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1 Introduction and summary

Different options for the breaking to minimal N = 1 supersymmetry in String Theory [1–8]
have been scrutinized over the years. The most widely explored ones rest on Calabi-
Yau compactifications of the heterotic string [9, 10], possibly in the presence of internal
fluxes [11, 12], or on their orbifold [13, 14] limits. To these one can add type-IIB [15–17]
orientifolds [18–25], also leading to N = 1 supersymmetry, or scenarios that transcend string
perturbation theory, based on M-theory [26] and F-theory [27]. In retrospect, however,
all these pathways proved under control since the residual supersymmetry protects the
vacuum. On the other hand, the final breaking to N = 0, which is needed to grant a
proper connection to the Standard Model, can only be addressed within the low-energy
supergravity [28–30] and entails a subtle back-reaction, which is still not fully under control.

There are, however, different settings that can lead directly to the complete breaking
of supersymmetry. Notable among these is the Scherk-Schwarz mechanism [31], which
naturally connects to no-scale supergravity models [32]. In its different incarnations for
closed-string models [33–38] and when open strings are also present [39–41], it leads to
examples where supersymmetry breaking is induced, in an explicit fashion, on entire string
spectra, but the vacuum is again severely affected. In addition, the tachyon-free string
models of [42–51] provide another, perhaps more fundamental setting, for the complete
breaking of supersymmetry. The vacuum suffers once more from severe back-reactions,
and tadpole potentials that emerge starting from the (projective) disk order deform the
original ten-dimensional Minkowski space. The phenomenon of “brane supersymmetry
breaking” [46–51] is particularly intriguing, since it embodies a non-linear realization of
ten-dimensional supersymmetry [52–54], a peculiar and surprising feature to be found
in String Theory at this level. Still, the Dudas-Mourad vacua [55] yield spontaneous
compactifications for these models on string-scale internal spaces, which are driven by the
very tadpole potentials, with finite values of Planck mass and gauge couplings in one lower
dimension. Strong coupling and curvature singularities are present in some regions, and yet
the tools of low-energy supergravity indicate that these vacua are perturbatively stable [56],
in contrast to the more symmetrical tadpole-driven AdS vacua of [57, 58]. Moreover, a mild
instability of isotropy present in their cosmological counterparts of [55, 59] resonates with a
possible dynamical origin for a compactified space time. Generalizations of these vacua,
also combining fluxes with finite intervals, were recently explored in [60].

Compactifications with fluxes that combine tori and Minkowski spaces with an interval
can induce supersymmetry breaking, even in the absence of tadpole potentials. A number
of options were recently explored in [60, 61], and in some cases the string coupling can be
bounded from above, even in the presence of tadpole potentials. Here we elaborate on what
is perhaps the simplest and most interesting option, internal geometries of this type for the
type-IIB string [15–17] with fluxes of the self-dual Ramond-Ramond five form, which lead
to four-dimensional Minkowski space times with broken supersymmetry. A constant dilaton
profile is a viable option, thanks to the special features of the five-form field strength, which
does not couple to the dilaton field and, as we shall see, the boundary conditions at the
ends of the interval [62] make this choice inevitable. These models are characterized by the
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five-form flux Φ on the internal torus, the length ` of the interval and a strictly positive
dimensionless parameter h,1 which determines the spectrum of massive excitations, and
thus the supersymmetry breaking scale, as

µS = 1
` h

1
4
. (1.1)

Supersymmetry can be recovered in the limit µS → 0, while retaining finite values for Φ
and for the combination ` h− 5

4 , and therefore as both ` and h tend to infinity. For finite
values of `, the resulting low-energy effective field theory is four dimensional and has a
finite Planck mass

m2
Pl(4) ∼ m

8
Pl(10)

`2 Φ√
h
. (1.2)

Note that here the volume of the internal torus is a derived quantity, in contrast to the
standard Kaluza-Klein scenario, where it would be a modulus.

Our main task, here and in the companion papers [63], is a detailed analysis of the
mode spectra arising from this class of compactifications. We have split the analysis into
three parts, for clear reasons of relative brevity, but not only. Here we discuss the salient
properties of the backgrounds and analyze the resulting spectra of Fermi modes, relying
to a large extent on links with Schrödinger-like systems. On the other hand, in the first
of [63] we shall discuss the spectra of Bose modes and their indications for the perturbative
stability of these vacua. However, we shall leave aside the sector of singlet scalar modes
with nonzero toroidal momenta, which presents some peculiar and unexpected features, and
will be the subject of the third paper. Bose modes require a detailed analysis of mixings of
Kaluza-Klein excitations, and drawing some lessons on the stability of the resulting spectra
will also require different techniques.

In the following, we summarize the contents of this paper in detail.
In section 2, following [61], we describe the vacua of type-IIB supergravity with an

internal five-torus and four-dimensional Poincaré symmetry. A convenient choice for the
coordinate r on which this class of backgrounds depends leads to exact solutions of the
low-energy equations, and we show that a constant axion-dilaton profile is inevitable. As we
have anticipated, these vacua are characterised by the parameters Φ, ` and h, and for ` finite
the resulting space-times have everywhere a finite string coupling and include a finite internal
interval. Still, curvature singularities are present at its ends, so that, while string loop
corrections can be held under control, α′ string corrections are expected to be important, at
least within their neighborhoods. However, within a wide region of parameter space, where
`Ms � 1 and ΦM4

s � 1, with Ms ∼ 1√
α′

the string scale, even these α′ corrections become
negligible within a sizable fraction of the internal interval. In this section we also show that
finite values of ` break all supersymmetries, while in the `→∞ limit half of the original ten-
dimensional supersymmetries are recovered, albeit in a five-dimensional warped spacetime.
In the supersymmetric limit the interval becomes a half-line, so that one boundary is still

1This class of backgrounds becomes singular as h→ 0, and therefore we focus on non-vanishing values
for h.
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present, and we show how a probe brane reveals that the endpoint behaves as an O− orien-
tifold. This type of behavior is approached asymptotically near the origin in all these vacua.

In section 3 we study the massless Fermi modes of the background. The boundaries raise
the question of what conditions one should impose there on the different fields. Our analysis
relies on our previous work [62], which is further adapted to this setting in appendix B: we
thus demand that the charges associated with infinitesimal translations in spacetime and
along the internal torus, together with those associated to spacetime Lorentz symmetries,
be unable to flow across the boundaries. However, there is some freedom beyond the options
that we identified in [62], where we focused implicitly on orientifold models [18–25]. The
presence of pairs of identical Fermi fields in the massless spectrum of the type-IIB string
allows in fact to mix them, so that the boundary conditions

(Λ± 1)ψ = 0 (1.3)

can be solved, compatibly with all residual symmetries in the geometries of interest, by

Λ = i γ0 γ1 γ2 γ3 σ2 . (1.4)

This choice combines the four-dimensional chirality matrix with the σ2 Pauli matrix, mixing
pairs of type-IIB Fermi fields compatibly with their Majorana-Weyl nature. We focus largely
on identical boundary conditions at the two ends, which allow the presence of massless
Fermi modes, but we also discuss other options.

Mode normalisation is a key issue: acceptable (Fermi or Bose) modes are to be
normalizable, in order to acquire a four-dimensional interpretation. This poses no constraints
for the internal torus, but it does for the interval, whose parametrization involves an infinite
range in r. Therefore, it is crucial to identify the proper normalization integrals in order to
select the modes of interest. In simple cases, these conditions can be deduced rather directly
from the low-energy effective field theory, but when mixings are present matters become
more subtle. In these cases the reduction to Schrödinger-like systems will prove our key tool
in this respect. Our main result is that, if identical boundary conditions are enforced at
the ends of the internal interval, the tree-level fermionic zero modes comprise a quartet of
massless Majorana four-dimensional gravitini and six quartets of Majorana spin- 1

2 fermions.
These build altogether the fermionic content of N = 4 supergravity coupled to five vector
multiplets, despite the breaking of supersymmetry.

Section 4 summarizes our results and elaborates on some perspectives for future work,
and includes a discussion on how the gravitini can acquire masses by radiative corrections.
Appendix A collects a number of technical details on the equations of motion of the different
types of fermionic modes present in these backgrounds. Appendix B summarizes and
completes the discussion of the boundary problem for fermions in an interval presented in [62].
Finally, appendix C elaborates on Schrödinger-like formulations for Bose and Fermi fields.

2 The background

In this section we derive the explicit form of the background profiles of interest and analyze
some of the resulting physical properties. Our basic requirement is to end up with a four-
dimensional Minkowski background, and for simplicity we allow a non-trivial dependence
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on only one internal coordinate r, thus focusing on a class of type-IIB background metrics
of the form

ds2 = e2A(r)dx2 + e2B(r)dr2 + e2C(r)dy2 . (2.1)

Here the x coordinates refer to a four-dimensional Minkowski space time, while the y
coordinates refer to a compact five-dimensional internal space that, for simplicity, we take
to be a torus characterized by a single radius R. The non-trivial features of this class of
metrics are encoded in the three functions A(r), B(r) and C(r). Notice, however, that B(r)
can be changed by reparametrizations, and in the following we shall make the convenient
“harmonic” gauge choice

B(r) = 4A(r) + 5C(r) , (2.2)

which will lead to handy exact solutions. The class of vacua that we shall explore is sustained
by an r-dependent self-dual five form of type IIB, whose profile is fully determined by the
isometries and the condition of self-duality, and reads2

H(0)
5 = H

(
e4A+B−5C dx0 ∧ . . . ∧ dx3 ∧ dr + dy1 ∧ . . . ∧ dy5

)
, (2.3)

where H is a constant, which we shall often assume to be positive in the following. In
addition, one can allow for r-dependent profiles for the dilaton-axion of type IIB. To this
end, it is convenient to work in the terms of the complex combination

τ = a+ i e−φ , (2.4)

which transforms under SL(2,R) according to

τ ′ = α τ + β

γ τ + δ
, (2.5)

with α, β, γ and δ four real parameters subject to the constraint

α δ − β γ = 1 . (2.6)

The equations for the axion-dilaton pair follow from the action

S = −1
2

∫
d10 x

√
−g ∂Mτ ∂

Mτ

[Im τ ]2
, (2.7)

and in backgrounds of the type (2.1), in the harmonic gauge (2.2) and for scalar profiles
only depending on r, they reduce to(

a′ e2φ
)′

= 0 , φ′′ −
(
a′
)2
e2φ = 0 . (2.8)

On the other hand, in backgrounds of the form (2.1) the Einstein equations

RMN = 1
24 H

(0)
5 MPQRSH

(0)
5 NP ′Q′R′S′g

PP ′gQQ
′
gRR

′
gSS

′+ 1
4
∂M τ ∂N τ̄+∂N τ ∂M τ̄

[Im τ ]2
(2.9)

2In the notation of [60, 61] H = H5
2
√

2 .
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reduce to

A′′ = H2 e8A ,

C ′′ = −H2 e8A ,

3
(
A′
)2 + 10A′C ′ + 5

(
C ′
)2 = −H

2

2 e8A + 1
8

τ ′ τ̄ ′

[Im τ ]2
. (2.10)

2.1 Derivation of the background solution

In this section we provide some details on the derivation of the background solution, and
on the inevitable emergence of a constant dilaton profile in this setting.

2.1.1 The SL(2,R)/U(1) scalar sector

To begin with, the first of eqs. (2.8) is solved letting

a′ = c e−2φ , (2.11)

where c is a constant, and the equation for φ then takes the familiar form [60, 61]

φ′′ = c2 e−2φ . (2.12)

It is convenient to distinguish two cases:

1. if c = 0, the solution of eq. (2.12) is

φ = φ1 r + φ2 , (2.13)

for arbitrary values of the two constants φ1 and φ2, and the axion profile a is constant;

2. if c 6= 0, using some results discussed, for instance, in appendix B of [61], the solution
of eq. (2.12) reads

eφ = c

φ̃1
cosh

(
φ̃1 r + φ̃2

)
, (2.14)

where φ̃1 and φ̃2 are two constants and now c φ̃1 > 0. Notice that, in the limit where φ̃2 is
very large, eq. (2.14) reduces to eq. (2.13) with φ1 = φ̃1 6= 0 and eφ2 = c

2 φ̃1
eφ̃2 . Therefore,

finite values of φ2 can be recovered in the limit of vanishing c, and this suggests to present
eq. (2.14) in the equivalent form

eφ = 2 eφ2−φ̃2 cosh
(
φ1 r + φ̃2

)
, (2.15)

which can encompass all cases and rests on the three constants φ1, φ2 and φ̃2. The string
coupling takes its lowest value, on the whole real axis, where the argument of the hyperbolic
function vanishes. If φ1 = 0, which is relevant for the supersymmetric case, the axion and
dilaton profiles are both constant.

Eq. (2.14) then determines

τ = eφ̃2−φ2

2 cosh
(
φ1 r + φ̃2

) [sinh
(
φ1 r + φ̃2

)
+ i
]

+ a0 , (2.16)
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where a0 is a constant. Notice that for r → ±∞ the step-wise axion profile approaches
constant values,

1
2 sign (φ1 r) eφ̃2−φ2 + a0 , (2.17)

while its derivative decays exponentially, and the dilaton approaches the linear behavior

φ ∼ φ1 r + φ2 . (2.18)

Note also that the scalar contribution to the Einstein equations in the form (2.9), which
is only present in the rr component, is simply 1

2 φ
2
1, and is insensitive to the values of the

other three constants, which are mapped into one another by SL(2,R) transformations.
Summarizing, the axion-dilaton profile can be determined exactly in the harmonic

gauge, as in (2.16), up to a few constants and independently of the actual values of A(r),
B(r) and C(r), up to the boundary conditions that will emerge shortly.

2.1.2 The metric profiles

For the class of backgrounds of interest, in the harmonic gauge (2.2) the field equations reduce
to eqs. (2.10). The last of them, the “Hamiltonian constraint”, reduces the independent
integration constants.

Adding the first two equations one can see that

C ′ = −A′ − α , (2.19)

with α a constant. Making use of this result in the Hamiltonian constraint then gives

(
A′
)2 − H2

4 e8A = 5
2 α

2 − 1
16 (φ1)2 . (2.20)

Eqs. (2.10) are then all satisfied, and letting

Y = e−4A (2.21)

one is left with (
Y ′
)2 − E Y 2 = 4H2 , (2.22)

where
E = 40α2 − φ2

1 . (2.23)

There are three families of solutions, depending of the value of E:

• if E > 0, letting
1
ρ

=
√
E , (2.24)

the solutions read
e−4A = Y (r) = 2 |H| ρ sinh

(
r

ρ

)
, (2.25)

with 0 < r <∞. In this case for α and φ1 there are two branches of solutions, which
can be parametrized, via a real parameter ζ, as

α = ± 1
2ρ
√

10
cosh ζ , φ1 = 1

ρ
sinh ζ . (2.26)
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Consequently

B = −A∓
√

10
4ρ r cosh ζ + 5β ,

C = −A∓
√

10
20ρ r cosh ζ + β , (2.27)

where β is another integration constant, and the background takes the form

ds2 =

 1
2 |H| ρ sinh

(
r
ρ

)
 1

2

dx2

+
[
2 |H| ρ sinh

(
r

ρ

)] 1
2
(
e
∓
√

10
2ρ r cosh ζ+10β

dr2 + e
∓
√

10
10ρ r cosh ζ+2β

d~y2
)
,

τ = a+ i e−φ = eφ̃2−φ2

2 cosh
(

sinh ζ r
ρ + φ̃2

) [sinh
(sinh ζ r

ρ
+ φ̃2

)
+ i

]
+ a0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr[

2 |H| ρ sinh
(
r
ρ

)]2 + dy1 ∧ . . . ∧ dy5

 ; (2.28)

• if E = 0, there are again two branches of solutions, which read

Y (r) = 2 |H r| , (2.29)

with 0 < r <∞, and
φ1 = ± 2

√
10 α , (2.30)

and the background takes the form

ds2 = dx2(
2 |H| r

) 1
2

+
(
2 |H| r

) 1
2
(
e∓

√
10
2 φ1 r+10β dr2 + e∓

√
10

10 φ1 r+2β d~y2
)
,

τ = a+ i e−φ = eφ̃2−φ2

2 cosh
(
φ1 r + φ̃2

)[ sinh
(
φ1 r + φ̃2

)
+ i
]

+ a0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr(

2 |H| r
)2 + dy1 ∧ . . . ∧ dy5

 . (2.31)

These results can be obtained as limits of the preceding ones;

• if E < 0, letting

1
ρ

=
√
|E| , (2.32)

Y (r) = 2 |H| ρ sin
(
r

ρ

)
, (2.33)
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with 0 < r < π ρ, and now there are two branches of solutions described by

α = 1
2ρ
√

10
sinh ζ , φ1 = ± 1

ρ
cosh ζ , (2.34)

while the background takes the form

ds2 =

 1
2 |H| ρ sin

(
r
ρ

)
 1

2

dx2

+
[
2 |H| ρ sin

(
r

ρ

)] 1
2
(
e
−
√

10
2ρ r sinh ζ+10β

dr2 + e
−
√

10
10ρ r sinh ζ+2β

d~y2
)
,

τ = a+ i e−φ = eφ̃2−φ2

2 cosh
(
± cosh ζ r

ρ + φ̃2
) [sinh

(
±cosh ζ r

ρ
+ φ̃2

)
+ i

]
+ a0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr[
2 |H| ρ sin

(
r
ρ

)]2 + dy1 ∧ . . . ∧ dy5

 . (2.35)

Notice that the metric background depends only on φ1, while it is independent of φ2 and
φ̃2. In all the preceding expressions the y’s are periodic coordinates, with period 2πR.

2.1.3 Boundary conditions

An important feature of all these backgrounds is the presence of a singularity at r = 0 and,
in one case, of an additional singularity at a finite value of r. Moreover, for E ≥ 0 even
r = +∞ can lie at a finite distance from the origin. We shall see shortly that these are
non-trivial singularities, so that spacetime includes an interval with one or two boundaries.

The issue is now whether or not the preceding solutions satisfy proper boundary
conditions. For gravity, the equations that we have obtained follow from the Einstein-
Hilbert action supplemented by the Gibbons-Hawking term [64], while for the form one
can verify that there are no Tµr components of the energy-momentum tensor, which would
enter the conditions in [62]. On the other hand, the scalar equations (2.8) require a more
detailed discussion, since they follow from the action (2.7), if the boundary conditions

√
−g T rµ|∂M ≡

τ τ ′

[Im τ ]2

∣∣∣∣∣
∂M

= 0 (2.36)

hold. However, for the general dilaton-axion profile in eq. (2.16)

τ τ ′

[Im τ ]2
= φ1

{
2 a0 e

φ2−φ̃2 − i
[
cosh

(
φ1 r + φ̃2

)
+ 2a0 sinh

(
φ1 r + φ̃2

)]}
, (2.37)

and setting φ1 = 0 is the only way of satisfying the boundary condition at r = 0. Conse-
quently, the axion-dilaton profile is bound to be constant. This removes the solutions for
E < 0 and poses no further restrictions on the others, so that one is left with two classes of
solutions:
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1. for E > 0

ds2 =

 1
2 |H| ρ sinh

(
r
ρ

)
 1

2

dx2

+
[
2 |H| ρ sinh

(
r

ρ

)] 1
2
(
e
∓
√

10
2ρ r+10β

dr2 + e
∓
√

10
10ρ r+2β

d~y2
)
,

τ = a0 + i e−φ0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr[

2 |H| ρ sinh
(
r
ρ

)]2 + dy1 ∧ . . . ∧ dy5

 ; (2.38)

2. for E = 0

ds2 = dx2(
2 |H| r

) 1
2

+
(
2 |H| r

) 1
2
(
e10β dr2 + e2β d~y2

)
,

τ = a0 + i e−φ0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr(

2 |H| r
)2 + dy1 ∧ . . . ∧ dy5

 . (2.39)

Actually, the solutions of the second type are a limiting case of those of the first type, and
are recovered as ρ→∞ or as r → 0.

2.2 Physical properties of the background

The two residual families of backgrounds of eqs. (2.38) and (2.39) depend apparently on ρ,
H, β and φ2. Moreover, they also depend on the radii of the internal T 5, which we take
to be all identical and equal to R for simplicity, and in the former case also on a discrete
choice of branch.

2.2.1 Canonical forms of the solutions

It is now instructive to perform some redefinitions in eqs. (2.28). For later convenience, we
thus let

h = 2H ρ , (2.40)

use the new variables
r̃ = r

ρ
, ỹi = yi

2πR (2.41)

and introduce the length scale
` = ρ h

1
4 e−5β (2.42)

and the five-form flux in the internal torus, which according to eq. (2.3) is

Φ = H (2πR)5 =

(
2π h 1

4 R
)5

2 ` e−5β . (2.43)
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In terms of these new variables, the solutions with E > 0 become (we drop “tilde’s” for
brevity, while also warning the reader that we are using the same symbol r for a coordinate
that has been rescaled, and is now dimensionless)

ds2 = ηµν dx
µ dxν

[h sinh (r)]
1
2

+ `2 [sinh (r)]
1
2 e∓

√
10
2 r dr2

+ (2 Φ `)
2
5 [sinh (r)]

1
2 e∓

√
10

10 r d~y 2 ,

τ = a0 + i e−φ0 ,

H(0)
5 = 1

2h
dx0 ∧ . . . ∧ dr

[sinh (r)]2
+ Φ dy1 ∧ . . . ∧ dy5 . (2.44)

Note that with these new coordinates the background no longer depends on r, while the
“harmonic” gauge condition (2.2) becomes

eB = h

2 Φ e4A+5C . (2.45)

On the other hand, for E = 0 one can perform the redefinitions

r̃ = 2H r , ỹi = yi

2πR , (2.46)

which turn the background into

ds2 = dx2

r
1
2

+ r
1
2

[
e10β dr2

4H2 + e2β (2πR)2 d~y2
]
,

τ = a0 + i e−φ0 ,

H(0)
5 = 1

2
dx0 ∧ . . . ∧ dx3 ∧ dr

r2 + Φ dy1 ∧ . . . ∧ dy5 , (2.47)

where we drop again “tilde’s” for brevity. The two final redefinitions

e10β
( 1

2H `

)2
= 1 , x → h−

1
4 x (2.48)

turn the background into a form along the lines of the other cases,

ds2 = dx2
√
h r

+ r
1
2
[
`2 dr2 + (2 Φ `)

2
5 d~y2

]
,

τ = a0 + i e−φ0 ,

H(0)
5 = 1

2h
dx0 ∧ . . . ∧ dx3 ∧ dr

r2 + Φ dy1 ∧ . . . ∧ dy5 . (2.49)

Note that, referring to Φ, ` and h, β and the scale R have completely disappeared from the
problem, in all cases. Note also that the flux Φ should be quantized [65] according to

q3 Φ = n , (2.50)

where N is an integer and q3 is the D3-brane charge [1–8]

q3 =
√
πm4

Pl(10) . (2.51)
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2.2.2 Internal length and effective Planck mass

The length of the r-interval is finite for a subset of the solutions, the upper branch with
E > 0 in eqs. (2.44), for which

L =
∫ ∞

0
eB dr = `

∫ ∞
0

dx e
− 5 x

2
√

10 (sinh x)
1
4 ' 1.43 ` . (2.52)

On the other hand, the length is infinite in the two other cases in eqs. (2.44) and (2.49).
The corresponding behaviors of the Planck mass are determined by

m2
Pl(4) = m8

Pl(10)

∫
dr d 5y

√
−g e−2A =

2m8
Pl(10) Φ
h

∫
dr e2(B−A) , (2.53)

and the r integral is finite only for the upper branch of solutions with E > 0. In our
solutions

m8
Pl(10) = 1

(α′)4 g2
s

= 1
(α′)4 e−2φ0 , (2.54)

with α′ is the Regge slope, since the string coupling gs is eφ0 .
For the upper branch of the E > 0 solutions in eqs. (2.44) the effective Planck mass is

finite, and is given by

m2
Pl(4) =

4m8
Pl(10) `

2 Φ
3
√
h

. (2.55)

Since our analysis rests on the effective field theory, the results can be reliable in String
Theory only if the Kaluza-Klein excitations in the r-interval and in the internal torus are
much lighter than string modes. These conditions translate into the inequalities

`√
α′
� 1 , (2 Φ `)

1
5

√
α′

� 1 , (2.56)

which also grant that one can ignore winding modes on the internal torus. Once the first
holds, in general the second inequality does not impose stringent conditions on the flux Φ,
and thus on the quantum number n. Taking into account eqs. (2.54) and (2.55), one can
see that these conditions are not incompatible with small values of gs.

Summarizing, we have found three types of solutions, which are all encompassed by two
equivalent forms. The first presentation of the background depends on the four parameters
H, ρ, R and φ0, and the coordinates yi of the internal T 5 that have range 2πR, and also
on a0, which however can be removed by an SL(2,R) transformation. It reads

ds2 = dx2[
2 |H| ρ sinh

(
r
ρ

)] 1
2

+
[
2 |H| ρ sinh

(
r

ρ

)] 1
2
(
e
−ε
√

10
2ρ r

dr2 + e
−ε
√

10
10ρ r d~y2

)
,

τ = a0 + i e−φ0 ,

H(0)
5 = H

dx
0 ∧ . . . ∧ dx3 ∧ dr[

2 |H| ρ sinh
(
r
ρ

)]2 + dy1 ∧ . . . ∧ dy5

 , (2.57)
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where r > 0, and the values ε = ±1 distinguish the two branches. The last family of
solutions is recovered in the limit r → 0.

The second presentation of the background depends on h, Φ and `, and the coordinates
yi of the internal T 5 have range 1, and reads

ds2 = ηµν dx
µ dxν

[h sinh (r)]
1
2

+ `2 [sinh (r)]
1
2 e−ε

√
10
2 r dr2

+ (2 Φ `)
2
5 [sinh (r)]

1
2 e−ε

√
10

10 r d~y 2 ,

τ = a0 + i e−φ0 ,

H(0)
5 = 1

2h
dx0 ∧ . . . ∧ dr

[sinh (r)]2
+ Φ dy1 ∧ . . . ∧ dy5 , (2.58)

and the solutions of the second type are again recovered in the limit r → 0.
Among the three classes of backgrounds, the solutions with ε = 1 and E > 0 stand out

as physically more interesting since, as we have seen, they lead to a compactification to
four dimensions with a finite Planck mass and a bounded string coupling. In the following,
we shall largely concentrate on them.

2.2.3 Limiting behavior and singularities

The limiting behavior as r → 0 of these backgrounds is identical for all types of solutions,
which approach the E = 0 case of eqs. (2.47). In this limit ` plays no role, and could be
removed completely rescaling the r coordinates and the spacetime variables xµ. In terms of
the proper length, defined as

ξ = 4
5 r

5
4 , (2.59)

the limiting form of the background becomes

ds2 = ηµν dx
µ dxν

√
h
(

5
4 ξ
) 2

5
+ `2 dξ2 +

(5
2 ξΦ `

) 2
5
d~y 2 ,

H(0)
5 = 1

2h
dx0 ∧ . . . ∧ dξ(

5
4 ξ
) 9

5
+ Φ dy1 ∧ . . . ∧ dy5 . (2.60)

Hence, as ξ → 0 the scale factor in spacetime becomes unbounded, the scale factor in the
internal torus tends to zero and the components of the five-form along spacetime and ξ

become unbounded.
At the opposite end of the interval, the behavior depends on the type of solution.

• For the upper branch with E > 0 in eqs. (2.57), or equivalently in eqs. (2.58), the
length is finite as r →∞. Letting

a = 5
2
√

10
− 1

4 ' 0.54 , b = 1
4 −

1
2
√

10
' 0.09 , (2.61)

one can work in terms of the proper length, whose form is well approximated by

ξ = ξ∞ −
1

2 1
4 a

e−a r (2.62)
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for large values of r, with a limiting value ξ∞ corresponding to the length L in
eq. (2.52). Consequently, the limiting behavior of the background is captured by

ds2 =
√

2
h

[
2

1
4 a (ξ∞ − ξ)

] 1
2a ηµν dx

µ dxν + `2 dξ2

+ 1√
2

(2 Φ `)
2
5
[
2

1
4 a (ξ∞ − ξ)

]− 2b
a d~y 2 ,

H(0)
5 = 4

2 3
4 h

[
2

1
4 a (ξ∞ − ξ)

] 2−a
a dx0 ∧ . . . ∧ dξ + Φ dy1 ∧ . . . ∧ dy5 . (2.63)

As ξ approaches ξ∞, the scale factor in spacetime tends to zero while the scale factor
on the torus becomes unbounded, and the components of the five-form along spacetime
and ξ tend to zero.

• For the lower branch with E > 0 in eqs. (2.57), or equivalently in eqs. (2.58), the
length of the interval is infinite, and letting

a = 5
2
√

10
+ 1

4 ' +1.04 , b = 1
4 + 1

2
√

10
' 0.41 , (2.64)

one can define the proper length, whose form is well approximated by

ξ = 1
2 1

4 a
e a r ≥ 0 (2.65)

for large values of r, and the limiting behavior of the background for large values of ξ
is captured by

ds2 =
√

2
h

[
2

1
4 a ξ

]− 1
2 a ηµν dx

µ dxν + `2 dξ2 + 1√
2

(2 Φ `)
2
5
[
2

1
4 a ξ

] 2b
a d~y 2 ,

H(0)
5 = 4

2 3
4 h

[
2

1
4 a ξ

]− 2+a
a dx0 ∧ . . . ∧ dξ + Φ dy1 ∧ . . . ∧ dy5 . (2.66)

As ξ approaches +∞, as in the previous case the scale factor in spacetime tends to
zero while the scale factor on the torus becomes unbounded, and the components of
the five-form along spacetime tend to zero.

• For E = 0, the limiting behavior as r → +∞ is also captured by eqs. (2.60) as ξ →∞.
Therefore, as in the previous cases the scale factor in spacetime tends to zero, the
scale factor in the internal torus becomes unbounded and the spacetime components
of the five-form field strength tend to zero.

Note that r = 0 is a true singularity, since

R(0)
MN R

(0)MN ∼ 1
`4 r5 (2.67)

for all these solutions. As a result, sizable α′-corrections are expected in String Theory
within that region, while the present classical treatment ought to be reliable for

r >

[√
α′

`

] 4
5

. (2.68)
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On the other hand, for E > 0, as r →∞

RMNPQR
MNPQ ∼ 1

`4
e
r

(
10 ε−

√
10√

10

)
, (2.69)

so that for the upper branch of solutions in eqs. (2.44), with ε = 1, which grant a finite length
of the interval and thus a four-dimensional interpretation, one expects small α′-corrections
to the low-energy effective field theory for

r < log
(

`√
α′

)
. (2.70)

This value should be larger than the bound (2.68) in order for the current treatment to
have some intermediate domain of validity, which is guaranteed provided

`�
√
α′ . (2.71)

In the other cases the interval has an infinite length, so that the second singularity is not
relevant.

In order to build phenomenologically interesting scenarios one should contemplate
the addition of branes, but we shall refrain from doing it here, contenting ourselves with
a detailed analysis of the modes supported by the first type of background and of their
indications for its stability, which will the subject of [63].

2.3 A probe brane in the r-interval

The effective Lagrangian for a probe D3-brane spanning the four-dimensional Minkowski
space, with fixed internal coordinates and an r coordinate that evolves in time, is determined
by the induced metric and the coupling to the gauge field corresponding to the H(0)

5 field
strength

H(0)
5 = dx0 ∧ . . . ∧ dx3 ∧ b′(r) dr + ? , (2.72)

where ? denotes the Hodge dual and b is a function of r only. For a background of the
form (2.1) and (2.3), in the gauge (2.2) and in the Einstein frame, the action takes the form

S
V3

= −T3

∫
dt e4A(r(t))

√
1− e2(B−A)(r(t)) ṙ(t)2 + q3

∫
b[r(t)] dt , (2.73)

where T3, q3 and V3 are the brane tension, charge and volume. For the solutions with E > 0
in eqs. (2.57), or equivalently in eqs. (2.58)

b′(r) = 1
4H

1[
ρ sinh

(
r
ρ

)]2 , (2.74)

so that
b(r) = − 1

4 ρH

[
coth

(
r

ρ

)
− 1

]
. (2.75)

The corresponding results for the solutions with E = 0 can be obtained from these in the
limit ρ→∞.
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The energy conservation condition for the probe is then

T3 e
4A(r(t))√

1− e2(3A+5C)(r(t)) ṙ(t)2
− q3 b = E . (2.76)

Close to r = 0 the limiting behavior of the background, as we have seen, is universal, and
in the non-relativistic limit the preceding equation becomes

T3
2 ṙ2 + 1

2 |H| r

[
T3 + q3

2 sign(H)
]

= E , (2.77)

from which one can identify the potential

V ∼ 1
r

[
T3 + q3

2 sign (H)
]
, (2.78)

up to a positive overall factor. This potential describes a gravitational repulsion sized by
the T3 term and an “electric” interaction that is repulsive for q3H > 0 and attractive for
q3H < 0.3 As a result, one can see that the origin behaves as an orientifold that, in our
conventions, has a negative tension T and a charge Q that has the same sign as H , such that

Q = −T sign(H) . (2.79)

For the upper branch with E > 0, near the right end of the finite interval the energy
conservation condition becomes

T3
2 e
− 5 r
ρ
√

10 ṙ2 + T3
ρ |H|

e
− r
ρ + q3

2 ρH e
− 2 r

ρ ' E . (2.80)

In order to recover a non-relativistic kinetic term as in eq. (2.77), one can perform the
change of variable

αρ
(
1− e−

r
α ρ

)
= u , (2.81)

with
α = 2

√
10

5 ' 1.26 , (2.82)

which inverts to
e
− r
ρ =

(
1− u

α ρ

)α
, (2.83)

and leads to
T3
2 u̇2 + T3

ρ |H|

(
1− u

α ρ

)α
+ q3

2 ρH

(
1− u

α ρ

)2α
' E . (2.84)

3Note that here we are referring to the Einstein equations in the form (2.9), and thus in the conventions
of [17]. A standard normalization would thus obtain rescaling the tensor field by a factor 1√

2 , and consequently
in the present notation non-relativistic interactions between two objects with tensions T1 and T2 and electric
charges Q1 and Q2 are proportional to the combination

T1 T2 −
1
2 Q1 Q2 .

Comparing with our result leads to eq. (2.79).
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One can thus see that the gravitational force attracts the brane toward the right end, on
account of the second term above, while the electric force attracts it there for q3H > 0
and repels it for q3H < 0, on account of the third term. However, both forces tend to zero
as u approaches αρ, but are not proportional. One may rightfully wonder about the fate
of the electric tensor flux, which seems to wane across the finite interval. In fact, there is
no contradiction with the conservation of electric flux, since the solution is precisely the
counterpart of a uniform electric field in our metric background, and satisfies

b′e5C−4A−B = Φ , (2.85)

as can be deduced taking the dual of the constant internal components along the torus.
One can gain some qualitative insights on the overall brane motion noting that the

energy E is bounded from below by the static potential

V (r) = T3e
4A − q3b = 1

2 |H| ρ

 T3

sinh
(
r
ρ

) + q3 sign(H)
2

(
coth

(
r

ρ

)
− 1

) , (2.86)

and the brane has turning points where E = V (r). Notice that the static potential V
contains two contributions, which are both singular at r = 0 and tend to zero as r →∞. As
we have seen, the first contribution, proportional to T3, looks like a gravitational interaction
but repels the brane from the origin, while the second, proportional to q3, attracts it to the
origin if q3 sign(H) < 0 and repels it if q3 sign(H) > 0. Hence, the origin behaves as a BPS
orientifold with negative tension and positive or negative charge, depending on the sign of
H, consistently with the fact that half of the original supersymmetry is preserved there, as
we shall see in the next section.

2.4 Supersymmetric vacua

In this section we prove what we already mentioned, namely that the E = 0 background
with constant dilaton profile preserves half of the original 32 supercharges of type IIB. As
we shall see, together with flat space this is the only option, within the class of metrics in
eq. (2.1), where some supersymmetry is left. To this end, one can look systematically for
Killing spinors in IIB backgrounds, within the class of metrics

ds2 = e2A(r) dx2 + e2B(r) dr2 + e2C(r) dy2 , (2.87)

with a generic r-dependent dilaton profile and the self-dual tensor field strength

H5 = H
{
e4A+B−5C dx0 ∧ . . . ∧ dx3 ∧ dr + dy1 ∧ . . . ∧ dy5

}
, (2.88)

which already appeared in eq. (2.3). The supersymmetry transformations of the ten-
dimensional IIB theory in the presence of non-trivial dilaton and five-form backgrounds can
be recast in the convenient form of eqs. (A.11). Since4

δ λ = /∂/φ ε , (2.89)
4Had one allowed for an axon profile, it would be also eliminated by this condition.
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the constant dilaton profiles selected by the boundary conditions imply the supersymmetry
invariance of λ, and moreover there is no essential distinction between Einstein and string
frames in supersymmetric vacua of this type.

Combining eqs. (A.11), (A.13) and (A.14), the remaining Killing-spinor equations
reduce to

δ ψr = ∂r ε+ H

4 eB−5C γ0...3 i σ2 ε = 0 ,

δ ψµ = ∂µ ε+ 1
2 γµγr e

A−B A′ ε+ H

4 eA−5C γ0...3γr γµ i σ2 ε = 0 ,

δ ψi = ∂i ε+ 1
2 γiγr e

C−B C ′ ε+ H

4 e−4C γ0...3γr γi i σ2 ε = 0 , (2.90)

after taking into account the self-dual nature of the tensor field strength and the spinor
chirality projections. All γ matrices, here and in the following, have flat indices, and ε is a
doublet of ten-dimensional chiral spinors. One can decompose ε into eigenstates ε± of the
Hermitian matrix

Λ = γ0...3 i σ2 (2.91)

corresponding to its eigenvalues ±1, and it is also convenient to define

J ′(r) = H

4 eB−5C , (2.92)

so that eqs. (2.90) read

∂r ε± ± J ′(r) ε± = 0 ,

∂µ ε± + 1
2 γµγr e

A−B (A′ ∓ 2 J ′
)
ε∓ = 0 ,

∂i ε± + 1
2 γiγr e

C−B (C ′ ∓ 2 J ′
)
ε± = 0 . (2.93)

The first of these equations is solved by

ε± = e∓J(r) ε0±(x, y) , (2.94)

where ε0± are arbitrary functions of the space-time coordinates x and the toroidal coordinates
y, but are independent of r. The remaining equations now reduce to

∂µ ε0±(x, y) + 1
2 γµγr e

A−B±2J (A′ ∓ 2 J ′
)
ε0∓(x, y) = 0 ,

∂i ε0,±(x, y) + 1
2 γiγr e

C−B (C ′ ∓ 2 J ′
)
ε0±(x, y) = 0 . (2.95)

For consistency, the x-derivatives of the first and the y-derivatives of the second imply the
conditions (

A′
)2 − 4

(
J ′
)2 = 0 ,

(
C ′ ∓ 2 J ′

)2
ε0± = 0 , (2.96)

which are solved by

A′ = 2 εA J ′ , C ′ = 2 εC J ′ , ε0−εC = 0 , (2.97)
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where εA and εC are signs. Moreover, the very form of eqs. (2.93) constrains the two signs
εA and εC to be opposite, so that the solutions are finally

A′ = 2σ J ′ , C ′ = −2σ J ′ , ε0σ = 0 , (2.98)

where σ = ±1. Eqs. (2.95) then imply that the leftover ε0 is a constant spinor.
Combining these results with the definition (2.92) now leads to the differential equation

A′ = σH

2 eB−5C , (2.99)

whose solution in the Harmonic gauge (2.2) reads

e−4A = −2σH r , (2.100)

up to a shift of r. One can work conveniently in the region r > 0 taking

σ = −sign(H) , (2.101)

and the solution of eqs. (2.98) finally reads

e2A = e−2(C−cs) =
[ 1

2 |H| r

] 1
2
, (2.102)

where cs is a constant that can be scaled out of all the following expressions. The end
results for the metric and the form field strength are thus

ds2 = dx2

(2 |H| r)
1
2
dx2 + (2 |H| r)

1
2
(
dr2 + dy2

)
,

H5 = H

[
dx0 ∧ . . . ∧ dx3 ∧ dr

(2 |H| r)
1
2

+ dy1 ∧ . . . ∧ dy5
]
. (2.103)

These are precisely the E = 0 background of eqs. (2.31) for φ1 = 0, up the irrelevant
constant β, which can be scaled out. Moreover, these results capture the limiting behavior
of the solutions in eqs. (2.57), or equivalently in eqs. (2.58), as r → 0. These limiting
behaviors approach a supersymmetric background, since, as we have just seen, they are
compatible with the existence of the Killing spinor

ε = 1
(2 |H| r)

1
8
ε0 , (2.104)

and thus preserve 16 of the original 32 supersymmetries of ten-dimensional flat space. Here
ε0 is a constant spinor subject to the condition

Λ ε0 = γ0...3 i σ2 ε0 = sign (H) ε0 . (2.105)

Note that, within the backgrounds of eqs. (2.57), the supersymmetric case is recovered in
the ρ → ∞ limit. This is consistent with the scale of supersymmetry breaking that we
anticipated in the Introduction, which takes the form

µS ∼
1

ρ
3
2
√
H

(2.106)

when expressed in terms of ρ.
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We can now proceed to analyze the fermionic modes present in the first branch of
E > 0 backgrounds in eqs. (2.57), or equivalently in eqs. (2.58), which are characterized by
finite values for the length scale ` of the internal and for the four-dimensional Planck mass,
and by a constant profile for the string coupling. From now on, for definiteness, we shall
assume that H > 0.

3 Four-dimensional Fermi modes

The original type-IIB theory contains a pair of left-handed Majorana-Weyl gravitini ψM
and a pair of right-handed Majorana-Weyl dilatini λ in ten dimensions, which will be
treated as SU(2) doublets, as in [17], where the fermionic action and the supersymmetry
transformations are presented in the string frame. The counterpart of these results in the
Einstein frame, after some convenient field redefinitions, is described in appendix A.

In this section we analyze the nature of the four-dimensional fermionic modes, paying
attention to the massless ones, whenever they are present. Since the internal manifold has
boundaries, our analysis will rely on [62] and on its refinement in appendix B. As we show
there, the resulting boundary conditions at the ends of the internal interval have in general
the form

ΛψM = ±ψM , Λλ = ±λ , (3.1)
where the Hermitian matrix, which in our case is

Λ = γ0123 i σ2 , (3.2)

and satisfies the conditions

{γ0 γr , Λ} = 0 , [γµν , Λ] = 0 , [γ11 , Λ] = 0 , C−1 ΛT C = −γ0 Λ γ0 . (3.3)

This matrix already emerged in our discussion of the supersymmetric limit, and in particular
in eq. (2.105).

The linearized supergravity equations of motion for the Fermi fields in the backgrounds
described in the previous section are determined by the results in appendix A, and read

ΓMNP DN ψP + 1
8 Γ[M H/ ΓN ] i σ2 ψN = 0 ,

ΓM DM λ+ 1
4 H/ i σ2 λ = 0 . (3.4)

The derivation in appendix A, which combines the fields ψM and ΓM λ of [17], suggests for
ψµ a Λ eigenvalue opposite to those of λ, ψr and ψi, so that the original variables of [17]
and our new fields obey the same boundary conditions. For definiteness, we shall thus
demand that at the boundaries of the internal interval

ψµ = Λψµ , ψr = −Λψr ψi = −Λψi , λ = −Λλ . (3.5)

However, the link between the Λ eigenvalue of λ and the others does not appear compelling
for our redefined fields, since eqs. (3.4) do not mix them anymore. Therefore, we shall also
explore an additional choice of boundary condition,

λ = Λλ . (3.6)
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Note, finally, that each original ten-dimensional spinor gives rise to a 4 of the SO(5)
tangent-space symmetry group of the internal torus. Consequently, the four-dimensional
spinor modes that we are about to describe will emerge in quartets.

3.1 Four-dimensional spin–3
2 modes

We can now begin our analysis, considering the four-dimensional spin- 3
2 modes arising

from the first of eqs. (3.4). Now ψµ, the space-time gravitino component, will be the only
non-vanishing field, and will be subject to the constraint

γµ ψµ = 0 . (3.7)

We also confine our attention to the k = 0 sector, where k denotes the momentum on the
internal torus, since massless fermions can only occur within it, and begin by decomposing
the gravitino field according to

ψµ = ψ+
µ + ψ−µ , (3.8)

where
Λψ±µ = ± ψ±µ . (3.9)

Taking into account that Λ anticommutes with γµ and commutes with γr, the results collected
in appendix A.1, and in particular eqs. (A.21), imply that the spacetime components of the
gravitino equation in (3.4) can be cast in the form

γµνρ ∂ν ψ
±
ρ + γr

[
eA−B

(
∂r +A′ + 5

2 C
′
)
±W5

]
ψµ∓ = 0 , (3.10)

where
W5 = H

2 eA−5C , (3.11)

a concise notation that will recur in the following.
It will be convenient to work in terms of the variable z, defined via

dz = eB−A dr , (3.12)

with z(0) = 0. Notice that z has a finite range for the upper branch of E > 0 solutions in
eqs. (2.57), or equivalently in eqs. (2.58), 0 ≤ z ≤ zm, with the finite value zm given by

zm =
∫
eB−A dr ' 2.24 z0 , (3.13)

where
z0 =

(
2H ρ3

) 1
2 = ρ h

1
2 (3.14)

was already associated to the supersymmetry breaking scale. Here and in the rest of the
paper z-derivatives will often be denoted by a subscript, so that, for instance

Az ≡
dA

dz
= eA−B

dA

dr
. (3.15)
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In this fashion, the preceding spacetime spin- 3
2 equation becomes

γµνρ ∂ν ψ
±
ρ + γr

(
∂z +Az + 5

2 Cz ±W5

)
ψµ∓ = 0 , (3.16)

and its γ-trace, together with eq. (3.7), implies that

∂µ ψ±µ = 0 . (3.17)

Moreover, the radial and internal gravitino equations from appendix A.1 are identically
satisfied.

One can separate variables letting

ψ±µ (x, z) = Ξ±µ (x) f±(z) , (3.18)

and the spacetime gravitino equation implies that(
∂z +Az + 5

2 Cz ±W5

)
f∓ = α± f± , (3.19)

where the α± are a pair of constants, while

γµνρ ∂ν Ξ±ρ = α± γr γ
µρ Ξ∓ρ . (3.20)

A further step, which will recur in the following, is a redefinition that in this case reads

f± = g± e−A−
5
2 C , (3.21)

which turns the system for f± into the form

A g− = α+ g+ , A† g+ = −α− g− , (3.22)

where
A = ∂z +W5 , A† = −∂z +W5 . (3.23)

Notice that the system for g±, together with the boundary condition

g+ g− = 0 (3.24)

at the ends of the interval, implies that

α+
∫ zm

0
|g+|2 = −α−

∫ zm

0
|g−|2 , (3.25)

so that either the α± are both zero, or one can set α± = ±m by a rescaling of g±. As a
result, in all cases the system can be presented in the manifestly Hermitian form

A g− = mg+ , A† g+ = mg− , (3.26)

which also leads one to identify the norm∫ zm

0
dz
(
|g+|2 + |g−|2

)
. (3.27)
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At the same time, the space-time equation becomes

∂/Ξ±µ (x) = ±mγr Ξ∓µ (x) , (3.28)

so that m is the four-dimensional mass of these gravitino modes.
Notice that we derived the proper norm for the spin- 3

2 modes insisting on the reduction
to a manifestly Hermitian system. For these modes there is an alternative, more conventional
way, of obtaining this result. One can start from the Rarita-Schwinger action contained in
eq. (A.10), which we write as

S = − 1
k2

10

∫
d10x

√
−g ψM ΓMNP ∂N ψP + . . . , (3.29)

in the conventions of appendix A. Separating variables as in eq. (3.18) leads to

S = − 1
k2

10
||f ||2 V5

∫
d4 x Ξµ γµνρ ∂ν Ξρ + . . . , (3.30)

where V5 denotes the volume of the internal torus. The norm of f thus induced taking into
account all vielbein and metric factors present in the ten-dimensional action reads

||f ||2 =
∫ ∞

0
dr eB+4A+5C−3A |f(r)|2 . (3.31)

In terms of z and g(z), which is related to f according to eq. (3.21), this result is simply∫ zm

0
dz |g(z)|2 , (3.32)

and there is thus precise agreement between the indications of the ten-dimensional action
principle and those drawn from the Schrödinger system.

The mass spectrum of spin- 3
2 modes is fully determined by the normalized solutions of

the system of eq. (3.26), subject to the Fermi boundary conditions (3.5), which translate
into the demand that g− vanish at the boundary. General features of this type of system
are discussed at length in appendix C: for nonzero m it is equivalent to either of the
Schrödinger-like equations

AA† g+ = m2 g+ , A†A g− = m2 g− , (3.33)

and the boundary conditions g+ g− = 0 at the ends of the interval, which are implied by
the Fermi boundary conditions (3.5), grant that m2 ≥ 0.

For the upper branch of E > 0 backgrounds there is a discrete spectrum of normalizable
solutions subject to the boundary condition that g− vanish at the ends of the interval for z,
consistently with eq. (3.5). This is guaranteed by the finite range of the z variable and by
the shape of the Schrödinger potential for g+,

V+ =W2
5 +W5 (Az − 5Cz)

= 1
32H ρ3

e
r
ρ

√
5
2

sinh
(
r
ρ

)3

[
− 6 cosh

(
r

ρ

)
+
√

10 sinh
(
r

ρ

)
+ 1

]
, (3.34)
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Figure 1. The potential V+ for the upper branch of E > 0 gravitino modes (blue, solid), the
potential V− for the lower branch of E > 0 gravitino modes (orange, dashed) and the supersymmetric
potential Vsusy (green, dash-dotted). The vertical lines are in units of 1

z2
0
, where z0 is defined in

eq. (3.14).

which is displayed in figure 1 in terms of r
ρ . This potential is of the form

V = 1
z2

0
f1

(
r

ρ

)
= 1
z2

0
f2

(
z

z0

)
, (3.35)

so that the discrete mass spectrum in this k = 0 sector depends on the parameters via the
combination z0 in eq. (3.14), so that

1
z0

= 1
` h

1
4

(3.36)

emerges as Kaluza-Klein scale, and thus as the supersymmetry breaking scale, in this class
of models.

For the lower branch of E > 0 solutions the interval has an infinite length and zm is
also infinite, while

V− =W2
5 +W5 (Az − 5Cz)

= 1
32H ρ3

e
− r
ρ

√
5
2

sinh
(
r
ρ

)3

[
− 6 cosh

(
r

ρ

)
−
√

10 sinh
(
r

ρ

)
+ 1

]
. (3.37)

Finally, for E = 0, which is the supersymmetric case as we have seen, the interval has an
infinite length and zm is again infinite, while the potential can be obtained from the two
preceding results in the limit ρ→∞, and reads

Vsusy = − 5
32H r3 = − 5

36 z2 . (3.38)

Note in fact that, in this limit
z = 2

3
(
2H r3

) 1
2 . (3.39)

The potentials of eqs. (3.37) and (3.38) clearly result in continuous spectra of excitations.
In particular, in the supersymmetric case there is a continuous spectrum of massive modes
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0.35

Figure 2. The identical r-distributions for the ψµ, λ− and ψi zero modes of eq. (3.45) (blue, solid),
the r-distribution for ξ− of eq. (3.112) (orange, dashed), and the r-distribution for λ+ of eq. (3.120)
(green, dash-dotted) in units of 1

ρ . The mean values of r are about 4.2ρ for the first, 4.4ρ for the
second and 3ρ for the third.

that can be simply determined solving the Schrödinger equation (3.33), subject to the
boundary condition that g− vanish at the origin, for which

g+
m = c+√mz Y 1

3
(mz) , g−m = −c+√mz Y− 2

3
(mz) , (3.40)

where the Y ’s are modified Bessel functions. The explicit m dependence grants these modes
a standard δ-function normalization.

Ifm = 0, the equations for g+ and g− are decoupled and of first order, and the boundary
conditions that we have discussed demand that, with supersymmetry not broken by them,
g− should vanish everywhere, so that one is left with

(∂z −W5) g+ = 0 , (3.41)

which is solved by
g+ = g+

0 e
∫ z

dzW5 = g+
0 e

H
2

∫ r dr
Y . (3.42)

The integral can be simply computed, and gives

g+ =

g̃
+
0

[
2 ρ tanh

(
r
2ρ

)] 1
4 for E > 0 ,

g̃+
0 r

1
4 for E = 0 ,

(3.43)

in terms of a redefined overall constant g̃+
0 . The norm for the upper branch of E > 0

solution is given by∫ ∞
0

dr eB−A (g+)2 =
∫ ∞

0
dr

[
2Hρ sinh

(
r

ρ

)] 1
2
e
∓ r
√

10
4ρ

(
g̃+

0

)2
[
2ρtanh

(
r

2ρ

)] 1
2
, (3.44)

and it is finite, as we have seen, are the option leading to a finite four-dimensional Planck
mass. The other two classes of solutions do not yield normalizable zero modes.

The normalized r-distribution for the upper-branch of E > 0 gravitino zero modes,

Πψµ

(
r

ρ

)
= 3

4 ρ sinh
(
r

2ρ

)
e
− r

2ρ

√
5
2 , (3.45)

is displayed in figure 2.
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Summarizing, among the upper branch of E > 0 solutions there is, surprisingly, a quartet
of massless symplectic Majorana spin- 3

2 zero modes whose wavefunctions are normalizable,
despite the fact that supersymmetry is broken. Radiative corrections could make these
gravitino modes massive if massless spin- 1

2 goldstini were present. These modes are the
subject of the following sections.

3.2 Spin–1
2 modes from the ten-dimensional gravitino ψM

There are in principle a number of spin- 1
2 modes of different origin in the backgrounds of

section 2.2. Let us now focus on modes valued in the spinorial of SO(5), which can be
exhibited considering

ψµ = ∂µ ζ + γµχ1 , ψr = γr χ2 , ψi = γi χ3 , (3.46)

where ζ, χ1, χ2 and χ3 are spin-1
2 fields. The goldstini are to be found among these modes or

others arising from the dilatino, which we shall address in section 3.3. One can treat them sep-
arately since, in our background, the corresponding contributions to eqs. (3.4) are decoupled.

Making use of the gauge symmetry in the spinor equations collected in appendix A.2,
one can remove ζ without affecting λ. One is thus left with the three χi fields, which
mix in general, as we are about to see. The results in appendix A.2 determine the three
independent components of the gravitino equation, starting from eq. (3.4). Letting φ′ = 0
in eq. (A.31) yields the first of these,

0 = e−2Aγµν ∂ν
(
2e−Aχ1 +e−B χ2 +5e−C χ3

)
+γµ γr e

−2A
[3

2 Az
(
4e−Aχ1−e−B χ2 +5e−C χ3

)
+∂z

(
3e−Aχ1 +5e−Cχ3

)
(3.47)

+ 5
2 Cz

(
3e−Aχ1−e−B χ2 +6e−C χ3

)
+W5 Λ

(
3e−Aχ1 + e−B χ2

)]
,

which we have recast in terms of z-derivatives.
This equation, however, requires some additional comments. It is of the form

γµν ∂νΨ1 + γµ Ψ2 = 0 , (3.48)

with

Ψ1 = e−2A
(
2e−A χ1 + e−B χ2 + 5e−C χ3

)
,

Ψ2 = γr e
−2A

[
3
(
∂z + 2Az + 5

2 Cz +W5 Λ
)
e−A χ1

− 1
2
(
3Az + 5Cz − 2W5 Λ

)
e−B χ2 + 5

(
∂z + 3

2 Az + 3Cz
)
e−C χ3

]
, (3.49)

and we now show that it implies, for the modes of interest, the two equations

Ψ1 = 0 , Ψ2 = 0 . (3.50)

To this end, one can take the divergence and the γ trace of eq. (3.48), which gives

γµ ∂µ Ψ2 = 0 , 3 γν ∂νΨ1 + 4 Ψ2 = 0 . (3.51)
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Then, making use of these in eq. (3.48) gives

∂µΨ1 + 1
3 γµ Ψ2 = 0 , (3.52)

whose curl leads to
(γµ ∂ν − γν ∂µ) Ψ2 = 0 . (3.53)

The γ-trace of this last condition now implies that ∂ν Ψ2 = 0, which for the modes we are
after is tantamount to Ψ2 = 0, and finally eq. (3.49) also implies that Ψ1 = 0, which proves
the asserted result.

Eqs. (3.49) suggest to introduce the redefined fields

χ̃1 = e−A χ1 , χ̃2 = e−B χ2 , χ̃3 = e−C χ3 . (3.54)

In this fashion, using also eqs. (A.32) and (A.33) for the radial and internal Rarita-Schwinger
components, the full set of spin- 1

2 equations becomes

• spacetime:

2 χ̃1 + χ̃2 + 5χ̃3 = 0 ; (3.55)

3
(
∂z + 2Az + 5

2 Cz +W5 Λ
)
χ̃1 −

1
2
(
3Az + 5Cz − 2W5 Λ

)
χ̃2

+ 5
(
∂z + 3

2 Az + 3Cz
)
χ̃3 = 0 ; (3.56)

• radial:(
3 γr ∂/+ 6Az + 10Cz + 4W5 Λ

)
χ̃1 + 5

[
γr ∂/+ 2 (Az + Cz)

]
χ̃3 = 0 ; (3.57)

• internal:[
3 γr ∂/+ 4

(
∂z + 5

2 Az + 2Cz
)]

χ̃1 + [γr ∂/− 2 (Az + Cz)] χ̃2

+ 4
(
γr ∂/+ ∂z + 2Az + 5

2 Cz +W5 Λ
)
χ̃3 = 0 . (3.58)

In order to analyze this system, it is now convenient to eliminate χ̃2 using eq. (3.55),
while also working in terms of the two combinations

Ξ1 = 3 χ̃1 + 5 χ̃3 , Ξ2 = χ̃1 + χ̃3 . (3.59)

Taking into account the elimination of χ̃2, one can invert these relations, obtaining

χ̃1 = −1
2 Ξ1 + 5

2 Ξ2 , χ̃2 = −3
2 Ξ1 + 5

2 Ξ2 , χ̃3 = 1
2 Ξ1 −

3
2 Ξ2 , (3.60)

and one is thus led to the system(
∂z + 3Az + 15

2 Cz−3W5 Λ
)

Ξ1 − 10
(
Cz−W5 Λ

)
Ξ2 = 0 ,(

γr ∂/+ 2Az − 2W5 Λ
)
Ξ1 + 10

(
Cz +W5 Λ

)
Ξ2 = 0 , (3.61)

1
4
(
− γr ∂/+ 2Az + 4Cz + 2W5 Λ

)
Ξ1 +

(
γr ∂/+ ∂z + 2Az −

3W5
2 Λ

)
Ξ2 = 0 .
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This is actually a set of two coupled systems for the fields Ξ±i (x, z), where, as in previous
cases,

Λ Ξ±i (x, z) = ±Ξ±i (x, z) . (3.62)

The mass-shell conditions read
γr ∂/Ξ±i = ∓mΞ∓i , (3.63)

and after separating variables, letting

Ξ±i (x, z) = Ξ±i (x) ξ±i (z) (3.64)

they reduce the systems to(
∂z + 3Az + 15

2 Cz∓3W5

)
ξ±1 − 10 (Cz ∓ W5) ξ±2 = 0 ,

2
(
Az ∓W5

)
ξ±1 + 10

(
Cz ± W5

)
ξ±2 = ±mξ∓1 , (3.65)

1
2
(
Az + 2Cz ± W5

)
ξ±1 +

(
∂z + 2Az ∓

3
2W5

)
ξ±2 = ∓m

(1
4 ξ
∓
1 − ξ

∓
2

)
,

while the boundary conditions demand that

ξ+
i

∣∣∣
∂M

= 0 , (3.66)

(i = 1, 2), as we have explained at the beginning of section 3.
The system consists of six equations for the four unknowns ξ±1 and ξ±2 . However, one

can verify its consistency taking the derivative of the second equation, which is a pair of
algebraic constraints. The derivative vanishes modulo the other equations in (3.61) and the
equations for the background, which in terms of z-derivatives become

3 (Az)2 + 10Az Cz + 5 (Cz)2 = −2W2
5 ,

Czz = −4W2
5 − (3Az + 5Cz)Cz ,

Azz = 4W2
5 − (3Az + 5Cz)Az , (3.67)

taking into account the relation between z and r in eq. (3.12). Before analyzing the system
in general, we now consider the supersymmetric limit, which entails some subtleties and
deserves a few additional comments.

3.2.1 The supersymmetric limit

In the supersymmetric limit, which is reached as ρ→∞,

Az = −Cz = −W5 = − 1
6 z , (3.68)

and the complete system reduces to the two sets of equations(
∂z + 1

4 z

)
ξ+

1 = 0 ,

− 2
3 z ξ

+
1 + 10

3 z ξ
+
2 = mξ−1 , (3.69)

1
6z ξ

+
1 +

(
∂z −

7
12 z

)
ξ+

2 = −m
(1

4 ξ
−
1 − ξ

−
2

)
,
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and (
∂z + 5

4 z

)
ξ−1 −

10
3 z ξ

−
2 = 0 ,

m ξ+
1 = 0 , (3.70)(

∂z −
1

12 z

)
ξ−2 = m

(1
4 ξ

+
1 − ξ

+
2

)
.

For m 6= 0, one of the preceding equations demands that ξ+
1 = 0, so that the system

becomes
10
3 z ξ

+
2 = mξ−1 , (3.71)(

∂z −
7

12 z

)
ξ+

2 = −m
(1

4 ξ
−
1 − ξ

−
2

)
,(

∂z + 5
4 z

)
ξ−1 −

10
3 z ξ

−
2 = 0 ,(

∂z −
1

12 z

)
ξ−2 = −mξ+

2 .

One can now link ξ−1 to ξ+
2 , according to

ξ−1 = 10
3mz

ξ+
2 , (3.72)

and the system reduces to the two equations(
∂z + 1

4 z

)
ξ+

2 = mξ−2 ,

(
−∂z + 1

12 z

)
ξ−2 = mξ+

2 . (3.73)

Redefining the two wavefunctions according to

ξ±2 = z−
1

12 ζ±2 , (3.74)

now leads to the manifestly Hermitian form(
∂z + 1

6 z

)
ζ+

2 = mζ−2 ,

(
−∂z + 1

6 z

)
ζ−2 = mζ+

2 , (3.75)

and identifies the norm ∫
dz

(∣∣∣ζ+
2

∣∣∣2 +
∣∣∣ζ−2 ∣∣∣2) . (3.76)

Demanding that ξ+
2 vanish at the origin, the system is solved by

ζ+
2 = C

√
mz J 2

3
(mz) , ζ−2 = C

√
mz J− 1

3
(mz) , (3.77)

where the explicit m dependence grants a conventional δ-function normalization to this
continuous spectrum of δ-normalizable wavefunctions. This result is consistent with the
expectation that the theory be five dimensional in the limit ρ→∞. Taking into account
eqs. (3.72) and (3.74) thus leads to

ξ+
2 = C

√
mz

5
12 J 2

3
(mz) , ξ−2 = C

√
mz

5
12 J− 1

3
(mz) ,

ξ−1 = 10C
3
√
m

z−
7

12 J 2
3

(mz) . (3.78)
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Note that all these wavefunction disappear in the m→ 0 limit, since they behave as

ξ+
2 ∼

Cm
7
6

2 2
3 Γ

(
5
3

) z 13
12 , ξ−2 ∼

2 1
3 Cm

1
6

Γ
(

2
3

) z
1

12 , ξ−1 ∼
10Cm 1

6

3 2 2
3 Γ

(
5
3

) z 1
12 . (3.79)

The m = 0 case should be treated separately, since eqs. (3.69) and (3.70) become(
∂z + 1

4 z

)
ξ+

1 = 0 , − 2
3 z ξ

+
1 + 10

3 z ξ
+
2 = 0 , (3.80)

1
6z ξ

+
1 +

(
∂z −

7
12 z

)
ξ+

2 = 0 ,

and (
∂z + 5

4 z

)
ξ−1 = 0 ,

(
∂z −

1
12 z

)
ξ−2 = 0 . (3.81)

They are solved by

ξ+
1 = C+

1 z−
1
4 , ξ−1 = C−1 z−

5
4 , ξ+

2 = 1
5 C

+
1 z−

1
4 , ξ−2 = C−2 z

1
12 , (3.82)

but the boundary condition at z = 0, which sets to zero + components of the perturbations,
demands that C+

1 = 0. Moreover, the scalar product that emerged above indicates that the
wavefunction ζ corresponding to C−2 , proportional to z 1

6 , should be rejected, since it would
be unbounded at infinity, contrary to what we have seen for massive modes with the same
behavior at the origin discussed above. Finally, the solution that emerged for ξ−1 is not a limit
of the preceding ones. One can compute the corresponding norm from the action, as we did
for spin-3

2 modes in eqs. (3.30) and (3.31), taking into account that when only ξ−1 is present

ψµ = −e
A

2 γµ Ξ−1 , ψr = −3 eB
2 γr Ξ−1 , ψi = eC

2 γi Ξ−1 . (3.83)

The Rarita-Schwinger action in eq. (A.10) assigns to this excitation an infinite norm,
proportional to ∫ ∞

0
dr e2B−A

∣∣∣ξ−1 ∣∣∣2 , (3.84)

so that even this mode should be rejected. Summarizing, in the supersymmetric limit one
obtains a continuous spectrum of excitations, which are all in eqs. (3.78), and the theory
lives effectively in five dimensions.

3.2.2 The non-supersymmetric case

We can now turn to the general case, with finite values of ρ, and let us begin by considering
the system of eqs. (3.65) for m = 0. Eliminating ξ−1 from the last two equations, one can
obtain an equation for ξ−2 , which takes the form∂r + 2A′ + 5

2 C
′ − H

2 e4A − 5
(A′ + C ′)

(
C ′ − H

2 e
4A
)

A′ + H
2 e

4A

 ξ−2 = 0 , (3.85)
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after reverting to the original radial variable r. Now one can use the relations

A′ + C ′ = − 1
2
√

10 ρ
, A′ + H

2 e4A = − 1
4 ρ tanh

(
r

2ρ

)
, (3.86)

and then, in the parametrization of eqs. (2.28), the solutions for ξ1 and ξ2 read

ξ−2 = e
3r
8ρ
√

10
[
sinh

(
r

ρ

)]− 1
8
[
tanh

(
r

2ρ

)] 1
4
[
sinh

(
r

2ρ

)]−1
ξ−2,0 ,

ξ−1 = 5
[
1− 2√

10
coth

(
r

2ρ

)]
ξ−2 , (3.87)

where ξ−2,0 is a constant. One could solve the system for ξ+
1 and ξ+

2 in a similar fashion, but
the corresponding solutions do not vanish at the origin, and must therefore be rejected,
since they do not satisfy the boundary conditions discussed at the beginning of section 3.

Note that the solutions that we have displayed have no singularities in the interior of
the r-interval, but they are singular at r = 0 and at r = +∞. Furthermore, ξ−1 vanishes in
the interior of the interval, at r = r0, where

tanh
(
r0
2ρ

)
= 2√

10
, (3.88)

which corresponds to r0 ≈ 1.49ρ. We shall shortly have more to say about this special
point, but let us also note, for the time being, that up to a proportionality constant

ξ−1 = e
3r
8ρ
√

10
[
sinh

(
r

ρ

)]− 1
8
[
tanh

(
r

2ρ

)] 1
4
[
sinh

(
r

2ρ

)]−2
sinh

(
r − r0

2ρ

)
. (3.89)

Although we have presented a simple derivation of these zero modes, we cannot make
any definite statement about their normalizability yet. As in previous cases, the proper
setup for the massive spectrum will determine the precise form of the normalization integrals.
This is particularly convenient for this set of modes, since their mixing makes it less handy
to deduce this result directly from the low-energy effective action.

In the general massive case, the structure of the system of eqs. (3.65) suggests to multiply
the first equation by Cz ±W5, the second by Cz ∓W5 and add them, while also defining

ξ̂± =
(
Cz ±W5

)
ξ±1 . (3.90)

These steps lead to the two coupled equations for ξ̂±1(
∂z + 3Az + 15

2 Cz ∓ 3W5

)
ξ̂±

+ 6W2
5 + 5Cz (Az + Cz) ∓ 3W5 (Az − Cz)

Cz ±W5
ξ̂± = ±m ξ̂∓ (3.91)

and ξ±2 can then be determined algebraically from ξ±1 via the second of the second of
eqs. (3.65). The resulting system of eqs. (3.91) is of the form(

−∂z + Ω+
)
ξ̂+ = m ξ̂− ,(

∂z + Ω−
)
ξ̂− = m ξ̂+ , (3.92)
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where

∓ Ω± = 3Az + 15
2 Cz ∓ 3W5 + 6W2

5 + 5Cz (Az + Cz)∓ 3W5 (Az − Cz)
(Cz ±W5) . (3.93)

Note that this step has introduced a spurious singularity in the interior of the r-interval,
where the denominator of Ω−,

Cz −W5 = 1
4ρ e

A−B

cosh
(
r
ρ

)
− 1

sinh
(
r
ρ

) − 2√
10

 , (3.94)

vanishes. This occurs precisely at the point r = r0 that we already identified in eq. (3.88),
but the background geometry is not singular there. In fact, the direct derivation of the
massless modes via ξ−2 in eqs. (3.87) exhibited no singularity of this type, but interestingly
the zero-mode solution ξ−1 in eq. (3.87) vanishes precisely at r0. In the following, one should
work in principle within regions that do not include this singular point, and then glue
together the solutions thus obtained, while also subjecting the result to proper boundary
conditions at r = 0 and at r =∞, which demand that ξ+

1 vanish there.
The system of eqs. (3.92) is still not in the form we are after, but the further redefinitions

ξ̂±(z) = e
1
2

∫
(Ω+−Ω−) dz ξ̃±(z) (3.95)

lead to the manifestly Hermitian system

A ξ̃+ = m ξ̃− , A† ξ̃− = m ξ̃+ , (3.96)

with
A† = −∂z −

Ω+ + Ω−
2 , A = ∂z −

Ω+ + Ω−
2 . (3.97)

Notice that the relevant combination of Ω± has a simple form:

Ω+ + Ω−
2 = −W5

5Cz + 9Az
7Cz + 3Az

= −e
A−B

4 ρ sinh
(
r0
ρ

) coth
(
r
ρ

)
+ 5

2
√

10

sinh
(
r−r0
ρ

) . (3.98)

This expression has a singularity, a simple pole at the point r = r0 of eq. (3.88), which
lies inside the interval where, as we have stressed, the background is not singular, and in its
neighborhood

Ω+ + Ω−
2 ∼ −eA(r0)−B(r0) 1

r − r0
. (3.99)

The operators A and A† inherit singularities at z = zs = z(r0), and taking into account that

z − zs ∼
dz

dr

∣∣∣∣
r0

(r − r0) , (3.100)

and finds
A† ∼ −∂z + 1

z − zs
, A ∼ ∂z + 1

z − zs
. (3.101)

– 31 –



J
H
E
P
0
8
(
2
0
2
2
)
3
0
1

On the other hand, the Schrödinger operator AA† associated to ξ̃− is not singular, and
indeed near z = zs

AA† ∼ −∂2
z . (3.102)

In this fermionic problem, one is confronted again with the type of system discussed in
detail in appendix C, which implies that the norm should be defined as∫

dz

(∣∣∣ξ̃+
∣∣∣2 +

∣∣∣ξ̃−∣∣∣2) . (3.103)

There we show that, if the product ξ̃+ ξ̃− vanishes at the boundaries (which here include
the point z = zs), the structure of the system grants that m2 ≥ 0. In our problem, the Λ
projection demands indeed that at the ends of the interval, r = 0 and r = +∞,

ξ̃+ = 0 , (3.104)

but the spurious singularity demands, in addition, that for m 6= 0 ξ̃− vanish at z = zs.
Otherwise ξ̃+, which is obtained from it via eq. (3.96), would have a pole there, and
consequently a divergent norm.

The massive Fermi spectrum is thus determined by the Schrödinger-like equation

AA† ξ̃− = m2 ξ̃− , (3.105)

to be supplemented with the boundary conditions

lim
z→0
A† ξ̃− = 0 lim

z→zs
ξ̃− = 0 . (3.106)

Close to the origin, eqs. (3.97) and (3.98) determine the limiting behavior

A† ∼ −∂z −
1

6 z , (3.107)

so that one is demanding that, as r or z tend to zero,

ξ̃− ∼ z−
1
6 ∼ r−

1
4 . (3.108)

As we have already mentioned, these boundary conditions grant that, for the problem at
stake, m2 ≥ 0, but only if they are supplemented by the condition that ξ̃− vanish at the
spurious singularity, as pertains to the Fermi system.

We can now take a closer look at the zero modes. The system of eqs. (3.92) admits in
principle two types of zero modes, in each of the two regions r < r0 and r > r0 obtained
leaving out the spurious singularity,

ξ̃+ = tanh
(
r

ρ

) 1
4

coth
(
r − r0
ρ

)
[ζ1 θ(r0 − r) + ζ2 θ(r − r0)] ,

ξ̃− = tanh
(
r

ρ

)− 1
4

tanh
(
r − r0
ρ

)
ζ0 , (3.109)
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Vξ

Figure 3. The potential Vξ of eq. (3.111), in units of 1
z2

0
and as a function of z

z0
, where z0 is defined

in eq. (3.14). The plots are displayed up to the right end of the interval, z ' 2.24 z0.

where θ denotes the Heaviside step function and ζ0, ζ1 and ζ2 are constants. The first
solution is singular at r = r0 and not normalizable, for any choice of the constants, while
the second is regular at r0 and is singular at the origin but is normalizable, since

∫ zm

0
dz

∣∣∣ξ̃−∣∣∣2 = |ζ0|2
∫ ∞

0
dr eB−A tanh

(
r

ρ

)− 1
2

tanh
(
r − r0
ρ

)2
(3.110)

is finite, while ξ̃+ vanishes for the proper zero mode. Moreover, ξ̃− is continuous at r = r0,
so that it does solve eq. (3.106) for r ≥ 0.

There is an apparent puzzle here, since ξ̃− has a node at r = r0. Consequently, it ought
to be the first excited state, rather than the ground state, of the Schrödinger problem (3.105),
which should therefore have a tachyonic mode. The puzzle is resolved by taking a closer
look at the limiting behavior at the spurious singularity zs. The Schrödinger potential for
ξ̃− of figure 3,

Vξ(r) = 1
4
(
Ω+ + Ω−

)2
− 1

2 ∂z
(
Ω+ + Ω−

)

= −

[(
cosh

(
r
ρ

)
− 1

) (
10 cosh

(
r
ρ

)
− 15 + 7

√
10 sinh

(
r
ρ

))
− 70

]
e
r
ρ

√
5
2

192H ρ3
[
cosh

(
r−r0

2ρ

)]2
sinh

(
r
ρ

)3 , (3.111)

is manifestly regular at r0. It does have a ground state with m2 < 0, as can be anticipated,
for example, resorting to a quadratic approximation around its minimum. However, the
ground-state wavefunction of the Schrödinger problem is not physically acceptable for the
Fermi system (3.92), whose boundary conditions (3.106) select solutions with A ξ̃− vanishing
at zero and ξ̃− vanishing at zs. The ground-state wavefunction of the Schrödinger problem
can not vanish at zs, since it has no nodes, so that it does not obey the proper Fermi
boundary conditions. Equivalently, the formal positivity argument for AA† fails unless ξ̃−
vanishes at z = zs.
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To reiterate, the solutions collected in eqs. (3.87) are true normalizable zero modes,
and the corresponding normalized r-distribution,

Π
ξ̃
' 0.61

ρ
e
− r

2ρ

√
5
2

[
cosh

(
r

ρ

)] 1
2
[
tanh

(
r − r0
ρ

)]2
, (3.112)

determined by eq. (3.110), is displayed in figure 2.
Comparing the r-dependence in eqs. (3.87) and in the second of eqs. (3.109), one can

now see that, up to a proportionality constant, the measure for ξ−1 is

∫
dr
∣∣∣ξ−1 ∣∣∣2 e− r√10

ρ

cosh
(
r−r0
2 ρ

)
cosh

(
r−r0
ρ

)
2 [

cosh
(
r

ρ

)] 1
2
[
sinh

(
r

ρ

)] 3
4
[
sinh

(
r

2 ρ

)]3
. (3.113)

This intricate measure reflects the presence of the algebraic constraint relating χ2 to χ1
and χ3.

In conclusion, there is a quartet of four-dimensional massless Weyl spinor modes from
this sector, which are potential goldstini. The actual goldstini are combinations of these
modes with others that can arise from λ, to which we now turn.

3.3 Spin–1
2 modes from the ten-dimensional dilatino λ

The relevant equation for these modes is the second of eqs. (3.4), which becomes(
γr ∂/+ ∂z + 2Az + 5

2 Cz
)
λ(x, z) +W5 Λλ(x, z) = 0 . (3.114)

Here λ is to be decomposed into eigenstates of the matrix Λ of eq. (3.2), and defining as in
the preceding cases the four-dimensional mass via

γr ∂/ λ
±(x, z) = ∓mλ∓(x, z) , (3.115)

leads to (
∂z + 2Az + 5

2 Cz ±W5

)
λ±(x, z) = ±mλ∓(x, z) . (3.116)

Performing the separation of variables and the additional redefinition

λ±(x, z) = e−2A− 5
2 C h±(z)λ±(x) (3.117)

yields for these modes the manifestly Hermitian system(
± ∂z +W5

)
h± = mh∓ , (3.118)

so that the two h± wavefunctions obey the same equations as the two g∓ in eqs. (3.26),
and can be identified with them. This is also consistent with the boundary conditions (3.5),
which now remove h+ at the ends, while in the spin- 3

2 case they removed g−. As a result,
there is a one-to-one correspondence between the massive spin- 3

2 spectrum arising from the
gravitino ψµ and the massive spin- 1

2 spectrum arising from λ with these boundary conditions.
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For massless modes the two equations in (3.118) decouple, and the proper choice for a
normalizable zero mode is

λ−(x, z) = e−2A− 5
2 C
[
tanh

(
r

2 ρ

)] 1
4
λ−(x) . (3.119)

The alternative boundary condition of eq. (3.6) leads to a different normalizable wave-
function,

λ+(x, z) = e−2A− 5
2 C
[
tanh

(
r

2 ρ

)]− 1
4
λ+(x) . (3.120)

With λ−, this sector would thus contribute four massless Weyl spin- 1
2 modes, which have

the quantum numbers of the expected goldstini, together with a discrete spectrum of massive
excitations. The λ− r-distribution is identical to the one in eq. (3.45). In contrast, the λ+

distribution is different, and does not vanish as r → 0. With this choice, the goldstini must
necessarily originate from section 3.2. The dilatino distributions λ± are displayed in figure 2.

3.4 Additional spin–1
2 modes from ψi

The remaining spin- 1
2 modes can be obtained setting ψµ = 0, ψr = 0, λ = 0 and γi ψi = 0.

As before, we concentrate on modes with k = 0, and making use of the results collected in
appendix A.3, one can see that the resulting equation reads(

∂z + γr ∂/+ 2Az + 3
2 Cz +W5 Λ

)
ψk = 0 . (3.121)

As for the other sectors, one can expand in eigenstates of Λ with mass-shell conditions as in
eq. (3.63), which yields the system(

∂z + 2Az + 3
2 Cz ±W5

)
ψ±k = ± mψ∓k . (3.122)

Separating variables according to

ψ±k (x, z) = ψ±k (x) χ±k (z) = e−2A− 3
2 C ψ±k (x) χ̃±k (z) , (3.123)

the system can be turned into the manifestly Hermitian form

(± ∂z +W5) χ̃±k (z) = mχ̃∓k (z) , (3.124)

so that the corresponding norm is determined by∫
dz χ̃k

†(z) χ̃k(z) . (3.125)

Note that the corresponding r-measure of ψk(x, z),∫
dr e2B−A−2C χk

†(z)χk(z) , (3.126)

is precisely as implied by the Rarita-Schwinger kinetic term, taking into account the presence
of two upper internal Γ-matrices and un upper spacetime Γ-matrix for this set of modes.
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The system in eq. (3.124) has the same structure as those in eqs. (3.26) and (3.118), and
therefore both the allowed masses and the resulting distribution of massive modes are
identical to what we found for the spin- 3

2 spectrum.
The boundary condition (3.5) demands that χ̃+

k (z) vanish at the ends, thus removing
it all together for massless modes, and consequently

χ̃−k (z) = χ̃−(0) k

[
tanh

(
r

2ρ

)] 1
4
, (3.127)

which is normalizable, as was the case for the corresponding spin- 3
2 modes.

Summarizing, for the upper branch of the E > 0 solutions, four more quartets of
massless Weyl spinor modes emerge from the five ψi, subject to γi ψi = 0, together with a
discrete spectrum of massive modes. The distribution of these modes is determined by the
same potentials that already emerged for massive gravitino and dilatino modes.

4 Conclusions

In this paper we have explored in detail a class of Randall-Sundrum-like [66, 67] compactifi-
cations of the type-IIB string to four-dimensional Minkowski space that generically break
all supersymmetries. The solutions are supported by a flux of the self-dual five form field
strength that is homogeneous in an internal five-torus, and combine an internal interval
of finite length with a warped four-dimensional Minkowski spacetime. After a detailed
discussion of the properties of these backgrounds, which completes the results in [61] since
we have shown that a constant dilaton profile is uniquely selected when taking boundary
conditions into account, we have analysed the massless Fermi modes present in them. To this
end, we have classified the perturbations according to the infinitesimal global symmetries
of four-dimensional Minkowski space and of the internal torus, which allow one to deal
separately with different mode sectors.

The nature of the zero modes for Fermi fields that we found enforcing identical Λ
projections at the ends of the interval is summarized in table 1. In all cases, the Λ projection
introduced by the boundary conditions removes one half of the original Fermi modes, and
the reader will not fail to notice that the resulting massless spectrum is that of N = 4
supergravity coupled to five vector multiplets. The massless Fermi modes originating from ψµ,
λ and ψi have identical distributions along the internal interval, which are given in eq. (3.45).
Moreover, their massive spectra are in one-to-one correspondence and are simple to analyze.
On the other hand, the modes associated in the table to ψM arise from different components
of the ten-dimensional gravitini. The massless modes in this sector have the different radial
distribution in eq. (3.112), and the corresponding massive spectrum is also different. The
analysis entails a number of subtleties that are explained in detail in section 3.2.

In order to decide whether or not a mode is normalizable, we have cast the equations
for the mode profiles within the different sectors into Schrödinger-like forms, combining
redefinitions of the wavefunctions with a convenient choice for the independent variable.
More precisely, we have cast them into fermionic counterparts of Schrödinger-like formula-
tions, the first-order systems described in detail in appendix C. The available mass spectra
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4D hel.× SO(5) 4D Content r-dist 10D origin Λ(
± 3

2 , 4
)

4 gravitinos (3.45) ψµ +1(
± 1

2 , 4
)

4 spinors (3.45) λ −1[ (
± 1

2 , 4
)

4 spinors (3.120) λ 1
]

(
± 1

2 , 4
)

4 spinors (3.112) ψM −1(
± 1

2 , 4
)

4× 4 spinors (3.45) ψi −1

Table 1. Four-Dimensional massless Fermi Modes. Λ denotes the eigenvalue that characterizes
identical Fermi boundary conditions at the ends of the interval, as discussed in section 3. The
alternative choice for the dilatino, with Λ = 1, corresponds to the line within square brackets.

were thus determined by the eigenvalues of operators that are Hermitian with respect to the
usual L2 scalar product, when they are combined with the boundary conditions discussed
in appendix B. More precisely, we focused on the choice of identical Λ eigenvalues, for all
Fermi fields, at the two ends of the interval. This has the virtue of allowing massless Fermi
modes, while choosing opposite eigenvalues at the two ends would eliminate them.

Whenever the Schrödinger systems are formally self-adjoint, the no-flow conditions
for the translation generators in spacetime and along the internal torus, together with the
corresponding conditions on the Lorentz generators for Fermi fields, guarantee real mass
spectra, and the resulting norms were also instrumental to identify the actual massless
modes. In most cases, we also verified that the low-energy field theory yields precisely the
very same norms obtained arising from the Schrödinger systems.

For Fermi fields we have largely focused on massless spectra, since their massive modes
cannot be the source of instabilities. We have found a surprising option for the massless
fermionic spectrum: although supersymmetry is broken in the resulting four-dimensional
Minkowski space, there are zero modes originating from half of the original ten-dimensional
spin-3

2 gravitini and from half of the original ten-dimensional dilatini λ. With identical
Λ projections at the two ends of the interval, the fermionic zero modes are indeed those
of N = 4 four-dimensional supergravity coupled to five vector multiplets, which is surely
surprising in the presence of broken supersymmetry but resonates with the presence of an
internal T 5. Since supersymmetry is fully broken for finite values of ρ or `, the presence
of four-dimensional massless gravitini was clearly unexpected. However, nothing prevents
them from acquiring masses, once radiative corrections are taken into account, by absorbing
the massless spin- 1

2 modes that are also present and can mix with them. For example,
the massless spectrum includes spin- 1

2 massless modes arising from the ten-dimensional
dilatino, with which they could combine into massive spin- 3

2 particles. A naive estimate of
the resulting mass scale, obtained taking into account the IIB string-scale cutoff, leads on
dimensional grounds to

∆m ∼ 1
m2

Pl(4)

(
Ms h

1
4
)3
∼ h

5
4 g2

s

M5
s `

2 Φ = h
7
4 g2

s

M5
s Φ µ2

S . (4.1)
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Indeed, the string-induced cutoff for four-dimensional amplitudes is the string scale Ms,
and consequently, taking into account the metric of eq. (2.44), the four-dimensional one is
Ms h

1
4 . Here we have also used eqs. (2.55) and (2.42), and mPl(4) is the four-dimensional

Planck mass. Altogether, one can conclude that

∆m�Ms h
5
4 g2

s , (4.2)

which leaves an interesting range of values within the region of validity of the effective
field theory identified in section 2.2. Half of the original ten-dimensional supersymmetry
is recovered in the limit of large values for ρ or `, while keeping h

5
4
` finite, as discussed in

section 2.2, so that ∆m→ 0. However, the effective field theory ought to be examined with
reference to [68, 69] and the following literature, since this limiting behavior takes place
within a curved five-dimensional setting.5

The Schrödinger potentials governing the massive Fermi spectra from ψµ
+, λ− and

ψi
− are identical, but the massive spectrum from the singlet spin- 1

2 sector arising from ψM
is different. An amusing technical subtlety actually emerged from the singlet ψM sector:
the fermionic boundary conditions remove the node-free tachyonic ground state of the
associated second-order Schrödinger-like equation, so that the actual massless spinor profile
has, surprisingly, one node within the r-interval. We have also considered a second option,
which results in a massless λ+ profile and appears viable for our redefined fields.

All the different options that we have explored in detail or clearly addressed, including
those where all Fermi modes are massive, appear viable at this stage. There is apparently
some tension between the massless option and some recent conjectures on limiting behaviors
that ought to allow ultraviolet completions [71, 72] although, as we have stressed, gravitino
masses are expected to arise when radiative corrections are taken into account. This issue
will be clearly worthy of further investigation once the complete spectrum and its stability
properties will be addressed.

This discussion clearly needs to be complemented by a similarly detailed analysis of the
bosonic spectrum, which will also highlight the implications for the perturbative stability
of these vacua. This will be the subject of [63]. Moreover, a proper characterization of
the effective four-dimensional theory, which appears to embody a non-linear realization
of supersymmetry, cannot forego a similarly detailed analysis of the effects of radiative
corrections, to which we hope to return in the near future.
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A Fermi couplings in the Einstein frame

The fermionic equations that are relevant for our analysis can be conveniently extracted
from [17], but we warn the reader that our H-terms have an overall factor of two with respect
to their choice. In the string frame, where the relevant contributions to the Lagrangian,
obtained removing the two-forms and the axion, read6

LH = − e

2 k2
10

{
e−2φ

[
2 ψ̄M ΓMNP DN ψP − 2 λ̄ΓM DM λ+ 4λ̄ΓMN DM ψN

+ 4∂M φ
(
ψ̄N ΓN ψM + λ̄ΓN ΓM ψN

) ]
+ e−φ

[1
4 ψ̄M Γ[M H/ ΓB] iσ2 ψB + 1

2 λ̄H/ ΓB iσ2 ψB −
1
4 λ̄H/ iσ2 λ

]}
, (A.1)

the relevant supersymmetry transformation rules of the Fermi fields are

δ ψM = DM ε+ eφ

8 H/ ΓM i σ2 ε ,

δ λ = ΓM ε ∂M φ . (A.2)

In this paper we are using a “mostly plus” signature, and the Γ’s are curved Dirac matrices.
We shall use γ’s to denote flat Dirac matrices, when explicitly referring to the background.

One can now reformulate these contributions in the Einstein frame as follows. To begin
with, the vielbein and the covariant derivatives in the two frames are related according to

e(s)A
M = e

φ
4 eAM , D(s)

M = DM + 1
8 ΓMN ∂

N φ . (A.3)

Moreover, it is convenient to redefine the Fermi fields as

ψM = e
1
8 φ ψ′M , λ = e−

1
8 φ λ′ , (A.4)

so that the Lagrangian becomes

LH = − e

2 k2
10

{
2 ψ̄M ΓMNP DN ψP − 2 λ̄ΓM DM λ+ 4λ̄ΓMN DM ψN

− 1
2 ∂M φ λ̄ΓN ΓM ψN

+ 1
4 ψ̄M Γ[M H/ ΓB] iσ2 ψB + 1

2 λ̄H/ ΓB iσ2 ψB −
1
4 λ̄H/ iσ2 λ

}
, (A.5)

6In our conventions the antisymmetrization is such that [AB] = AB −BA.
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where for brevity we have omitted the “primes” on the new fields. The redefined supersym-
metry transformations of the Fermi fields read

δ ψM = DM ε+ 1
8 H/ ΓM i σ2 ε+ 1

8 ΓM ΓN ε ∂N φ ,

δ λ = ΓM ε ∂M φ , (A.6)

where the supersymmetry parameter was also redefined according to

ε′ = e−
φ
8 ε . (A.7)

Now, however, we found it convenient to perform a further redefinition, introducing

ψ′′M = ψM −
1
8 ΓM λ , (A.8)

so that
δ ψ′′M = DM ε+ 1

8 H/ ΓM i σ2 ε , (A.9)

and

LH = − e

2 k2
10

{
2 ψ̄M ΓMNP DN ψP + 1

4 λ̄ΓM DM λ

− 1
2 ∂M φ λ̄ΓN ΓM ψN + 1

4 ψ̄M Γ[M H/ ΓB] iσ2 ψB + 1
16 λ̄H/ iσ2 λ

}
, (A.10)

where we have again removed the “primes” for brevity, while the supersymmetry transfor-
mations finally become

δ ψM = DM ε+ 1
8 H/ ΓM i σ2 ε ,

δ λ = ΓM ε ∂M φ . (A.11)

These results would be of direct relevance if φ were not constant. The fermionic equations
of motion that we refer to in the main body of the paper thus read

ΓMNP DN ψP + 1
8 Γ[M H/ ΓN ] i σ2 ψN −

1
8 ∂N φΓN ΓMλ = 0 ,

ΓM DM λ− ∂MφΓN ΓMψN + 1
4 H/ i σ2 λ = 0 . (A.12)

In our background

H/ ≡ 1
5! H5M1·M5 ΓM1···M5 = −2H e−5C iσ2 Λ γr

(1− γ11
2

)
(A.13)

when acting on a chiral ten-dimensional spinor. Moreover

1
4 ωµ

AB γAB = 1
2 γµγr e

A−B A′ = 1
2 γµγr e

−3A−5C A′ ,

1
4 ωi

AB γAB = 1
2 γiγr e

C−B C ′ = 1
2 γiγr e

−4A−4C C ′ , (A.14)
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while
Λ = γ0123 i σ2 , (A.15)

and
B = 4A+ 5C , (A.16)

in the harmonic gauge.
In detail, taking into account that, as explained in section 2, in our backgrounds

the dilaton profile is constant, and using the z-variable introduced in eq. (3.12) and the
definition of W5 given in eq. (3.11),

δ ψµ = ∂µ ε+ 1
2 γµ γr

(
Az +W5 Λ

)
ε ,

δ ψr = eB−A
(
∂z + 1

2W5 Λ
)
ε ,

δ ψi = 1
2 γi γre

C−A
(
Cz −W5 Λ

)
ε . (A.17)

A.1 Spin–3
2 equations

In this case we let ψr = ψi = 0 and work with only ψµ. Consequently the gravitino kinetic
terms yield the contributions

ΓµNP DN ψP = e−3A
[
γµνρ ∂νψρ − γµρ γr

(
∂z +Az + 5

2 Cz
)
ψρ

]
,

ΓrNP DN ψP = e−2A−B
[
γr γµρ ∂µ ψρ +

(3
2 Az + 5

2 Cz
)
γρ ψρ

]
(A.18)

ΓiNP DN ψP = e−C−2A
[
γi γµρ ∂µ ψρ + γi γr

(
∂z + 3

2 Az + 2 Cz
)
γρ ψρ

]
,

which are used in section 3.
Similarly, the H/ terms entering the Rarita-Schwinger equation are

1
8 Γ[M H/ ΓN ] i σ2 ψN = H

4 e−5C
(
ΓM Λ γr ΓN − ΓN Λ γr ΓM

)
ψN , (A.19)

and the three distinct index ranges for M give

1
8 Γ[µH/ ΓN ] i σ2 ψN = H

2 e−2A−5C γr γ
µν Λψν ,

1
8 Γ[rH/ ΓN ] i σ2 ψN = H

2 e−A−B−5C γν Λψν ,
1
8 Γ[iH/ ΓN ] i σ2 ψN = 0 . (A.20)

The three components of the gravitino equation are thus

γµνρ ∂νψρ − γµρ γr
(
∂z +Az + 5

2 Cz
)
ψρ +W5 γr γ

µν Λψν = 0 ,

γr γµρ ∂µ ψρ +
(3

2 Az + 5
2 Cz

)
γρ ψρ +W5 γ

ν Λψν = 0 ,

γi γµρ ∂µ ψρ + γi γr

(
∂z + 3

2 Az + 2 Cz
)
γρ ψρ = 0 . (A.21)
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A.2 Spin–1
2 modes in the spinorial of SO(6)

To begin with, after a gauge choice one is left with four types of these spin- 1
2 modes:

ψµ = γµχ1 , ψr = γr χ2 , ψi = γi χ3 , λ . (A.22)

The gravitino kinetic term now gives

ΓMNP DN ψP = ΓMνρ
(
∂ν + 1

2γν γr e
A−B A′

)
γρ χ1

+ ΓMνr
(
∂ν + 1

2γν γr e
A−B A′

)
γr χ2 (A.23)

+ ΓMνi
(
∂ν + 1

2γν γr e
A−B A′

)
γi χ3 + ΓMrρ γρ ∂r χ1 + ΓMri ∂r γi χ3

+ 1
2 e

C−B C ′
[
ΓMiρ γi γr γρ χ1 + ΓMir γi γr γr χ2 + ΓMij γi γrγj χ3

]
,

and in detail

ΓµNP DN ψP = e−2Aγµν ∂ν
(
2e−A χ1 + e−B χ2 + 5e−C χ3

)
+ 3

2 e
−A−B A′ γµ γr

(
2e−A χ1 − e−B χ2 + 5 e−C χ3

)
+ e−A−B

(
3 e−A γµr ∂r χ1 + 5 e−C γµr ∂r χ3

)
+ 5

2 e
−A−B C ′ γµ γr

(
3 e−A χ1 − e−B χ2 + 4 e−C χ3

)
, (A.24)

ΓrNP DN ψP = e−A−B
(
γrν ∂ν + 2eA−B A′

) (
3e−A χ1 + 5e−Cχ3

)
+ 10 e−2B C ′

(
e−Aχ1 + e−Cχ3

)
, (A.25)

ΓkNP DN ψP = e−A−C γkν ∂ν
(
3 e−A χ1 + e−B χ2 + 4 e−C χ3

)
+ 2 e−B−CA′γk γr

(
3 e−A χ1 − e−B χ2 + 4 e−C χ3

)
+ e−B−C

(
4e−Aγkr ∂r χ1 + 4 e−Cγkr ∂r χ3

)
+ 2 e−B−C C ′ γkγr

(
4 e−Aχ1 − e−Bχ2 + 3 e−Cχ3

)
. (A.26)

Moreover
ΓM DM λ = e−Aγµ ∂µ λ+ e−Bγr

(
∂r + 2A′ + 5

2 C
′
)
λ , (A.27)

and expanding the form couplings now gives

1
8 Γ[µH/ ΓN ] i σ2 ψN = H

4 e−5C
(
Γµ Λ γr ΓN − ΓN Λ γr Γµ

)
ψN

= H

2 e−2A−5C γr γ
µν Λψν + H

2 e−A−B−5C γµ Λψr ,
1
8 Γ[rH/ ΓN ] i σ2 ψN = H

2 e−A−B−5C γν Λψν ,
1
8 Γ[iH/ ΓN ] i σ2 ψN = −H2 e−7C γr γ

ij Λψj , (A.28)
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or in terms of the χi

1
8 Γ[µH/ ΓN ] i σ2 ψN = H

2 e−A−5C γµ γr Λ
(
3 e−A χ1 + e−B χ2

)
,

1
8 Γ[rH/ ΓN ] i σ2 ψN = 2H e−A−B−5C Λχ1 ,

1
8 Γ[iH/ ΓN ] i σ2 ψN = 2H e−7C γi γr Λχ3 ,

1
4 H/i σ2 λ = H

2 e−5C γr Λλ . (A.29)

Consequently, in the backgrounds of interest the dilatino equation for spin- 1
2 modes is

γµ ∂µ λ+ γr
(
∂z + 2Az + 5

2 Cz
)
λ+W5 γr Λλ

+ φz γr
(
4 e−A χ1 − e−B χ2 + 5 e−C χ3

)
= 0 . (A.30)

In a similar fashion, the complete equations originating from the gravitino are

γµν ∂ν
(
2e−A χ1 + e−B χ2 + 5e−C χ3

)
+ 3

2 Az γ
µ γr

(
4e−A χ1 − e−B χ2 + 5 e−C χ3

)
+ γµ γr ∂z

(
3 e−Aχ1 + 5 e−Cχ3

)
+ 5

2 Cz γ
µ γr

(
3 e−A χ1 − e−B χ2 + 6 e−C χ3

)
+W5 γ

µ γr Λ
(
3 e−A χ1 + e−B χ2

)
+ φz γ

µ γr λ = 0 , (A.31)(
γrν ∂ν + 2eA−B A′

) (
3e−A χ1 + 5e−Cχ3

)
+ 10Cz

(
e−Aχ1 + e−Cχ3

)
+ 4W5 Λ e−A χ1 −

1
8 φz λ = 0 , (A.32)

γkν ∂ν
(
3 e−A χ1 + e−B χ2 + 4 e−C χ3

)
+ 2Azγk γr

(
5 e−A χ1 − e−B χ2 + 4 e−C χ3

)
+ 4 γkγr ∂z

(
e−Aχ1 + e−Cχ3

)
+ 2Cz γkγr

(
4 e−Aχ1 − e−Bχ2 + 5 e−Cχ3

)
+ 4W5 e

−C γk γr Λχ3 + 1
8 φz γ

k γr λ = 0 . (A.33)

A.3 Spin–1
2 modes from ψi

We can finally consider the contribution of ψi, with γi ψi = 0. The starting point is provided
by

ΓµNiDN ψi = 0 ,
ΓrNiDN ψi = 0 ,

ΓkNiDN ψi + 1
8 Γ[kH/ Γi] i σ2 ψi = 0 , (A.34)

since, as we have seen, in the first two cases the term proportional to H vanishes. The first
two equations are identically satisfied, while the last becomes[

∂/+ γr

(
∂z + 2Az + 3

2 Cz +W5 Λ
)]

ψk = 0 . (A.35)
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B Fermi modes in an interval

In this paper we were confronted with metrics of the form

ds2 = e2A(r) dx2 + e2B(r) dr2 + e2C(r) dy2 , (B.1)

which describe in the r direction segments of finite length, or at least half-lines. In all these
cases the Dirac or Rarita-Schwinger equations must be supplemented by boundary conditions,
as described in [62]. Here we would like to elaborate on their implications, focusing on
the simplest case, the Dirac equation for the isotropic metric (with no y-coordinates) in
conformal gauge, which reads

ds2 = e2 Ω(z)
(
dx2 + dz2

)
. (B.2)

To begin with, let us notice that the spin connection one-form for this class of metrics has
the non-vanishing components

ωνz = dxµ δνµ Ω′(z) , (B.3)

so that the massless Dirac action reads7

S = −i
∫
dD−1x dz e(D−1)Ω ψ̄

[
γz
(
∂z + D − 1

2 Ω′
)

+ γµ ∂µ

]
ψ , (B.4)

where all γ-matrices have flat indices. The redefinition

ψ = e−
(D−1)

2 Ω χ (B.5)

leads therefore to a free Fermi problem, with

S = −i
∫
dD−1x dz χ̄

[
γz ∂z + γµ ∂µ

]
χ , (B.6)

and the Dirac equation for χ thus becomes[
γz ∂z + γµ ∂µ

]
χ(x, z) = 0 . (B.7)

Since the explicit z dependence has disappeared, it is convenient to focus on eigenstates of
−i∂z of eigenvalue k, which are of the form

χ(x, z) = χk(x) eikz . (B.8)

For them, the Dirac equation reduces to

γµ ∂µ χk(x) = −i k γz χk(x) , (B.9)

and consequently
�χk(x) = k2 χk(x) , (B.10)

so that χk(x) and χ−k(x) correspond to the same mass m = |k|.
In the presence of only one internal dimension associated to z, one can distinguish four

cases.
7Here we are reverting to the more conventional choice of introducing an overall factor of i in front of the

action. The difference with the conventions drawn from [17] and used in appendix A resides in a different
definition of conjugation for Fermi fields: here (AB)† = B†A†, or alternatively in the introduction of a
factor i in the definition of ψ̄.
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1. An infinite line. In this case k is an arbitrary real number and there is a continuous
mass spectrum. The absence of a mass gap reflects the D-dimensional nature of the
system.

2. A circle. In this case z is identified with z + 2πR, and there are further distinctions.
To begin with, for a Dirac spinor one can demand, in general, that

χ(x, z + 2πR) = ei 2π α χ(x, z) , (B.11)

with an arbitrary value of α, consistently with the periodicity of all fermionic bilinears.
This condition determines

k = n+ α

R
n ∈ Z ,

with an arbitrary integer value of n. For a Majorana spinor, whenever it can be defined,
pairs of modes of this type, with opposite values of k, must combine to grant that

χ(x, z) = C χT (x, z) . (B.12)

This condition, however, can be consistently imposed only if α = 0, 1
2 , since only in

these cases modes with opposite values of k exist. One can then combine pairs of
modes of mass m according to

χ(x, z) = χm(x) eim z + χ−m(x) e−im z , (B.13)

and eq. (B.12) can be satisfied demanding that

χ−m(x) = C χTm(x) . (B.14)

3. A semi-infinite line. We set the boundary at z = 0, where one is to enforce the
boundary condition

χ(x, 0) = γz χ(x, 0) . (B.15)

Eq. (B.9), however, implies that γz χk(x) satisfies the same equation as χ−k(x), since

γµ ∂µ (γz χk(x)) = i k γz (γz χk(x)) , (B.16)

so that one cannot demand that χk(x) be an eigenstate of γz, as in the boundary
condition (B.15), if k 6= 0. Rather, a given mode of mass m must be a combination
of a pair of these functions, as in eq. (B.13). It is thus convenient to define

χ±m(x) = χm(x)± χ−m(x) , (B.17)

and then the boundary condition (B.15) translates into

γz χ+
m = χ+

m . (B.18)

On the other hand, the Dirac equation can be recast in the form

γµ ∂µ χ
±
m = −imγz χ∓m , (B.19)
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and together with eq. (B.18) implies that

γz χ−m = −χ−m . (B.20)

As a result, the Dirac equation for these combinations takes finally the simpler form

γµ ∂µ χ
±
m = ± imχ∓m , (B.21)

while the independent modes are conveniently expressed as

χm(x, z) = χ+
m(x) cosmz + i χ−m(x) sinmz . (B.22)

This would be a possible choice even in the absence of a boundary, of course, and would
go along with the corresponding form (B.19) of the Dirac equation. The boundary,
however, introduces the two projections

γz χ±m = ± χ±m (B.23)

on χ±, at z = 0. Moreover, when the Majorana condition (B.14) holds, χ+
m is real

while χ−m is purely imaginary in a Majorana representation, and χm(x, z) is then real.

4. A finite z-interval, 0 ≤ z ≤ zm. As in the previous case, the boundary condition at
z = 0 leads to eqs. (B.22) and (B.23), but one must demand, in addition, that

γz χm(x, zm) = ± χm(x, zm) . (B.24)

According to eq. (B.23), the upper sign requires that

sin (mzm) = 0 , m = nπ

zm
, n = 1, 2, . . . , (B.25)

and leads to the Ramond sector. On the other hand, the lower sign choice requires that

cos (mzm) = 0 , m =
n+ π

2
zm

, n = 0, 2, . . . , (B.26)

and leads to the Neveu-Schwarz sector. In the main body of the paper we focused
on the first option, which led to a residual massless spectrum of Fermi fields. The
other choice, which would have given mass to these fields, would have implemented
the Scherk-Schwarz mechanism on the low-energy effective field theory.

Notice that, in the metrics in eq. (B.1), one can compute zm as

zm =
∫
dr eB−A . (B.27)

However, when A 6= 0, as in the main body of the paper, zm is not the actual length of the
interval, which is determined by ∫

dr eB . (B.28)

If zm is finite, we are in case 4, while if zm is infinite, we are in case 3.
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As we stressed in [62], in many cases of interest for String Theory, eq. (B.15) does not
admit solutions compatible with maximal symmetry in the x directions, due to chirality
and/or Majorana constraints. However, if the interval is combined with an internal torus,
solutions of the constraints of the type

χ(x, 0) = Λχ(x, 0) , (B.29)

can exist, with a Hermitian matrix Λ such that

Λ2 = 1 ,
{

Λ , γ0γr
}

= 0 , (B.30)

which are compatible with lower-dimensional Lorentz symmetries. The preceding considera-
tions apply to these more complicated cases, provided one includes in m the contributions
of toroidal modes and γz is replaced by Λ.

In type IIB compactified on a five-torus T 5, where the Fermi fields are doublets of
Majorana-Weyl spinors, as we have seen

Λ = γ0 γ1 γ2 γ3 i σ2 , (B.31)

which is Hermitian, Lorentz invariant and satisfies the constraint in eq. (B.30). Notice that
this choice is slightly more general than those considered in [62], where the main focus was
on orientifolds, since it mixes the pairs of original spinor fields of the ten-dimensional IIB
supergravity.

C A recurrent Sturm-Liouville problem

In this appendix we summarize the properties of a Sturm-Liouville problem that surfaces,
in different forms, in our analysis. The relevant structure came to the forefront, in Physics,
in Witten’s work on the dynamical breaking of supersymmetry (see [70] and references
therein), and our main target here is the role of boundary conditions, following [62], since
in our case the actual spectra emerging from these problems depend crucially on them.
We also distinguish the two presentations of the problem that show up with Fermi and
Bose fields, which are related but not equivalent. The latter type of fields will be the main
subject of the companion papers [63].

C.1 Fermi fields

In this paper we often deal with a system of differential equations of the form

Aψ1m = mψ2m ,

A† ψ2m = mψ1m , (C.1)

which emerge from Fermi fields in the presence of an internal interval after separation of
variables, where

A = ∂z +Wz ,

A† = −∂z +Wz . (C.2)

– 47 –



J
H
E
P
0
8
(
2
0
2
2
)
3
0
1

The system can be presented in the manifestly Hermitian matrix structure

QΨm = mΨm , (C.3)

with
Q =

(
0 A†
A 0

)
, Ψm =

(
ψ1m
ψ2m

)
. (C.4)

Clearly, if Q is Hermitian m2 ≥ 0. This condition demands that

(Ψm,QΨm′) = (QΨm,Ψm′) , (C.5)

for all choices of m and m′, with the standard scalar product

(
Ψ,Ψ′

)
=
∫ zm

0
dz Ψ†Ψ′ . (C.6)

Hermiticity thus holds provided the boundary conditions[
Ψ†m σ2 Ψm′

]zm
0

= i
[
ψ?2m ψ1m′ − ψ?1m ψ2m′

]zm
0

= 0 (C.7)

hold at the two ends of the interval. In particular, the choice

ψ2m = 0 (C.8)

at the boundaries clearly solves eq. (C.7). In the main body of the paper, this choice
resulted from working with eigenstates of Λ, compatibly with the no-flow conditions of [62].
More generally, one could demand that, at the boundary,

Ψm = (sin θ σ1 + cos θ σ3) Ψm , (C.9)

with σ1 and σ3 Pauli matrices θ an arbitrary angle, while eq. (C.8) corresponds to θ = 0.
When this type of condition holds, eq. (C.5) implies that

(Ψm,Ψm′) = 0 (C.10)

for m 6= m′.

C.2 Bose fields

The analysis of Bose fields in the companion papers [63], which already surfaced in section 3.2,
leads to Schrödinger-like equations of the form

A†Aχ = m2 χ , (C.11)

for a single-component field χ, and to generalizations of this problem to the multi-field case.
For m 6= 0, the system (C.11) is equivalent to studying the fermionic system (C.1), with

ψ1 = 1√
2
χ ψ2 = 1√

2m
Aχ , (C.12)
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and the boundary condition (C.8) translates into the demand that

Aχ = 0 (C.13)

at the boundary. However, when m = 0 the Fermi system (C.1) decouples in the two
equations

Aψ1 0 = 0 ,
A† ψ2 0 = 0 , (C.14)

which lead to the two types of ground-state wavefunctions,

ψ10 = c1 e
−W , ψ20 = c2 e

W . (C.15)

Their normalizability depends on the choice ofW , and the Fermi boundary conditions (C.10)
with θ = 0 would remove ψ20.

Summarizing, the Fermi and Bose problems are in one-to-one correspondence for
nonzero values of m, provided the two boundary conditions (C.8) and (C.13) are enforced.
On the other hand, if (C.11) is the starting point,

χ = ψ10 (C.16)

is the actual ground state if it is normalizable, while the boundary condition (C.13) is
identically satisfied. When the Schrödinger equation (C.11) is the starting point, it suffices
to demand that A†A be Hermitian, which leads to the condition that, for any pair of
wavefunctions ψ and χ,

ψ∗ ∂z χ− ∂z ψ∗ χ (C.17)

vanish at the boundary. As a result (C.13) is a possible choice, but one can also impose the
boundary condition

cos θ χ+ sin θ ∂z χ = 0 (C.18)

at the boundary. This family of choices contains, as special cases, the familiar Dirichlet and
Neumann ones, which are selected by the no-flow conditions of [62].

We have often resorted to a positivity argument for the operator A†A. This requires
that (

χ,A†Aχ
)

= (Aχ,Aχ) , (C.19)

and this condition demands that, at the boundaries,

χAχ = 0 . (C.20)
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