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Abstract

A Markov chain individual based model for virus diffusion is investigated. Both the virus growth
within an individual and the complexity of the contagion within a population are taken into account.
A careful work of parameter choice is performed. The model captures very well the statistical
variability of quantities like the incubation period, the serial interval and the time series of infected
people in Tuscany towns.
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1 Introduction

1.1 Purpose of the work

Covid-19 massive diffusion all over the world motivated the development and investigation of sev-
eral mathematical models. Many of them are based on differential equations, ordinary or partial,
deterministic or stochastic, or based on other stochastic processes and dynamical systems. Among
those that use differential equations we cite [41], [23], [44]. All of these papers are based on the
fundamental SIR model introduced by Kermack and McKendrick in [28]. Other examples are net-
work models that can be deterministic or stochastic; some examples can be found in [27], [14], [39],
[42]; see also [1], [15], [21] for other approaches.

As widely explained in [3] a possible approach in mathematical modeling of an epidemics has
to take into account both the complex biology of the virus and the spatial interactions among a
population. According to this point of view in our model we stress out the importance to include
the different phases of virus growth within an individual and the population graph that allows
more realistic contagion between infected and susceptible individuals. Additional comments on this
multiscale approach and its relation with the literature are given in Section 1.3 below.
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We have developed an individual based model (a particle system) governed by a Markov chain
dynamics. The states of individuals and the transitions between them remind those of certain
generalizations of SIR model; the interaction between individuals has something in common with
network structure; but apart from these conceptual similarities the model is different. This work
summarizes our understanding of the performances of this Markov chain individual based model.

We have chosen an individual based model for two reasons:
i) several parameters have a direct interpretation, being associated to individual life
ii) the structure of interaction may include realistic features.
The same reasons may be the source of difficulties:
a) too many parameters to be fitted or chosen
b) too many degrees of freedom and complexity of the interactions, yielding computational

troubles.
Let us discuss to which extent we may confirm the advantages (i)-(ii) and which implications

they have. Let us also discuss in which measure we have observed the disadvantages (a) and (b)
and how much they affect the advantages.

Prediction under new operating conditions is one of the major problems of every government.
Usual models like SIR cannot be used for predictions under new conditions; they are excellent
to fit existing data and make short term predictions under stationary conditions. More complex
models, like individual bases ones, have the drawback of a greater multiplicity of parameters but
many of them have a direct interpretation which allows to assign sufficiently robust values to them.
Unfortunately, our final conclusion about our model is that there is a parameter, called λ below,
which cannot be predicted so easily; we may estimate it by fitting the data, but it is difficult to
guess it a priori under a new operating condition (see our analysis below of the predictions after
May the 4th, in Tuscany, when the lock-down imposed in Italy in March-April was relaxed). The
other parameters however can be chosen a priori and contribute to stabilize most of the model;
perhaps after a small number of new regimes one can extract a rule to decide also λ a priori.

Predicting the uncertainty is another fundamental issue, even more difficult sometimes. Our
model performs very well from this viewpoint. We do not have to fit uncertainty parameters: a
degree of dispersion of the results is intrinsic in the Markov chain dynamics and it is in excellent
agreement with real data: we consider the behaviour of Tuscany towns, scaled to 100.000 inhab-
itants, as a sample, which provide us with an estimate of the true uncertainty. Notice that a
prediction of the uncertainty is just absent in most virus spread models or sometimes it is inserted
in a rather artificial way by a noise or via additional parameters which have to be fitted by data.
In our case it comes for free and it is quite realistic.

Due to its complexity, our model not only allows one to compute usual quantities like the
cumulative number of infected people, but also to get more refined information like the statistics of
the incubation period and of the serial interval. Similarly to the other remarks above, also here we
need information from real data concerning the mean incubation period and mean serial interval in
order to fit some parameters, but then the dispersion and more generally the histogram obtained
by our simulations, without any other choice of parameters are very close to real data. We are
indebted to several studies for these data, see [20], [22], [34],[31], [33], [35], [37], [40], [43], [45], [46].

Concerning the potential drawback (b) above, we had to limit ourselves to environments of the
size of a town like Pisa or other Tuscany towns. Completely different computational methods would
be needed to treat a full nation, for instance. As a final remark, the model can be used to explore
different scenarios for different values of parameters. The detail of realism of the model allows one
to vary quite detailed and realistic parameters. An example is given at the end of the paper.
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1.2 On the biology of the virus

In the last few months, there have been a huge amount of scientific papers dealing with the complex
biology of COVID-19. Due to the incomplete knowledge in the field there are different points of
view on many aspects. Therefore, we are aware that our discussion can not be exhaustive.
In order to outline some of the key aspects of the illness, which will be useful to understand the
mathematical model we’ll present in the following sections, we refer to the report [12], which is
bimonthly updated, and to the papers [3] and [13]. A brief description of the biology of the virus
is delivered in the following:

• The virus: Coronavirus disease 2019 (COVID-19) is initiated by the infection of the SARS-
CoV-2 virus, a coronavirus. Coronaviruses are a large family of viruses that cause illness
ranging from the common cold which usually occurs in the winter months to more severe
diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syn-
drome (SARS) and COVID-19.

• The contagion: The contagion by the SARS-CoV-2 occurs when breathing respiratory droplets,
up to 1 millimetre across, released by an infected person via coughing, sneezing or speaking.
Respiratory droplets finally land on various surfaces where the virus maintains its infective
capacity for various times. Therefore, SARS-CoV-2 can also be transmitted by contact when
a susceptible person touches the mucosa of the mouth, nose or eye after capturing the virus.

• Entry into human cell : The large Spike protein (S) forms a sort of crown on the surface of
the viral particles. Its receptor-binding domain interacts with high affinity with angiotensin-
converting enzyme 2 (ACE2) receptors on the surface of host cells. After the binding, two
host cell proteases (Furin and TMPRLRS) cleave spike proteins and their exposed fusion
peptides fuse the virus membrane with the membrane of the host cells. The virus RNA
enters cells of the upper and lower respiratory tract, and it is translated into viral proteins.
The cell dies releasing millions of new viruses that infect other cells and other individuals.

• Immune system responses: Cellular and humoral innate immunity represents a first line
of resistance which takes care of most encounters with infectious agents. When the virus
manages to overcome these barriers, a rapid release of danger signals activates the reaction
of the host’s immunity. Corona viruses are successful at suppressing various mechanisms in
an immune response, but a protective immunity can be however developed.

• Immunity : There is evidence that symptomatic COVID-19 elicits immunological memory
and resistance to reinfection. Based on SARS, one can expect immunological memory to last
2–3 years.

Moreover, we want to focus on two aspects that we’ll be crucial in the following, as they
represent important risk factors in the spreading of the illness.

• Stages of the incubation period : The incubation period, defined as the time between exposure
to the virus and symptom onset, can be divided into two stages. A first one in which the
amount of viruses is still small and the individual cannot transmit the virus to others; and
a second stage, still of incubation, in which the individual is infectious because, as the virus
multiplies, he/she may shed copious amounts of it. Both are pre-symptomatic stages, hence
the individual has no sign of being infectious: the immune system prepares its answer but
still does not act so strongly. Needless to say, the second stage is very dangerous for other
individuals.
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• Unknown patients: There are several studies, such as [16], [24], [32], that show that a large
proportion of the population has SARS-CoV-2 infections that do not result in COVID-19
symptoms, or result in mild symptoms that go unnoticed. Therefore, there is a large pro-
portions of infected individuals who remain unknown to the National Health Systems and
who are not isolated. It is clear that this kind of patients are highly dangerous for other
individuals, as they may act as they are not infectious.

1.3 Modeling the complexity of COVID-19

As described above, virus pandemic is a complex phenomenon with multiscale features, see also
the extensive description in [3]. Inside each individual, the virus performs a certain progression
which has strong consequences on the subsequent contagion between individuals, in particular due
to the pre-symptomatic period of infectiousness which, in the case of Covid-19, is more pronounced
than in other coronaviruses; and also because of the large number of infected people who remain
asymptomatic after the incubation period, still infective. The spread through the population is
again multiscale, with local (e.g. inside family) and long-distance transmissions. Therefore the
full range of scales, from the virus particle dynamics to the individual interactions is active and
interconnected.

Mathematics has developed tools with several levels of complexity. The seminal paper of Ker-
mack and McKendrick [28] in 1927, who proposed the so called SIR model, idealizes the phenomenon
in few compartments; but still in its simplicity indicates basic logical building blocks which are
present in much more refined models. Generalizations and additional complexity due to spatial
structure have been introduced later on; let us mention for instance [17], [9], [11], [10], [26], [4], [5],
[29] and extensive treatises like [1], [19], [18], [36], [2]. The list of contributions is very large, see
the references in [3] and the examples of multiscale models presented there.

Our model fits into these general schemes, simplifies certain aspects but maintains the general
multiscale complexity. Among the simplifications, we have not included viral load and the response
of the immune system, mastered for instance by [38]; we think that variability of viral load among
the population and in different periods of the year may be a key aspect of Covid-19 and could
contribute to a more advanced model. We have included, although in a strongly simplified version,
the complexity of the evolution of the virus inside each individual by separating the incubation
period in a first non-infectious phase and an infection second one, with different (random) length
estimated from a careful comparison of data in Section 3. This detail of microscale is not per
se but because it is responsible for numerous hidden infections and reflects into the prediction of
virus spread. Then we have taken into account the spatial structure of the population, but in the
way we think more natural for the diffusion of Covid-19 in the present society under the recent
restrictions applied in almost all countries. In particular, we do not use partial differential equations
of diffusion type but an individual based model, which propagates the infection but with intrinsic
randomness which, at the end, seems to be very close to real measurements. The interaction
between the individuals, responsible for the infection spread, includes nearest-neighbor links (what
we call family bubbles in Section 2) and long-range ones (what we call pseudo-bubbles and city).
Networks, which is another methodology introduced also in mathematical modelling of infectious
diseases [42], [30], is certainly inspiring here, but we do not restrict ourselves to specific known
schemes and use the ideas of networks in the framework of a Markov chain somewhat similar in
structure to a cellular automaton. It is apparent from our modeling proposal that we do not aim to
apply a specific methodology but we want to capture the features which we think more important,
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and thus we mix several ideas and apply simplifications at due places, looking for a reasonable
compromise between the great complexity of the true phenomenon and the methodologies which
multiscale mathematical analysis may offer. With many differences, the methodology looks similar
in spirit to what is done in [3]; see also [2]. Among the peculiarities, let us mention the detailed
treatment of the randomness which pervades all steps of our modeling and represents one of main
successes in comparison with real data.

2 Individual based Markov chain model

This section presents the basic mathematical model. Precise values of the parameters and other
details related to applications are discussed in the next section; here we care only about the structure
of the model.

We divide the section in several parts. The first one describes the basic architecture, up to the
detailed description of just one but fundamental transition probability, pS,IN defined in (2) below.
Then, the next subsections discuss several forms of pS,IN , depending on the interactions accounted
for in the model.

2.1 Basic structure

Suppose we have N individuals, indexed by the positive integers i = 1, . . . , N . The i-th individual
will be in a state Xi(t) at time t. The family of all individuals will be, at time t, in the state

X(t) =
(
X1(t), ..., XN (t)

)
which will be the state of the Markov chain.

The state Xi(t) of each individual may take only a finite number of values: Xi(t) ∈ Sind, where

Sind = {S, IN, II, U,K,E}.

The letters refer to stages of the illness or to the status of the individual, and they are abbreviation
of:

• S = Susceptible

• IN = Infected but Not infectious

• II = Infected and Infectious

• U = Unknown

• K = Known

• E = Exit.

The logic behind this subdivision lies in the typical history of an individual. Initially, a person is
Susceptible, namely healthy, never infected by COVID-19. Some individuals, sometime, get infected
by others and enter the state IN. When a person gets infected, it enters a period of incubation,
where the virus multiplies in the body and, with some delay, the immune system start developing
its answer (which at due time may emerge as symptoms). The incubation period is roughly divided
in two stages: a first one in which the virus charge is still small and the individual is not infectious,

5



cannot transmit the virus to other individuals; this stage is represented by state IN. Then a second
stage, still of incubation, when the individual is infectious; it is represented by state II. But both are
pre-simptomatic stages, hence the individual has no sign of being infectious; the immune system,
during states IN and II prepares its answer but still does not act so strongly. Needless to say, state
II is very dangerous for the other individuals.

Then the incubation period is over and individuals enter a new stage, where they are infectious
and ill. But for many of them the illness is so weak that they do not notice it, or it is below their
personal threshold of pain or care. People of this kind are in state U, unknown to the national
health system because asymptomatic or paucisymptomatic. Again this is a very dangerous state
for the community. Other people, when the illness develops, feel symptoms and start medical
checks; finally they are tested, recognized as COVID-19 holder and put in isolation or in hospital.
This relatively short period, when they are ill, start medical tests but are not yet isolated by the
community, has been called K, known; they can infect people, hence they contribute to infection.
But soon they Exit the system, in the sense that they are isolated and do not contribute anymore to
infection. Also the individuals in state U will exit, but only when they are not infectious anymore;
the period spent in state U is longer than the one spent in K, statistically speaking. The full logical
scheme is

U

S IN II E

K

The exit state thus includes individuals of several kinds: isolated, hospitalized, recovered and dead;
it is not our purpose to add information on these classes, which are no more of systemic nature
(namely they do not have to do with the system of interacting individuals), hence we group all such
cases into state E. But it is not difficult to augment the Markov chain with a subdivision of state
E, if of interest.

Different would be to discover that recovered individuals may become infected again: such event
would cause a link between states E and S which should be understood and carefully modeled. A
few instance of this occurrence have been observed but its statistical significance is still poor. In
absence of clear proofs that a significant portion of restored individuals may get re-infected, we
consider state E as a final state without subseqent transitions.

Another simplification we are adopting, strong with respect to reality, is that we assume that
people who are isolated or hospitalized do not contribute any more to infect other people, so we
collect them in the same class E as people who are restored or those who die. In reality, we know
that the virus spreads also in hospitals, and maybe people asked to stay isolated sometimes break a
strict isolation; we have decided to miss this additional complication which, with due modifications,
could be taken into account.

The state of the full system X(t) =
(
X1(t), ..., XN (t)

)
takes values in

S = {S, IN, II, U,K,E}{1,...,N}.

We assume the Markov chain to be time-homogeneous. Then the dynamic rules are completely
prescribed by the transition probabilities

p(η, η′) = P (X(1) = η′|X(0) = η)
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with η, η′ ∈ S. In the philosophy of cellular automatons, we adopt the following rule:

p(η, η′) =

N∏
i=1

P
(
Xi(1) = η′(i)|X(0) = η

)
. (1)

In other words, we impose that, conditionally to the current state, individuals choose their transition
independently one each other. For most states η ∈ S and A ∈ {S, IN, II, U,K,E}, we simply have
P
(
Xi(1) = A|X(0) = η

)
= 0. The exceptions are the transitions of interest for us, that now we

list, introducing new names for the corresponding probabilities. Consider scheme (??). Most of the
transitions, namely all except for S → IN , involve only internal changes of a single individual, not
the interaction between different subjects. The corresponding transition probabilities are

pIN,II = P
(
Xi(1) = II|X(0) = η

)
, if η(i) = IN

pII,U = P
(
Xi(1) = U |X(0) = η

)
, if η(i) = II

pII,K = P
(
Xi(1) = K|X(0) = η

)
, if η(i) = II

pU,E = P
(
Xi(1) = E|X(0) = η

)
, if η(i) = U

pK,E = P
(
Xi(1) = E|X(0) = η

)
, if η(i) = K

independently from the values η(j) with j 6= i. On the contrary, the transition S → IN depends
on the interaction: the value

pS,IN (η, i) = P
(
Xi(1) = IN |X(0) = η

)
, if η(i) = S (2)

depends on the whole state η and on the specific individual i. Specifying the value of pS,IN (η, i) is
a major modeling task, discussed in the next subsections.

In a Markov chain, when we are in state A, the time to exit from A (the number of time steps
necessary to exit from A) is geometric distributed; and for a geometric distribution the probability
of jump is the inverse average time of the first jump. In our example, this applies to the transitions
IN → II, U → E, K → E, and to the exit from state II. Thus, we have

pIN,II =
1

E[TIN,II ]

pU,E =
1

E[TU,E ]

pK,E =
1

E[TK,E ]

pII,U + pII,K =
1

E[TII,{U,K}]

where we have denoted by TIN,II the time to go from IN to II, similarly for TU,E and TK,E and
by TII,{U,K} the time to go from II to one of {U,K}. This fact provides the link with quantities
which can be interpreted in the examples. For instance, the quantity

E[TIN,II ] + E[TII,{U,K}]

is the average incubation time.
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If the Markov chain is already given, since the jump times require at least one unit, automatically
the average times written above are greater or equal to one and thus the corresponding probabilities
are smaller than one. However, in the examples, we choose a priori the values of the probabilities,
guided by the intuition given by the link with average times. Hence we always have to impose the
constraint that such probabilities are in [0, 1].

2.2 Uniform interaction (only full town)

The first, simplest kind of interaction we discuss is when each individual is exposed to all others,
in the community of N individuals. We have in mind, typically, a town of medium size with its
surroundings, such that internal interactions are statistically more relevant than the interactions
with other towns or regions. Obviously the interactions with the outside are always very relevant, for
instance to start the infection in a new town, but we neglect this aspect with could be considered
only by a more global model with several large units (towns or regions). We describe only the
internal development of a single unit.

Certainly the probability pS,IN (η, i) defined by (2) should depend on N and on the number
I (η) of infectious people:

I (η) =

N∑
j=1

1η(j)∈{II,U,K}

(based on the description of the previous section, we assume that only individuals of class II, U,K
are infectious; moreover, for simplicity we assume they have the same potentiality of infection, so
that there are no distinguished coefficients in their action). The simplest choice is

pS,IN (η, i) = λ
I (η)

N
. (3)

Namely pS,IN (η, i) is directly proportional to I (η) and inversely proportional to N , with a propor-
tionality constant λ to be chosen. There are heuristic or approximate justifications of this formula
which may helps to connect λ to experimental knowledge.

2.2.1 Idea of the code

We now give the idea of the structure of the numerical code we use to simulate this system. The
software used is R version 3.6.3.
We begin assigning a value to the number of individuals N , the number of days G, and the mean
times for the transitions. Then we calculate the transition probabilities, except for pS,IN , using
the formula we presented in the previous section. After that, we assign values to parameters β,
that represents the proportion of unknown sick people, with respect to the known ones, and λ,
that represents the probability that an infectious individual infects a susceptible individual in a
temporal unit. Finally, we set the number of infectious individuals we have on the first step of the
simulation.
We assign a number from 0 to 5 to every state and we create matrices N × G, one for every
transition, that will take into account the state of every individual in every time step; and a vector
of length N that will be updated at every time step and that contains the states of the individuals
that iteration.
Then we use a for cycle to iterate over time steps. In its body, we calculate the transition probability
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pS,IN , that can be different at every iteration; we control which are the individuals in every state,
and then we decide which individuals will make a transition, according to the suitable transition
probability. Finally, we plot the graphs of the number of individuals in every state, using different
colours to represent different states.

2.3 Model with family units and the town

A key feature of human communities is that a person does not interact with all the others. This
is true in normal conditions, but even more under special restrictions like the so called lockdown
related to the COVID-19 emergency. A person has daily contacts with the family, and other contacts
with different frequencies and intensities.

Said like this, we could object that the uniform interaction of the previous section is a pure
abstraction of no interest. It is not so: it is a building block, as we shall see here. Moreover,
fractions of time are spent in potential contact with every subject of the full community: when we
travel on public transport or make shopping in certain large market places, or we spend an evening
in a downtown local, and so on. Thus the direction of a more realistic model with respect to the
previous section is to split the time up so that a fraction of time is spent as above in potential
contact with everybody, and other fractions are focused on subgroups of the population.

Subgroups are of several different nature and structure. In this subsection we take into accont
only the family. In order to develop a model as simple as possibile, we assume that families are
all made of three individuals, which is close to a typical average number. Families are disjoint
subsets of the full population, they are a partition, opposite to the subdivision discussed in the
next subsection. Hence, propagation of virus in a family stops there, unless some member of the
family spends time also outside, in contact with members of other families. In principle, if during
a lockdown period, a large part of the population is asked to spend all the time within the family;
nevertheless some members should continue to work and some to go to buy essential goods for
survival, hence full family isolation is not possible and realistic.

In order to unify some aspect of this and the next section, let us introduce a structure here
which would be optional: an adjacency matrix. It is a matrix Afam with 0 and 1 entries with the
following meaning, in the case of families: for every individual i, there is a set of individuals

Jfam(i) ⊂ {1, . . . , N}

that is made up of the individuals that are part of i’s family unit. If j ∈ Jfam(i) and j 6= i, we put
1 in entry Afam

ij . What we put in Afam
ii is unessential, we put zero. If j /∈ Jfam(i) then Afam

ij = 0.
Thus the matrix A, looked at by rows, states who are the individuals that are in the same family
unit. This kind of contact between individuals is symmetric:

j ∈ Jfam(i)⇔ i ∈ Jfam(j).

Hence the matrix Afam is symmetric. Reordering the indexes of individuals if necessary, the adja-
cency matrix has the following form:

Afam =


0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0
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where we have represented only two families for obvious reasons of space.
We now need to introduce two parameters

αfam, αcity ∈ [0, 1]

αfam + αcity = 1

that represent the proportion of time spent with people in the family unit with respect to that
spent with all the inhabitants of the city. For the time being, these parameters will be the same
for everyone; later on we’ll introduce categories with particular specifications.

With the previous definitions and quantities, arguing similarly to (3), we choose

pS,IN (η, i) = αcityλcity
Icity (η)

N
+ αfamλfam

Ifam (η, i)

Nfam

where Nfam = 2, Icity (η) and Ifam (η, i) are the number of infectious individuals in the city and in
the family, respectively,

Icity (η) =

N∑
j=1

1η(j)∈{II,U,K}

Ifam (η, i) =
∑

j∈Jfam(i)

1η(j)∈{II,U,K}

and λcity, λfam are parameters with analogous meaning to the parameter λ of the previous section,
possibly different for the city and the family (for instance, during pandemic emergency, in the town
people wear masks and keep the safety distance, but not at home, and thus the propensity to infect
is different).

2.4 Model with pseudo-bubbles

Families are a partition of the population. Other groups which limit the interactions exist, related
to work, sport, friendship etc. but they are not (or not always) a partition: a person may have two
friends who do not know each other. Transitivity is not always true. We model such groups by a
family of sets

Jps(i) ⊂ {1, . . . , N}
one for each subject i ∈ {1, . . . , N}. We still impose the property

j ∈ Jps(i)⇔ i ∈ Jps(j)

which implies that the matrix A is symmetric. As in the case of families, we impose i ∈ Jps(i),
although it is irrelevant. But we do not impose transitivity. Associated to these sets we write an
adjacency matrix. It is a matrix Aps with 0 and 1 entries as in the case of Afam: if j ∈ Jps(i) and
j 6= i, we put 1 in entry Aps

ij . This adjacency matrix has, for instance, the following form:

Aps =


0 1 1 1 1 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 1 1 1 1 0
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where we have represented the case of two people, the first and the last one, who have all other
people in their pseudo-bubble; and the other people (different from the first and last subject) who
have only the first and the last one in their pseudo-bubbles.

In the full model we consider city, family and pseudo-bubbles at the same time. Hence we need
to introduce three parameters

αfam, αcity, αps ∈ [0, 1]

αfam + αcity + αps = 1

that represent the proportion of time spent with people in the family unit with respect to the city
or the pseudo-bubble. For the time being, this parameters will be the same for everyone; later on
we’ll introduce categories with particular specifications.

With the previous definitions and quantities, arguing similarly to (3), we choose

pS,IN (η, i) = αcityλcity
Icity (η)

N
+ αfamλfam

Ifam (η, i)

Nfam
+ αpsλps

Ips (η, i)

Nps (i)

where the old quantities are defined as in the previous section and

Ips (η, i) =
∑

j∈Jps(i)

1η(j)∈{II,U,K}

Nps (i) = |Jps(i)| − 1

where |Jps(i)| is the cardinality of Jps(i).

2.5 Model with layers

The last scenario we considered is the most complicated because we stratified the society in various
groups and each of them has its own parameters due to the fact that individuals in the same group
have similar lifestyle.
With layers we mean a partition of the set {1, . . . , N} that are the indexes wherewith we enumerate
the individuals.
We decide to split out into two sets the individuals, one for workers and the other for students,
senior citizen and smart workers. This choice is justified by the fact that in general workers have
different lifestyle in comparison to students, seniors or smart workers. This difference emerged in an
outstanding way during the lockdown; indeed many workers continued to go to work, maybe with
reduced hours, but they have spent much more time away from home compared to other categories.
To model this partition we take a sample of a certain percentage of the population that will rep-
resent the individuals in the group of students, seniors and smart workers; the individuals left
form the second group. Hence this scenario contains all the modifications we progressively did,
plus this partition. This means that every group of people carries his set of parameters, that are
α1
city, α

1
fam, α

1
ps for smart citizens and α2

city, α
2
fam, α

2
ps for workers. Hence, the probability to get

infected is the same as the third scenario but has to be calculated with different parameters within
the same group of people, so for the j-th group the probability is

pS,IN (i, η) = λ ·
(
αjcity ·

Icity(η)

N
+ αjfam ·

Ifam(η)

|J(i)| − 1
+ αjps ·

Ips(η)

|J ′(i)| − 1

)
.
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The setting of this scenario will be useful to model situations in which the difference of the param-
eters αi(·) is considerable. Indeed, this scenario has the same properties of the third one if we want
to model a normal situation, but allow us more realism if we want to model a period of time that
includes both a period before the lockdown and the lockdown.

2.6 The delay caused by family and pseudo-bubbles

Restricting part of the life in families or pseudo-bubbles is very useful as a limitation to virus spread.
In this section we show this fact by a numerical simulation. Since the aim of this section (opposite to
the next ones) is only speculative and not of comparison with real data, we attribute simple values
to the model parameters: we use the same parameters E[TIN,II ], E[TII,{U,K}], E[TU,E ], E[TK,E ], λ,
β for all the three versions we compare. For the model with family units, we set αfam = αcity = 0.5,
with the meaning that, on average, an individual spends half of a day at home and the other half
outside. For the model with family units and pseudo-bubbles, we set αfam = 0.5, αcity = 0.1,
αps = 0.4, with the meaning that, on average, an individual spends half of a day at home and
the other half outside, but only for a proportion of time equal to 0.1 he can be in contact with all
the inhabitants of the city, for example on public transportation, while for the rest of the time he
can be in contact only with the people that form his pseudo-bubble. We can observe that, as we
mentioned, adding social structures, such as family units and pseudo-bubbles, to the population
results in a slowdown of the spreading of the infection. Indeed, it is possible to see that the peaks
are delayed in the second and third figures, with respect to the first one. We divide the Exit state
into two states, E1 and E2, in order to see on the graphs how many individuals have been in state
U or K, respectively.

Figure 1: Uniform interaction
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Figure 2: Model with town and family units

Figure 3: Model with town, family units and pseudo-bubbles
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3 Characterization of the model parameters

Let us list the model parameters emerged until now. A first group is represented by are those
appearing in the transition probabilities different from pS,IN (η, i): pIN,II , pII,U , pII,K , pU,E ,
pK,E .

Given any state of a Markov chain, the time T of transition outside it, equal to 1,2,3,. . . , is
geometrically distributed. Hence the probability of transition outside in a time step is equal to the
inverse of the average time of transition outside the state. Therefore we have

pIN,II =
1

E [TIN,II ]

pII,U + pII,K =
1

E
[
TII,{U,K}

]
pU,E =

1

E [TU,E ]

pK,E =
1

E [TK,E ]
.

where pi,j is the transition probability from state i to state j, Ti,j is the random time needed for
that transition, and E[Ti,j ] is its mean value. Concerning pII,U and pII,K there is a proportionality
parameter β.

such that

pII,U = β
1

E
[
TII,{U,K}

] , pII,K = (1− β)
1

E
[
TII,{U,K}

] .
The parameter β represents the probability of becoming U instead of K for an individual in state
II, and it is one of the parameters of the model.

These relations are very important for the characterization of these transition probabilities
because they link them to quantities for which we have information from the literature. More
precisely, among the several information present in the literature, we have decided to consider
sufficiently accurate the following ones.
If we denote by t̂i.p. the estimate of the mean duration of the incubation period as found in the
literature, it follows that

t̂i.p. = E[TIN,II ] + E[TII,{UK}]. (4)

The overall range for the duration of the incubation period, as found in many studies like [33], [45],
[35], is 1.8–9.0 days. However, we decide to rely on the World Health Organization’s website1, that
reports that the incubation period of COVID-19 is, on average, 5 − 6 days, therefore we restrict
our research to articles that present a mean value for the incubation period between 5 and 6. We
decide to fix

t̂i.p. = 5.5,

as this value respects the requirement to be between 5 and 6, and we can find on two articles that
are based on a reasonable number of real cases, [31], [34], values really close to this one (5.5 in the
first one and 5.6 in the second one).

1https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-
infection-prevention-precautions
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We now need to choose a value either for E[TIN,II ] or E[TII,{UK}]. This is not a simple task, as it
is not clear when an individual enters the infectious stage of the incubation period. We refer to the
paper [25] that analyzes the temporal dynamics of the transmissibility of COVID-19 and we decide
to make the infectiousness of an individual begin, on average, 3 days before the exit from state II,
which means that we choose

E[TII,{UK}] = 3.

Now, we can derive the mean duration of the other stage of the incubation period:

E[TIN,II ] = 5.5− 3 = 2.5.

From the duration of infectiousness we can also obtain information about E[TU,E ]. Indeed, when an
individual exits state II and enters state U , he remains unknown to the National Health System,
and, therefore, he is not isolated and may continue to infect other people for the whole time he is
infectious. From the figures that represent the inferred infectiousness profile in [25], we can observe
that, after an individual exits state II, the infectiousness profile decreases monotonically, and it
becomes quite low after 6 days from that moment. Thus, we decide to make the infectiousness of
an individual end, on average, 6 days after the exit from state II, which means that we choose

E[TU,E ] = 6.

This means that the infectiousness lasts on average 9 days. It’s an estimate not far away from
other papers that we found later on; for example in [43] they say that the infectious period lasts
on average 10.9 days. Things are different for individuals that enter state K after the exit from
state II. The intuition is that the time spent in state K is really short, in the range of one to two
days, the time needed to notice to have some symptoms, contact the doctor and be put in isolation.
Thus, we decide to set

E[TK,E ] = 1.5.

We now come to β, the proportion of unknown cases with respect to known cases. To set this
parameter, we refer to the recent research carried out by Istat about the seroprevalence of COVID-
19. There it is possible to read that the individuals that have been in contact with the virus are 6
times more than the total cases officially intercepted during the pandemic. Therefore we choose

β = 0.85.

It is remarkable to note that this number is not the same for the whole duration of the epidemic: in
the first stages, only people with evident symptoms were tested and this led to a greater proportion
of unknown cases. After a while they started with contact tracing and could intercept also cases
that were not evidently ill; causing a reduction of the proportion of unknown cases.

Next, let us discuss the transition probability pS,IN (η, i). In the simplified model of full city
interaction, the only parameter needed to compute pS,IN (η, i) is λ.

The heuristic meaning of λ is, in our opinion, not sufficient to characterize its value in examples.
It is necessary to fit it. We shall describe in the next section a quite elaborate strategy to fit this
value on the basis of auxiliary quantities related to experiments.

When the model with family and pseudo-bubbles is used (or just with family), it is necessary
to characterize several additional parameters:
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• λcity, λfam, λps

• αcity, αfam, αps

• Nps (i) for each i in the population.

In addition, the fact that we have chosen families of three people is also a hidden parameter fit,
which could be changed.

Our choice about λfam is simply
λfam = λ

where, by λ, we mean the general parameter fitted according to the next section. It corresponds to
a sort of biological basic parameter applicable to individuals that do not know about the existence
of the virus or do not care about it. This is, with some degree of simplification, the behavior of
people when they spend time with their family.

However is very difficult to fit the values of λcity and λps from data. We use different values
of λcity and λps when considering the phase prior to lockdown or the lockdown itself. During the
phase prior to lockdown, we have decided to apply a simplification, namely to assume that

λcity = λ, λps = λ.

Differently, during the lockdown and post-lockdown phase we set λcity, λps as fractions of λ, to
model the effect of social distancing and the introduction of masks as a personal defence against
the virus. We decided that for the pseudo-bubble the value of λ is higher to model a smaller
perception of risk when an individual spends time with people he knows. Obviously, the parameter
λfam is the same as before because people at home do not follow the same rules. The coefficients
αcity, αfam and αps represent the percentage of time spent in each group. We have chosen different
values of these parameters for pre-lockdown and lockdown period.

Note that if we use layers we have to introduce other coefficients αicity, α
i
fam, α

i
ps but we will

explain it later. Finally, Nps (i) is obviously too difficult to be known in detail and thus we have
made an average choice - as it is the choice that a family is made of three people - namely, we fix a
parameter ξ, and for every individual i, we generate a number Nps(i) from a Poisson distribution
of parameter ξ, which is the size of the set Jps(i). Then we identify Nps(i) random positions in the
string {1, . . . , N}, which will be the entries equal to 1 in the i − th row of the adjacency matrix.
Finally, we make the matrix symmetric.

3.1 The fit of parameter λ

In order to fix a value for the parameter λ, we need to introduce the concept of serial interval. The
serial interval is defined as the time duration between a primary case (infector) having symptom
onset and a secondary case (infectee) having symptom onset. The serial interval can present different
features, depending on when the infection occurs: it can happen when the individual who infects
the other is still in the pre-symptomatic stage, or when he is already in the symptomatic one. In
the event of pre-symptomatic transmission, it may happen that the serial interval is negative, if
the infectee develops symptoms before the infector. Therefore, there are three possible scenarios
for the considered pair:
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Figure 4: Three different scenarios for serial interval

We denote with the index 1 times referred to the infector and with the index 2 times referred to
the infectee. Since we are not interested in what happened when the infector was not yet infectious,
we consider the system formed by the infector-infectee pair from the moment the first individual
enters state II. Looking at Figure 4, we can derive that

Serial interval = TIN2,II2 + TII2,UK2
+ TI − TII1,UK1

;

where we denote by TI the time necessary to the first individual to infect the second one. But,
recalling that

Incubation period = TIN,II + TII,UK ,

we have
Serial interval = I.P.2 + TI − TII1,UK1

.

For what concerns the expected values, we have

E[S.I.] = E[I.P.2]− E[TII1,UK1
] + E[TI ]

= E[TIN2,II2 + TII2,UK2 ]− E[TII2,UK2 ] + E[TI ]

= E[TIN2,II2 ] + E[TII2,UK2 ]− E[TII1,UK1 ] + E[TI ];

but E[TII2,UK2 ] = E[TII1,UK1 ], therefore

E[S.I.] = E[TIN,II ] + E[TI ]. (5)

Notice that E[TI ] is not a parameter of our model. Different values of λ affect only E[TI ];
indeed, greater values of λ imply a bigger probability of infection and, therefore, a smaller value of
TI while smaller values of λ imply a smaller probability of infection and a greater value of TI .
Different studies estimated the mean serial interval in the range of 2.86–7.5 days, [33], [45], [40],
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[37], [22], [46], We set E[S.I.] = 3.96 ' 4, as we can find in [20], and we calculate an estimate
of E[TI ] with a Monte Carlo method. Notice that we used the uniform scenario to calculate the
probability to get infected. In this way, we determine a value of λ that produces an empirical value
of E[TI ] close to 1.5, as we want to obtain

E[TI ] = E[S.I.]− E[TIN,II ] ' 1.5.

This is obtained with
λ = 0.75.

4 Results

4.1 Distribution of the incubation period

To determine the probability distribution of the incubation period we write a routine that returns
the incubation period of an individual. With Monte Carlo method we extract a large sample of
incubation periods and we use the results to make an histogram and to fit the I.P. density distri-
bution. The function takes as argument the number of hours, the mean value of the random jumps
from state to state. At the beginning we have a random individual in state IN . The function
returns how many days this individual stays in states IN or II. Despite the fact that incubation
period needs individuals known to the sanitary system that develops symptoms we do not get rid
of the values of the function obtained from individuals that go in state U after they exit state II.
This is not a mistake because the time a known individual and an unknown one take to exit from
state II is the same, so this choice doesn’t affect our results. It is noteworthy that to calculate
the incubation period it is sufficient to use the first scenario in which the way an individual gets
infected is uniform, every other individual can infect the others. Another remark is about the tem-
poral unit: in this function we use hours instead of days as temporal units. The reason is simple:
the incubation period is given by the sum of two exit times, thus if we use days as temporal units,
its value will be greater than 2. Choosing hours in the histogram we will also have values smaller
than two. Once the transition probabilities have been chosen in the case in which the temporal unit
is a day, we have only to divide by 24 the probabilities, to obtain the case with hours as temporal
units. This is true for those transitions whose probability is equal to the inverse of the mean of the
exit times. For the first transition we don’t have this property but we are not interested in the way
the individual gets infected, therefore we can divide by 24 every probability and it doesn’t affect
our results. Calling the function 5000 times we can plot an histogram with relative frequencies
and try to fit its distribution with different densities. As shown in Figure 5, we fitted a Gamma
distribution using the function fitdistr of the library(MASS), here plotted with a black line. In [25]
the incubation period density is estimated to be like in Figure 6. The authors obtained mean equal
to 5.2 days hence for this reason we can make a comparison.
Both estimates are similar: they peaked at the third day even though the peak of the second es-
timate is greater than the one we obtained. Moreover, in both cases after 12th day the density
decreases rapidly becoming negligible at the 20th day. The parameters obtained with this method
are mean equal to 5.5, shape = 1.99 and rate = 0.37.
In Figure 5 there are also different fits with Lognormal and Weibull densities. It is clear that in
our case the best fit is given by the Gamma distribution, whereas in [25] the authors found out
that the Lognormal best fitted their data. If we calculate the mean and sd of a Lognormal fit we
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find the parameters: meanlog = 1.43, sdlog = 0.78 while their parameters are meanlog = 1.62,
sdlog = 0.42.

Figure 5: Histogram obtained calling the function that calculates the incubation period
5000 times.
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Figure 6: An example of incubation period density from literature.

The empirical cumulative function in our case can be compared with results in [31]. In Figure
8 they showed levels corresponding to the 2.5th, 50th and 97.5th percentiles respectively. The
cumulative function in our case is the empirical cumulative function while the one in [31] is obtained
by a supposed Lognormal distribution with parameters obtained using the observations. Their log-
normal parameters are 1.65 and 0.42 (see Table 2 in [31]) The main difference between Figure 8
and Figure 7 is in the value of the cumulative function for the first 2.5 days. Indeed, in our case
the cumulative function increases more rapidly than the other cumulative function, and this means
that there is a not negligible proportion of symptomatic individuals within the first 2.5 days.
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Figure 7: Cumulative function obtained with the function that calculates the incubation
period.

Figure 8: Cumulative function for incubation period from literature.
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4.2 Distribution of serial interval

To obtain information about the serial interval probability distribution we write a routine that
returns the serial interval for a random pair of infector-infectee, in which we choose the individual
indexed by one as the infector. This is because, as for the incubation period, we use the code for
the uniform scenario to calculate the serial interval, hence it is not important which individual we
choose as infector. Despite the fact that, differently from the incubation period, the serial interval
depends on the way an individual gets infected, with scenarios that includes families the probability
that one of the relatives of the infector gets infected is high, so this will result in a shorter serial
interval because in no time he will be infected. This function returns how many days there are
between the day the infector becomes II and the day the infectee becomes II. The infectee is
chosen in the set of the first individual infected by the infector; in particular we choose the infectee
with the smaller index. Differently from the case of the incubation period we have to exclude the
infectors that become U because one individual of that state can remain infectious for many days
and this can affect the results.

As in the case of incubation period, with a Monte Carlo method we extract a large sample of
serial intervals to make an histogram and then we compared our result with density estimates from
the literature. In Figure 9 we fitted our histogram with a normal distribution of mean equal to
4.03 and standard deviation equal to 4.06 and also with a t-Student density with mean, sd and
degrees of freedom respectively equal to 3.9, 3.11 and 5. From [20] we took Figure 10, even in this
case they fitted with a normal distribution with mean interval 3.96 days and sd 4.75 days. In both
cases, the density is zero before -10 and after 20th day. The relative frequencies in our case are
increasing until the values from 4 to 5 and then decreasing, whereas this behaviour is not found
in their histogram. Despite this, they both peaked around 0.09. In [20] authors reported 12.6%
of negative serial intervals whereas in our case this value is around the 10%. From Figure 9 it is
clear that t-Student density fits better our histogram. Indeed, it follows better the peaks compared
to the normal density, and it seems to be closer to our data. Confirming what it was suggested
by the plots, with a Shapiro-Wilk test we obtain a p-value smaller than 10−16 and this means we
have to reject the normality hypothesis. Moreover, the value of skewness is positive and around
0.22 and this confirms the fact that the peaks in the histogram are slightly concentrated on the
left. The value of kurtosis is around 2, hence definitely we can’t say that serial interval is normally
distributed.
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Figure 9: Histogram obtained calling the function serial 5000 times.

Figure 10: Fit with normal distribution from paper [20].

4.3 Time series of Tuscany

In this section we deal with real cases that are the infections in Tuscany. We consider the total cases
for every of ten provinces and we try to fit the mean of these cases. For computational reasons we
run our routine over 9999 individual and approximate the cases over 99990 inhabitants multiplying
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the result by ten. Indeed we standardize the cases over 99990 to make the routine execution faster.
In Figure 11 there is the plot of the total cases over this standard number. Real data are taken
from the page of Franco Mossotto 2.

Figure 11: Total cases over 99990 inhabitants.

The variability of these real cases goes about from 100 to 500. Hence we expect that a good fit
of the mean is given by trials with variability in this range. Notice that the mean is the black thick
line and the majority of the other lines stay under the mean. In Figure 12 we try to fit the mean
using only the families as social barriers.

2https://datastudio.google.com/u/0/reporting/91350339-2c97-49b5-92b8-965996530f00/page/RdlHB
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Figure 12: Fit of mean using only families.

The coefficients we used are:

• λ = 0.75 during the pre-lockdown, λ/4 during the lockdown for bubbles and pseudo-bubble
respectively

• α:
pre-lockdown: αfam = 0.5, αcity = 0.5
lockdown:

– workers: αfam = 0.65, αcity = 0.35

– students: αfam = 0.975, αcity = 0.025

• β1 = 0.85 for the first 18 days and β2 = 0.7 for the remaining days.

We manage to fit the total case of Tuscany mean also adding the pseudo-bubbles ad social
barriers. In Figure 13 there is the output obtained using the following coefficients:

• λ = 0.75 during the prelockdown, λ/4 and λ/3.5 during the lockdown for bubbles and pseudo-
bubble respectively

• α :
pre-lockdown:

– αfam = 0.5
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– αcity = 0.1

– αps = 0.4

lockdown:

– workers: αfam = 0.7, αcity = 0.05, αps = 0.25

– students: αfam = 0.975, αcity = 0.025

– λfam = λ
4 , λps = λ

3.5

• β1 = 0.85 for the first 18 days and β2 = 0.7 for the remaining days.

Figure 13: Fit of the mean using also pseudo-bubbles.

We have noticed which is the range of variability of the real cases in Tuscany and now we want
to make some considerations upon the variability of our model. Making one-hundred trials of our
code we show an histogram of the total cases in the last day, that is the 4th of May, both for the
model only with bubbles and for the model with pseudo-bubbles too.

For the model without pseudo-bubbles we obtain the following figure.
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Figure 14: Total cases on the 4th of May in 100 trials. Model without pseudo-bubbles.

Looking at Figure 14 it is clear that the distribution of the results is asymmetric with a long
tail indeed we calculate a skewness value of 1.34. The most frequent values are those between 200
and 250. The mean of the whole trials is 256 and the standard deviation is 156.
We now show the same histogram as obtained using the model with pseudo-bubbles.

Figure 15: Total cases on the 4th of May in 100 trials. Model with pseudo-bubbles. The
histogram is obtained with seed equal to 30.

As we expected, the variability is smaller than in the previous case. The distribution is asym-
metric, with a long tail and this is confirmed by a skewness value equal to 0.93. The mean is equal
to 237.7, while the standard deviation is equal to 143.9.
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In both cases it is noteworthy that the variability is a little bit wider if compared to the real
cases, especially for the the lower extreme of the range. Using the uniform scenario it is not easy
to fit the mean because the introduction of the families slows down a lot the epidemics. Differently
using the pseudo-bubble we managed to fit the mean, introducing more realism. However more
realism goes together with more parameters, thus for the period under exam is sufficient to use the
second scenario to model the real cases.

What if the government would have allowed each individual to meet his friend, colleagues or
other acquaintance, during the lockdown? To answer this question we try to launch our code and
the result of the simulations is showed in Figure 16.

Figure 16: Case in which each individual is allowed to spend a few hours a day with is
pseudo-bubble.

We found out that the pseudo-bubbles are useful to describe the number of diagnosed patients
also after the lockdown period. In Figure 17 and Figure 18 we manage to fit the total cases beyond
the 4th of May, until 3th of June, using two different scenarios.
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Figure 17: Fit post-lockdown after the 4th of May using only bubbles.

Figure 18: Fit of total cases beyond the 4th of May.

To obtain this results we use values of α similar to those of the pre-lockdown but different
values of λ. In the short period of time after the end of the lockdown people were very careful and
continued to spend their time with their family mostly.
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Moreover in May or June individuals stayed outside and as observed this has as a result that
being infected was more difficult. For this reasons we used smaller values of λ. In Figure 17 we
set λ/9 for the city. We have already noticed that the pseudo-bubbles slow down the epidemics,
indeed if we use the same values of λ as we did in the previous case, the result is that the mean of
the trials is smaller than that of the real cases. Hence, we can use smaller values of λ such as λ/7
in the city and λ/6.5 for the pseudo-bubbles. The variability is a little bit wider in the case with
the pseudo-bubbles but it can be due with the particular simulation.

5 Conclusions

We have developed a Markovian model following natural intuitions about the behavior of a popu-
lation of individuals, properly simplified in structure and interactions; e.g., during the March-April
2020 lock-down phase, the model takes into account elements like how much time part of the
population had contact with other people out of their family, even though with masks or social
distancing.

The model requires the specification of several parameters related to biological or sociological
issues (e.g. the average time between infection and emergence of symptoms, or the time spent in
contact with different subsets of the community). We have identified reasonable values of most
of these parameters, either by common sense intuition or looking at the biomedical literature de-
pending on the nature of the parameter; sometimes choosing the value in a straightforward way,
sometimes else by more refined logical arguments. However, one parameter remains uncertain, very
difficult to be determined a priori, before the time series of infected people of a certain period and
regime is known: it is the parameter λ (with its different versions) described in the previous sec-
tions, a sort of rate of infectiousness of individuals, which takes into account the level of protection
(distances masks, open air etc.) of a specific period.

The value of λ at home, inside the family where individuals spend most of their time and do
not use special devices of protections, is taken from data fitted before lock-down phases, when we
suppose that the same level of lack of protection was the rule in the society. Such baseline value
of λ was used for family interactions in every period of our simulations (pre-lock-down, lock-down,
post-lock-down). But the value of λ, during lock-down, in the contacts external to the family was
very different and we have deduced it by fitting data; it is an average value of infectiousness under
protection strategies which was impossible to predict, due to the novelty of the regime.

However, a natural conjecture was that the same value of λ would hold in the post-lock-down
period, concerning the interactions external to the family. The difference between lock-down and
post-lock-down should be only due to the different times of exposure to external interactions.
Our simulations did not confirm this simple hypothesis: if the same value of λ is used, with the
new exposal times, the simulations would produce a much worse behaviour than reality, with an
increase of infection after a very short period, opposite to what happend (a long period of rest
until September 2020). The only way we have to fit the data during the post-lock-down is to
reduce the value of λ (the order of reduction is a division by two). In spite of the same protection
rules (distances and masks), starting from May 2020 the infectiousness decreased, a fact that has
many potential explanations; the difficulty to conjecture this reduction of λ is the main source of
limitation in the hope to use the model of this paper for future predictions.

However, when also the parameter λ is chosen, the statistical variability of all quantities emerges
automatically from the random structure of the model and turns out to be very close to reality: both
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for quantities like the incubation period and serial interval, and for time series like the number of
detected infected people in a region like Tuscany, relatively homogeneous with respect to different
towns. The model is therefore realistic in its random performances and may be used to assess
the uncertainty of predictions and to explore different scenarios: as an example, we have simulated
what we should have expected if a government, during the March-April 2020 lock-down, would have
allowed each individual to meet a small prescribed number of friend and colleagues, see Figure 18.

Let us finally mention that models of the form of the one of this paper can easily incorporate
further developments and improvements like creating more than two layers, creating a subgroup of
individuals that can be re-infected after a certain period of time or giving a different infectiousness
to some individuals because of their high viral load. We have analyzed the performances of a basic
case to identify strengths and weaknesses. Concerning possible applications of a refined system
like this one, let us mention the opportunity to simulate details of the past given the present (this
requires much more work than presented here), which could be of help in contact tracing strategies.
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