this group contains 2733 accounts.

These groups are chosen to cover different types of users: the first two contain
accounts that use language professionally (journalists and science writers), the
other two contain regular users, which are expected to be more colloquial and
less controlled in their language use. Please note that we discard retweets with
no associated comments, as they do not include any text written by the target
user, and tweets written in a language other than English (since most of the
NLP tools needed for our analysis are optimised for the English language). In
our analysis, we only consider active Twitter accounts, which we define as an
account not abandoned by its user and that tweets regularly. Further details on
this preprocessing step are provided in Appendix A.1.

1 https://twitter.com/i/lists/54340435
2 https://twitter.com/i/lists/52528869

https://twitter.com/i/lists/54340435
https://twitter.com/i/lists/52528869
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Fig. 2: Number of selected timelines de-
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Fig. 3: Average number of tweets de-
pending on the observation window.

2.1 Extracting user timelines with the same observation period
The observed timeline size is only constrained by the number of tweets (limited
by API), thus the observation period varies according to the frequency with
which the account is tweeting: for very active users, the last 3200 tweets will only
cover a short time span. This raises the following problem: as random users are
generally more active, their observation period is shorter, and this may create a
significant sampling bias. In fact, the length of the observation period affects the
measured word usage frequencies discussed in Section 3.1 (specifically, we cannot
observe frequencies lower than the inverse of the observation period). In order
to guarantee a fair comparison across user categories and to be able to compare
users with different tweeting activities without introducing biases, we choose
to work on timelines with the same duration, by restricting to an observation
window T . To obtain timelines that have the same observation window T (in
years), we delete all those with a duration shorter than T and remove tweets
written more than T years ago from the remaining ones. Increasing T therefore
reduces the number of profiles we can keep (see Figure 2): for a T larger than
2 years, that number is divided by two, and for a T larger than 3 years, it falls
below 500 for all datasets. On the contrary, the average number of tweets per
timeline increases linearly with T (Figure 3). The choice of an observation window
will then result from a trade-off between a high number of timelines per dataset
and a large average number of tweets per timeline. To simplify the choice of T ,
we only select round numbers of years. We can read in Table 1 that, beyond
3 years, the number of users falls below 100 for some datasets. On the other
hand, the number of tweets for T = 1 year remains acceptable (> 500). We,
therefore, decided to carry on the analysis with T ∈ {1 year, 2 years, 3 years}.
Please note that random users have a higher frequency of tweeting than others.
This difference tends to smooth out when the observation period is longer (Table
1). This can be explained by the fact that the timelines with the highest tweet
frequency are excluded in that case because their observation period is too small.

2.2 Word extraction
Since the analysis has a focus on words and their frequency of use, we take
advantage of NLP techniques for extracting them. As first step, all the syntactic
marks that are specific to communication in online social networks (mentions
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Datasets
Number of users Avg # of tweets / user

1 year 2 years 3 years 4 years 1 year 2 years 3 years

NYT Journalists 268 187 125 75 579.71 865.02 1104.58

Science Writers 208 159 117 77 609.08 897.29 1112.63

Random Users #1 1227 765 481 311 897.29 1179.98 1403.50

Random Users #2 734 431 237 153 1057.41 1315.71 1404.60

Table 1: Number of users and tweeting frequency at different observation windows.

with @, hashtags with #, links, emojis) are discarded (see Table 3 in Appendix A.2
for a summary). Once the remaining words are tokenized (i.e., identified as
words), those that are used to articulate the sentence (e.g., “with”, “a”, “but”)
are dropped. This type of words is called a functional word as opposed (in
linguistics) to lexical words, which have a meaning independent of the context.
These two categories involve different cognitive processes (syntactic for functional
words and semantic for lexical words), different parts of the brain [9], and
probably different neurological organizations [13]. We are more interested in
lexical words because their frequency in written production depends on the
author’s intentions, as opposed to functional words frequencies that depend on
the language characteristics3. Moreover, lexical words represent the biggest part
of the vocabulary. Functional words are generally called stop-words in the NLP
domain and many libraries provide tools to filter them out.

As this work will leverage word frequencies as a proxy for discovering cognitive
properties, we need to group words derived from the same root (e.g. “work” and
“worked”) in order to calculate their number of occurrences. This operation
can be achieved with two methods: stemming and lemmatization. Stemming
algorithms generally remove the last letters thanks to complex heuristics, whereas
lemmatization uses the dictionary and a real morphological analysis of the word
to find its normalized form. Stemming is faster, but it may cause some mistakes
of overstemming and understemming. For this reason, we choose to perform
lemmatization. Once we have obtained the number of occurrences for each word
base, we remove all those that appear only once to leave out the majority of
misspelled words. Table 4 in Appendix A.2 contains examples of the entire
preprocessing part.

3 From word usage to cognitive constraints

Recalling that our goal is to investigate the structure and structural invariants
in language production, in this section we present the main findings of our study.
The methodology of our analysis is as follows. First, we analyse the frequency of
words usage and the richness in vocabulary across the datasets, as preliminary
characterisation of the different types of users we consider (Section 3.1). We then
perform a clustering analysis to investigate whether regular groups of words used
at different frequencies can be identified. This is the same method used to analyse
the structural properties of human social networks, as explained in Section 1.

3 Functional words may also depend on the style of an author (and due to this they
are often used in stylometry). Still, whether their usage require a significant cognitive
effort is arguable, hence in this work we opted for their removal.
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quencies, in log-log scale. The solid line corresponds to the average and the
shaded area to the 95% confidence intervals.

Based on this analysis, we describe the structural invariants that we found in
Sections 3.2 and 3.3.

3.1 Preliminaries

Let us focus on a tagged user j. When studying the social cognitive constraints,
the contact frequency between two people was taken as proxy for their intimacy
and, as a result, for their cognitive effort in nurturing the relationship. Similarly,
the frequency fi at which user j uses word i is considered here as a proxy of their
“relationship”. Frequency fi is given by

nij

ti
, where nij denotes the number of

occurrences of word i in user j’s timeline, and ti denotes the observation window
of j’s account in years.

Figure 4 shows the frequency distribution for the different categories of users
(regular users vs professional writers) and for the different observation windows
(1, 2, 3 years). We can make two observations. First, the distributions exhibit a
heavy-tailed behaviour (see Table 5 in Appendix A.2 for the fitting of individual
users word frequency). Second, the distributions are very similar two by two:
specialized users (journalists and science writers) who fulfill a particular role
of information in the social network, and randoms users who are samples of
more regular users. The first group seems to use more low-frequency words,
while the second group uses a larger proportion of high-frequency words. Based
on the second observation, we can compare the datasets based on two criteria:
verbosity, which counts the total number of words per tweet, and lexical richness,
which counts the number of distinct words per tweet (Figures 5-6). Despite a
lower verbosity (Figure 5), the vocabulary of specialized users seems richer than
those of random users (Figure 6). This is intuitive, but not necessarily expected.
Professional users certainly have a higher diversity in the use of words. However,
this manifests also in Twitter, i.e., in an environment where they do not write
necessarily for professional reasons, but where they are (supposedly) writing in a
more immediate and informal way.

3.2 Many words, just a few groups

Using the frequencies described in the previous section, we now investigate
whether the words of a user can be grouped into homogeneous classes, and
whether different users feature a similar number of classes or not. To this aim,
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for each user, we leverage a clustering algorithm to group words with a similar
frequency. The selected algorithm is Mean Shift [14], because as opposed to
Jenks [18] or KMeans [20], it is able to find the optimal number of clusters
without fixed parameters. The original Mean Shift algorithm has nevertheless
a drawback: it is only able to find the estimated density peaks with a fixed
bandwidth kernel. The bandwidth is estimated based on the distribution of the
pairwise distances between all the frequency values. However, in our case the
distance between frequencies is not homogeneous: most of them are concentrated
in the lowest values, close to each other. Hence, the selected bandwidth is fitted
for estimating the density in that area, but not in the tail of the distribution.
For that reason, a log-transformation is applied to the frequency values prior to
the Mean Shift run: it still allows a fine mode detection in low-frequency part
and compresses high values to allow detection of modes with a larger width. The
use of a logarithmic scale is also used by psychological researchers to explain the
impact of word frequency on their cognitive processing [5].

The histograms of the obtained optimal number of clusters are shown in
Figure 7. It is interesting to note that, despite the heterogeneity of users (in terms
of tweeting frequency, verbosity, and lexical richness), the distributions are always
quite narrow, with peaks consistently between 5 and 7 clusters. The observation
period seems to have a very limited effect on the resulting cluster structure. This
means that, after one year, the different groups of words can be already identified
reliably. In addition, this limited effect actually reinforces the idea of a natural
grouping: when more words are added (longer observation period) the clusters
become slightly fewer, not slightly more. Hence, new words tend to reinforce
existing clusters. Thus, similarly to the social constraints case, also for language
production we observe a fairly regular and consistent structure. This is the first
important result of the paper, hinting at the existence of structural invariants in
cognitive processes, which we summarise below.

Cognitive constraint 1: Individual distributions of word frequencies are di-
vided into a consistent number of groups. Since word frequencies impact
the cognitive processes underlying word learning and retrieval in the men-
tal lexicon [22], these groups can be an indirect trace of these processes’
properties. The number of groups is only marginally affected by the class
(specialized or generic) the users belong to or by the observation window.
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Fig. 7: Number of clusters obtained applying Mean Shift to log-transformed
frequencies. The most frequent number of clusters are highlighted in red.

This regularity might also suggest that these groups of words correspond to
linguistic functional groups, and we plan to investigate this as future work.

3.3 Exploring the group sizes

We now study the size of the clusters identified in the previous section. For the
sake of statistical reliability, we only consider those users whose optimal number
of clusters (as identified by Mean Shift) corresponds to the most popular number
of clusters (red bars) in Figure 7. This allows us to have a sufficient number
of samples in each class. We rank each cluster by its position in the frequency
distribution: cluster #1 is the one that contains the most frequent words, and
the last cluster is the one that contains the least used. Following the convention
of the Dunbar’s model discussed in Section 1, these clusters can be mapped into
concentric layers (or circles), which provide a cumulative view of word usage.
Specifically, layer i includes all clusters from the first to the i-th. Layers provide
a convenient grouping of words used at least at a certain frequency. We refer to
this layered structure as ego network of words.

Figure 8 shows the average layer sizes for every dataset and different observa-
tion periods. As expected, for a given number of clusters, the layer size increases
as we expand the observation period, because more words are brought in. For a
given number of clusters we also observe a striking regularity across the datasets,
with confidence intervals overlapping in practically all settings. Typically, the
layer sizes are slightly higher for journalists and science writers (T = 2 years and
T = 3 years). The main reason is that their lexicon is generally richer than those
of regular users (as discussed in Sec. 3.1) and this is reflected in their layer size.
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Fig. 8: Average layer size (with 95% confidence intervals) for the various datasets,
different number of clusters (rows), and different observation periods (columns).

Another typical metric that is analysed in the context of social cognitive
constraints is the scaling ratio between layers, which, as discussed earlier, corre-
sponds to the ratio between the size of consecutive layers. The scaling ratio is an
important measure of regularity, as it captures a relative pattern across layers,
beyond the absolute values of their size. Figure 9 shows the scaling ratio of the
layers in language production. We can observe the following general behavior:
the scaling ratio starts with a high value between layers #1 and #2 , but always
gets closer to 2-3 as we move outwards. This empirical rule is valid whatever
the dataset and whatever the observation period. This is another significant
structural regularity, quite similar to the one found for social ego networks, as a
further hint of cognitive constraints behind the way humans organise word use.

In order to further investigate the structure of the word clusters, we compute
the linear regression coefficients between the total number of unique words used
by each user (corresponding to the size of the outermost layer) and the individual
layer sizes. Due to space limits, in Table 2 we only report the exact coefficients
for the journalists dataset with T=1 year (but analogous results are obtained
for the other categories and observation windows) and in Figure 10 we plot the
linear regression for all the user categories with T = 1 year. Note that the size
of the most external cluster is basically the total number of words used by an
individual in the observation window. It is thus interesting to see what happens
when this number increases, i.e., if users who use more words distribute them



Structural invariants in individuals language use: the “ego network” of words 11

uniformly across the clusters, or not. Table 2 shows two interesting features.
First, it shows another regularity, as the size of all layers linearly increases with
the most external cluster size, with the exception of the first one (Figure 10).
Moreover, it is quite interesting to observe that the second-last and third-last
layer consistently account for approximately 60% and 30% of the used words,
irrespective of the number of clusters. This indicates that users with more clusters
split at a finer granularity words used at highest frequencies, i.e., they organise
differently their innermost clusters, without modifying significantly the size of
the most external ones.

As a final comment on Fig. 9, please note that the innermost layer tends to be
approximately five times smaller than the next one. This suggests that this layer,
containing the most used words, may be drastically different from the others (as
also evident from Table 2). We leave as future work the characterization of this
special layer and we summarise below the main results of the section.

Cognitive constraint 2: Structural invariants in terms of layer sizes and scal-
ing ratio are observed also in the language domain. Specifically, we found
that the size of the layers approximately doubles when moving from layer i
to layer i + 1, with the only exception of the first layer.

Cognitive constraint 3: Users with more clusters organise differently their
innermost clusters, without modifying significantly the size of the most
external ones, which consistently account for approximately 60% and 30% of
the used words, irrespective of the number of clusters of the user.

4 Conclusion

In this paper, we investigated, through a data-driven approach, whether a regular
structure can be found in the way people use words, as a symptom of cognitive
constraints in their mental process. This is motivated by the fact that other
mental processes are known to be driven by cognitive constraints, such as the way
how humans allocate cognitive capacity to social relationships. To this aim, we
collected a diverse dataset from Twitter (identified as one of the major sources
of informal and spontaneous language online), including tweets from regular
Twitter users and from professional writers. Then, leveraging a methodology
similar to the one used to uncover social constraints, we have analysed the
structural properties of language production on Twitter, uncovering regularities
that constitute preliminary evidence of the aforementioned cognitive constraints.
Specifically, we have found that, similarly to the social case, a concentric layered
structure (ego network of words) very well captures how an individual organizes
their cognitive effort in language production. Words can be grouped typically in
between 5 and 7 layers, regardless of the specific class of users. We also observe a
structural invariant in the size of the layers, which grow approximately 2-3 times
when moving from a layer to the next one. A second structural invariant emerges
for the external layers, which, regardless of the number of clusters of the user,
consistently account for approximately 60% and 30% of the used words. While
these findings are restricted to language production on Twitter, as future work
we plan to generalize these results to other types of written communication.
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Fig. 9: Scaling ratio for the various datasets, different number of clusters (rows),
and different observation periods (columns).

Opt. # of clusters
Cluster Rank

1 2 3 4 5 6 7

4 clusters 0.04 0.33 0.61 1.00
5 clusters 0.02 0.13 0.33 0.62 1.00
6 clusters 0.01 0.04 0.14 0.32 0.59 1.00
7 clusters 0.00 0.02 0.06 0.16 0.32 0.56 1.00

Table 2: Linear coefficients obtained for the journalists dataset with T = 1 year.

0 250 500 750 1000 1250 1500 1750 2000
0

250

500

750

1000

1250

1500

1750

2000

La
ye

r s
ize

Outermost layer size

dataset = Journalists

Layer Rank
1
2

3
4

5
6

0 250 500 750 1000 1250 1500 1750 2000

dataset = Science writers

0 250 500 750 1000 1250 1500 1750 2000

dataset = Random users #1

0 250 500 750 1000 1250 1500 1750 2000

dataset = Random users #2

Fig. 10: Linear regression between the total number of unique words used by each
user (corresponding to the size of the outermost layer) and the individual layer
sizes.
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A Appendix

A.1 Identifying active Twitter users

In order to be relevant to our work, a Twitter account must be an active account,
which we define as an account not abandoned by its user and that tweets regularly.
A Twitter account is considered abandoned, and we discard it, if the time since
the last tweet is significantly bigger (we set this threshold at 6 months, as
previously done also in [3]) than the largest period of inactivity for the account.
We also consider the tweeting regularity, measured by counting the number of
months where the user has been inactive. The account is tagged as sporadic, and
discarded, if this number of months represents more than 50% of the observation
period (defined as the time between the first tweet of a user in our dataset and
the download time). We also discard accounts whose entire timeline is covered by
the 3200 tweets that we are able to download, because their Twitter behaviour
might have yet to stabilise (it is known that the tweeting activity needs a few
months after an account is created to stabilise).

A.2 Additional tables

Percentage of hashtags Percentage of links Percentage of emojis

Journalists 1.34 % 7.27 % 0.20 %

Science writers 3.47 % 8.02 % 0.55 %

Random users #1 16.84 % 6.97 % 5.21 %

Random users #2 7.20 % 6.42 % 4.60 %

Table 3: In the process of word extraction, the tweet is decomposed in tokens
which are usually separated by spaces. These tokens generally corresponds to
words, but they can also be links, emojis and others markers that are specific to
the online language such as hashtags. The table gives the percentage of hashtags,
links and emojis, which are tokens filtered out from the datasets.
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Original tweet content List of words after pre-processing

The @Patriots say they don’t spy anymore. The
@Eagles weren’t taking any chances. They ran
a ”fake” practice before the #SuperBowl

spy, anymore, chance, run, fake, practice

#Paris attacks come 2 days before world leaders
will meet in #Turkey for the G20. Will be a
huge test for Turkey.

attack, come, day, world, leader, meet, huge,
test, turkey

Latest garden species - the beautiful but de-
structive rosemary beetle, and a leafhopper
(anyone know if this can be identified to species
level from photo? Happy to give it a go)
#30DaysWild #MyWildCity #gardening

late, garden, specie, beautiful, destructive, rose-
mary, beetle, leafhopper, know, identify, specie,
level, photo, happy

Table 4: Example of word extraction results.

Journalists Science writers Random dataset #1 Random dataset #2

1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years 1 year 2 years 3 years

p<0.1 22.1 % 33.2 % 49.6 % 24.8 % 37.3 % 47.9 % 41 % 49.7 % 52.6 % 50.3 % 62 % 61.4 %

p<0.05 17.6 % 25.1 % 39.2 % 19.4 % 29.1 % 39.3 % 32.8 % 43.5 % 43 % 43.9 % 52.1 % 52.4 %

p<0.01 8.6 % 11.2 % 18.4 % 12.1 % 15.8 % 17.1 % 21.4 % 27.8 % 27.8 % 30.4 % 37.3 % 35.2 %

Table 5: Percentage of users for which the hypothesis that the word frequency
distribution is a power-law is rejected with a p-value below 0.1, 0.05 and 0.01.
The p-value is obtained with the Kolmogorov–Smirnov test, using the fitting
technique described in [7].
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