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Minimal surfaces in three dimensional
pseudo-Hermitian manifolds

Andrea Malchiodi

Abstract1. We consider surfaces immersed in three-dimensional pseudo-Hermitian

manifolds. A notion of pseudo mean curvature (p-mean curvature for short) is defined,

which extends naturally some previous concepts given in the Heisenberg group. We derive

this notion in different natural ways, which are all equivalent, and then study the p-

minimal surface equation. Of great importance is the study of the singular set, which

allows us to classify entire graphs in the Heisenberg group. Some applications of this

result are then given, and some related issues are discussed.

1. Introduction

The concept of minimal surface plays an important role in several contexts. It
appears in physics in the study of phase transitions or in the theory of general
relativity, but has also been used in differential geometry to study basic proper-
ties of manifolds. We mention for example the two papers [21], [22] where the
authors employ minimal surfaces to derive properties of manifolds with positive
scalar curvature or to prove the positive mass theorem.

We are interested here in analogous concepts in pseudo-Hermitian manifolds,
in order to finding possible similar applications. First of all, we recall some basic
notions.

Let M be a three dimensional manifold. A contact structure ª on M is a com-
pletely non-integrable two-dimensional distribution, namely the Lie bracket of two
(linearly independent) vector fields tangent to ª is always non parallel to ª. A
contact form Θ is a 1-form which annihilates ª. We will always assume it oriented,
namely that dΘ(u, v) > 0 if (u, v) is an oriented basis of ª. The Reeb vector field
associated to Θ is the unique vector field Θ such that Θ(T ) = 1 and such that
dΘ(T, ·) = 0. A CR structure compatible with ª is an endomorphism J : ª ! ª
such that J2 = °Id. We assume that also J is oriented, namely that for every
non-zero vector field X, the couple (X, JX) is an oriented basis of ª.
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A pseudo-Hermitian manifold is a manifold endowed with a CR structure and
with a global contact form Θ. This gives rise to a natural volume form

V (Ω) =
Z

Ω
Θ ^ dΘ

and to a metric on ª called Levi form

LΘ(v, w) = dΘ(v, Jw) .

Let e1 be a local section of ª with unit length, namely satisfying LΘ(e1, e1) = 1,
and let e2 = Je1, so (e1, e2) is an oriented basis of ª. Let {Θ, e1, e2} be the forms
dual to the triple {T, e1, e2}. Then we have the structure equations

(S1) dΘ = 2e1 ^ e2 ;

(S2) de1 = °e2 ^ !modΘ ; de2 = e1 ^ !modΘ ,

for some 1-form ! called connection form. The Tanaka-Webster connection is de-
fined by

rp.h.e1 = ! ≠ e2 , rp.h.e2 = °! ≠ e1 ,

while the Tanaka-Webster curvature (see [24] and [25]) is given by

(1) d!(e1, e2) = °2W .

Given a function f and a vector field V tangent to ª we define the subgradient of f
and the subdivergence of V as

rbf = (e1f)e1 + (e2f)e2 ; divb V = LΘ(rp.h.
e1

V, e1) + LΘ(rp.h.
e2

V , e2) ,

and we have also the sublaplacian

∆bf = divb (rbf) .

For the Heisenberg group H1 we have the standard choices

(2) ê1 =
@

@x
+ y

@

@z
, ê2 =

@

@y
° x

@

@z
, T̂ =

@

@z
, Θ̂ = x dy ° y dx + dz .

We are now in position to define the p-mean curvature of a two dimensional (regular)
surface Σ immersed in M . If TpΣ 6= ª(p), we let e1(p) be the unit vector belonging
to TpΣ \ ª(p) (unique up to the sign), and e2(p) = J(p)e1(p). Then we define the
(p)-mean curvature H in three equivalent ways
1) As second variation of the volume: if Σ is the boundary of an open set Ω, then
taking a variation fe2 of Σ (if e1 is well defined) we have ±fe2V (Ω) =

R

Σ fΘ ^ e1.
We call Θ^e1 the p-area form of Σ: taking then a variation of the p-area we obtain
a scalar multiple of the p-area itself, and we define H by

±fe2

Z

Σ
Θ ^ e1 := °

Z

Σ
fHΘ ^ e1 .

2) Viewing Σ as a level surface: if Σ = {√ = 0}, then we set

H = °divb

µ

rb√

|rb√|

∂

.

3) Using the Tanaka-Webster connection: as for curves of unit velocity in the plane,
whose curvature is perpendicular to the tangent vector, in this case we have that
rp.h.

e1
e1 is a scalar multiple of e2, so we define

rp.h.
e1

e1 = He2 .
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The points for which TΣ = ª are called singular and at these the vector e1 is
not well-defined. For the Heisenberg group the first two definitions coincide with
those given in [3], [8], and [18]. The p-area element Θ^ e1 coincides with the three-
dimensional Hausdorff measure of Σ, considered in [1] and [9]. In particular these
notions, especially in the framework of geometric measure theory, have been used
to study existence or regularity properties of minimizers for the relative perimeter
or extremizers of isoperimetric inequalities (see, e.g., [8], [10], [14], [15], and [17]).

2. Minimal graphs in the Heisenberg group

Let u : Ω µ R2 ! R be a smooth function, and let Σ be the graph of u

Σ =
©

(x, y, u(x, y)) | (x, y) 2 R2
™

.

Recall that e1 is the unique (up to a sign) vector in TΣ \ ª which is unitary with
respect to the Levi metric. By the pseudo-Hermitian structure of the Heisenberg
group, which is determined by (2), for a graph we have that

e1 =
1
D

2

4°(uy + x)

0

@

1
0
y

1

A + (ux ° y)

0

@

0
1
°x

1

A

3

5 ,

where
D =

£

(ux ° y)2 + (uy + x)2
§1/2

.

One also finds that

H =
1

D3
{(uy + x)2uxx ° 2(uy + x)(ux ° y)uxy + (ux ° y)2uyy} ,

so a graph is p-minimal if and only if the following equation holds

(§) (uy + x)2uxx ° 2(uy + x)(ux ° y)uxy + (ux ° y)2uyy = 0 .

The singular points of Σ (or of u) are given by

S(u) = {(x, y) : ux ° y = uy + x = 0} ,

while the p-area of the graph of u over Ω can be written in parametric form as

F(u) =
Z

Ω

q

(ux ° y)2 + (uy + x)2
| {z }

p-area

dx dy .

This section is devoted to one of the main results in [6] (see also [11]), which is the
following.

Theorem A. The only entire C2 solutions to (§) are of the following two forms

(3) u = ax + by + c ;

(4) u = °abx2 + (a2 ° b2)xy + aby2 + g(°bx + ay) ,

for some real constants a, b, c with a2 + b2 = 1 and for some function g : R ! R of
class C2.

We give some sketch of the proof, referring to [6] for complete details. We begin
with the following geometric characterization of p-minimal graphs (which holds for
more general p-minimal surfaces as well) in the three dimensional Heisenberg group.

Lemma 1. Every minimal graph in H1 is locally a ruled surface.
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Proof. Given a non-singular point of Σ, denote the projection of °e2 (°e1,
respectively) onto the xy-plane by N(u) or simply N (N?(u) or simply N?, re-
spectively). Recall that e1 = [°(uy + x)ê1 + (ux° y)ê2]/D where D = [(ux° y)2 +
(uy + x)2]1/2, so N? = [(uy + x)@x ° (ux ° y)@y]/D. Write (uy + x)D°1 = sin µ,
(ux ° y)D°1 = cos µ for some local function µ. Then we have that

(5) N = (cos µ)@x + (sin µ)@y ,

(6) N? = (sin µ)@x ° (cos µ)@y .

Using the second definition of p-mean curvature one finds

(7) 0 = div N = (cos µ)x + (sin µ)y = °(sin µ)µx + (cos µ)µy .

Now using (6) and the last equation we deduce that

(N?)2 = sin2 µ @2
x ° 2 sin µ cos µ @x @y + cos2 µ @2

y .

Below, we will call characteristic curves both the integral curves of e1 on Σ and
their projections onto the xy plane, namely the integral curves of N?. Along a
characteristic curve (x(s), y(s)) (in the plane), where s is a unit-speed parameter,
we have the equations

(8)
dx

ds
= sin µ ,

dy

ds
= ° cos µ

by (6). Noticing that ux = (cos µ)D + y, uy = (sin µ)D ° x, we have

(9)
du

ds
= ux

dx

ds
+ uy

dy

ds
= [(cos µ)D + y] sin µ + [(sin µ)D ° x](° cos µ) =

= x cos µ + y sin µ ,

(10)
dµ

ds
= µx

dx

ds
+ µy

dy

ds
= µx sin µ ° µy cos µ = 0

by (7). From (8), (9) and (10) we find that

(11)
d2x

ds2
= 0 ,

d2y

ds2
= 0 ,

d2u

ds2
= 0 .

From the above formulas it follows that s 7! (x(s), y(s), u(s)) parameterizes a
straight line in H1 (identified with R3), and (x(s), y(s)) is a plane curve parame-
terized with unit speed. This concludes the proof.

§

Remark 1. More in general, the p-mean curvature of a graph Σ coincides with
the ordinary curvature of the xy projection of the characteristic curves of Σ.

We characterize next the singular points of Σ with the next proposition, which
corresponds to Theorem B in [6]. We do not give the proof here for reasons of
brevity, and we refer to the aforementioned paper for details.

Proposition 1. Let Ω be a domain in the xy-plane. Let u 2 C2(Ω) be such that
div N(u) = H in Ω \ S(u). Suppose |H(p)| ∑ C(1/r(p)) (where r(p) = |p ° p0|)
for a positive constant C and for p 2 Ω \ S(u) near a singular point p0 2 S(u).
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Then either p0 is isolated in S(u) or there exists a small neighborhood of p0 which
intersects S(u) in exactly a C1 smooth curve through p0. Setting

(U) U =

2

4

uxx uxy ° 1

uxy + 1 uyy

3

5 ,

p0 is isolated in S(u) if and only if det(U)(p0) 6= 0.

It is also crucial to understand the behavior of characteristic curves near the
singular points. We have the following two results (which are not proved here)
concerning isolated and non-isolated singular points respectively.

Lemma 2. Suppose p0 is an isolated singular point of a minimal graph Σ of class
C2. Then in a neighborhood of p0 we have

N?(p) =
p° p0

|p° p0|
; p 6= p0 .

Moreover we have that uxx = uxy = uyy = 0 at p0.

We consider next the case of a non-isolated singular point. We let B denote a
small ball centered at p0 2 S(u) which is contained in the neighborhood given in
Proposition 1. Since we are assuming p0 to be not isolated, S(u) \B consists of a
C1 curve. We let B+ and B° denote the subsets of B which are divided by S(u).
We have then the following result.

Lemma 3. Let u be of class C2, and suppose p0 2 S(u) is a non isolated singu-
lar point. Then both the limits N(u)(p+

0 ) ¥ limp2B+!p0 N(u)(p) and N(u)(p°0 ) ¥
limp2B°!p0 N(u)(p) exist. Moreover N(u)(p+

0 ) = °N(u)(p°0 ). Moreover the char-
acteristic curves near p0 intersect S(u) transversally.

Proof of Theorem A. First of all we claim that if there exists an isolated singular
point, then this must be unique. In fact, assuming we have two such points p1, p2 2
S(u), by Lemma 2 and Lemma 3, since the characteristic curves in the xy plane
are straight lines (see the proof of Lemma 1), there exist two distinct straight lines
passing through p1, p2 respectively and intersecting at a third point q /2 S(u). But
then at q N?(u) would have two values, which is a contradiction.

On the other hand, assuming that there are no isolated singular points, we get
that the projections onto the xy plane of the characteristic curves are parallel. In
fact, since all the singular points (if any) are non-isolated, by Lemma 3 we know
that the limit of N (or of N?) exists through singular curves, and therefore two
characteristic lines cannot intersect.

In conclusion, we have the following two cases.

Case 1: S(u) contains one isolated singular point. Let p0 be the singular
point, and let r,# denote the polar coordinates with center p0. We can write
±Ň?(u) = @/@r by Lemma 2 and Lemma 3. By the last equation in (11) we have

(12) urr =
@2u

@r2
= 0

on the whole xy-plane except for p0. Integrating, it follows that u = rf(#) + g(#)
for some C2 functions f, g. Since u is continuous at p0 = (x0, y0) (where r = 0),
u(x0, y0) = g(#) for all #, so we deduce that g is a constant function, say g ¥ c.
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Also f(#) = f(# + 2º) implies that we can write f(#) = f̃(cos #, sin #) where f̃ is
C2 in Æ = cos # and Ø = sin #. By direct computation we have ux = urrx+u##x =
Æf̃ + Ø2f̃Æ ° ÆØf̃Ø in which f̃Æ = @f̃/@Æ , f̃Ø = @f̃/@Ø , etc. and we have used
#x = °(sin #)/r. Similarly we obtain uy = Øf̃ +Æ2f̃Ø °ÆØf̃Æ. Since ux and uy are
continuous at (x0, y0), we immediately have the following identities

(13) Ø2f̃Æ ° ÆØf̃Ø + Æf̃ = a

(14) °ÆØf̃Æ + Æ2f̃Ø + Øf̃ = b

for all Æ,Ø. Here a = ux(x0, y0), b = uy(x0, y0). Multiplying the last two equations
by Æ, Ø, respectively and adding the resulting identities, we obtain (Æ2 + Ø2)f̃ =
aÆ + bØ. It follows that f̃ = aÆ + bØ since Æ2 + Ø2 = 1. We have shown that
u(x, y) = r(a cos #+b sin #)+c = a(x°x0)+b(y°y0)+c0 = ax+by+(c°ax0°by0 =
ax + by + c. In fact (x0, y0) = (°b, a) from the definition of a singular point and
the plane {(x, y, u(x, y)} is just the contact plane passing through (x0, y0).

Case 2. S(u) contains no isolated singular points. By the arguments at the
beginning of the proof we can find a rotation x̃ = ax + by, ỹ = °bx + ay with
a2 + b2 = 1 such that

(15) Ň?(u) = ± @

@x̃
.

By the third equation in (11) our equation reads ũx̃x̃ = 0 where ũ(x̃, ỹ) = u(x, y).
Integrating, it follows that

(16) ũ = x̃f(ỹ) + g(ỹ) ,

for some C2 smooth functions f, g. From (15) we know that N(u) = (0,±1), and
by the definition of N(u) we obtain ũx̃° ỹ = 0, so f(ỹ) = ỹ. Substituting this into
(16) gives ũ = x̃ỹ + g(ỹ), and hence u = °abx2 + (a2° b2)xy + aby2 + g(°bx + ay).
The proof is therefore concluded.

§
Remark 2. More general p-minimal surfaces in H1, not necessarily graphs, have
been considered in [5]. The authors classify all surfaces of helicoid type, namely
for which the intersection with a family of parallel planes foliating H1 consists of
contact lines.

3. The Dirichlet problem

In this section we consider the problem of finding a graph over a domain Ω which
satisfies the p-minimal surface equation and a prescribed boundary condition ' on
@Ω. Some solutions can be found using the direct methods of the calculus of
variations, trying to solve the following minimization problem, where the integrand
(see the previous section) represents the p-area element of the graph of u

min
Ω

F (u) :=
Z

Ω

q

(ux ° y)2 + (uy + x)2 dx dy : u = ' on @Ω
æ

.

If u is of class C2, then the Euler equation for F coincides with (§). There is a
more general notion of solution to (§) which is given by the following definition (see
Section 3 in [7]).
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Definition 1. Let Ω be a bounded domain in R2. A function u 2 W 1,1(Ω) is said
to be a weak solution of (§) if and only if for any ' 2 C10 (Ω) there holds

Z

S(u)
|r'| dx +

Z

Ω\S(u)
N(u) ·r' dx ∏ 0 .

We observe that the first integral in the above formula is evaluated with respect to
the standard Lebesgue measure, and therefore heuristically one expects the integral
to vanish since the Hausdorff measure of S(u) is small in general (see for example
[1] or Lemma 5.4 in [6]). The minimizers of F of class W 1,1 in Ω (satisfying the
prescribed given boundary condition) are characterized by the following result (see
Theorem 3.3 in [7]).

Theorem B. Let u 2 W 1,1(Ω). Then u is a minimizer for F if and only if u is a
weak solution of (§).

We mention also the following result from [7], concerning existence of solutions to
the above problem.

Theorem C. Let Ω be a parabolically convex bounded domain in R2, with @Ω of
class C2,Æ, and suppose ' 2 C2,Æ(@Ω). Then there exists a (unique) Lipschitz
continuous minimizer u 2 C0,1(Ω) for F which coincides with ' on @Ω.

We refer to the original paper for the definition of parabolically convex domain. A
different version of the above result was given in [18] where the author, assuming
that the boundary data satisfies the bounded slope condition, proved the existence
of a W 1,p minimizer for every p > 1. The result in [7] also extends to higher
dimensions.

The proof is done by considering the "-regularization

min
Ω

F (u) :=
Z

Ω

q

"2 + (ux ° y)2 + (uy + x)2 dx dy : u = ' on @Ω
æ

,

whose Euler equation is

(17)
£

(uy + x)2 + "2
§

uxx ° 2(uy + x)(ux ° y)uxy +
£

(ux ° y)2 + "2
§

uyy = 0 .

For any fixed " > 0, the last equation is uniformly elliptic, and therefore solutions
can be found using standard arguments in elliptic theory. Under the assumptions
of Theorem C, it can be shown that the solutions (u")" of (17) satisfy uniform C1

bounds on Ω, so by the Ascoli theorem they converge to a C0,1 function u which is
a minimizer of the functional F .

It is not known whether C0,1 is the optimal regularity for a smooth boundary
data. From (4) one sees that in general equation (§) does not gain regularity at the
interior of Ω.

However, there are cases in which the boundary data is C1 smooth but the
minimizer is not C2. For example, consider the boundary curve

(18) (cos µ, sin µ, cos2 µ + sin µ cos µ) , µ 2 [0, 2º] .
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It was proved in [7] (see Example 7.3 there), that the corresponding minimizer is
of class C1,1 only. This example was indeed considered by S. Pauls in [18], where
he showed that the above boundary data spans two different p-minimal surfaces
which are of class C2, x2 + xy and xy + 1° y2. Since by Theorem C the minimizer
is unique, we deduce that none of these C2 solutions can be also a minimizer for
F . Indeed, there is a criterion for local minimality of C2 solutions, which is given
by the following result (Proposition 6.2 in [7], see also Theorem C in [19]).

Proposition 2. Let u be a weak solution of (§) in B, and assume u is of class
C2 in B \ Γ, where Γ is a smooth curve in the closure of B which divides B into
two parts B+ and B°. Assume N(u) is smooth in both the closures of B+ and B°.
Then, letting N+ and N° be the values of N(u) in these sets and letting ∫ be the
normal to the curve Γ we have the following relation

(N+(u)°N°(u)) · ∫ = 0

on Γ.

Proof. Using the divergence theorem and letting ∫+, ∫° denote the values of ∫
in B+ and B° respectively, for any given smooth test function ' we have that

Z

B\Γ
N(u) ·r' =

Z

B+

N(u) ·r' +
Z

B°

N(u) ·r' =

=
Z

@B+

'N+(u) · ∫+

Z

@B°

'N°(u) · ∫° =
Z

Γ\B
'(N+(u)°N°(u)) · ∫+ .

In this equalities we have used the fact that ∫° = °∫+ and that div N(u) = 0 in
both B+ and B° (see (7)). Since S(u) is contained in Γ, the Lebesgue measure of
S(u) \ B is bounded by the measure of Γ \ B, which is zero by our assumptions
on Γ. Therefore, from Definition 1 and from the last formula (also replacing ' by
°') we derive that u is a weak solution if and only if u satisfies

Z

Γ\B
'(N+(u)°N°(u)) · ∫+ = 0

for every test function ', which is the desired conclusion.
§

Regarding example (18), the vector field N(u) is given respectively by

(19) N(u) =

8

>

>

>

>

<

>

>

>

>

:

µ

1p
2

,
1p
2

∂

for x > 0 ;

µ

° 1p
2

,° 1p
2

∂

for x < 0 ,

if u = x2 + xy ,

and

(20) N(u) =

8

<

:

(1, 0) for x > y ;

(°1, 0) for x < y ,
if u = xy + 1° y2 .

Therefore by Proposition 2 one checks that none of these solutions can be a mini-
mizer for the above Dirichlet problem. The explicit expression of the minimizer for
the above boundary condition is given in [7], Example 7.3.
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The above example shows that not only minimizers of problems with smooth bound-
ary data might not be smooth, but also that in general pointwise solutions (C2

regular) of (§) might not be unique and do not satisfy in general a comparison
principle. Indeed, a maximum principle holds for C2 solutions, provided we have
some control on the Hausdorff dimension of their singular sets, see [6].

Theorem D. For a bounded domain Ω in R2, let u, v 2 C2(Ω) \ C0(Ω̄) satisfy
div N(u) ∏ div N(v) in Ω \ S and u ∑ v on @Ω where S = S(u) [ S(v). Suppose
H1(S̄), the 1-dimensional Hausdorff measure of S̄, vanishes. Then u ∑ v in Ω.

As an immediate consequence of Theorem D, we have the following uniqueness
result for the Dirichlet problem of (§). The result does not apply of course to the
functions x2 +xy and xy +1° y2 in the unit disk, since for these cases the singular
sets consist of one-dimensional curves, see (19), (20).

Corollary 1. For a bounded domain Ω in the xy-plane, let u, v 2 C2(Ω) \ C0(Ω̄)
satisfy div N(u) = div N(v) = 0 in Ω \ S and u = v on @Ω where S = S(u)[ S(v).
Suppose H1(S̄), the 1-dimensional Hausdorff measure of S̄, vanishes. Then u = v
in Ω.

In [19] some criteria for the regularity of solutions, depending on the boundary data
are given.

4. Some extensions and applications

In this section we collect some related results and consequences of the above
arguments. We discuss first some extensions of the singular set analysis with ap-
plications to (non)existence results for p-minimal surfaces in three dimensional
pseudo-Hermitian manifolds and to the isoperimetric problem in H1. We turn
then to the second variation formula for the p-area and we exhibit some sufficient
condition for ensuring minimality based on calibration methods.

4.1. Consequences of the singular set analysis. It can be shown (see Section
7 in [6]) that the structure of the singular set in a surface Σ of class C2 embedded
with bounded p-mean curvature in a three dimensional pseudo-Hermitian manifold
M has the same structure as the one described in Proposition 1. This means that
the singular set consists of isolated points and C1 curves, through which the vector
field e1 extends continuously up to the sign. Near isolated singular points, similarly
to Lemma 2, the vector field e1 has index 1. It follows that the line field of e1 (e1

is defined up to the sign) has only isolated singular points of index 1, and therefore
the total sum of the indices is non-negative. By the Hopf index theorem, see for
example [23], it follows that the total index coincides with the Euler characteristic
of Σ, which therefore is also non-negative. We obtain then the following result.

Theorem E. Let M be a pseudo-Hermitian 3-manifold. Let Σ be a closed, con-
nected surface, C2 smoothly immersed in M with bounded p-mean curvature. Then
the genus of Σ is less than or equal to 1. In particular, there are no constant p-mean
curvature or p-minimal surfaces Σ of genus greater than one in M .

The above result specializes to the case when M is the standard pseudo-Hermitian
3-sphere, for which the foliation of p-minimal surfaces consists of Legendrian great
circles (see again Section 7 in [6]).
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Corollary 2. There are no closed, connected, C2 smoothly immersed constant
p-mean curvature or p-minimal surfaces of genus ∏ 2 in the standard pseudo-
Hermitian 3-sphere.

The latter results are in striking contrast with the riemannian case, where for
example there exist many closed C1 minimal surfaces of genus ∏ 2 ([13]) smoothly
embedded in the standard three sphere, see also [22].

As we noticed in Remark 1, the p-mean curvature coincides with the ordinary cur-
vature of the projection of integral curves of the line field e1 and in particular, when
H is constant, these projections are simply circles. This case is of particular interest
since boundaries of isoperimetric sets in H1 have constant p-mean curvature, see
for example [4], [14], [15], [16], [20] and references therein for more details. Under
some extra assumptions on the isoperimetric set, it can be shown that (up to a
Heisenberg translation) the lifting in H1 of the circles are geodesics with endpoints
on the z axis. We mention a result from [20] in this spirit.

Theorem F. Suppose Σ is a closed surface of class C2 bonding an isoperimetric
set in H1. Then, up to a translation, Σ is foliated (through rotations) by geodesics
with endpoints on the z-axis.

The above result was obtained in [14] under the assumption that Σ is rotationally
symmetric. A variant of this classification result has been given in [16], where the
regularity assumption of Σ is replaced by the convexity of the isoperimetric set.

4.2. Second variation formula and area-minimizing property. In this sec-
tion we will derive the second variation formula for the p-area functional and exam-
ine the p-mean curvature H from the viewpoint of calibration geometry, see [12].
As a result we can prove the area-minimizing property for a p-minimal graph in
H1.

We follow the notation in the introduction. We assume that the surface Σ is
p-minimal. Let f, g be functions with compact support away from the singular set
and the boundary of Σ. We compute the second variation of the p-area Θ^ e1 with
respect to a variation V = fe2 + gT of Σ

(21) ±2
V

Z

Σ
Θ ^ e1 =

Z

Σ
L2

V (Θ ^ e1) =
Z

Σ
iV ± d{iV ± d(Θ ^ e1)} .

Here we have used the Stokes theorem, the formula LV = iV ± d + d ± iV and the
fact that d2 = 0. From H = !(e1) (see our third definition of H), we get

(22) d(Θ ^ e1) = °HΘ ^ e1 ^ e2 .

We define locally a function Æ on Σ \ SΣ such that Æe2 + T 2 TΣ. Observe that
{Æe2 + T, e1} is a basis of T (Σ \ SΣ). Therefore on Σ \ SΣ we have

(23) e2 ^ e1 = ÆΘ ^ e1 .

From (22) it is easy to see that iV ± d(Θ ^ e1) = gHe2 ^ e1 ° fHΘ ^ e1. Then
applying iV ± d to this expression and making use of (S1), (S2), the last formula
and H = 0 on Σ, we obtain

(24) iV ± d{iV ± d(Θ ^ e1)} = (gÆ° f)(gT + fe2)(H)Θ ^ e1 =

= °(gÆ° f)2e2(H)Θ ^ e1
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on Σ. For the last equality we have used T (H) = °Æe2(H) since Æe2 + T 2 TΣ
and H = 0 on Σ. Expanding the left-hand side of (1) gives

(25) e2(H) = 2W + e1(!(e2)) + 2!(T ) + (!(e2))2 .

Here we have used the fact that [e1, e2] = °2T°!(e1)e1°!(e2)e2 and !(e1) = H =
0 on Σ. The surfaces 't(Σ\SΣ) are the level sets of a defining function Ω. Here '̇t =
fe2 + gT . It follows that (fe2 + gT )(Ω) = 1. On the other hand, (Æe2 + T )(Ω) = 0
from the definition of Æ. So T (Ω) = °Æe2(Ω) and e2(Ω) = (f°Æg)°1 (where f°Æg 6=
0). Applying the operator [e1, e2] and [e1, T ] = (Re A11)e1 ° ((Im A11) + !(T ))e2

(where A11 is the torsion of the Tanaka-Webster connection, see the appendix of
[6]) to the function Ω, and using the above formulas, we obtain

(26) !(e2) = h°1e1(h) + 2Æ ,

(27) !(T ) = e1(Æ)° Æh°1e1(h)° Im A11

where h = f ° Æg. Now substituting the last two equations into (25), we get

(28) e2(H) = 2W ° 2Im A11 + 4e1(Æ) + 4Æ2+

+h°1e2
1(h) + 2Æh°1e1(h) .

Observing that e1(e1(h2))Θ ^ e1 = Θ ^ d(e1(h2)) = °d(e1(h2)Θ) + 2e1(h2)Æe1 ^Θ
on Σ by (S1) and (23), we integrate (1/2)e1(e1(h2)) = (e1(h))2 + he2

1(h) to obtain

°
Z

Σ
he2

1(h)Θ ^ e1 =
Z

Σ
[(e1(h))2 + 2Æhe1(h)]Θ ^ e1 .

With some substitutions, we finally reach the following second variation formula.

Proposition 3. Suppose the surface Σ is p-minimal as defined in Section 2. Let
f, g be functions with compact support away from the singular set and the boundary
of Σ. Then

(29) ±2
fe2+gT

Z

Σ
Θ ^ e1 =

=
Z

Σ
{(e1(f ° Æg))2 + (f ° Æg)2[°2W + 2Im A11 ° 4e1(Æ)° 4Æ2]}Θ ^ e1 .

Note that the Webster-Tanaka curvature W and the torsion A11 are geometric
quantities of the ambient pseudo-Hermitian 3-manifold M .

In Riemannian (three dimensional) geometry, to construct a calibrating form one
considers the inner product of the volume form with a vector field orthogonal to a
family of surfaces, see [12]. This 2-form restricts to the surfaces, and its exterior
differentiation equals the mean curvature times the volume form along a surface.
We have analogous results here. Suppose M is foliated by a family of surfaces Σt,
°" < t < ". Let e1 be a vector field which is characteristic along each surface Σt.
We are assuming the Σt’s to have no singular points. Let e2 = Je1 denote the
Legendrian normal along each Σt. Then the 2-form Φ = (1/2) ie2(Θ ^ dΘ) satisfies
the following properties. First, a direct computation shows that Φ = Θ ^ e1, the
p-area form, from formula (S1). Secondly, dΦ = °HΘ ^ e1 ^ e2 by (22). So {Σt}
are p-minimal surfaces if and only if dΦ = 0. Now suppose this is the case and
Σ0 is a deformed surface with no singular points near a p-minimal surface Σ = Σ0
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having the same boundary. Also suppose the Poincaré lemma holds, namely there
is a 1-form Ψ such that Φ = dΨ. Then by Stokes’ theorem, we have

(30) p-Area(Σ) =
Z

Σ
Φ =

Z

@Σ
Ψ =

Z

@Σ0
Ψ =

Z

Σ0
Φ .

For Σ0, we have corresponding e01, e
0
2, e

10, e20. There is a function Æ0 such that
T + Æ0e02 is tangent to Σ0. Applying Φ = Θ ^ e1 to the basis (T + Æ0e02, e

0
1) of TΣ0,

we obtain e1(e01). It follows that Φ = e1(e01)Θ ^ e10 when restricted to Σ0. So we
have

(31)
Z

Σ0
Φ =

Z

Σ0
e1(e01)Θ ^ e10 ∑

∑
Z

Σ0
Θ ^ e10 = p-Area(Σ0) (since e1(e01) ∑ 1) .

From the last two formulas we have shown that

(32) p-Area(Σ) ∑ p-Area(Σ0) .

Let us summarize the above arguments in the following proposition.

Proposition 4. Suppose we can foliate an open neighborhood of a p-minimal sur-
face Σ by a family of p-minimal surfaces with no singular points, and in this neigh-
borhood the Poincaré lemma holds (i.e., any closed 2-form is exact). Then Σ has
the local p-area-minimizing property. In other words, if Σ0 is a deformed surface
with no singular points near Σ having the same boundary, then (32) holds.

We remark that a p-minimal surface in H1 with no singular points, which is a graph
over the xy-plane, satisfies the assumption in Proposition 4. Note that a translation
of such a p-minimal graph in the z-axis is still p-minimal (notice that u+ c is again
a solution if u = u(x, y) is a solution to (§)). Also a vertical plane in H1 (i.e.
perpendicular to the xy-plane) satisfies the assumption in Proposition 4. Note that
a vertical plane is a p-minimal surface with no singular points, and a family of
parallel such surfaces surely foliates an open neighborhood of a given one. Such
planes are indeed the only entire X-minimal graphs, according to a Bernstein-type
result in [2] (to which we refer also for the terminology).
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