This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Correcting the experimental enthalpies of formation of some members of the biologically significant sulfenic acids family

Journal:	The Journal of Physical Chemistry
Manuscript ID	jp-2022-04235d.R2
Manuscript Type:	Special Issue Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Ventura, Oscar; Universidad de la República, CCBG-DETEMA Segovia, Marc; Universidad de la República, CCBG-DETEMA Vega-Teijido, Mauricio; UdelaR FQUIM Katz, Aline; UdelaR FQUIM Kieninger, Martina; Universidad de la República, CCBG-DETEMA Tasinato, Nicola; Scuola Normale Superiore, Salta, Zoi; Scuola Normale Superiore, Classe di Scienze

SCHOLARONE[™] Manuscripts

י ר	
2	
כ ⊿	
4	
2	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
л 0 Л1	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52	
20	
59	

Correcting the experimental enthalpies of formation of some members of the
 biologically significant sulfenic acids family
 Oscar N. Ventura^{a*}, Marc Segovia^a, Mauricio Vega–Teijido^a, Aline Katz^a,
 Martina Kieninger^a, Nicola Tasinato^b and Zoi Salta^{b*}

6 ^a Computational Chemistry and Biology Group, CCBG, DETEMA, Facultad de Química,

7 Universidad de la República, 11400 Montevideo, Uruguay

8 ^b SMART Lab, Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa, Italy

9 ABSTRACT: Sulfenic acids are important intermediates in the oxidation of cysteine 10 thiol groups in proteins by reactive oxygen species. The mechanism is influenced 11 heavily by the presence of polar groups, other thiol groups, and solvent, all of which 12 determines the need to compute precisely the energies involved in the process. 13 Surprisingly, very scarce experimental information exists about a very basic property 14 of sulfenic acids, the enthalpies of formation. In this paper, we use high level quantum 15 chemical methods to derive the enthalpy of formation at 298.15 K of methane-, 16 ethene-, ethyne- and benzenesulfenic acids, the only ones for which some 17 experimental information exists. The methods employed were tested against well-18 known experimental data of related species and extensive CCSD(T) calculations. Our 19 best results consistently point out to a much lower enthalpy of formation of

20	methanesulfenic acid, CH ₃ SOH, $(\Delta_f H^0(298.15K) = -35.1 \pm 0.4 \text{ kcal mol}^{-1})$ than the
21	one reported in the NIST thermochemical data tables. The enthalpies of formation
22	derived for ethynesulfenic acid, HC=CSOH, +32.9 \pm 1.0 kcal/mol, and
23	benzenesulfenic acid, C_6H_5SOH , -2.6 ± 0.6 kcal mol ⁻¹ , also differ markedly from the
24	experimental values, while the enthalpy of formation of ethenesulfenic acid
25	CH ₂ CHSOH, not available experimentally, was calculated as -11.2 ± 0.7 kcal mol ⁻¹ .
26 27 28	*Corresponding authors: Prof. Oscar N. Ventura, CCBG – DETEMA Facultad de Química, UdelaR, Isidoro de María 1614, 11400 Montevideo, Uruguay E-mail: Oscar.N.Ventura@gmail.com
29 30	Dr. Zoi Salta, SMART Lab, Scuola Normale Superiore, piazza dei Cavalieri 7, 56126 Pisa, Italy
31	E-mail: Zoi.Salta@sns.it
32	1. INTRODUCTION
33	Earth's atmosphere was originally reductive until the introduction of oxygen, presumably by
34	cyanobacteria, about 3 billion years ago. After that, oxygen became crucial for the life of
35	most animals, including ourselves. An unwanted side effect was the appearance of reactive
36	oxygen species (ROS), which can react with essential molecules, mainly cysteine containing
37	proteins, turning them useless. Paradoxically, those same ROS can also act as messengers in
38	intracellular reaction pathways, making thus mandatory for the organisms to develop redox
39	homeostasis mechanisms that keep unwanted oxidations under control. ^{1–3}
	2

40	The oxidation reactions caused by ROS produce an effect known as oxidative
41	stress, ^{4,5} mainly produced by the reaction of one- and two-electron oxidants with the thiol
42	groups of cysteine and methionine. Abstraction of the hydrogen atom from the -SH groups
43	of those aminoacids produces thiyl radicals (RS' species), which can react with HO'
44	radicals ^{6,7} to form sulfenic acids (RSOH). ^{8–12} These species can be also formed through the
45	reaction of thiols with other molecules like peroxynitrites (ROONO), or hypohalogenous
46	acids (HOCl, HOBr). Sulfenic acids are involved in neurodegenerative disease mechanisms ¹³
47	and their reversible formation is a requirement for the T-cell activation and function within
48	the immunological system. In these times of COVID-19 pandemic, it is interesting to point
49	out some attempts to use allicin (a simple thiosulfinate derived from sulfenic acids and
50	present in garlic) ¹⁴ to attack the cysteine free thiol at the active site of the SARS–CoV–2
51	main protease enzyme. ¹⁵ In fact, species of the genius Allium, like garlic (A. sativum) or
52	onion (A. cepa) do contain sulfenic acids and their derivatives, believed to be crucial for their
53	beneficial effects on human health (and also, due to the action of the enzyme lachrymatory-
54	factor synthase, responsible for the tears formed when cutting onions) $.^{16-18}$

2 3 4 5	55	Due to the widespread sulfenic acid formation in tissues, in response to hydrogen
6 7 8	56	peroxide acting as an intracellular signaling species, ^{19,20} researchers have tried to study those
9 10 11 12	57	species for many years. However, sulfenic acids are extremely reactive and difficult to study
13 14 15	58	experimentally. Only recently, for instance, a clever method for isolating the cysteine sulfenic
16 17 18	59	acid was devised, protected by a molecular cradle to avoid fast reactions. ²¹ This method may
19 20 21 22	60	be useful in the future as a way to study other small molecule sulfenic-acid species but, at
23 24 25	61	the moment, the best procedure for studying them is to apply the tools of computational
26 27 28	62	chemistry. For this purpose, it is important to use methods that can accurately reproduce
29 30 31 32	63	geometries, energies and other molecular characteristics of the species.
33 34 35 36	64	We have studied in the past several instances of compounds which exhibit SO bonds.
37 38 39	65	Sulfur and oxygen are valence isoelectronic, but the former is much larger, less
40 41 42 43	66	electronegative and more polarizable than the latter. Moreover, sulfur exhibits different
44 45 46	67	oxidation states due to the accessible d orbitals, and we showed a long time ago that it is
47 48 49	68	difficult to describe at the same level of accuracy molecules with S(II), S(IV) and S(VI)
50 51 52 53	69	atoms. ²² For this reason, it is important to have accurate benchmarks where the results of
54 55 56 57		4
58 59 60		ACS Paragon Plus Environment

theoretical calculations are compared to experimental data. In the realm of energies, one of the most exacting challenges is to obtain accurate enthalpies of formation from the atomization energies of these species. In the course of the above-mentioned studies, we came across sulfenic acids as species that we would like to describe accurately, because of their importance in the biochemical processes we pointed out before. Not surprisingly, in view of the difficulties to isolate those species, there is very scarce information on their enthalpies of formation. Only three sulfenic acids are present in the NIST thermochemical data tables²³ to our knowledge: methane-, ethyne- and benzenesulfenic acid, all of them determined by Tureček et al.²⁴ Ethenesulfenic acid was studied in that work also, but its enthalpy of formation was not determined accurately. Surprisingly, our initial simple calculations showed a remarkable difference between those experimental results and the theoretical ones. Therefore, we decided to perform a more in-depth study of this problem. In this paper, we report the determination of the standard enthalpy of formation of the four sulfenic acids reported before, using atomization energies, energies of dissociation to diatomic molecules, and isodesmic reactions for that purpose. The results strongly suggest that the values present in the NIST

thermochemical tables for these species should be revised, and that additional experimental studies should be performed to corroborate our theoretical predictions. 2. CHEMICAL MODELS AND METHODS The standard enthalpy of formation $\Delta_f H^0(298.15K)$ is one of the thermochemical properties crucial for the development of accurate kinetic models of chemical reactions. Experimental methods do provide accurate information in relatively few cases and it is customary to resort to computational methods for obtaining them accurately.²⁵ Normally, the method employed is semi-experimental: quantum chemical calculations of the enthalpies of the species of interest are performed with a variety of methods, and error cancellation chemical equations are built to calculate the $\Delta_f H^0(298.15K)$ from species for which experimental data are accurately known. These reactions may be those of atomization (since the $\Delta_f H^0(298.15K)$) of most atoms are experimentally known) or of other types, like dissociation into diatomic molecules in their standard states. Other types of error cancellation equations are isogyric (equal spin states on both sides of the equation), isodesmic (same atoms and bonds) or

homodesmotic (a subclass of the former). The accuracy obtained depends on several factors,

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
22	
23	
24	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
33	
34	
35	
36	
37	
38	
39	
40	
_ 1 0	
41	
42	
43	
44	
45	
46	
47	
<u>4</u> 8	
70 70	
49	
50	
51	
52	
53	
54	
55	
55	
20	
5/	
58	
59	
60	

101 one of which is the accuracy with which the enthalpy of the species can be calculated. 102 2.1. Computational methods 103 Individual enthalpies for the species can be calculated with density functional (DFT) 104 methods, perturbation procedures (second-order Møller-Plesset theory, MP2²⁶ for instance) or more refined post-Hartree-Fock methods, like CCSD(T).²⁷⁻²⁹ Generally, large basis sets 105 106 must be used and the ideal situation, when the basis set is large and balanced enough, is 107 known as complete basis set (CBS) limit. For many years, the CCSD(T)/CBS calculations 108 were considered the 'gold standard' for obtaining what is called 'chemical accuracy' (i.e., 109 discrepancies with experiment below 1 kcal mol⁻¹).^{27,30} Several approximations do exist to 110 the CCSD(T)/CBS limit that normally is not reachable for medium size molecules. These 111 methods receive the name of 'composite' because the procedures imply the calculation of 112 additive contributions that address the incompleteness of the basis set, different 113 approximations to the dynamical correlation energies, the one and N-electron errors, and 114 include empirical correction factors in some cases.

3 4 5	115	Well-known procedures in this area are the complete basis set methods developed by
6 7 8	116	Peterson and coworkers ^{31–35} (of which the most popular is CBS–QB3 ^{34,35}), the Gn methods
9 10 11 12	117	developed by Pople and collaborators ^{36–44} (which latest version are G4 and G4MP2 ^{39,43}), the
13 14 15	118	Weizmann–n (Wn) methods of Martin and coworkers ^{45–48} (the most accurate and expensive
16 17 18	119	of which is W4 ⁴⁸) and the correlation consistent composite approach (ccCA) method of
20 21 22	120	Wilson et al. ^{49–54} Other more accurate or more purpose specific composite procedures, like
23 24 25	121	the HL, ⁵⁵ HEAT, ^{56, 57} and focal point analysis (FPA) ^{58, 59} methods, have also been proposed
26 27 28 20	122	but used less frequently in the literature. Wn, HEAT and FPA are methods used normally for
30 31 32	123	benchmarking, due to their high accuracy (maximum errors of less than 1 kJ mol ⁻¹), but
33 34 35 36	124	commensurate high demand of computer resources.
37 38 39	125	In this paper we have used two DFT methods, featuring the M06-2X, ⁶⁰ and rev-
40 41 42 43	126	DSDPBEP86 ⁶¹ functionals, with Dunning's $aug-cc-pV(T+d)Z$ and Truhlar's jun-cc-
44 45 46	127	$pV(T+d)Z^{62}$ basis sets, plus several composite methods of progressively larger degree of
47 48 49 50	128	accuracy (and, of course, increasing demand of computational resources). The extension of
51 52 53	129	the basis set with tight d functions is known to be important for a quantitative description of
54 55 56 57		8
58		
59 60		ACS Paragon Plus Environment

130	the electronic structure of third-row atoms (sulfur in our case). ⁶³⁻⁶⁷ In order to account for
131	dispersion interactions, M06–2X and rev–DSDPBEP86 were augmented by Grimme's DFT–
132	D3 semiempirical dispersion, ^{68,69} which has been applied with considerable success to a large
133	number of different systems, including dimers, large supramolecular complexes and reaction
134	energies/barriers. ^{70–72}
135	The extensively employed CBS–QB3, ^{34,35} and G4, ³⁹ composite methods were used
136	in their original implementations, along with the more recent jun–ChS 73,74 and SVECV–f12 75
137	models. The jun-ChS approach employs rev-DSDPBEP86-D3(BJ)/jun-cc-pV(T+d)Z
138	geometries and corrects CCSD(T)/jun-cc-pV(T+d)Z energies for the CBS error and core-
139	correlation effects. These are evaluated by a two-point extrapolation ⁷⁶ of MP2 energies using
140	the jun-cc-pV(T+d)Z and jun-cc-pV(Q+d)Z basis sets, and as the difference between
141	MP2/cc-pwCVTZ results obtained by correlating all and only valence electrons,
142	respectively. The improvements with respect to the previously mentioned CBS–QB3 and G4
143	methods lies both in the use of a more accurate DFT method for obtaining optimum
144	geometries and frequencies (CBS-QB3 and G4 use B3LYP for this purpose), and the
	9

2		
3 4 5	145	calculation of the CBS limit and core-valence contributions at the MP2 level, thus providing
6 7 8 9	146	a reduction of the computational burden.
10 11 12	147	SVECV-f12, in the implementation used in this paper, employs M06-2X-D3/aug-
15 14 15 16	148	cc–pV(T+ <i>d</i>)Z optimum geometries to perform $CCSD(T,fc)$ –F12b(3C/FIX) ⁷⁷ complete basis
17 18 19	149	set (CBS) single-point calculations (obtained by extrapolation of cc-pVDZ-F12 and cc-
20 21 22	150	pVTZ-F12 results), augmented by core-valence correlation corrections at the MP2/cc-
23 24 25 26	151	pwCVTZ level. As such, this method includes more correlation energy than the jun-ChS
20 27 28 29	152	method but is considerably more resource demanding and, therefore, of a more restricted
30 31 32	153	application. Previous works have shown that both methods are equivalent in a number of
33 34 35 36	154	situations. ^{66,67}
37 38 39 40	155	Required geometry optimizations at the DFT level were performed with very tight
41 42 43	156	criteria. Analytical frequency calculations were performed using the DFT methods, and the
44 45 46	157	thermochemical properties calculated using the rigid–rotor/harmonic oscillator
47 48 49 50	158	approximation. Since no thermal contributions were calculated at the $CCSD(T)$ or $CCSD(T)$ -
51 52 53	159	F12 levels, the individual enthalpies necessary for the calculation of $\Delta_f H^0(298.15K)$ were
54 55 56		10
57 58		
59 60		ACS Paragon Plus Environment

2		
4 5	160	obtained adding the difference $H_{298} - E_T$ at the corresponding DFT level to the ab initio total
6 7 8 9	161	energies (E_T is the sum of electronic and fixed nuclei energy). All calculations were
10 11 12	162	performed using the Gaussian 16 ⁷⁸ and Molpro 20.1 ^{79–81} computer packages.
13 14 15 16 17	163	
18 19 20 21	164	
22 23 24	165	2.2. Chemical models
25 26 27	166	This work aims to evaluate the $\Delta_f H^0(298.15K)$ of the four species considered in the
28 29 30	167	experimental determination of TureČek et al. ²⁴ and shown in Fig. 1, namely methanesulfenic
31 32 33	168	acid (MSA), ethenesulfenic acid (ESA, vinylsulfenic acid), ethynesulfenic acid (YSA) and
34 35 36 37	169	benzenesulfenic acid (BSA). For this purpose, we used atomization energies, energies of
38 39 40	170	dissociation into diatomic molecules, and several isodesmic reactions for some special cases.
41 42 43	171	Three well-known anchors, dimethylsulfide (DMS), dimethylsulfoxide (DMSO) and
44 45 46 47	172	diethylsulfoxide (DESO) that are also presented in Fig.1 and for which enthalpies of
48 49 50	173	formation are known accurately, were used as benchmark to assess the quality of the
51 52 53	174	computational procedures. Two other species, dihydrogensulfoxide (DHSO) and sulfine (see
54 55 56 57		11
58 59 60		ACS Paragon Plus Environment

2 3 4	175	Fig. 1), which enthalpies of formation were calculated using accurate theoretical procedures,
5 6 7	176	were included to further discuss the accuracy and precision of the composite methods.
9 10 11 12	177	Three protocols were used for the calculation of the $\Delta_f H^0$ (298.15 <i>K</i>). Taking DMSO
13 14 15 16	178	as an example, the enthalpy of formation using enthalpies of atomization was calculated as ⁸²
17 18 19	179	$\Delta_f H^o(\text{DMSO}) = \Delta_r^{theor} H^{at} + \sum_{atoms} \Delta_f^{exptl} H^o$
20 21 22	180	$= [(H(DMSO) - H(O) - H(S) - 2H(C) - 6H(H)]^{theor} +$
23 24	181	$+ \Delta_f^{exptl} H^o(O) + \Delta_f^{exptl} H^o(S) + 2\Delta_f^{exptl} H^o(C) + 6\Delta_f^{exptl} H^o(H)$
25 26	182	
27 28 29 30	183	In this expression, <i>theor</i> refers to enthalpies calculated theoretically and <i>exptl</i> to
31 32 33	184	experimental values. The subscripts f and r refer to formation and reaction respectively, and
34 35 36 37	185	all values are calculated or measured at 298.15K. Atoms are considered in their standard state
38 39 40	186	and their enthalpies of formation taken from reference 23 (H(1 S), 218.00±0.01 kcal mol ⁻¹ ;
41 42 43 44	187	C(³ P), 171.29±0.11 kcal mol ⁻¹ ; O(³ S), 59.555±0.024 kcal mol ⁻¹ ; S(³ P), 66.245±0.036 kcal
45 46 47	188	mol^{-1}).
48 49 50 51	189	The calculation starting from diatomic molecules was performed in a similar way but
52 53 54	190	taking diatomic molecules as reference
55 56 57 58		12
59 60		ACS Paragon Plus Environment

 $\Delta_f H^o(\text{DMSO}) = \Delta_r^{theor} H^{at} + \sum_{diatomics} \Delta_f^{exptl} H^o$ $= [(H(DMSO) - 1/2H(O_2) - 1/2H(S_2) - 1/2H(C_2) - 3H(H_2)]^{theor}$ + $1/2\Delta_f^{exptl}H^o(S_2) + \Delta_f^{exptl}H^o(C_2)$ In this case, there is no component for H_2 or O_2 because the enthalpies of formation of these species in their standard state are exactly zero. The $\Delta_f H^0(298.15K)$ of $S_2(^{3}\Sigma_g)$ is 30.376 ± 0.072 kcal mol⁻¹ and that of $O_2(^{3}\Sigma_{g})$ is 49.033 ± 0.001 kcal mol⁻¹. Finally, isodesmic reactions (i.e., those in which the number and type of different bonds in the species in the right-hand side and left-hand side of the chemical equation match as closely as possible) were also considered in some cases. The general formulation for a reaction $A + B + D \dots \rightarrow X + Y + Z \dots$ would be $\Delta_{f}H^{0}(\mathbf{A}) = -\Delta_{r}^{theor}H - \sum_{B,C,D,\dots}\Delta_{f}^{exptl}H^{0} + \sum_{X,Y,Z,\dots}\Delta_{f}^{exp}H^{0}$ where A is the species which enthalpy of formation one wants to obtain and B, C, ..., X, Y, ... etc., the other species that participate in the isodesmic reaction. This procedure is expected to reduce greatly any error in the calculation of the enthalpies of reaction but requires that

1 2			
3 4 5	205	the experimental (or high-accuracy theoretical) enthalpy of formation of the sp	ecies B, C,
6 7 8	206	etc. are known with the desired accuracy.	
9 10 11 12 13	207	The following (quasi)isodesmic reactions were used in this work (spec	eies in bold
14 15 16	208	characters are the ones for which the chemical equation was used to determine the	he enthalpy
17 18 19 20	209	of formation).	
21 22 23	210	$(CH_3)_2S + H_2S \rightarrow 2 CH_3SH$	(1a)
24 25	211	$(\mathbf{CH}_3)_2\mathbf{S} + (\mathbf{CH}_3\mathbf{CH}_2)_2\mathbf{O} \rightarrow (\mathbf{CH}_3\mathbf{CH}_2)_2\mathbf{S} + (\mathbf{CH}_3)_2\mathbf{O}$	(1b)
26 27 28	212	$(CH_3)_2S=O + CH_3CH_2CH_3 \rightarrow (CH_3CH_2)_2S=O + CH_4$	(2a)
29 30	213	$(\mathbf{CH}_3)_2\mathbf{S=O} + (\mathbf{CH}_3\mathbf{CH}_2)_2\mathbf{O} \rightarrow (\mathbf{CH}_3\mathbf{CH}_2)_2\mathbf{S=O} + (\mathbf{CH}_3)_2\mathbf{O}$	(2b)
31 32 33	214	$(CH_3CH_2)_2S=O + CH_4 \rightarrow (CH_3)_2S=O + CH_3CH_2CH_3$	(2c)
34 35	215	$(CH_3CH_2)_2S=O + (CH_3)_2O \rightarrow (CH_3)_2S=O + (CH_3CH_2)_2O$	(2d)
36 37 38	216	$H_2S=O + (CH_3)_2S \rightarrow (CH_3)_2S=O + H_2S$	(3a)
39 40	217	$\mathbf{H_2S=O} + (CH_3CH_2)_2S \rightarrow (CH_3CH_2)_2S=O + H_2S$	(3b)
41 42 43	218	$\textbf{H}_{2}\textbf{S=O} + (CH_{2} = CH)_{2}S \rightarrow (CH_{2} = CH)_{2}S = O + H_{2}S$	(3c)
44 45	219	$\mathbf{HSOH} + (\mathbf{CH}_3)_2 \mathbf{S} \rightarrow (\mathbf{CH}_3)_2 \mathbf{S} = \mathbf{O} + \mathbf{H}_2 \mathbf{S}$	(4a)
46 47 48	220	$\textbf{HSOH} + (CH_3CH_2)_2S \rightarrow (CH_3CH_2)_2S = O + H_2S$	(4b)
49 50	221	$H_2C=S=O + H_2S \rightarrow H_2S=O + H_2C=S$	(5a)
51 52 53	222	$H_2C=S=O + H_2C=O \rightarrow H_2COO + H_2C=S$	(5b)
54 55 56 57 58 59			14

2			
3 4	223	$\mathbf{CH}_{3}-\mathbf{SOH} + (\mathbf{CH}_{3})_{2}\mathbf{S} \rightarrow (\mathbf{CH}_{3})_{2}\mathbf{S}=\mathbf{O} + \mathbf{CH}_{3}\mathbf{SH}$	(6a)
5 6 7	224	$\mathbf{CH}_{3}\text{-}\mathbf{SOH} + (\mathbf{CH}_{3}\mathbf{CH}_{2})_{2}\mathbf{S} \rightarrow (\mathbf{CH}_{3}\mathbf{CH}_{2})_{2}\mathbf{S}\text{=}\mathbf{O} + \mathbf{CH}_{3}\mathbf{SH}$	(6b)
, 8 9	225	$\mathbf{CH}_{3}\mathbf{SOH} + \mathbf{H}_{2}\mathbf{S} \rightarrow \mathbf{HSOH} + \mathbf{CH}_{3}\mathbf{SH}$	(6c)
10 11	226	CH2=CH–SOH + $CH_4 \rightarrow CH_3$ –SOH + $H_2C=CH_2$	(7a)
12 13 14	227	CH2=CH–SOH + $CH_4 \rightarrow HSOH + H_2C=CH_2CH_3$	(7b)
15 16	228	$HC=C-SOH + CH_4 \rightarrow CH_3-SOH + HC=CH$	(8a)
17 18	229	$HC \equiv C - SOH + CH_4 \rightarrow CH_2 - SOH + HC \equiv CH$	(8a)
19 20 21	230	$\mathbf{C} \mathbf{H}_{\mathbf{r}} = \mathbf{S} \mathbf{O} \mathbf{H}_{\mathbf{r}} + \mathbf{C} \mathbf{H}_{\mathbf{r}} = \mathbf{S} \mathbf{O} \mathbf{H}_{\mathbf{r}} + \mathbf{C} \mathbf{H}_{\mathbf{r}}$	(02)
22	230	$C_6\Pi_5 - SO\Pi + C\Pi_4 \rightarrow C\Pi_3 - SO\Pi + C_6\Pi_6$	(9a)
23 24 25	231	C_6H_5 -SOH + $CH_4 \rightarrow HSOH + C_6H_5$ - CH_3	(9b)
25 26 27	232	$\mathbf{C_6H_5}\mathbf{SOH} + (\mathbf{CH}_3)_2\mathbf{S} \rightarrow (\mathbf{CH}_3)_2\mathbf{S}\text{=}\mathbf{O} + \mathbf{C_6H_5}\mathbf{SH}$	(9c)
28 29	233	$\mathbf{C_6H_5}\mathbf{SOH} + (\mathbf{CH_3CH_2})_2\mathbf{S} \rightarrow (\mathbf{CH_3CH_2})_2\mathbf{S}\text{=}\mathbf{O} + \mathbf{C_6H_5}\mathbf{SH}$	(9d)
30 31	234		
32 33 34 35	235	Isodesmic reactions (1a) and (1b) were used to determine the enthalpy of	formation
36 37 38	236	of DMS with respect to methylthiol and diethylsulfide respectively. Reactions (2	a) and (2b)
39 40 41 42	237	were employed to determine the enthalpy of formation of DMSO with respect to	DESO and
42 43 44 45	238	the pairs propane/methane and diethyl ether/dimethyl ether respectively. T	he reverse
46 47 48	239	reactions (2c) and (2d) were employed alternatively to calculate the enthalpy of D	DESO from
49 50 51 52	240	the experimental enthalpy of formation of DMSO and the aforementioned pairs. T	he purpose
53 54			
56 57			15
58			
59 60		ACS Paragon Plus Environment	

of all this procedure is to assess the accuracy of the methodology using species which $\Delta_f H^0$ (298.15K) is well-known experimentally.

10 11 12	243	Isodesmic reactions (3a–3c) were used to calculate the $\Delta_f H^0(298.15K)$ of DHSO
13 14 15	244	(dihydrogen sulfoxide), a molecule that has been difficult to identify. In fact, DHSO is one
16 17 18 19	245	of the three possible isomers with global structure [H ₂ SO], namely hydrogen thioperoxide
20 21 22	246	HSOH (also known as sulfenic acid or sulfur hydride hydroxide) and H_2OS (thiooxonium
23 24 25	247	ylide or thioformaldehyde S-oxide), for both of which there is some experimental evidence
26 27 28	248	of existence,83 and the simplest of all the sulfoxides, DHSO itself. Although studied
29 30 31 32	249	theoretically several times (most recently in ref. 84, while the most recent study of HSOH is
33 34 35	250	in ref. 85), it has never been isolated. In a recent experimental study ⁸⁶ the fleeting DHSO
36 37 38	251	sulfinyl structure seemed to be trapped by consecutive Knövenagel and Michael additions
39 40 41	252	with dimedone. However, a very recent experimental study of successive hydrogenation of
42 43 44 45	253	SO and SO ₂ in solid para– H_2^{87} did not find any trace of the elusive DHSO. We will talk later
45 46 47 48	254	about the sulfenic acid isomer HSOH
49 50 51	231	
52 53 54		
55 56 57 58		16
59 60		ACS Paragon Plus Environment

3 4 5	255	The theoretically determined $\Delta_f H^0(298.15K)$ of DHSO was used in reaction (4a) to
6 7 8	256	obtain the enthalpy of formation of the simplest possible sulfine, $CH_2=S=O$, a molecule first
9 10 11 12	257	observed in 1976. ⁸⁸ The only experimentally derived value for $\Delta_f H^0(298.15K)$ is -1.9 ± 2.4
13 14 15	258	kcal mol ⁻¹ , published by Bouchoux and Salpin. ⁸⁹ Theoretical studies by Ventura et al., ^{22,90-}
16 17 18	259	⁹² Ruttink et al. ^{93,94} and Nagy et al. ⁹⁵ gave discrepant values in quite an extended range. The
20 21 22	260	apparent consensus nowadays is that the $\Delta_f H^0(298.15K)$ should be between -7 and -9 kcal
23 24 25	261	mol ⁻¹ . A second isodesmic reaction, 4b, was introduced to calculate the $\Delta_f H^0(298.15K)$ of
26 27 28 29	262	$CH_2=S=O$ using formaldehyde, thioformaldehyde and the simplest Criegee intermediate as
30 31 32	263	anchors.
33 34 35 36	264	Reactions $(5a)$ – $(5b)$ and $(6a)$ – $(6b)$ were used to calculated the enthalpies of formation
37 38 39	265	of HSA and MSA with respect to experimental anchors. Notice in passing that these reactions
40 41 42 43	266	are not truly isodesmic. Therefore, the truly isodesmic reaction (6b) was used in the same
44 45 46	267	way, but in this case one of the chaperons is HSOH for which we have no experimental value.
47 48 49 50	268	Therefore, we used the previously determined $\Delta_f H^0(298.15)$, obtained as a weighted average
51 52 53	269	of the values from the quasi-isodesmic reactions (5).
54 55 56 57		17
58 59 60		ACS Paragon Plus Environment

2	
3 4 27 5	Regretfully, there are no experimental data for designing isodesmic reactions for ESA
6 7 27 8	and YSA independently, but we used the previous theoretical determinations of the $\Delta_f H^0$
9 10 272 11	2 (298.15) for HSA and MSA to formulate the isodesmic reactions (7) and (8), which allowed
12 13 14 27:	us to calculate the enthalpies of formation of ESA and YSA. In the same way, we used the
16 17 274 18	isodesmic reactions (9a) and (9b), which use the previously calculated enthalpies of reaction
19 20 27: 21	of HSA and MSA, and the quasi–isodesmic reactions (9b) and (9c), analogs to reactions (5)
22 23 24 27 25	and (6), to calculate the enthalpy of formation of the largest sulfenic acid BSA.
26 27 28 27'	It must be noticed that, because of error cancellation, the most trustable results are
30 31 32 27	those derived from the isodesmic reactions. All reasonably sophisticated methods should give
 33 34 35 279 	similar results in this case. They have one drawback however: it is not always simple to find
37 38 280 39) appropriate reactions where the necessary experimental values are known with enough
40 41 28 42	accuracy. Some less than perfect quasi-isodesmic reactions had to be used instead. In the
43 44 45 282 46	2 second place come atomization reactions. Atomization energies are very difficult properties
47 48 283 49	to describe computationally, and one should be careful to include spin-orbit and scalar-
50 51 284 52	relativistic corrections. Moreover, for large molecules with many atoms, accumulative errors
55 54 55 56	18
57 58	
59 60	ACS Paragon Plus Environment
~ ~	

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
30	
37	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
4ð	
49	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
59	

285	may be important. Finally, using diatomic molecules as reference is a very trustable and
286	better method than the others for molecules containing elements which standard state is the
287	diatomic (H_2, O_2, N_2, F_2) but less trustable when the species include elements (like C and S)
288	which standard state in the gaseous phase is not the diatomic.
289	Unless specifically mentioned otherwise, the experimental enthalpies of formation
290	for atoms, diatomic molecules and other species used in the isodesmic reactions were taken
291	from the NIST Chemistry Webbook ²³ where the references to the original sources can be
292	found. The spin–orbit (S–O) correction for the atoms were taken from the paper by Curtiss
293	et al. ⁹⁶
294	3. RESULTS AND DISCUSSION
295	3.1. Reference isodesmic reactions
296	As mentioned before, DMS, DMSO and DESO (see images of these species in Figure
297	1) were used as a benchmark set to see which chemical models would be more precise to
298	calculate their enthalpies of formation, which experimentally ²³ are -8.96 ± 0.48 , $-35.97 \pm$
299	0.36, and -49.1 ± 0.4 kcal mol ⁻¹ respectively. The results obtained using spin–orbit corrected
	19

300 atomization energies, energies of dissociation to diatomic molecules, and the isodesmic 301 reactions (1a), (1b), (2a) and (2b), are collected in Table 1. We do not show here the 302 isodesmic reactions (2c) and (2d) since they are simply the reverse of reactions (2a) and (2b) 303 (see the Supplementary Information, Table S1). The results obtained for the enthalpies of DMS DMSO DESO Figure 1. Structure of the three species used as test for the determination of enthalpies of formation of the sulfides and sulfoxides with the methods employed in this paper.

304 formation of DESO will be mentioned later.

The $\Delta_f H^0(298.15K)$ was obtained from the enthalpy of reaction for each isodesmic 305 reaction, itself calculated as the average of the enthalpies of reaction afforded by each method 306 (except M06-2X-D3 which was not used). The uncertainty in this averaged enthalpy of 307 308 reaction was expressed as $\pm 2\sigma$. The final uncertainty of the enthalpy of formation was calculated, following the procedure in ref. 97, as $\Sigma(u_i^2)^{1/2}$ where u_i are the uncertainties in 309

the experimental values and in the average theoretical enthalpy of reaction. The enthalpy of formation for each isodesmic reaction j, x_{i} , obtained from the average over all methods of the enthalpy of reaction, are averaged as $\overline{x} = \sum (x_i/u_i^2) / \sum (1/u_i^2)$ where the uncertainties u_i are $u_i = \Sigma(u_i^2)^{1/2}$ with u_i the uncertainties in the experimental values and in the average theoretical enthalpy of reaction. Simultaneously, the final uncertainty of the enthalpy of formation is derived as $\overline{u} = 1/[\sum(1/u_j^2)]^{1/2}$ and the final estimation for the enthalpy of formation is $\Delta_f H^0(298.15K) = \overline{x} \pm \overline{u}$. It is worth to observe that the dispersion of values of $\Delta_f H^0(298.15)$ obtained using the isodesmic reactions with the four composite methods employed for the three molecules are similar to the experimental error (the average values for DMS, DMSO and DESO are – 9.20 ± 0.23 , -37.12 ± 0.44 and -487.95 ± 0.58 using a 95% confidence interval). This fact supports the case for error compensation, implicit in the isodesmic reactions protocol. A ACS Paragon Plus Environment

3 4 5	324	much larger dispersion is observed when the enthalpies of formation are calculated using
6 7 8 0	325	atoms or diatomic molecules as reference values, underlying the need to be careful when
9 10 11 12	326	employing those for accurate quantitative computations. For the three species, however, the
13 14 15	327	enthalpies of formation obtained at the SVECV-f12 level using atoms or molecules as
16 17 18 19	328	references are very similar to the averages obtained using the isodesmic reactions.
20 21 22 23	329	Considering the average of the r.m.s. errors for these molecules, we will express the
24 25 26	330	probable error using isodesmic reactions as 1.0 kcal mol ⁻¹ , although in some cases this value
27 28 29 30	331	is probably larger than the actual error of the calculations.
31 32 33 34	332	
35 36 37 38		
39 40 41		
42 43 44		
45 46		
47 48		
49		
50 51		
52		
53 54		
55 56		22
57		
58 59		
60		ACS Paragon Plus Environment

Table 1. $\Delta_f H^0$ (298.15), in kcal mol⁻¹, for the test molecules DMS, DMSO and DESO, using isodesmic reactions (1) and (2), atomization

334 energies, and dissociation to diatomic molecules.

			isodes	mic reactions			w.r.t. a	itoms	w.r.t. dia	atomics
Reaction (1a)	Exptl	(CH ₃) ₂ S +	$H_2S =$	CH ₃ SH		∆H(rxn)	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
rev-DSDPBEP86		-477.510154	-399.080448	-438.292817		3.12				
CBS-QB3		-477.370600	-398.931131	-438.148272		3.25	-731.67	-10.23	-218.20	-2.79
G4		-477.799870	-399.254705	-438.524761		3.17	-731.20	-9.75	-218.43	-3.02
jun–ChS		-477.797377	-399.249820	-438.521076		3.17	-734.60	-11.81	-222.79	-7.39
SVECV-f12		-477.781776	-399.244775	-438.510693		3.24	-731.37	-9.92	-225.08	-9.67
$\Delta_f H^0(298.15)$	-8.96	-9.21	-4.90	-5.46		3.19 ^a		-10.43ª		-5.72ª
±	0.48	0.24 ^b	0.10	0.14		0.10 ^c		2.78°		5.86°
Reaction (1b)	Exptl	(CH ₃) ₂ S +	$(CH_{3}CH_{2})_{2}O =$	(CH ₃ CH ₂) ₂ S +	(CH ₃) ₂ O					
rev–DSDPBEP86	_	-477.510154	-233.170134	-555.949657	-154.722216	5.28				
CBS-QB3		-477.370600	-233.205875	-555.820886	-154.746915	5.44				
G4		-477.799870	-233.473641	-556.354673	-154.910225	5.40				
jun–ChS		-477.797377	-233.492711	-556.355614	-154.925805	5.44				
SVECV-f12		-477.781776	-233.464203	-556.328751	-154.908144	5.70				
$\Delta_f H^0(298.15)$	-8.96	-9.04	-60.40	-20.00	-43.99	5.45 ^a				
±	0.48	0.78	0.47	0.55	0.12	0.27°				
Reaction (2a)	_	(CH ₃) ₂ S=O +	$CH_3CH_2CH_3 =$	(CH ₃ CH ₂) ₂ S=O +	CH_4	∆H(rxn)	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
rev-DSDPBEP86		-552.626878	-118.828698	-631.068011	-40.394700	-4.48				
CBS-QB3		-552.493069	-118.850359	-630.945219	-40.406194	-5.01	-818.00	-37.00	-244.45	-29.05
G4		-552.979409	-119.010264	-631.535885	-40.461492	-4.83	-817.01	-36.02	-244.70	-29.29
jun–ChS		-552.992639	-119.013473	-631.552563	-40.460808	-4.56	-821.38	-40.38	-249.98	-34.57
SVECV-f12		-552.971921	-118.995769	-631.520953	-40.453878	-4.48	-817.73	-36.73	-252.13	-36.72
$\Delta_f H^0(298.15)$	-35.97	-37.21	-25.02	-49.10	-17.80	-4.67^{a}		-37.53ª		-32.41ª
±	0.36	0.60 ^b	0.12	0.40	0.07	0.43°		3.37°		6.66°

2 3		
4 5		Reaction (2
5 6 7 8 9		rev–DSDPH CBS–QB3 G4
10 11		Jun–ChS SVECV–f1
12 13		$\frac{\Delta_f H^0(298.1)}{\pm}$
14 15 16	335	^a Average of
17 18 19	336	of reaction (s
20		
21		
23		
24		
25		
26		
27		
28 29		
30		
31		
32		
33		
34		
35		
37		
38		
39		
40		
41		
42		
43		
44 15		
45 46		
47		

Reaction (2b)		(CH ₃) ₂ S=O	$+ (CH_3CH_2)_2O =$	$=(CH_3CH_2)_2S=O+$	(CH ₃) ₂ O	∆ <i>H</i> (rxn)
rev-DSDPBEP86		-552.626878	-233.170134	-631.068011	-154.722216	4.26
CBS–QB3		-552.493069	-233.205875	-630.945219	-154.746915	4.27
G4		-552.979409	-233.473641	-631.535885	-154.910225	4.35
jun–ChS		-552.992639	-233.492711	-631.552563	-154.925805	4.38
SVECV-f12		-552.971921	-233.464203	-631.520953	-154.908144	4.41
$\Delta_f H^0(298.15)$	-35.97	-37.03	-60.40	-49.10	-43.99	4.34 ^a
±	0.36	0.64 ^b	0.47	0.40	0.12	0.12°

the enthalpies obtained with each method. ^b composition of the uncertainties in the enthalpies of formation of the reference species and of the enthalpy

see text). ° $\pm 2\sigma$.

r	
2	
3	
4	
5	
c	
6	
7	
8	
9	
10	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
2J 24	
24	
25	
26	
27	
20	
20	
29	
30	
31	
22	
22	
33	
34	
35	
36	
50	
37	
38	
39	
40	
10	
41	
42	
43	
44	
45	
45	
40	
47	
48	
49	
-12	
50	
51	
52	
53	
5 J	
54	
55	
56	
57	
50	
20	
59	
60	

to diatomic molecules are also shown, averaged over the four more precise methods and assigned an error bar of $\pm 2\sigma$.

The work by Denis⁸⁴ gave the most recent theoretical value to our knowledge for the 349 enthalpy of reaction of this species, -12.3 kcal mol⁻¹. In that work, CCSD(T) calculations 350 351 were extrapolated with a two-point formula from the cc-pVTZ and cc-pVQZ to the CBS 352 limit, supplemented by corrections of the zero-point energy (ZPE) by anharmonicity, the 353 energy by the core-valence contribution, and including both spin-orbit and scalar-relativistic 354 contributions. 355 Table 2 also shows the calculation of the enthalpy of formation using either the atoms 356 or the molecules as chaperons. In these two cases, the dispersion is three or four times larger 357 than that we obtained using the isodesmic reactions. The average value over the four methods 358 considered for the atomization reactions is slightly outside the error interval. For the diatomic 359 molecules instead, the average value is very near to that obtained using the isodesmic reactions. Notice specifically that the value of Denis⁸⁴, obtained from the energy of 360 361 atomization, is quite like the one we got with the same procedure, lending some support to 26

362 the lower value we got using the isodesmic reactions. However, notice that the three
363 isodesmic reactions give results which are significantly different. On one side, the most
364 noticeable difference occurs if the divinyl sulfide and sulfoxide are used as reference species.
365 In this case, the $\Delta_f H^0(298.15K)$ is much less negative, almost 3 kcal mol ⁻¹ below the
366 weighted average, but with a large error. If this isodesmic reaction is excluded from the
367 calculation, the enthalpy of formation shifts from -11.12 ± 0.58 to -11.68 ± 0.64 kcal mol ⁻¹ ,
368 not a very large difference (the averaged data are shown in the Table S3).
369 The results of our calculations are then a bit inconclusive. If the atomization reactions
are used, Denis' results and ours are well in agreement. If the isodesmic reactions are used
371 (in principle more trustable) then the value should be almost exactly 1 kcal mol ^{-1} lower. Until
372 further experiments of more accurate theoretical calculations are available, we will favor our
373 $\Delta_f H^0(298.15K) = -11.12 \pm 0.58 \text{ kcal mol}^{-1}.\text{result.}$
374 3.2.2 HSA (Sulfenic acid, HSOH)
Grant et al. ⁸⁵ did not study DHSO but the more stable isomer HSOH (HSA), at the
376 same level of calculation that Denis ⁸⁴ used, and obtained an enthalpy of formation of -28.0
27

3 4 5	377	kcal mol ⁻¹ , in agreement with that of ref. 79, -28.1 ± 1 kcal mol ⁻¹ . From the two isodesmic
6 7 8	378	reactions (4a) and (4b) shown in Table 3 (see Table S4 for the weighted average calculation),
9 10 11 12	379	we obtained a $\Delta_f H^0(298.15K) = -28.00 \pm 0.60$ kcal mol ⁻¹ , a value which is in excellent
13 14 15	380	agreement with that of Grant et al. ⁸⁵
16 17 18 19	381	In the same way as with the previous cases, the dispersion of the enthalpies of
20 21 22 23	382	formation calculated with respect to the atoms or the diatomic molecules are larger than the
24 25 26	383	one obtained with the isodesmic reactions. The values themselves, however, are within the
27 28 29	384	error range obtained from the isodesmic reactions. In particular, the value obtained using the
30 31 32 33	385	atomization energy, -28.39 ± 1.25 kcal mol ⁻¹ , is indistinguishable (given the errors in all
34 35 36	386	the calculations) from the previous values. Notice however that (4a) and (4b) are not truly
37 38 39	387	isodesmic, since on one side of the equation we have an S(II)–OH bond and in the other an
40 41 42 43	388	S(IV)=O bond. We will examine later this aspect of the question after we determine the
44 45 46 47	389	enthalpy of formation of MSA.
48 49 50	390	Reactions (3a)-(3b) and (4a)-(4b) are essentially the same, the only substitution
51 52 53 54	391	being the replacement of CH_2SO by HSOH. Therefore, one can inquire whether the
55 56 57		28
58 59 60		ACS Paragon Plus Environment

isomerization conversion between this species is well represented at the levels of calculation
393 we are using. Therefore, we calculated both molecules at an accurate level of theory
394 CCSD(T)–F12/cc–VMZ–F12, with M= D, T and Z. Full geometry optimization and
thermochemical calculations were performed at each level. The results (see Table S5 in the
396 Supplementary Information) show a small dispersion (the maximum difference between the
largest and lowest values is 1.58 kcal mol ⁻¹) and the average isomerization enthalpy is 16.08
$\pm 1.02 \text{ kcal mol}^{-1}$ if all calculations are considered, and $16.37 \pm 0.82 \text{ kcal mol}^{-1}$ if the lease
accurate rev–DSDPBEP86, CBS–QB3 and CCSD(T)–F12/cc–VDZ–F12 are excluded.
400 3.2.3 CH ₂ SO (Sulfine))
401 As said before, the enthalpy of formation of sulfine was much discussed some years
402 ago. ^{22,89–94,98} Ruttink's ⁹⁴ best value was -7.6 ± 1.5 kcal mol ⁻¹ , Ventura et al. ²² obtained -9.1
± 2.4 kcal mol ⁻¹ . Williams and Wilson ⁹⁸ obtained -7.9 ± 2.4 kcal mol ⁻¹ , and the best value
404 up to date, relying on atomization energies and large CCSDT(Q)/CBS calculations, was
405 obtained by Grant et al. ⁸⁵ as -8.4 ± 1.5 kcal mol ⁻¹ .
29

3 4 5	406	Isodesmic chemical reactions employed to determine the enthalpy of formation of
6 7 8	407	H ₂ CSO include thioformaldehyde, a molecule which experimental $\Delta_f H^0(298.15K)$ exhibits
9 10 11 12	408	a large error margin. Moreover, reaction (5a) includes DHSO, which $\Delta_f H^0(298.15K)$ is
13 14 15	409	unknown. Therefore, we used our previously determined theoretically enthalpy of formation.
16 17 18	410	Finally, reaction (5b) includes the Criegee intermediate CH_2OO , for which the experimental
19 20 21 22	411	data is not present in the NIST-JANAF data tables. We employed instead the value present
23 24 25	412	in the Active Thermochemical Tables (ATcT) ^{99–101} . Because of consistency, we also used the
26 27 28	413	ATcT value for formaldehyde and we note that the experimental value used for
29 30 31 32	414	thioformaldehyde is the one determined by Ruscic and Berkowitz ¹⁰² , Ruscic himself being
33 34 35	415	responsible for the ATcT.
36 37 38 39	416	The results obtained from the isodesmic reactions exhibit large error spans providing
40 41 42 43	417	a weighted average of $\Delta_f H^0(298.15K) = -7.15 \pm 1.87$ kcal mol ⁻¹ (see Table S6), which is in
44 45 46	418	agreement with all previous theoretical determinations, as can be seen in Figure S1. On the
47 48 49	419	other side, the value we obtained using the atomization energies, $\Delta_f H^0(298.15K) = -8.31 \pm$
50 51 52 53	420	0.90 kcal mol ⁻¹ , is actually very close to the best one calculated by Grant et al. ⁸⁵ as $-8.4 \pm$
54 55 56 57		30
58 59 60		ACS Paragon Plus Environment

421	1.5 kcal mol ^{-1} . It can be seen in Figure S1 that the largest errors come from our old calculation
422	using DFT methods ²² (too low) and the present one using diatomic molecules as anchors (two
423	high). Even so, there is enough overlap among the different methods to attempt a grand
424	average (assigning equal weights to all methods). If all the results from different publications
425	are used, the predicted enthalpy of formation of CH_2SO would be -7.99 ± 0.59 kcal mol -1 ,
426	while if we exclude the worse results, the enthalpy of formation would be -8.05 ± 0.62 kcal
427	mol ⁻¹ . A mean value of -8.0 ± 0.62 kcal mol ⁻¹ would then be appropriate for this species.
428	
	21

429 Table 2. Enthalpies (in Hartrees), $\Delta_{rxn}H^0$ and Δ_fH^0 (in kcal mol⁻¹) at 298.15 K for DHSO obtained from the isodesmic reactions (3a)–

430	(3c) enthalpies of atomization and dissociation to diatomic molecules
430	(Se), entilappes of atomization and dissociation to diatomic molecules.

Reaction (3a)	H ₂ S=O +	- (CH ₃) ₂ S =	$(CH_3)_2S=O$	$+$ H_2S	$\Box H(\mathbf{rxn})$	w.r.t. atom	IS W	v.r.t. diatomics
rev-DSDPBEP86	-474.164779	-477.510154	-552.626878	-399.080448	-20.33	$\Delta H(rxn) \Delta H$	(rxn) ∠	$\Delta H_f \Delta H(\mathrm{rxn})$
CBS–QB3	-474.021272	-477.370600	-552.493069	-398.931131	-20.29	-242.28 -13	3.06 -2	5.53 -10.34
G4	-474.401163	-477.799870	-552.979409	-399.254705	-20.76	-240.54 -10	0.54 –2	5.38 -10.19
jun–ChS	-474.411849	-477.797377	-552.992639	-399.249820	-20.85	-243.76 -13	3.75 –2	7.31 -12.12
SVECV-f12	-474.401403	-477.781776	-552.971921	-399.244775	-21.03	-241.81 -1	1.81 -2	7.06 -11.88
$\Delta_f H^0(298.15)$	-11.26	-8.96	-35.97	-4.90	-20.65ª	-12	2.29ª	-11.13ª
±	0.85 ^b	0.48	0.36	0.10	0.59°	2.	30°	1.74°
Reaction (3b)	H ₂ S=O +	$- (CH_3CH_2)_2S =$	$(CH_3CH_2)_2SO$	+ H ₂ S	∆H(rxn)	_		
rev–DSDPBEP86	-474.164779	-555.949657	-631.068011	-399.080448	-21.35	-		
CBS–QB3	-474.021272	-555.820886	-630.945219	-398.931131	-21.46			
G4	-474.401163	-556.354673	-631.535885	-399.254705	-21.81			
jun–ChS	-474.411849	-556.355614	-631.552563	-399.249820	-21.91			
SVECV-f12	-474.401403	-556.328751	-631.520953	-399.244775	-22.32			
$\Delta_f H^0(298.15)$	-12.23	-20.00	-49.10	-4.90	-21.77 ^b			
±	0.98 ^b	0.55	0.40	0.10	0.69°	_		
Reaction (3c)	H ₂ S=O +	- (CH ₂ =CH) ₂ S =	$(CH_2=CH)_2S=O$	+ H ₂ S	∆H(rxn	_		
rev–DSDPBEP86	-474.164779	-553.540756	-628.649397	-399.080448	-15.25			
CBS-QB3	-474.021272	-553.404662	-628.519646	-398.931131	-15.59			
G4	-474.401163	-553.933605	-629.104956	-399.254705	-15.62			
jun–ChS	-474.411849	-553.937092	-629.124645	-399.249820	-16.02			
SVECV-f12	-474.401403	-553.912522	-629.095074	-399.244775	-16.27			
$\Delta_f H^0(298.15)$	-8.50	25.33	5.98	-4.90	-15.75 ^b			
±	1.40 ^b	0.96	0.72	0.10	0.71 °			

2 3		
4 5	431	^a Average of the enthalpies obtained with each method. ^b composition of the uncertainties in the enthalpies of formation of the reference
6	432	species and of the enthalpy of reaction (see text). $c \pm 2\sigma$.
/ 8		
9		
10		
11		
12		
13		
14		
15		
10 17		
18		
19		
20		
21		
22		
23		
24		
25		
20 27		
27		
29		
30		
31		
32		
33		
34		
35		
30 27		
38		
39		
40		
41		33
42		
43		
44		
45		ACS Paragon Plus Environment
46		
4/		

433 Table 3. Enthalpies (in Hartrees), $\Delta_{rxn}H^0$ and $\Delta_f H^0$ (in kcal mol⁻¹) at 298.15 K for HSOH obtained from the isodesmic reactions (4a)

Reaction (4a)	HSOH	+	$(CH_3)_2S$	=	$(CH_3)_2SO$	+	H_2S	∆H(rxn)	w.r.t. a	atoms	w.r.t. di	atomics
rev-DSDPBEP86	-474.189745		-477.510154		-552.626878		-399.080448	-4.66	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
CBS-QB3	-474.046538		-477.370600		-552.493069		-398.931131	-4.43	-258.92	-28.92	-41.39	-26.20
G4	-474.427988		-477.799870		-552.979409		-399.254705	-3.93	-257.38	-27.37	-42.21	-27.02
jun–ChS	-474.438464		-477.797377		-552.992639		-399.249820	-4.15	-258.90	-28.89	-44.01	-28.82
SVECV-f12	-474.427806		-477.781776		-552.971921		-399.244775	-4.46	-258.38	-28.38	-43.63	-28.44
$\Delta_f H^0(298.15)$	-27.58		-8.96		-35.97		-4.90	-4.33ª		-28.39ª		-27.62 ^a
±	0.80 ^b		0.48		0.36		0.10	0.52 ^c		1.25 ^c		2.12 ^c
Reaction (4b)	HSOH	+	$(CH_3CH_2)_2S$	=	(CH ₃ CH ₂) ₂ SO	+	H_2S	∆H(rxn)				
rev-DSDPBEP86	-474.189745		-555.949657		-631.068011		-399.080448	-5.68				
CBS–QB3	-474.046538		-555.820886		-630.945219		-398.931131	-5.60				
G4	-474.427988		-556.354673		-631.535885		-399.254705	-4.98				
jun–ChS	-474.438464		-556.355614		-631.552563		-399.249820	-5.21				
SVECV-f12	-474.427806		-556.328751		-631.520953		-399.244775	-5.75				
$\Delta_f H^0(298.15)$	-28.55		-20.00		-49.10		-4.90	-5.45 ^a				
±	0.91 ^b		0.55		0.40		0.10	0.60°				

434 and (4b), enthalpies of atomization and dissociation to diatomic molecules.

435 ^a Average of the enthalpies obtained with each method. ^b composition of the uncertainties in the enthalpies of formation of the reference

ACS Paragon Plus Environment

436 species and of the enthalpy of reaction (see text). $c \pm 2\sigma$.

Table 4. Enthalpies (in Hartrees), $\Delta_{rxn}H^0$ and $\Delta_f H^0$ (in kcal mol⁻¹) at 298.15 K for CH₂=S=O obtained from the isodesmic reactions

440 (5a) and (5b), enthalpies of atomization and dissociation to diatomic molecules.

Reaction (5a)	H ₂ C=S=O +	+ H ₂ S	= H ₂ S=O	+	H ₂ C=S	∆H(rxn)	w.r.t. ato	ms	w.r.t. dia	tomics
rev-DSDPBEP86	-512.212523	-399.080448	-474.164779		-437.080419	29.98	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
CBS-QB3	-512.070569	-398.931131	-474.021272		-436.934301	28.95	-410.25 -	-8.95	-120.04	-4.75
G4	-512.501373	-399.254705	-474.401163		-437.308567	29.08	-409.06 -	-7.76	-119.86	-4.56
jun–ChS	-512.513962	-399.249820	-474.411849		-437.304570	29.72	-409.78 -	8.48	-122.30	-7.00
SVECV-f12	-512.499489	-399.244775	-474.401403		-437.295281	29.86	-409.35 -	-8.06	-122.53	-7.23
$\Delta_f H^0(298.15)$	-7.44	-4.90	-11.12^{a}		28.30	29.52 ^b		8.31 ^b		-5.88 ^b
±	2.25 ^c	0.60	0.58^{a}		2.00	0.84 ^d	0).90 ^d		2.47 ^d
Reaction (5b)	H ₂ C=S=O +	H ₂ C=O	= H ₂ COO	+	H ₂ C=S	∆H(rxn)				
rev-DSDPBEP86	-512.212523	-114.326099	-189.315179		-437.080419	89.75				
CBS-QB3	-512.070569	-114.340350	-189.338867		-436.934301	86.44				
G4	-512.501373	-114.449379	-189.505166		-437.308567	85.98				
jun-ChS	-512.513962	-114.464923	-189.534844		-437.304570	87.52				
SVECV-f12	-512.499489	-114.453759	-189.517265		-437.295281	88.29				
$\Delta_f H^0(298.15)$	-6.52	-27.70	25.08		28.30	87.60 ^b				
±	3.36	0.02	0.02		2.00	2.69 ^d				
1 2										
---	-----	---								
3 4										
4 5	441	^a Since there is no experimental value available for the enthalpy of formation of DHSO, we used our previously determined theoretical								
6 7	442	value (Table 2). ^b Average of the enthalpies obtained with each method. ^c composition of the uncertainties in the enthalpies of formation								
8	443	of the reference species and of the enthalpy of reaction (see text). $d \pm 2\sigma$.								
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	444									
36										
37 38										
39 40										
40 41		36								
42 43										
44										
45		ACS Paragon Plus Environment								
40 47										

445 3.3. Geometries and bond dissociation energies of the sulfenic group
446 Before looking into the enthalpies of formation of the sulfenic acids we are mostly intereste
447 in, there are two characteristics that can be evaluated with the data produced in this work. O
448 one side, we can investigate how does the substituent affect the structure of the –SOH grou
449 and, on the other, how well do the methods in this paper perform with respect to the Bon
450 Dissociation Energy (BDE) of both the O–H and S–O bonds in the group. For this purpos
451 we calculated also the structure of the radicals R–SO [•] and R–S [•] , with CH ₃ –, H ₂ C=CH-
452 HC=C- and C ₆ H ₅ - (the structure of the sulfenic acid HSA was shown already in Figure
453 and the radicals are trivial). The general structure of the sulfenic acids and their radicals ar
454 shown in Figure 3.
455 3.3.1 Geometries
456 Due to the size of the last member of the series, BSA, geometry optimization at th
457 CCSD(T) or CCSD(T)–F12 levels with sufficiently large basis sets is a daunting task an
458 hence one has to resort to the use of DFT. In this respect, a comprehensive assessment of th
459 performances of different density functionals in the prediction of geometrical parameters ha
3

2 3 4 5	460	already been performed. ^{64,103–106} While results for species linked to the present investigation
6 7 8	461	like DMS, DMSO and sulfine can be found in the work by Ceselin et al. ¹⁰⁶ , here the attention
9 10 11 12	462	is focused on the structures of HSA, MSA, ESA, YSA and BSA (see Figure 3) in order to
13 14 15	463	explore the effects, if any, that the substituent on the S atom has on the SOH group structure.
16 17 18 19	464	
20 21 22 23	465	
24 25 26 27		
28 29 30		
31 32 33 34		
35 36 37		
39 40 41		
42 43 44		
45 46 47 48		
49 50 51 52		
52 53 54 55		20
56 57 58 59		38
60		ACS Paragon Plus Environment

3 4 5	470	The structural parameters of HSA and MSA, the smallest members of the series, are
6 7 8	471	reported in Tables S6 and S7, respectively, where they are compared to theoretical literature
9 10 11 12	472	data and to the available experimental information. ^{107–110} As expected, HSA has been studied
13 14 15	473	with more sophisticated methods than MSA and, most importantly, its semi-experimental
16 17 18	474	(SE) equilibrium geometry has been determined from the rotational constants measured for
20 21 22	475	different isotopic species augmented through theoretical vibrational corrections. ¹⁰⁸
23 24 25	476	Inspection of Table S6 reveals that bond lengths and valence angles are well reproduced at
26 27 28	477	CCSD(T)-F12 and CCSD(T) levels of theory, even if frozen-core calculations residual
29 30 31	478	deviations from the SE structure might be further reduced accounting for core-valence
32 33 34 35	479	contributions The two density functionals also show a fair accuracy for bond distances and
36 37 38	480	angles, with the exception of the SOH angle obtained at the M06–2X level of theory, which
39 40 41 42	481	deviates by about 1.2° from the SE value. While an overall good agreement is observed for
43 44 45	482	bond lengths and valence angles, all the methods underestimate the torsional HSOH angle by
46 47 48 49 50 51 52	483	about 1 degree.
53 54 55 56 57 58 59		40

In the case of MSA, the structural parameters determined experimentally ¹⁰⁹ cannot be	484
employed to benchmark theoretical results because they represent vibrationally averaged	485
values, whereas computations provide equilibrium structures. Unsurprisingly then, the	486
deviations between experimental and calculated values are larger than for HSA. Due to the	487
lack of usable experimental data for the equilibrium geometry, that obtained at the CCSD(T)–	488
489 F12/cc-VQZ-F12 level can be employed, a solution workable only for the smallest	489
molecules. Alternatively, the nano-LEGO tool can be used to improve rev-DSDPBEP86	490
geometries, ¹⁰⁶ and these values are also reported in Table S7. It can be appreciated that the	491
bond lengths obtained at the CCSD(T)–F12/cc–VQZ–F12 and nano–LEGO augmented rev–	492
493 DSDPBEP86 levels coincide perfectly (the maximum difference being 1×10^{-3} Å for the	493
494 C–S bond), and even for bond and torsional angles the predictions agree within 0.2–0.3	494
495 degree. It is therefore possible to conclude that rev–DSDPBEP86/jun–cc– $pV(T+d)Z$	495
496 corrected through the nano-LEGO approach delivers structural parameters of almost the	496
same quality as the much more expensive explicitly correlated methods, and hence it can be	497
safely employed to produce high-quality data for the larger molecules. That said, on	498
comparing M06–2X and rev–DSDPBEP86 geometries to CCSD(T)–F12/cc–pVQZ–F12 (or	499
41	

3 4 5	500	equivalently rev-DSDPBEP86 + nano-LEGO) structures, bond distances and angles are
6 7 8	501	reproduced with an average accuracy of 0.005 Å and 0.6 degree, respectively. Therefore, it
9 10 11 12	502	is safe to assume that a comparison of the R-SOH geometry as a function of R with these
13 14 15	503	methods is appropriate. Such a comparison is presented in Table S8.
16 17 18 19	504	The general conclusion of these calculations is that the sulfenic acid group is barely
20 21 22	505	influenced by the substituent on the sulfur atom, with the exception of the C–S distance The
23 24 25 26	506	C-S distance is clearly affected, and the variation is not easy to rationalize in terms of
27 28 29	507	conjugative effects, but it can be better understood in terms of bond–orders. Looking at MSA,
30 31 32 33	508	ESA and YSA, the conclusion is that the more unsaturated the substituent group is, the
34 35 36	509	shortest the C–S distance, which makes sense. However, the C–S bond in BSA comes closer
37 38 39	510	to the value in the vinylsulfine YSA, a fact that perhaps can be attributed to the size of the
40 41 42 43	511	conjugated system. The S-O distance, in turn, is very slightly affected by the increase in
44 45 46	512	conjugation and the O–H distance is not influenced at all, a fact that is significant given the
47 48 49	513	biological importance of the sulfinyl radicals (RSO [•]) generated by the loss of the hydrogen
50 51 52 53	514	in the sulfenic acids of cysteine. ¹¹¹
54 55 56 57		42
58 59		ACS Paradon Plus Environment
UU		Aco Faragon Fras Environment

2 3 4	515	
5	516	3.3.1 Bond dissociation energies
7 8 9	517	Sulfinyl radicals themselves, are important species in biochemistry ^{112,113} , and in the
10 11 12 13	518	case of HSO• and CH ₃ SO• also in atmospheric chemistry. ¹¹⁴ One of the important
14 15 16	519	characteristics of these compounds is the bond dissociation energy (BDE) (or enthalpy, in
17 18 19 20	520	case the ZPE and temperature effects are included). Since, as we saw previously, the -OH
21 22 23	521	group is mostly unaffected by the substituent, one could obtain a good appraisal of the BDE
24 25 26 27	522	for these species by subtracting the respective energies of the sulfenic acid and the sulfinyl
27 28 29 30	523	radical (plus the H atom, of course). Vaidya et al. ¹⁸ calculated the BDE for some sulfenic
31 32 33	524	acids, including HSO• and CH ₃ SO•, using the CBS–QB3 method and obtained a value of
34 35 36 27	525	around 68 kcal mol ⁻¹ , except for HSO• that was larger, 73.1 kcal mol ⁻¹ . Later, McGrath et
37 38 39 40	526	al. ¹² studied experimentally the BDE of a sulfenic acid derived from triptycene (a much larger
41 42 43	527	molecule) and determined a value of 71.9 ± 0.3 kcal mol ⁻¹ . We have calculated the BDE for
44 45 46	528	the O-H bond of the five sulfenic acids studied in this paper, collecting them in Table 5
47 48 49 50	529	together with the BDE for the S-O bond. The values have been calculated at several
51 52 53	530	theoretical levels for all the species. Additionally, the BDEs for HSO \bullet and CH ₃ SO \bullet were
54 55 56 57		43
58 59 60		ACS Paragon Plus Environment

2	
3	
4	
5	
ر د	
6	
7	
8	
9	
10	
10	
11	
12	
13	
14	
17	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
27	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
31	
24	
35	
36	
37	
38	
20	
29	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
10	
49	
50	
51	
52	
53	
57	
54	
55	
56	
57	
58	
50	
59	
60	

531	calculated at the CCSD(T)-F12 level using progressively large basis sets, cc-pVDZ-F12,
532	cc-pVTZ-F12 and cc-pVQZ-F12. In this case, full geometry optimization for the thiyl
533	radical, the sulfenyl radical, and the sulfenic acid were performed in order to obtain the
534	respective energies. The ZPE and thermal corrections were calculated at the M06-2X-D3
535	and added to the $CCSD(T)$ –F12 energies.
536	Considering first the O-H BDE, the values calculated with different methods are all
537	within the range of [67.0–75.0] kcal mol ^{-1} . Only the smallest molecules HSOH and CH ₃ SOH
538	could be calculated at the large CCSD(T)-F12/cc-pVQZ-F12 level, including geometry
539	optimization and frequency calculation. SVECV-f12 uses instead the DFT optimized
540	geometries and frequencies, with a single point calculation of the energies, then extrapolated
541	to the CBS limit. The agreement between the composite method results and the extensive
542	CCSD(T)-F12/cc-pVQZ-F12 level calculations validate the approximate procedure and
543	these results can be used for a comparison of all the BDE in the case of the species which
544	cannot be calculated at the exceedingly expensive full level.

1	
2	
2	
3	
4	
5	
5	
6	
7	
,	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
15	
16	
17	
10	
١ð	
19	
20	
20	
21	
22	
าว	
25	
24	
25	
20	
26	
27	
28	
20	
29	
30	
21	
31	
32	
33	
22	
34	
35	
36	
50	
37	
38	
20	
29	
40	
41	
12	
42	
43	
44	
45	
46	
Δ٦	
-+/	
48	
49	
50	
50	
51	
52	
52	
53	
54	
55	
22	
56	
57	
57	
58	
59	

545 Table 5. Bond dissociation enthalpy (kcal mol⁻¹) for the O–H and S–O bonds in the five

546 sulfenic acids studied in this work.

	H–SOH	CH ₃ –SOH		H2C=CH-SOH		HC≡SOH		C ₆ H ₅ –SOH	
Method	OH SO	OH	SO	OH	SO	OH	SO	OH	SO
M06-2X-D3	75.3 78.8	70.7	72.5	70.3	72.9	74.6	62.0	69.6	74.3
rev-DSDPBEP86	73.1 69.1	68.3	71.1	69.0	71.6	72.8	63.1	69.5	72.9
CBS–QB3	73.1 70.8	68.4	72.6	68.4	73.5	71.7	61.2	69.2	74.4
G4	73.3 69.6	68.2	71.3	68.2	71.9	71.8	60.7	67.1	65.1
jun–ChS	75.8 71.4	71.1	73.5	71.4	70.6	75.2	64.2	72.7	75.2
SVECV-f12	74.4 72.2	69.7	74.1	69.2	69.4	73.0	63.6	68.1	68.4
CCSD(T)-F12/DZ-F12	73.6 72.1	68.9	74.0	68.4	67.7	72.1	63.5		
CCSD(T)-F12/TZ-F12	74.1 71.9	69.3	73.8	68.9	67.6	72.6	63.4		
CCSD(T)-F12/QZ-F12	74.4 72.2	69.6	74.1						

547

548 HSOH and HC=SOH OH BDEs are in the upper limit of the range, 74.4 and 73.0 kcal 549 mol⁻¹, which we think is a result of the special nature of the substituent on sulfur, H- and 550 HC=C- respectively. Notice that the results obtained with full geometry optimization at the CCSD(T)-F12/cc-pVDZ-F12 and CCSD(T)-F12/cc-pVTZ-F12 levels agree also 551 552 reasonably well with the SVECV-f12 results (that are based on the CBS extrapolation of CCSD(T)-F12 energies on top of M06-2X geometries), thus highlighting again that DFT 553 optimized structures can be safely used in place of more expensive coupled-cluster ones. In 554 555 this respect, however, it should be stressed that the functional has to be carefully chosen, in 45

556 fa	act it has been shown that the popular B3YLP functional may leads to geometries that
557 p	prevent reaching accurate thermochemical and kinetic predictions. ¹¹⁵ The O—H BDEs for
558 C	CH ₃ S–OH, H ₂ C=CHS–OH and C ₆ H ₅ S–O–H of 69.7, 69.2 and 68.4 kcal mol ⁻¹ at the
559 S	SVECV–f12 level, and 71.1, 71.4 and 72.7 kcal mol ^{-1} at the jun–ChS level respectively, are
560 v	very close among them. While these results are outside the error range obtained by McGrath
561 e	t al. for triptycene sulfenic acid $(TSA)^{12}$, for which their lowest value is 71.6 kcal mol ⁻¹ , the
562 d	lifference can very well be understood on the basis of the large size difference of the
563 n	nolecules. Regretfully, TSA has 36 atoms and is outside the range of what we can calculate
564 a	ccurately.
565	The more than 2 kcal mol ⁻¹ difference between the SVECV–f12 value for MSA and
566 tl	he experimental value for TSA may be a real effect, produced perhaps by the size and the
567 с	rowded arrangement of the TSA skeleton, or an insufficiency of the theoretical description
568 o	of the sulfenic acid/sulfinyl radical pair. This is a feature we cannot elucidate at present,
569 a	lthough one may notice that the jun-ChS method gives values closer to the experimental
570 o	ones than the SVECV-f12 method. Notice however, that for MSA at least, the best
	46

3 4 5	571	CCSD(T)-F12/cc-pVTQZ-F12 fully optimized result is well in line with SVECV-f12,
6 7 8	572	suggesting that the geometrical and electronic structure are well represented. A point we did
9 10 11	573	not investigate, however, is whether the ZPE and thermal contributions (which we obtained
12 13 14 15	574	from the DFT calculation) are correct at the $CCSD(T)$ –F12 level.
16 17 18 19	575	The S–O BDEs show another peculiarity of the species HSOH and HC≡SOH. While
20 21 22	576	in the SVECV–f12 calculations of CH ₃ SOH, H ₂ C=CSOH and C ₆ H ₅ SOH (and the jun–ChS
23 24 25 26	577	calculations on CH_3SOH and C_6H_5SOH), the BDE of S–O is larger than that of O–H, the
20 27 28 29	578	opposite is true for HSOH and HC≡SOH, implying a larger preference for the breaking of the
30 31 32	579	S–O bond than the H–O bond in these compounds, i.e., RSOH \rightarrow RS [•] + •OH instead of RSOH
33 34 35 36	580	\rightarrow RSO [•] + [•] H. This deserves a further accurate study that is currently being undertaken in
37 38 39	581	our laboratories. Incidentally, notice that there is a larger dispersion among the methods with
40 41 42	582	respect to the S–O BDEs than in the case of the O–H BDEs, which may be related to the
43 44 45 46	583	importance of representing more accurately the structure of the thiyl radical.
47 48 49	584	As a final consideration, one can compare the results we obtained for the sulfenic
50 51 52 53	585	acids hydrogen dissociation toward sulfinyl radicals with the similar reaction of dissociation
54 55 56		47
57 58 59		
60		ACS Paragon Plus Environment

2
3
4
5
c
0
7
8
9
10
11
11
12
13
14
15
16
17
17
10
19
20
21
22
23
21
24
25
26
27
28
20
29
30
31
32
33
34
25
22
36
37
38
39
40
- -
41
42
43
44
45
46
47
4/
48
49
50
51
57
52
53
54
55
56
57
57
58
59

586	of hydroperoxides toward peroxyl radicals. Blanksby et all ¹¹⁶ , for instance, determined
587	experimentally the BDE of CH ₃ OO–H and CH ₃ CH ₂ OO–H as 87.9 ± 1.1 kcal mol ⁻¹ and 84.8
588	\pm 2.2 kcal mol ⁻¹ showing then also a small variation with the substituent, about 10–15 kcal
589	mol ⁻¹ more endergonic than the values we obtained for the sulfenic/sulfinyl pair. This can be
590	explained by the resonance structure of the S–O group where the unpaired electron can profit
591	from the low-lying d -orbitals on sulfur to get stabilization through the resonant structures
592	$R-S-O^{\bullet} \leftrightarrow R-S^{\bullet}=O$. Since this is a general phenomenon, we expect the sulfinyl radicals to
593	be more stable than the peroxyl radicals. Consequently, while the hydroperoxyl species will
594	suffer homolytic breaking of the O-O bond to form the alkoxyl radical, the sulfenic acids
595	will preferentially lose the hydrogen to form the sulfinyl radical. This is illustrated in Table
596	6 where the theoretical average values of the BDE for RSOH and ROOH species (the latter
597	calculated in this work by the same procedures that we used for the sulfenic acids, see Table
598	S9) are compared among them and with experimental results taken from the ATcT tables.

Table 6. Comparison of the bond dissociation enthalpies (kcal mol⁻¹) for the O-H and SO/O-O bonds in the sulfenic acids and hydroperoxides.

		RS	ОН	RO	ОН
R Group		O–H	S–O	O–H	O–O
H–	Theoretical ^a	74.16	72.06	87.09	51.23
	Experimental ^b			87.39	50.30
CH ₃ -	Theoretical ^a	69.34	72.86	86.26	44.89
	Experimental ^b			85.80	44.67

	C ₆ H ₅ -	Theoretical ^a Experimental ^b	69.36	68.43	86.39 86.20	24.59 26.68
601 602 603	^a Average of the of the sepecies	theoretical BDEs shown for in the ATcT tables.	each species in	Table 5. ^b Obtained	d from the enthal _f	bies of formation
)4	3.4. Enth	alpies of formation of	the sulfenic	acids and the	eir radicals	
5	Considering	the previous discussion	s, we can no	w examine the	results obtain	ned for all the
5	sulfenic acid	s of interest. HSOH was	s already cons	sidered, thus w	e will focus he	ere on the rest
	of the sulfeni	c acids.				
8	In the	e case of MSA, we used	l reactions (6	a) and (6b), an	alogous to the	e (5a) and 5b)
9	employed in	the case of HSA and re	action (7) wh	ere we resorted	d to the theore	tical enthalpy
0	of formation	of HSA, -28.00 ± 0.60 k	kcal mol ⁻¹ , de	termined in the	previous steps	s of this work.
1	We show the	se data in Table 7.				
12	There	e is a very good agreem	ent between	the enthalpies	of formation of	obtained from
3	the isodesmi	c reactions, -35.06 ± 0	0.44 kcal mo	I ⁻¹ and that de	rived from the	e atomization
4	reaction, -35	$5.94 \pm 2.78 \text{ kcal mol}^{-1}$,	not so much	n with the one	derived from	the diatomic
5	molecules. H	owever, considering the	e error interv	als, the values	overlap. As w	e said before,
6	we will keep	the value derived from	the isodesmic	e reactions as t	he recommend	led one.
7	Isode	smic reactions (8), (9), a	and (10) as we	ll as atomizatio	on reactions an	d dissociation
8	to diatomic r	nolecules for ESA, YSA	A and BSA ar	re collected in '	Tables 8–10.	Notice that in
9	the case of E	SA (Table 8), YSA (Ta	ble 9), and B	SA (Table 10)	we used HSA	and MSA as
20	chaperons. I	n both cases we consi	dered as its	enthalpy of fo	ormation the v	value that we
						49
		ACS	Paragon Plus Er	nvironment		

calculated theoretically as the weighted average of the individual isodesmic reactions. The best results obtained then with the isodesmic reactions are -11.22 ± 0.74 , $+32.88 \pm 0.96$, and -2.58 ± 0.56 kcal mol⁻¹, for ESA, YSA and BSA respectively. This last case resulted to be the most problematic, with some of the isodesmic reactions, the atomization reactions and especially the dissociation to diatomic molecules showing very large error bars. For that reason, in the case of BSA we considered four isodesmic reactions instead of the two or three we used for the other cases studied. The final error bar for the weighted average is reasonable.

The final results of our calculations for all the sulfenic acids are summarized in Table 11. Clearly the results obtained with the isodesmic and quasi-isodesmic reactions have a much lower spread than those calculated using the atoms or the diatomic molecules as anchors. Nevertheless, when one considers the intervals, there is overlapping of the results from the three sources of enthalpies of formation, and we will propose the values obtained from the isodesmic reactions as the most accurate ones. As mentioned before, only three of them were determined experimentally.²⁴ The results obtained in our work for MSA, ESA and YSA differ by about 10, 8 and 4 kcal mol⁻¹, respectively, from the experimental ones. In no case does the experimental values fall into the 95% significance error interval ($\pm 2\sigma$) for the theoretically determined values. Given the precision of present calculations and the accuracy supported by the analysis done in this work, it is then forcefully concluded that the experimental results have some flaw and should be revised.

1	
2	
2	
2	
5	
4	
-	1
5	0
6	
0	
7	
	6
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
13	
16	
17	
17	
18	
10	
19	
20	
20	
21	
21	
22	
22	
23	
24	
27	
25	
26	
20	
27	
28	
20	
29	
30	
24	
31	
22	
52	
33	
24	
34	
35	
55	
36	
27	
37	
38	
50	
39	
10	
40	
41	
42	
13	
43	
44	
• •	

Table 7. Enthalpies (in Hartrees), $\Delta_{rxn}H^0$ and $\Delta_f H^0$ (in kcal mol⁻¹) at 298.15 K for MSA obtained from the isodesmic reactions (6a)–

541 (6c), enthalp	es of atomization	, and dissociation	to diatomic molecules.
--------------	--------------	-------------------	--------------------	------------------------

Reaction (6a)	CH ₃ SOH	+	$(CH_3)_2S$	=	$(CH_3)_2S=O$	+	CH ₃ SH	∆H(rxn)	w.r.t. a	atoms	w.r.t. dia	atomics
rev–DSDPBEP86	-513.412296		-477.510154		-552.626878		-438.292817	1.73	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
CBS–QB3	-513.274139		-477.370600		-552.493069		-438.148272	2.13	-541.18	-35.68	-145.64	-30.34
G4	-513.708276		-477.799870		-552.979409		-438.524761	2.49	-540.07	-34.57	-146.33	-31.03
jun–ChS	-513.720058		-477.797377		-552.992639		-438.521076	2.33	-543.75	-38.25	-149.82	-34.52
SVECV-f12	-513.704185		-477.781776		-552.971921		-438.510693	2.10	-540.77	-35.27	-150.59	-35.29
$\Delta_{f}H^{0}(298.15)$	-34.63		-8.96		-35.97		-5.46	2.16 ^a		-35.94ª		-32.80 ^a
±	0.80 ^b		0.48		0.36		0.14	0.52 ^c		2.78 ^c		4.29 ^c
Reaction (6b)	CH ₃ SOH	+	$(CH_3CH_2)_2S$	=	$(CH_3CH_2)_2SO$	+	CH ₃ SH	∆H(rxn)				
rev-DSDPBEP86	-513.412296		-555.949657		-631.068011		-438.292817	0.71				
CBS-QB3	-513.274139		-555.820886		-630.945219		-438.148272	0.96				
G4	-513.708276		-556.354673		-631.535885		-438.524761	1.45				
jun–ChS	-513.720058		-556.355614		-631.552563		-438.521076	1.28				
SVECV-f12	-513.704185		-556.328751		-631.520953		-438.510693	0.81				
$\Delta_f H^0(298.15)$	-35.60		-20.00		-49.10		-5.46	1.04 ^a				
±	0.89 ^b		0.55		0.40		0.14	0.56 ^c	_			
Reaction (6c)	CH ₃ SOH	+	H_2S	=	HSOH	+	CH ₃ SH	∆H(rxn)	_			
rev-DSDPBEP86	-513.412296		-399.080448		-474.189745		-438.292817	6.39				
CBS-QB3	-513.274139		-398.931131		-474.046538		-438.148272	6.56				
G4	-513.708276		-399.254705		-474.427988		-438.524761	6.42				
jun–ChS	-513.720058		-399.249820		-474.438464		-438.521076	6.49				
SVECV-f12	-513.704185		-399.244775		-474.427806		-438.510693	6.56				
$\Delta_f H^0(298.15)$	-35.05		-4.90		-28.00^{d}		-5.46	6.49 ^a				
±	0.64 ^b		0.10		0.60		0.14	0.14°				

^a Average of the enthalpies obtained with each method. ^b composition of the uncertainties in the $\Delta_f H^0$ (298.15) of the reference species and the $\Delta H(rxn)$. ^c ±2 σ . ^d Since there is no experimental value available for the enthalpy of formation of HSA, we used our previously determined theoretical value.

Table 8. Enthalpies (in Hartrees), $\Delta_{rxn}H^0$ and $\Delta_f H^0$ (in kcal mol⁻¹) at 298.15 K for CH₂=CHSOH obtained from the isodesmic reactions

646 (7a) and (7b), enthalpies of atomization and dissociation to diatomic molecules.

Reaction (7a)	CH2=CH-SOH+	- CH ₄ =	= CH ₃ SOH +	$H_2C=CH_2$	∆H(rxn)) w.r.t. atoms	w.r.t. diatomics
rev-DSDPBEP86	-551.425579	-40.394700	-513.412296	-78.396304	7.33	$\Delta H(\mathbf{rxn}) \Delta H_f$	$\Delta H(\mathbf{rxn}) \Delta H_f$
CBS–QB3	-551.289376	-40.406194	-513.274139	-78.412644	5.51	-686.99 -10.20	-218.78 -3.37
G4	-551.773235	-40.461492	-513.708276	-78.517878	5.38	-686.46 -9.67	-218.68 -3.28
jun–ChS	-551.787947	-40.460808	-513.720058	-78.517683	6.91	-690.03 -13.24	-223.34 -7.93
SVECV-f12	-551.767560	-40.453878	-513.704185	-78.509402	4.93	-686.52 -9.73	-224.28 -8.87
$\Delta_f H^0(298.15)$	-10.73	-17.80	-35.06°	12.54	6.01 ^a	-10.71ª	-5.86 ^a
±	1.92 ^b	0.07	0.44 ^c	0.10	1.87 ^d	2.95 ^d	5.12 ^d
Reaction (7b)	CH2=CH-SOH+	- CH ₄ =	= HSOH +	H ₂ C=CHCH3	ΔH(rxn))	
rev-DSDPBEP86	-551.425579	-40.394700	-474.189745	-117.620964	6.01		
CBS–QB3	-551.289376	-40.406194	-474.046538	-117.639050	6.26		
G4	-551.773235	-40.461492	-474.427988	-117.796733	6.28		
jun–ChS	-551.787947	-40.460808	-474.438464	-117.801213	5.70		
SVECV-f12	-551.767560	-40.453878	-474.427806	-117.784608	5.66		
$\Delta_f H^0(298.15)$	-11.31	-17.80	-28.00°	4.88	5.98 ª		
±	0.81 ^b	0.07	0.60 ^c	0.05	0.53 ^d		

The Journal of Physical Chemistry

						. 1				0			
647	^a Average of the e	nthalpies obtai	nec	l with each m	eth	od. ^b composit	ion	of the uncertai	nties in th	the $\Delta_f H^0(2)$	98.15) o	of the refer	rence sp
648	and the $\Delta H(rxn)$. ^c S	Since there is n	o e	xperimental v	valu	e available for	the	enthalpy of for	rmation of	f HAS and	I MSA, y	we used or	ur previ
649	determined theore	tical value. ^d ±	2σ.										
650													
651													
		<i>//</i> ```		0 -	(15				1.0		
652	Table 9. Enthalpie	s (in Hartrees)	, Δ,	$T_{xn}H^0$ and Δ_j	fH'	' (in kcal mol-	¹) at	298.15 K for	HC≡CSO	H obtaine	d from t	he isodesr	nic reac
653	(8a) and (8b), enth	alpies of atom	izat	ion and disso	ocia	tion to diatomi	c m	olecules.					
	Reaction (8a)	HC≡C–SOH	+	CH_4	=	CH ₃ SOH	+	НС≡СН	∆H(rxn)	w.r.t. a	atoms	w.r.t. dia	atomics
	THE DEDDDDDDD	550 000070		10 20 1700					C 02	ATT(٨IJ	AII(mun)	ΛH.
	rev-DSDPBEP80	-550.200372		-40.394/00		-513.412296		-//.1/4//0	5.02	$\Delta H(rxn)$	$\Delta u I_f$	$\Delta \Pi(IXII)$	Δ Π f
	CBS-QB3	-550.200372 -550.059736		-40.394700 -40.406194		-513.412296 -513.274139		-77.183653	5.02 5.11	$\Delta H(rxn)$ -539.70	32.89	-176.82	38.59
	CBS–QB3 G4	-550.200372 -550.059736 -550.541079		-40.394700 -40.406194 -40.461492		-513.412296 -513.274139 -513.708276		-77.183653 -77.290351	5.02 5.11 2.47	-539.70 -539.60	32.89 32.98	-176.82 -176.36	38.59 39.04
	CBS–QB3 G4 jun–ChS	-550.200372 -550.059736 -550.541079 -550.556854		-40.394700 -40.406194 -40.461492 -40.460808		-513.412296 -513.274139 -513.708276 -513.720058		-77.183653 -77.290351 -77.291484	5.02 5.11 2.47 3.84	-539.70 -539.60 -542.12	2017 32.89 32.98 30.47	-176.82 -176.36 -180.13	38.59 39.04 35.28
	CBS–QB3 G4 jun–ChS SVECV–f12	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294		-40.394700 -40.406194 -40.461492 -40.460808 -40.453878		-513.412296 -513.274139 -513.708276 -513.720058 -513.704185		-77.183653 -77.290351 -77.291484 -77.280700	5.02 5.11 2.47 3.84 3.95	-539.70 -539.60 -542.12 -539.06	2011 _f 32.89 32.98 30.47 33.52	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24
	CBS–QB3 G4 jun–ChS SVECV–f12 $\Delta_f H^0$ (298.15)	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86		-40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80		-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06°		-77.183653 -77.290351 -77.291484 -77.280700 54.19	5.02 5.11 2.47 3.84 3.95 4.08 ^a	-539.70 -539.60 -542.12 -539.06	2.89 32.89 32.98 30.47 33.52 32.47 ^a	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04 ^a
	$CBS-QB3$ $G4$ $jun-ChS$ $SVECV-f12$ $\Delta_{f}H^{0}(298.15)$ \pm	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97 ^b		-40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07		-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44°		-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d	2/7(rxn) -539.70 -539.60 -542.12 -539.06	2.89 32.89 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04 ^a 3.57 ^d
	$CBS-QB3$ $G4$ $jun-ChS$ $SVECV-f12$ $\Delta_{f}H^{0}(298.15)$ \pm Reaction (8b)	550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97 ^b HC≡C-SOH	+	-40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 CH ₄	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC≡CCH ₃	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d ∠ <i>H</i> (rxn)	2/7(rxn) -539.70 -539.60 -542.12 -539.06	2017 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04 ^a 3.57 ^d
	$\begin{array}{r} \text{rev-DSDPBEP86} \\ \text{CBS-QB3} \\ \text{G4} \\ \text{jun-ChS} \\ \text{SVECV-f12} \\ \Delta_{f}H^{0}(298.15) \\ \pm \\ \hline \text{Reaction (8b)} \\ \hline \text{rev-DSDPBEP86} \end{array}$	550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97 ^b HC≡C-SOH -550.200372	+	-40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 CH ₄ -40.394700	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH -474.189745	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC≡CCH ₃ -116.403356	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d $\Delta H(rxn)$ 1.24	-539.70 -539.60 -542.12 -539.06	2.11 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.86 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04 ^a 3.57 ^d
	$\begin{array}{r} \text{rev-DSDPBEP86} \\ \text{CBS-QB3} \\ \text{G4} \\ \text{jun-ChS} \\ \text{SVECV-f12} \\ \Delta_{f}H^{0}(298.15) \\ \pm \\ \hline \\ \text{Reaction (8b)} \\ \hline \\ \text{rev-DSDPBEP86} \\ \text{CBS-QB3} \end{array}$	550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97 ^b HC≡C-SOH -550.200372 -550.059736	+	-40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 CH_4 -40.394700 -40.406194	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC≡CCH ₃ -116.403356 -116.416680	5.02 5.11 2.47 3.84 3.95 4.08^{a} 1.92^{d} $\Delta H(rxn)$ 1.24 1.70	-539.70 -539.60 -542.12 -539.06	2.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.82 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57 ^d
	$cbs-QbsG4$ $jun-ChS$ $sVECV-f12$ $\Delta_f H^0 (298.15)$ \pm $Reaction (8b)$ $rev-DSDPBEP86$ $CBS-QB3$ $G4$	550.200372 550.059736 550.541079 550.556854 550.537294 32.86 1.97 ^b HC≡C-SOH 550.200372 550.059736 550.541079	+	$\begin{array}{r} -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ -40.453878 \\ -17.80 \\ 0.07 \\ \hline CH_4 \\ -40.394700 \\ -40.406194 \\ -40.461492 \\ \end{array}$	=	-513.412296 -513.274139 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC=CCH ₃ -116.403356 -116.416680 -116.571775	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d $\Delta H(rxn)$ 1.24 1.70 1.76	-539.70 -539.60 -542.12 -539.06	2.11 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.82 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57 ^d
	$\begin{array}{c} \text{rev-DSDPBEP86} \\ \text{CBS-QB3} \\ \text{G4} \\ \text{jun-ChS} \\ \text{SVECV-f12} \\ \Delta_{f}H^{0}(298.15) \\ \pm \\ \hline \\ \text{Reaction (8b)} \\ \hline \\ \text{rev-DSDPBEP86} \\ \text{CBS-QB3} \\ \text{G4} \\ \text{jun-ChS} \\ \end{array}$	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97^{b} $HC=C-SOH$ -550.200372 -550.059736 -550.541079 -550.556854	+	$\begin{array}{r} -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ -40.453878 \\ -17.80 \\ 0.07 \\ \hline \\ CH_4 \\ -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ \end{array}$	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988 -474.438464	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC=CCH ₃ -116.403356 -116.416680 -116.571775 -116.578043	5.02 5.11 2.47 3.84 3.95 4.08^{a} 1.92^{d} $\Delta H(rxn)$ 1.24 1.70 1.76 0.72	-539.70 -539.60 -542.12 -539.06	2017 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.82 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57 ^d
	cbs-Qbs $cbs-Qbs$ $cbs-$	550.200372 550.059736 550.541079 550.556854 550.537294 32.86 1.97 ^b HC≡C-SOH 550.200372 550.059736 550.556854	+	$\begin{array}{r} -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ -40.453878 \\ -17.80 \\ 0.07 \\ \hline CH_4 \\ -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ \end{array}$	=	-513.412296 -513.274139 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988 -474.438464	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC≡CCH ₃ -116.403356 -116.416680 -116.571775 -116.578043	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d $\Delta H(rxn)$ 1.24 1.70 1.76 0.72	2/7(TXN) -539.70 -539.60 -542.12 -539.06	2.11 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57^d
	$cbs-QbsG4$ $jun-ChS$ $sVECV-f12$ $\Delta_f H^0 (298.15)$ \pm $Reaction (8b)$ $rev-DSDPBEP86$ $CBS-Qbs$ $G4$ $jun-ChS$	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97^b HC≡C-SOH -550.200372 -550.059736 -550.556854	+	$\begin{array}{r} -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ -40.453878 \\ -17.80 \\ 0.07 \\ \hline \\ CH_4 \\ -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ \end{array}$	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988 -474.438464	+	-77.174770 -77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC=CCH ₃ -116.403356 -116.416680 -116.571775 -116.578043	5.02 5.11 2.47 3.84 3.95 4.08^{a} 1.92^{d} $\Delta H(rxn)$ 1.24 1.70 1.76 0.72	-539.70 -539.60 -542.12 -539.06	2.11 32.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.86 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57 ^d
	$\begin{array}{c} \text{Rev-DSDPBEP86}\\ \text{CBS-QB3}\\ \text{G4}\\ \text{jun-ChS}\\ \text{SVECV-f12}\\ \Delta_{f}H^{0}(298.15)\\ \pm\\ \hline \text{Reaction (8b)}\\ \hline \text{rev-DSDPBEP86}\\ \text{CBS-QB3}\\ \text{G4}\\ \text{jun-ChS}\\ \end{array}$	-550.200372 -550.059736 -550.541079 -550.556854 -550.537294 32.86 1.97 ^b HC≡C-SOH -550.200372 -550.059736 -550.541079 -550.556854	+	$\begin{array}{r} -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ -40.453878 \\ -17.80 \\ 0.07 \\ \hline \\ CH_4 \\ -40.394700 \\ -40.406194 \\ -40.461492 \\ -40.460808 \\ \end{array}$	=	-513.412296 -513.274139 -513.708276 -513.720058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988 -474.438464	+	-77.183653 -77.290351 -77.291484 -77.280700 54.19 0.10 HC≡CCH ₃ -116.403356 -116.416680 -116.571775 -116.578043	5.02 5.11 2.47 3.84 3.95 4.08 ^a 1.92 ^d $\Delta H(rxn)$ 1.24 1.70 1.76 0.72	2/7(TXN) -539.70 -539.60 -542.12 -539.06	2.89 32.98 30.47 33.52 32.47 ^a 2.36 ^d	-176.82 -176.36 -180.13 -180.17	38.59 39.04 35.28 35.24 37.04^a 3.57 ^d

Fable 9 Enthalnie	s (in Hartrees)	Λ.	H^0 and Λ	. н 0	(in kcal mol ⁻¹	l) at	298 15 K for	HCECSO	Hobtaine	d from t	he isodest	nic r eact
able 9. Enthalple	s (III Hardees)	, Δ ₁	x_{n} and Δ_{j}	, 11) ai	270.15 K 101			u monn u	ne isouesi	me react
8a) and (8b), enth	alpies of atom	izat	ion and disso	ciat	ion to diatomi	c m	olecules.					
Reaction (8a)	HC≡C–SOH	+	CH_4	=	CH ₃ SOH	+	НС≡СН	∆H(rxn)	w.r.t. a	toms	w.r.t. dia	atomics
rev–DSDPBEP86	-550.200372		-40.394700		-513.412296		-77.174770	5.02	∆H(rxn)	ΔH_f	∆H(rxn)	ΔH_f
CBS–QB3	-550.059736		-40.406194		-513.274139		-77.183653	5.11	-539.70	32.89	-176.82	38.59
G4	-550.541079		-40.461492		-513.708276		-77.290351	2.47	-539.60	32.98	-176.36	39.04
jun–ChS	-550.556854		-40.460808		-513.720058		-77.291484	3.84	-542.12	30.47	-180.13	35.28
SVECV-f12	-550.537294		-40.453878		-513.704185		-77.280700	3.95	-539.06	33.52	-180.17	35.24
$\Delta_f H^0(298.15)$	32.86		-17.80		-35.06°		54.19	4.08 ^a		32.4 7ª		37.04 ª
±	1.97 ^b		0.07		0.44 ^c		0.10	1.92 ^d		2.36 ^d		3.57 ^d
Reaction (8b)	HC≡C–SOH	+	CH_4	=	HSOH	+	HC≡CCH ₃	∆H(rxn)				
rev-DSDPBEP86	-550.200372		-40.394700		-474.189745		-116.403356	1.24				
CBS–QB3	-550.059736		-40.406194		-474.046538		-116.416680	1.70				
G4	-550.541079		-40.461492		-474.427988		-116.571775	1.76				
jun–ChS	-550.556854		-40.460808		-474.438464		-116.578043	0.72				

SVECV-f12	-550.537294	-40.453878		474.427806	-116	6.562184	0.74				
$\Delta_f H^0(298.15)$	32.88	-17.80		-28.00°	4	44.32	1.23ª				
±	1.10 ^b	0.07		0.60°	(0.21	0.89 ^d				
^a Average of the er	nthalpies obtaine	ed with each me	thod.	^b composition	n of the	e uncertainti	es in the Δ	$_{f}H^{0}(298.15)$) of the	reference	spec
and the $\Delta H(rxn) \circ S$	Since there is no	experimental va	lue a	vailable for th	e entha	alpy of form	ation of HA	, AS and MSA	A we us	ed our pre	- viou
		experimentar va	nue u		e entina	apy of form			1, we us	jeu our pro	01100
determined theoret	tical value. $a \pm 2c$	5.									
Table 10 Enthalpi	es (in Hartrees)	$\wedge \dots H^0$ and $\wedge A$.н ⁰ (in kcal mol ⁻¹)	at 298	15 K for C	HeSOH of	htained fror	n the iso	odesmic n	eact
Table 10. Enthalpi	es (in Hartrees),	$\Delta_{rxn}H^0$ and Δ_f	_f H ⁰ (1	in kcal mol ^{–1})	at 298.	8.15 K for C	5H5SOH ol	btained from	n the is	odesmic r	eact
Table 10. Enthalpi	es (in Hartrees),	$\Delta_{rxn}H^0$ and Δ_f	<i>H</i> ⁰ (1	in kcal mol ⁻¹)	at 298.	8.15 K for C	₅H₅SOH ol	btained from	n the iso	odesmic r	eact
Table 10. Enthalpi (9a)–(9d), enthalpi	es (in Hartrees), les of atomizatio	$\Delta_{rxn}H^0$ and Δ_f in and dissociation	<i>FH</i> ⁰ (:	in kcal mol ⁻¹) diatomic mole	at 298. ecules.	8.15 K for C	₅H₅SOH ol	btained fror	n the iso	odesmic r	eacti
Table 10. Enthalpi (9a)–(9d), enthalpi	es (in Hartrees), es of atomizatio	$\Delta_{rxn}H^0$ and Δ_f on and dissociation	<i>H⁰ (</i> :	in kcal mol⁻¹) diatomic mole	at 298. ecules.	8.15 K for C	₅H₅SOH ol	btained from	n the ise	odesmic r	eacti
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a)	es (in Hartrees), les of atomizatio C_6H_5 -SOH	$\Delta_{rxn}H^0$ and Δ_f on and dissociation $+$ CH ₄	$f H^0$ (for the second secon	in kcal mol ⁻¹) diatomic mole CH₃SOH	at 298. ecules.	3.15 K for C	5H5SOH ol ⊿H(rxn)	btained from	n the iso	odesmic r	eacti
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86	es (in Hartrees), tes of atomizatio $ \frac{C_6H_5-SOH}{-704.792374} $	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700	fH^0 (for the formula fH^0 (for fH^0 (for fH^0 (for fH^0 (for fH^0 (for fH^0 (for $h)$ (for h) (for $h)$ (for	in kcal mol ⁻¹) diatomic mole <u>CH₃SOH</u> -513.412296	at 298. ecules. + -2	8.15 K for C <u>C₆H₆</u> 231.765850	5 H ₅ SOH ol Δ <i>H</i> (rxn) 5.60	btained from w.r.t. at $\Delta H(rxn)$	n the iso $\frac{1}{200000000000000000000000000000000000$	odesmic r w.r.t. dia ⊿H(rxn)	eacti
Table 10. Enthalpi(9a)–(9d), enthalpiReaction (9a)rev–DSDPBEP86CBS–QB3	es (in Hartrees), tes of atomizatio C_6H_5 -SOH -704.792374 -704.662509	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700 -40.406194	$f H^0$ (2) on to =	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139	at 298. ecules. + -2 -2	C ₆ H ₆ 231.765850 231.784345	5 H₅SOH ol <u>∠</u> <i>H</i> (rxn) 5.60 6.41	btained from w.r.t. at $\Delta H(rxn)$ -1469.32	n the ise $\frac{1}{\Delta H_f}$ -3.16	w.r.t. dia <u>AH</u> (rxn) -605.09	eacti utomi 21 10.
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86 CBS–QB3 G4	es (in Hartrees), ies of atomizatio C_6H_5 -SOH -704.792374 -704.662509 -705.345192	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700 -40.406194 -40.461492	e^{H^0} (for the second sec	in kcal mol ⁻¹) diatomic mole <u>CH₃SOH</u> -513.412296 -513.274139 -513.708276	at 298. ecules. + -2 -2	C ₆ H ₆ 231.765850 231.784345 232.094014	5 H₅SOH ol <u>∆H(rxn)</u> 5.60 6.41 2.76	w.r.t. at <u>AH</u> (rxn) -1469.32 -1469.06	n the iso $\frac{1}{200000000000000000000000000000000000$	odesmic г w.r.t. dia <i>ΔH</i> (rxn) -605.09 -600.60	eacti itomi <i>Δi</i> 10. 15.
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86 CBS–QB3 G4 jun–ChS	es (in Hartrees), tes of atomizatio <u>C₆H₅–SOH</u> -704.792374 -704.662509 -705.345192 -705.371518	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700 -40.406194 -40.461492 -40.460808	$f H^0$ (for a constant of the second secon	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.720058	at 298. ecules. + -2 -2 -2	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261	5 H₅SOH ol <u>∆H(rxn)</u> 5.60 6.41 2.76 8.16	w.r.t. at <u>AH(rxn)</u> -1469.06 -1473.86	n the ise ΔH_f -3.16 -2.91 -7.70	odesmic г w.r.t. dia ДН(rxn) -605.09 -600.60 -611.39	eacti itomi 10. 15. 4.4
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86 CBS–QB3 G4 jun–ChS SVECV–f12	es (in Hartrees), tes of atomizatio C ₆ H ₅ -SOH -704.792374 -704.662509 -705.345192 -705.371518 -705.334096	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700 -40.406194 -40.461492 -40.460808 -40.453878	FH^0 (and the formula FH^0	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.720058 -513.704185	at 298. ecules. + -2 -2 -2 -2 -2	C ₆ H ₆ C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541	5 H ₅ SOH ol <u>∠</u> <i>H</i> (rxn) 5.60 6.41 2.76 8.16 5.18	btained from w.r.t. at $\Delta H(rxn)$ -1469.32 -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79	w.r.t. dia <u></u> <i>ΔH</i> (rxn) -605.09 -600.60 -611.39 -615.06	eacti utomi 10. 15. 4.4 0.7
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86 CBS–QB3 G4 jun–ChS SVECV–f12 $\Delta_f H^0$ (298.15)	es (in Hartrees), ies of atomizatio C_6H_5 -SOH -704.792374 -704.662509 -705.345192 -705.371518 -705.334096 - 3.08	$\Delta_{rxn}H^0 \text{ and } \Delta_f$ on and dissociation $+ CH_4$ -40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80	fH^0 (and the formula fH^0	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.70058 -513.704185 -35.06°	at 298. ecules. + -2 -2 -2 -2 -2	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541 19.80	5 H₅SOH ol Δ <i>H</i> (rxn) 5.60 6.41 2.76 8.16 5.18 5.62 ^a	w.r.t. at <u>AH(rxn)</u> -1469.32 -1469.06 -1473.86 -1468.95	n the iso ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a	w.r.t. dia <u>А</u> H(rxn) -605.09 -600.60 -611.39 -615.06	eacti atomi 24 10. 15. 4.4 0.7 7.8
Table 10. Enthalpi (9a)–(9d), enthalpi Reaction (9a) rev–DSDPBEP86 CBS–QB3 G4 jun–ChS SVECV–f12 $\Delta_f H^0$ (298.15) \pm	es (in Hartrees), tes of atomizatio C ₆ H ₅ -SOH -704.792374 -704.662509 -705.345192 -705.371518 -705.334096 - 3.08 3.55 ^b	$\Delta_{rxn}H^0 \text{ and } \Delta_f$ on and dissociation $+ CH_4$ -40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07	$_{e}H^{0}$ (and the formula $\frac{1}{2}$	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.70058 -513.704185 -35.06° 0.44°	at 298. ecules. + -2 -2 -2 -2	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541 19.80 0.20	5H ₅ SOH ol ΔH(rxn) 5.60 6.41 2.76 8.16 5.18 5.62 ^a 3.52 ^d	btained from w.r.t. at $\Delta H(rxn)$ -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a 4.12 ^d	odesmic r w.r.t. dia ДН(rxn) -605.09 -600.60 -611.39 -615.06	eacti <u>ttomi</u> <u>10</u> 15 4.4 0.7 7.8 11 .
Table 10. Enthalpi(9a)–(9d), enthalpiReaction (9a)rev–DSDPBEP86CBS–QB3G4jun–ChSSVECV–f12 $\Delta_f H^0$ (298.15) \pm Reaction (9b)	es (in Hartrees), les of atomizatio $ \frac{C_6H_5-SOH}{-704.792374} -704.662509 -705.345192 -705.371518} -705.334096 -3.08 -3.55^{b}} -3.08 -3.55^{b}} C_6H_5-SOH $	$\Delta_{rxn}H^0$ and Δ_f on and dissociation + CH ₄ -40.394700 -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 + CH ₄	<i>FH</i> ⁰ (2)	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.708276 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH	at 298. ecules. + -2 -2 -2 -2 -2 + C	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541 19.80 0.20 C ₆ H ₆ -CH3	<u>AH(rxn)</u> 5.60 6.41 2.76 8.16 5.18 5.62 ^a 3.52 ^d ∆H(rxn)	w.r.t. at <u>AH(rxn)</u> -1469.32 -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a 4.12 ^d	w.r.t. dia <u>AH(rxn)</u> -605.09 -600.60 -611.39 -615.06	ttomii <u>10</u> 15 4. 0. ⁷ 7.8 <u>11.</u>
Table 10. Enthalpi(9a)–(9d), enthalpiReaction (9a)rev–DSDPBEP86CBS–QB3G4jun–ChSSVECV–f12 $\Delta_f H^0$ (298.15)±Reaction (9b)rev–DSDPBEP86	es (in Hartrees), ies of atomizatio	$\Delta_{rxn}H^0 \text{ and } \Delta_f$ on and dissociation $+ CH_4$ -40.394700 -40.406194 -40.461492 -40.46388 -40.453878 -17.80 0.07 $+ CH_4$ -40.394700	<i>FH</i> ⁰ (2)	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.708276 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH -474.189745	at 298. ecules. + -2 -2 -2 -2 -2 -2 + C -2	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541 19.80 0.20 C ₆ H ₆ -CH3 270.990349	$\Delta H_{5}SOH$ of $\Delta H(rxn)$ 5.60 6.41 2.76 8.16 5.18 5.62 ^a 3.52 ^d $\Delta H(rxn)$ 4.38	w.r.t. at <u>AH(rxn)</u> -1469.32 -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a 4.12 ^d	w.r.t. dia <u>AH(rxn)</u> -605.09 -600.60 -611.39 -615.06	eacti <u>atomi</u> <u>4</u> 10 15 4. 0. 7.8 11.
Table 10. Enthalpi(9a)–(9d), enthalpiReaction (9a)rev–DSDPBEP86CBS–QB3G4jun–ChSSVECV–f12 $\Delta_f H^0$ (298.15) \pm Reaction (9b)rev–DSDPBEP86CBS–QB3	es (in Hartrees), ies of atomizatio	$\Delta_{rxn}H^0 \text{ and } \Delta_f$ on and dissociation $\frac{+ CH_4}{-40.394700}$ -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 $+ CH_4$ -40.394700 -40.406194	<i>eH</i> ⁰ (a)	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538	at 298. ecules. + -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	C ₆ H ₆ 231.765850 231.784345 232.094014 232.099261 232.075541 19.80 0.20 C ₆ H ₆ -CH3 270.990349 271.014056	$\Delta H_{\rm f} {\rm SOH}$ of $\Delta H({\rm rxn})$ 5.60 6.41 2.76 8.16 5.18 5.62 ^a 3.52 ^d $\Delta H({\rm rxn})$ 4.38 5.09	w.r.t. at ΔH(rxn) -1469.32 -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a 4.12 ^d	w.r.t. dia ΔH(rxn) -605.09 -600.60 -611.39 -615.06	eact: <u>atom</u> <u>10</u> 15 4. 0. 7.3 11.
Table 10. Enthalpi(9a)–(9d), enthalpiReaction (9a)rev–DSDPBEP86CBS–QB3G4jun–ChSSVECV–f12 $\Delta_f H^0$ (298.15) \pm Reaction (9b)rev–DSDPBEP86CBS–QB3G4	es (in Hartrees), es of atomizatio $ \frac{C_6H_5-SOH}{-704.792374} -704.662509 -705.345192 -705.371518 -705.334096 -3.08 3.55^{b}} $ $ \frac{C_6H_5-SOH}{-704.792374} -704.662509 -705.345192 $	$\Delta_{rxn}H^0 \text{ and } \Delta_f$ on and dissociation $\frac{+ CH_4}{-40.394700}$ -40.406194 -40.461492 -40.460808 -40.453878 -17.80 0.07 $+ CH_4$ -40.394700 -40.406194 -40.461492	<i>e</i> H ⁰ (and the formation of the format	in kcal mol ⁻¹) diatomic mole CH ₃ SOH -513.412296 -513.274139 -513.708276 -513.70058 -513.704185 -35.06° 0.44° HSOH -474.189745 -474.046538 -474.427988	at 298. ecules. + -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	$\begin{array}{c} \textbf{C}_6\textbf{H}_6 \\ \hline \textbf{C}_6\textbf{H}_6 \\ \hline \textbf{2}31.765850 \\ \hline \textbf{2}31.784345 \\ \hline \textbf{2}32.094014 \\ \hline \textbf{2}32.099261 \\ \hline \textbf{2}32.075541 \\ \hline \textbf{1}9.80 \\ \hline \textbf{0.20} \\ \hline \textbf{C}_6\textbf{H}_6 - \textbf{CH3} \\ \hline \textbf{2}70.990349 \\ \hline \textbf{2}71.014056 \\ \hline \textbf{2}71.371097 \end{array}$	$\Delta H_{(\text{rxn})}$ 5.60 6.41 2.76 8.16 5.18 5.62 ^a 3.52 ^d $\Delta H(\text{rxn})$ 4.38 5.09 4.77	w.r.t. at ΔH(rxn) -1469.06 -1473.86 -1468.95	n the ise ΔH_f -3.16 -2.91 -7.70 -2.79 -4.14 ^a 4.12 ^d	odesmic r w.r.t. dia ΔH(rxn) -605.09 -600.60 -611.39 -615.06	eact <u>atom</u> <u>A</u> 10 15 4. 0. 7.3 11.

SVECV-f12	-705.334096	-40.453878	-474.427806	-271.352607	4.74
$\Delta_f H^0(298.15)$	-2.92	-17.80	-28.00 ^c	12.00	4.62 ^a
± , , , , , , , , , , , , , , , , , , ,	0.94 ^b	0.07	0.60°	0.26	0.68 ^d
Reaction (9c)	C ₆ H ₅ –SOH +	$(CH_3)_2S =$	(CH ₃) ₂ S=O +	C ₆ H ₅ –SH	$\Delta H(rxn)$
rev-DSDPBEP86	-704.792374	-477.510154	-552.626878	-629.673400	1.41
CBS-QB3	-704.662509	-477.370600	-552.493069	-629.536732	2.08
G4	-705.345192	-477.799870	-552.979409	-630.162126	2.21
jun–ChS	-705.371518	-477.797377	-552.992639	-630.173084	1.99
SVECV-f12	-705.334096	-477.781776	-552.971921	-630.142017	1.21
$\Delta_f H^0(298.15)$	-1.93	-8.96	-35.97	26.86	1.78 ª
±	1.01 ^b	0.48	0.36	0.21	0.79 ^d
Reaction (9d)	C ₆ H ₅ –SOH +	$(CH_3CH_2)_2S =$	$(CH_3CH_2)_2SO +$	C6H5–SH	∆H(rxn)
rev-DSDPBEP86	-704.792374	-555.949657	-631.068011	-629.673400	0.39
CBS–QB3	-704.662509	-555.820886	-630.945219	-629.536732	0.91
G4	-705.345192	-556.354673	-631.535885	-630.162126	1.16
jun–ChS	-705.371518	-556.355614	-631.552563	-630.173084	0.93
SVECV-f12	-705.334096	-556.328751	-631.520953	-630.142017	-0.08
$\Delta_f H^0(298.15)$	-2.90	-20.00	-49.10	26.86	0.66 ^a
±	1.14 ^b	0.55	0.40	0.21	0.90 ^d

27 661

^a Average of the enthalpies obtained with each method. ^b composition of the uncertainties in the $\Delta_f H^0$ (298.15) of the reference species and the $\Delta H(rxn)$. ^c Since there is no experimental value available for the enthalpy of formation of HAS and MSA, we used our previously determined theoretical value. ^d ±2 σ .

36 666

667 The weighted averages obtained from the isodesmic reactions in Tables 7 to 10 are shown in

668 Tables S10–S13 in the Supporting Information.

Table 11. Summary of $\Delta_f H^0$ (in kcal mol⁻¹) at 298.15 K for the five sulfenic acids studied in this paper, obtained from isodesmic reactions, enthalpies of atomization and dissociation to diatomic molecules.

Source	H – SOH	CH ₃ — SOH	CH ₂ =CH – SOH	HC≡C — SOH	C ₆ H ₅ – SOH
Isodesmic	$\begin{array}{c}-28.0\pm\\0.6\end{array}$	-35.1 ± 0.4	-11.2 ± 0.7	-32.9 ± 1.0	-2.6 ± 0.6
Atomization	-28.4 ± 1.3	-35.9 ± 2.8	-10.7 ± 3.0	-32.5 ± 2.4	-4.1 ± 4.1
Dissociation	-27.6 ± 2.1	-32.8 ± 4.3	-5.9 ± 5.1	-37.0 ± 3.6	$+7.8 \pm 11.2$
NIST/JANAF ^{23,24}		45.4		24.8	-8.1

> The procedure used for the experimental determination²⁴ relied on flash-vacuum pyrolysis of the corresponding sulfoxides and characterization of the ions using mass spectrometry. The heats of formation were then obtained indirectly from those of the radical cations [RSOH]*+ and the threshold ionization energy (IE), using the equation

> > $\Delta_{f}H^{o}(\text{RSOH}) = \Delta_{f}H^{o}[\text{RSOH}]^{+} - \text{IE}(\text{RSOH})$

678	The authors ²⁴ mentioned that they used the additivity method to determine the
679	enthalpies of formation of the sulfoxides, needed to assess the $\Delta_f H^o[\text{RSOH}]^{+}$, and
680	recognized that they were aware that possible errors may be introduced in the values through
681	this approximation. Our theoretical results in this paper seem to support this warning and we
682	conclude that more experimental studies are needed to resolve this discrepancy.
683	The previous assertion could benefit from some additional support, taking advantage
684	of the calculations we performed on the thiyl and sulfinyl radicals. We calculated the
685	enthalpies of formation of such radicals using the same procedures we employed for the
686	sulfenic acids, using isodesmic reactions when possible, enthalpies of atomization and
687	enthalpies of dissociation into diatomic molecules. To avoid an excessive length of the paper,
688	we show in Table 12 only the average values, while the full data used to obtain them are
689	compiled in the Supplementary Information (Table S14).
690	Table 12. $\Delta_f H_{298}^0$ (kcal mol ⁻¹ , T=298.15K) for thiyl and sulfinyl radicals of the species
691	studied in this work. Values in italic bold corresponds to a full (optimization + frequencies)
692	calculation at the CCSD(T)-F12/cc-VTZ-F12 level.
	Parent Radical isodesmic w.r.t. atoms w.r.t. diatomics other
	57

H–SOH	HS	$+33.5 \pm 2.5$	$+33.3 \pm 0.6$	$+34.2 \pm 0.7$	33.301ª
		$+33.5 \pm 2.5$	34.2	34.0	$+33.56 \pm 0.84^{b}$
	HSO.	$-6.0 \pm 1.6^{\circ}$	-6.8 ± 1.4	-5.9 ± 0.3	-5.2 ± 0.5^{e}
		-8.2 ± 1.6^{d}	-4.6	-5.6	-3.7 ^f
CH₃–SOH	CH ₃ S [•]	$+29.6 \pm 0.5^{g}$	$+28.00 \pm 1.0$	$+30.9 \pm 2.6$	$+31.04 \pm 0.42^{i}$
		$+29.6 \pm 3.2^{h}$	30.9	30.4	$+29.9 \pm 0.5^{j}$
					$+34.2 \pm 2.0^{k}$
					$+30.8 \pm 2.4^{1}$
					+29.7 ^m
	CH ₃ SO [•]	-18.5 ± 3.3^{n}	-18.7 ± 1.4	-15.7 ± 2.0	-16.8 ^m
			-14.5	-15.8	
CH ₂ =CHSOH	CH ₂ =CHS·	$+50.7 \pm 3.2$	$+51.7 \pm 5.0$	$+56.3 \pm 8.0$	
		$+48.9 \pm 3.1$	51.6	51.3	
	CH ₂ =CHSO [•]	$+5.1 \pm 4.1$	$+6.1 \pm 1.7$	$+10.8 \pm 2.6$	
			11.9	10.7	
IC≡CSOH	HC≡CS	$+86.0 \pm 4.9$	$+85.9 \pm 1.4$	$+90.3 \pm 1.7$	
		$+86.3 \pm 4.8$	90.6	90.7	
	HC≡CSO•	$+54.9 \pm 4.0$	$+53.3 \pm 1.5$	$+57.7 \pm 1.5$	
		$+55.2 \pm 3.8$	58.7	58.0	
C ₆ H ₅ –SOH	$C_6H_5-S^{\bullet}$	$+59.7 \pm 5.6$	$+57.7 \pm 7.0$	$+69.4 \pm 12.0$	
	C ₆ H ₅ –SO [•]	$+13.2 \pm 3.4$	$+12.7 \pm 1.0$	$+24.6 \pm 10.5$	

^a NIST/JANAF²³. ^b ref 117. ^c using the ATcT value of the enthalpy of formation of HOO•. ^d
^d using the NIST/JANAF value of the enthalpy of formation of HOO•. ^e ref. 118. ^f ref. 119. ^g
^g using ATcT values for CH₃OH and CH₃O. ^h using NIST/JANAF values for CH₃OH and
^c CH₃O. ⁱ Reference 120. ^j ref. 121. ^k ref. 122. ¹ Ref. 123. ^m ref. 124. ⁿ With respect to ATcT
^c values because the NIST/JANAF experimental value for CH₃OO is not reported.

699 In general, the agreement between the enthalpies of formation obtained using different

references depends heavily on the method and the structure of the molecule. It must be

701	noticed that at least two sources of experimental data can be used for the isodesmic reactions,
702	the NIST/JANAF data tables ²³ (our current preference) or the ATcT ^{99–101} values. They are
703	normally not so different but sometimes it is substantial. For instance, the experimental
704	enthalpy of formation of the HOO [•] radical amounts to 0.50 kcal mol ⁻¹ in the first database
705	and to 2.94 ± 0.06 kcal mol ⁻¹ in the latter. This is especially relevant for radicals and in Table
706	14 we list both results, obtained with respect to both references, in the case of the isodesmic
707	reactions (see the Supporting Information).
708	In the case of the smallest radicals, we have several sources of information to discuss.
709	The enthalpy of formation of HS [•] is coincident with the experimental one considering the
710	error bars. For the isodesmic reaction used (HS [•] + H ₂ O \rightarrow H ₂ S + HO [•]) there is no difference
711	between the NIST/JANAF and ATcT results. The atomization and dissociation energies
712	provide also numbers coincident with experiment within the error bars, and the accurate
713	CCSD(T)-F12/cc-VTZ-F12 calculation (full geometry optimization and thermochemical
714	properties at the post-Hartree-Fock level but no core-valence correction) also agrees with
715	all the other theoretical and experimental values.
	59

3 4 5	716	For HSO [•] we employed the isodesmic reaction HSO [•] + $H_2O_2 \rightarrow HSOH + HOO^{\bullet}$,
6 7	717	which requires our previously calculated enthalpy of formation of HSA and shows the
8 9 10	718	problem indicated before with respect to the experimental data. The enthalpies of formation
11 12	719	calculated from both isodesmic reactions differ in 1.3 kcal mol ⁻¹ , but given the error bar, both
13 14	720	results are possible. The smallest one, -6.0 ± 1.6 kcal mol ⁻¹ , is reasonably in agreement with
15 16 17	721	the experimental one, as well as the averages obtained using atoms and diatomic molecules
18 19	722	as reference. The accurate CCSD(T)-F12/cc-VTZ-F12 calculation with respect to atoms and
20 21 22	723	diatomics are also reasonably in agreement with the experimental value of Gurvich et al. ¹¹⁷
23 24	724	and larger than the theoretical value calculated with atoms as reference by Denis ¹¹⁸ .
25 26 27 28	725	For CH_3S^{\bullet} we have both experimental and theoretical information. Bise et al. ¹²⁰
29 30 31 32	726	determined experimentally a value of 31.0 ± 0.4 kcal mol ⁻¹ , Hynes and Wine ¹²¹ reported 29.9
33 34 35	727	\pm 0.5 kcal mol ⁻¹ , and an older work by Colussi and Benson ¹²² afforded 34.2 \pm 2.4 kcal mol ⁻¹
36 37 38 20	728	¹ . Giving equal weight to the two more modern measurements, and using the weighted
40 41 42	729	average as described before, we conclude an approximate experimental value of 30.6 ± 0.3
43 44 45	730	kcal mol ⁻¹ . The results employing the isodesmic reaction $CH_3S^{\bullet} + CH_3OH \rightarrow CH_3SH +$
46 47 48	731	CH ₃ O• and the atomization reaction are reasonably in agreement and consistent with the
49 50	732	experimental one. Notice that although the results of the isodesmic using NIST/JANAF and
51 52 53	733	ATcT anchor values are the same, the error is larger for the former, because the experimental
54 55 56 57 58		60

Page 61 of 93

enthalpy of formation of methanol has a much larger error there. In the case of using the atoms as references, the average is much too low, and this fact cannot be adscribed particularly to the results of any one of the methods averaged (see the SI). The accurate CCSD(T)-F12/cc-VTZ-F12 calculation, however, gives a value concordant with the experimental one, both when using the atoms and the diatomic molecules as reference. Previous theoretical calculations agree with these values. Nobes and Radom,¹²³ obtained 30.8 ± 2.4 kcal mol⁻¹ at the G2 level using several reactions, and in a more recent work, Resende and Ornellas,¹²⁴ obtained 29.7 kcal mol⁻¹ at the CCSD(T)/CBS–R3 level of theory. We used the isodesmic reaction $CH_3SO^{\bullet} + CH_3OOH \rightarrow CH_3SOH + CH_3OO^{\bullet}$. Since the methyl peroxide enthalpy of formation is not present in the NIST/JANAF tables, we used only the ATcT value for this anchor. We used also the $\Delta_f H^0(298.15K)$ that we determined previously for MSA as an anchor. The results for the three types of anchors overlap when errors bars are considered, and they also encompass the other theoretical value determined by Resende and Ornellas¹²⁴. Some recent papers have studied the MSOr¹²⁵⁻¹²⁷ and YSr sulfinyl radicals¹²⁸ but, to the best of our knowledge, there is no further information about their enthalpies of formation, neither about those of ESOr and BSOr. The results we obtained

1 2			
2 3 4 5	750	seem to be then the only available for these species, although the errors are large, and t	he
6 7 8	751	values do not have chemical accuracy.	
9 10 11 12	752	Special consideration must be given to the enthalpies of formation of BSr and BSC)r.
13 14 15 16	753	As we said in the case of BSA, this is a more difficult compound. We used two sets of anch	or
17 18 19	754	species for both BSr and BSOr, namely	
20 21 22 23	755	$C_6H_5-S^{\bullet} + C_6H_5-OH \rightarrow C_6H_5-SH + C_6H_5-O^{\bullet}$ (11a)	
25 26 27 28	756	$C_6H_5-S^{\bullet} + C_6H_5-OOH \rightarrow C_6H_5-SH + C_6H_5-OO^{\bullet}$ (11b)	
29 30 31 32	757	$C_6H_5 - SO^{\bullet} + C_6H_5 - OH \rightarrow C_6H_5 - SOH + C_6H_5 - O^{\bullet} $ (12a)	
33 34 35 36	758	$C_6H_5 - SO^{\bullet} + C_6H_5 - OOH \rightarrow C_6H_5 - SOH + C_6H_5 - OO^{\bullet} $ (12b)	
37 38 39	759	We used also the previously determined enthalpy of reaction of BSA (the weighted avera	ge
40 41	760	from isodesmic reactions) in reactions (12). The results are a bit discouraging, with very lar	ge
42 43	761	error bars, but at least there is a reasonable coincidence between the values obtained using	ng
44 45 46	762	the isodesmic reactions and the atomization energies. Not so for the dissociation in	to
40 47 48	763	diatomic molecules, which gives an unreasonable large value for both species. To the exte	nt
49 50	764	of our knowledge, the enthalpy of formation of BSr and BSOr have not been measur	ed
51 52	765	experimentally, but an estimation of the BDE doing some experimental acidities w	as
55 54 55 56 57			52
59 60		ACS Paragon Plus Environment	

Page 63 of 93

1

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
~~	

published by Bordwell et al.¹²⁹ as 79.1 kcal mol⁻¹. Our average value is much lower (69.1 766 767 kcal mol⁻¹), a fact that claims for a more in–depth study of the radicals of the benzenesulfenic 768 acid. In particular, the phenylsulfenyl radical photo-induced isomerization has been studied 769 very recently by Liu et al.¹¹⁹ and a comparison with our data is in order for future work. The 770 results produced in this paper for the radicals should then be considered as a tentative 771 appraisal of these values until further experimental and theoretical work is performed. CONCLUSIONS 772 4. 773 High quality quantum composite methods have been employed to study the enthalpy of formation of the four sulfenic acids experimentally investigated by Tureček et al.,²⁴ MSA, 774 775 ESA, YSA, BSA. The values obtained for them, except ESA, are the only ones quoted in the 776 NIST thermochemical tables as experimental data for these compounds. 777 Enthalpies of formation were determined using atomization energies, dissociation 778 reactions toward diatomic molecules and isodesmic reactions. Validation of the methodology 779 was performed by calculation of the experimentally well-known enthalpies of formation of 780 DMS, DMSO and DESO. It was found that, using the isodesmic reactions described, the 781 weighted averages for these species reproduce the experimental enthalpies of formation at 63

1	
2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
J∠ 22	
22 24	
34 25	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

782	298K within an error limit of 1.0 kca	l mol ⁻¹ . These methods were then used to calculate the
783	enthalpies of formation of the sulfen	ic acids of interest and other two species, which have
784	been experimentally elusive and diff	ficult to describe theoretically, H_2SO and CH_2SO . The
785	best results obtained in this work, ave	raging the theoretical values for the isodesmic reactions
786	are	
787	(1) $\Delta_f H^o(\mathrm{H}_2\mathrm{SO})$	$-11.2 \pm 0.6 \text{ kcal mol}^{-1}$
788	(2) $\Delta_f H^o(CH_2SO)$	$-7.2 \pm 1.9 \text{ kcal mol}^{-1}$
789	(3) $\Delta_f H^o$ (HSOH)	$-28.0 \pm 0.6 \text{ kcal mol}^{-1}$
790	(4) $\Delta_f H^o$ (CH ₃ SOH)	$-35.1 \pm 0.4 \text{ kcal mol}^{-1}$
791	(5) $\Delta_f H^o$ (CH ₂ CHSOH)	$-11.2 \pm 0.7 \text{ kcal mol}^{-1}$
792	(6) $\Delta_f H^o$ (HCCSOH)	$+32.9 \pm 1.0 \text{ kcal mol}^{-1}$
793	(7) $\Delta_f H_{298}^o(C_6H_5SOH)$	$-2.6 \pm 0.6 \text{ kcal mol}^{-1}$
794	The errors presented include	a $2\sigma\Box$ dispersion for the average of the enthalpies of
795	reaction calculated at the rev-DSD	PBEP86, CBS-QB3, G4, jun-ChS and SVECV-f12
796	levels, as well as the errors in the	experimental enthalpies of formation of the chaperon
797	molecules.	

Page 65 of 93

1 ว		
2 3 4	798	Concerning the values obtained with the atomization reactions and the dissociation to
5 6	799	diatomic molecules, errors are in generally larger, especially for the diatomics, with the
7 8	800	notable exception of BSA, for which the values derived using these molecules as references
9 10 11	801	differe markedly from those obtained from the isodesmic or atomization reactions.
12 13 14 15	802	These results, which we believe are the best state-of-the-art theoretical values, show
16 17 18	803	that the experimental data contained in the NIST thermochemical tables for these species are
19 20 21 22	804	too low by at least 6 and up to 11 kcal mol ^{-1} .
23 24 25 26	805	We therefore recommend not to use the NIST values as they are presently recorded,
27 28 29	806	employing those given in this paper instead, until new experiments are performed. In
30 31 32	807	particular, the singularity of BSA must be noticed, and more work is needed to fully
33 34 35 36 37	808	characterize its properties.
37 38 39 40	809	NOTES
40 41 42 43	810	The authors declare no competing financial interest.
44 45 46 47	811	ACKNOWLEDGMENTS
48 49 50	812	This work has been supported by the Italian MIUR (PRIN 2017, project "Physico-chemical
51 52 53 54	813	Heuristic Approaches: Nanoscale Theory of Molecular Spectroscopy, PHANTOMS", prot.
55 56 57		65
58 59 60		ACS Paragon Plus Environment

2
3
4
5
6
7
, 0
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
20
27
28
29
30
31
32
33
34
35
26
20
3/
38
39
40
41
42
43
44
15
4J 46
40
4/
48
49
50
51
52
53
57
54 FF
55
56
57
58
59

814	2017A4XRCA). The SMART@SNS Laboratory (http://smart.sns.it) is acknowledged for
815	providing high-performance computer facilities. We gratefully acknowledge the financial
816	contribution for making this study provided by Pedeciba, CSIC (UdelaR) and ANII. Some of
817	the calculations reported in this paper were performed in ClusterUY, a newly installed
818	platform for high performance scientific computing at the National Supercomputing Center,
819	Uruguay.
820	REFERENCES
821	(1) Flohe, L. Changing paradigms in thiology: from antioxidant defense toward redox
822	regulation. Methods Enzymol. 2010, 473,1–39.
823	(2) Tanner, J. J.; Parsons, Z. D.; Cummings, A. H.; Zhou, H.; Gates, K. S. Redox regulation
824	of protein tyrosine phosphatases: structural and chemical aspects. Antioxid. Redox Signal.
825	2011 , <i>15</i> , 77–97.
826	(3) Cox, A. G.; Winterbourn, C. C.; Hampton, M. B. Mitochondrial peroxiredoxin
827	involvement in antioxidant defense and redox signaling. <i>Biochem. J.</i> 2010, 425, 313–325.
828	(4) Storz, G.; Imlay, J. A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188-194.
	66

1 2		
3 4 5	829	(5) Lucshchak, V. I.; Storey, K. B. Oxidative stress concept updated: definitions,
6 7 8 9	830	classifications and regulatory pathways implicated. EXCLI Journal 2021, 20, 956–967.
10 11 12	831	(6) Winterbourn, C. C.; Hampton, M. B. Thiol chemistry and specificity in redox signalling.
13 14 15 16	832	Free Rad. Biol. Med. 2008, 45, 549–561.
17 18 19 20	833	(7) Wardman, P.; von Sonntag, C. Kinetic factors that control the fate of thiyl radicals in
21 22 23 24	834	cells. Methods Enzymol. 1995, 251, 31–45.
25 26 27	835	(8) Allison, W. S. Formation and reactions of sulfenic acids in proteins, Acc. Chem. Res.
28 29 30 31	836	1976 , <i>9</i> , 293–299.
32 33 34 35	837	(9) Roos, G.; Messens, J. Protein sulfenic acid formation: from cellular damage to redox
36 37 38 39	838	regulation. Free Rad. Biol. Med. 2011, 5, 314–326.
40 41 42	839	(10) Gupta, V.; Carroll, K. S. Sulfenic acid chemistry, detection and cellular lifetime.
43 44 45 46	840	<i>Biochim. Biophys. Acta</i> 2014 , <i>1840</i> , 847–845.
47 48 49 50	841	(11) Kettenhofen, N. J.; Wood, M. J. Formation, reactivity, and detection of protein sulfenic
51 52 53	842	acids. Chem. Res. Toxicol. 2010, 23, 1633–1646.
54 55 56 57		67
58 59		ACS Paradon Plus Environment
00		Aco Fulugori Fuo Environmente

(12) McGrath, A.; Garrett, G. E.; Valgimigli, L.; Pratt, S. A. The redox chemistry of sulfenic

(13) Hensley, K.; Danekas, A.; Farrell, W.; Garcia, T.; Mehboob, W.; White, M. At the

intersection of sulfur redox chemistry, cellular signal transduction and proteostasis: a useful

perspective from which to understand and treat neurodegeneration. Free Rad. Biol. Med.

acids. J. Am. Chem. Soc. 2010, 132, 16759-16761.

2022, *178*, 161–173.

2	
3 4 5	843
6 7 8 9	844
10 11 12	845
13 14 15 16	846
17 18 19	847
20 21 22 23	848
24 25 26 27	849
28 29 30	850
31 32 33 34	851
35 36 37 38	852
39 40 41 42	853
43 44 45	854
46 47 48 49	
50 51	
53 54	
55 56 57	
58 59 60	

1

(14) Borlinghaus J.; Albrecht, F.; Gruhlke, M. C. H.; Nwachukwu, I. D.; Slusarenko, A. J.
Allicin: chemistry and biological properties. <i>Molecules</i> 2014, 19, 12591–12618.
(15) Shekh, S.; Reddy, K. K. A.; Gowd, K. H. In silico allicin induced S-thioallylation of
SARS–CoV–2 main protease. J. Sulfur Chem. 2021, 42, 109–120.
(16) Nohara, T.; Fujiwara, Y.; El-Aasr, M.; Ikeda, T.; Ono, M.; Nakano, D.; Kinjo, J.
Thiolane–type sulfides from garlic, onion, and Welsh onion. J. Nat. Med. 2021, 75, 741–751.
68
ACS Daragon Dlus Environment

855 (17) Guillamón, E.; Andreo-Martínez, P.; Mut-Salud, N.; Fonollá, J.; Baños, A. Beneficial 856 effects of organosulfur compounds from Allium cepa on gut health: a systematic review. 857 Foods 2021, 10, 1680. (18) Vaidya, V.; Ingold, K. U.; Pratt, D. A. Garlic: source of the ultimate antioxidants-858 859 sulfenic acids. Angew. Chem. 2009, 48, 157-160. 860 (19) Poole, L. B.; Karplus, P. A.; Clairbone, A. Protein sulfenic acids in redox signaling. 861 Annu. Rev. Pharmacol. Toxicol. 2004, 44, 325–347. 862 (20) Saurin, A. T.; Neubert, H.; Brennan, J. P.; Eaton, P. Widespread sulfenic acid formation 863 in tissues in response to hydrogen peroxide. Proc. Nat. Acad. Sci. 2004, 101, 17982-17987. 864 (21) Sano, T.; Masuda, R.; Sase, S.; Goto, K. Isolable small-molecule cysteine sulfenic acid. 865 Chem. Commun. 2021, 57, 2479–2482. (22) Ventura, O. N.; Kieninger, M.; Denis, P. A.; Cachau, R. E. Density functional 866 computational thermochemistry: solving the discrepancy between MO and DFT calculations 867 on the enthalpy of formation of sulfine, CH₂=S=O. Chem. Phys. Lett. 2002, 355, 207–213. 868 69

2 3 4	869	(23) NIST Chemistry WebBook, SRD 69, National Institute of Standards and Technology,
5 6 7 8	870	U.S. Department of Commerce, 2022, https://doi.org/10.18434/T4D303.
9 10 11	871	(24) Tureček, F.; Brabec, L.; Vondrák, T.; Hanuš, V.; Hájíček, J.; Havlas, Z. Sulfenic acids
12 13 14 15	872	in the gas phase. Preparation, ionization energies and heats of formation of methane–, ethene–
16 17 18 19	873	, and benzenesulfenic acid. Collect. Czech. Chem. Commun. 1988, 53, 2140–2158.
20 21 22 23	874	(25) Martin, J. M. L. Computational thermochemistry: A brief overview of quantum
24 25 26 27	875	mechanical approaches. Annu. Rep. Comput. Chem. 2005, 1, 31-89.
28 29 30	876	(26) Pople, J. A.; Binkley, J. S.; Seeger, R. Theoretical Models Incorporating Electron
31 32 33 34	877	Correlation. Int. J. Quantum Chem. 1976, Symp. Nr. 10, 1–19.
35 36 37 38	878	(27) Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod.
39 40 41 42	879	<i>Phys.</i> 2007 , <i>79</i> , 291–352.
43 44 45 46	880	(28) Klopper, W.; Bachorz, R. A.; Hättig, C.; Tew, D. P. Accurate computational
47 48 49	881	thermochemistry from explicitly correlated coupled-cluster theory. Theor. Chem. Acc. 2010,
50 51 52 53	882	<i>126</i> , 289–304.
54 55 56		70
57 58		
59 60		ACS Paragon Plus Environment

(29) Karton, A. Highly Accurate CCSDT(Q)/CBS Reaction Barrier Heights for a Diverse Set of Transition Structures: Basis Set Convergence and Cost-Effective Approaches for Estimating Post–CCSD(T) Contributions. J. Phys. Chem. A 2019, 123, 6720–6732. (30) Donchev, A. G.; Taube, A. G.; Decolvenaere, E.; Hargus, C.; McGibbon, R. T.; Law, K.; Gregersen, B A.; Li, J.; Palmo, K.; Siva, K.; Bergdorf, M.; Klepeis, J. L.; Shaw, D. E. Quantum chemical benchmark databases of gold-standard dimer interaction energies. Sci Data 2021, 8, 55. (31) Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A. A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 1991, 94, 6091–6101. (32) Montgomery, J. A.; Ochterski, J. W.; Petersson, G. A. A complete basis set model chemistry. IV. An improved atomic pair natural orbital method. J. Chem. Phys. 1994, 101, 5900-5909. (33) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys. 1996, 104, 2598–2619.
898 ((34) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A complete basis
899 s	set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem.
900 I	Phys. 1999 , <i>110</i> , 2822–2827.
901 ((35) Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A. A complete basis
902 s	set model chemistry. VII. Use of the minimum population localization method. J. Chem.
903	Phys. 2000, 112, 6532–6542.
904 ((36) People, J. A.; Head–Gordon, M.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. Gaussian-1
905 t	heory: A general procedure for prediction of molecular energies. J. Chem. Phys. 1989, 90,
906 5	5622–5629.
907 ((37) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; People, J. A. Gaussian-
908 3	3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998,
909	<i>109</i> , 7764–7776.
910 ((38) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; People, J. A. Gaussian–3X (G3X)
911 t	heory: Use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J.
912	<i>Chem. Phys.</i> 2001 , <i>114</i> , 108–117. 72

1 2		
3 4 5	913	(39) Curtiss, L. A, Redfern, P. C.; Raghavachari, K. Gaussian-4 theory. J. Chem. Phys. 2007,
6 7 8	914	<i>126</i> , 084108.
9 10 11 12	915	(40) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Baboul, A. G.; Pople, J. A. Gaussian-
13 14 15 16	916	3 theory using coupled cluster energies. Chem. Phys. Lett. 1999, 314, 101–107.
17 18 19 20	917	(41) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. Gaussian-3 theory using
21 22 23	918	scaled energies. J. Chem. Phys. 2000, 112, 1125-1132.
24 25 26 27	919	(42) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Pople, J. A. Gaussian-3 theory: a
28 29 30 31	920	variation based on third-order perturbation theory and an assessment of the contribution of
32 33 34	921	core-related correlation. Chem. Phys. Lett. 1999, 313, 600-607.
36 37 38	922	(43) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K. Gaussian-4 theory using reduced order
39 40 41 42	923	perturbation theory. J. Chem. Phys. 2007, 127, 124105.
43 44 45 46	924	(44) Curtiss, L. A.; Redfern, P. C.; Raghavachari, K.; Rassolov, V.; Pople, J. A. Gaussian-3
47 48 49	925	theory using reduced Møller–Plesset order. J. Chem. Phys. 1999, 110, 4703–4709.
50 51 52 53		
54 55 56 57		73
58 59		
60		ACS Paragon Plus Environment

1 2		
2 3 4 5	926	(45) Martin, J. M. L.; de Oliveira, G. Towards standard methods for benchmark quality ab
6 7 8	927	initio thermochemistry—W1 and W2 theory. J. Chem. Phys. 1999, 111, 1843–1856.
9 10 11 12	928	(46) Boese, A. D.; Oren, M.; Atasoylu, O.; Martin, J. M. L.; Kállay, M.; Gauss, J. W3 theory:
13 14 15	929	Robust computational thermochemistry in the kJ/mol accuracy range. J. Chem. Phys. 2004,
16 17 18 19	930	<i>120</i> , 4129–4141.
20 21 22 23	931	(47) Karton, A.; Rabinovich, E.; Martin, J. M. L.; Ruscic, B. W4 theory for computational
24 25 26	932	thermochemistry: In pursuit of confident sub-kJ/mol predictions. J. Chem. Phys. 2006, 125,
27 28 29 30	933	144108.
31 32 33 34	934	(48) Karton, A.; Martin, J. M. L. Explicitly correlated Wn theory: W1–F12 and W2–F12. J.
35 36 37 38	935	<i>Chem. Phys.</i> 2012 , <i>136</i> , 124114.
39 40 41	936	(49) DeYonker, N. J.; Cundari, T. R.; Wilson, A. K. The correlation consistent composite
42 43 44 45	937	approach (ccCA): An alternative to the Gaussian methods. J. Chem. Phys. 2006, 124, 114104.
46 47 48		
49 50 51		
52 53 54		
55 56 57		74
58		
59 60		ACS Paragon Plus Environment

1	
2	
3	
4	
5	
5	
7	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
_10 ⊿0	
77 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

938	(50) DeYonker, N. J.; Grimes, T. V.; Yockel, S.; Dinescu, A.; Mintz, B.; Cundari, T. R.;
939	Wilson, A. K. The correlation–consistent composite approach: Application to the G3/99 test
940	set. J. Chem. Phys. 2006, 125, 104111.
941	(51) Ho, D. S.; DeYonker, N. J.; Wilson, A. K.; Cundari, T. R. Accurate Enthalpies of
942	Formation of Alkali and Alkaline Earth Metal Oxides and Hydroxides: Assessment of the
943	Correlation Consistent Composite Approach (ccCA). J. Phys. Chem. A 2006, 110, 9767-
944	9770.
945	(52) DeYonker, N. J.; Ho, D. S.; Wilson, A. K.; Cundari, T. R. Computational s-Block
946	Thermochemistry with the Correlation Consistent Composite Approach. J. Phys. Chem. A
947	2007 , <i>111</i> , 10776–10780.
948	(53) DeYonker, N. J.; Peterson, K. A.; Steyl, G.; Wilson, A. K.; Cundari, T. R. Quantitative
949	computational thermochemistry of transition metal species. J. Phys. Chem. A 2007, 111,
950	11269–11277.
	75

(54) Grimes, T.; Wilson, A. K.; DeYonker, N. J.; Cundari, T. R. Performance of the

2	
3	
4	
5	
6	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
2J 2⊿	
24	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
77 15	
4J 46	
40	
4/	
48 40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

951

952 correlation consistent composite approach for transition states: A comparison to G3B theory. 953 J. Chem. Phys. 2007, 127, 154117. 954 (55) Miller, J. A.; Klippenstein, S. J. From the Multiple-Well Master Equation to 955 Phenomenological Rate Coefficients: Reactions on a C₃H₄ Potential Energy Surface. J. Phys. 956 Chem. A 2003, 107, 2680-2692. 957 (56) Tajti, A.; Szalay, P. G.; Császár, A. G.; Kállay, M.; Gauss, J.; Valeev, E. F.; Flowers, B. 958 A.; Vázquez, J.; Stanton, J. F. HEAT: High accuracy extrapolated ab initio thermochemistry. 959 J. Chem. Phys. 2004, 121, 11599–11613. 960 (57) Bomble, Y. J.; Vázquez, J.; Kállay, M.; Michauk, C.; Szalay, P. G.; Császár, A. G.; 961 Gauss, J.; Stanton, J. F. High-accuracy extrapolated ab initio thermochemistry. II. Minor 962 improvements to the protocol and a vital simplification. J. Chem. Phys. 2006, 125, 064108. (58) Allen, W. D.; East, A. L. L.; Császár, A. G. in Structures and Conformations of Non-963 964 Rigid Molecules, eds. Laane, J.; Dakkouri, M.; van der Veken, B.; Oberhammer, H. Kluwer: 965 Dordrecht, 1993, p. 343.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
27	
34	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
51	
52 52	
55 5/	
54	
56	
57	
58	
59	
60	
~~	

966	(59) Császár, A. G.; Allen, W. D.; Schaefer, H. F. In Pursuit of the ab Initio Limit for
967	Conformational Energy Prototypes. J. Chem. Phys. 1998, 108, 9751-9764.
968	(60) Zhao, Y.; Truhlar, D. G. The M06 suite of Density Functionals for Main Group
969	Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and
970	Transition Elements: Two New Functionals and Systematic Testing of Four M06-class
971	Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241.
972	(61) Santra, G.; Sylvetsky, N.; Martin, J. M. Minimally empirical double-hybrid functionals
973	trained against the GMTKN55 database: revDSD-PBEP86-D4, revDOD-PBE-D4, and
974	DOD–SCAN–D4. J. Phys. Chem. A 2019, 123, 5129–5143.
975	(62) Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H. R.; Truhlar, D. G. Perspectives on Basis
976	Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions. J. Chem. Theory Comput.
977	2011 , <i>7</i> , 3027–3034.
978	(63) Wang, N. X.; Wilson, A. K. Density Functional Theory Correlation Consistent Basis
979	Sets: The Tight d Effect on HSO and the HOS. J. Phys. Chem. A 2005, 109, 7187-7196.
	77

2
3
4
5
6
7
/
ð
9
10
11
12
13
14
15
16
17
18
10
19
20
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
38
39
10
40
41
42
43
44
45
46
47
48
49
50
51
57
52
55
54
55
56
57
58
59
60

980 (64) Barone, V.; Ceselin, G.; Fusé, M.; Tasinato, N. Accuracy Meets Interpretability for 981 Computational Spectroscopy by Means of Hybrid and Double-Hybrid Functionals. Frontiers 982 Chem. 2020, 8, 584203. 983 (65) Pietropolli-Charmet, A.; Ceselin, G.; Stoppa, P.; Tasinato, N. The Spectroscopic 984 Characterization of Halogenated Pollutants through the Interplay between Theory and 985 Experiment: Application to R1122. Molecules 2022, 27, 748. 986 (66) Salta, Z.; Segovia, M. E.; Katz, A.; Tasinato, N.; Barone, V.; Ventura, O. N. 987 Isomerization and Fragmentation Reactions on the [C₂SH₄] Potential Energy Surface: The 988 Metastable Thione S-Methylide Isomer. J. Org. Chem. 2021, 86, 2941–2956. 989 (67) Salta, Z.; Vega-Teijido, M.; Katz, A.; Tasinato, N.; Barone, V.; Ventura, O. N. Dipolar 990 1,3-cycloaddition of thioformaldehyde S-methylide (CH_2SCH_2) to ethylene and acetylene. 991 A comparison with (valence) isoelectronic O₃, SO₂, CH₂OO and CH₂SO. J. Comput. Chem. 992 **2022**, *43*, 1420-1433.

2	
2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
17	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
27	
52	
33	
34	
35	
36	
27	
57	
38	
39	
40	
41	
12	
42	
43	
44	
45	
46	
47	
4/	
48	
49	
50	
51	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
50	

60

993 (68) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio 994 Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements 995 H-Pu. J. Chem. Phys. 2010, 132, 154104. 996 (69) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient 997 model. J. Chem. Phys. 2017, 147, 034112. 998 (70) Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected 999 Density Functional Theory. Chem. Eur. J. 2012, 18, 9955–9964. 1000 (71) Risthaus, T.; Grimme, S. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J. Chem. Theory Comput. 1001 1002 **2013**, *9*, 1580–1591. 1003 (72) Tasinato, N.; Grimme, S. Unveiling the non-covalent interactions of molecular 1004 homodimers by dispersion-corrected DFT calculations and collision-induced broadening of ro-vibrational transitions: application to $(CH_2F_2)_2$ and $(SO_2)_2$. Phys. Chem. Chem. Phys. 1005 1006 2015, 17, 5659-5669. 79

2 3 4 5	1007	(73) Alessandrini, S.; Barone, V.; Puzzarini, C. Extension of the "Cheap" Composite
6 7 8	1008	Approach to Noncovalent Interactions: The jun-ChS Scheme. J. Chem. Theory Comput.
9 10 11 12	1009	2020 , <i>16</i> , 988–1006.
13 14 15 16	1010	(74) Barone, V.; Lupi, J.; Salta, Z.; Tasinato, N. Development and Validation of a Parameter-
17 18 19	1011	Free Model Chemistry for the Computation of Reliable Reaction Rates, J. Chem. Theory
20 21 22 23	1012	<i>Comput.</i> 2021 , <i>17</i> , 4913–4928.
24 25 26 27	1013	(75) Ventura, O. N.; Kieninger, M.; Katz, A.; Vega–Teijido, M.; Segovia, M. E.; Irving, K.
28 29 30	1014	SVECV-f12: Benchmark of a composite scheme for accurate and cost-effective evaluation
31 32 33 34	1015	of reaction barriers. Int. J. Quantum Chem. 2021, 121, e26745.
35 36 37	1016	(76) Helgaker, T.; Klopper, W.; Koch, H.; Noga, J. Basis-set convergence of correlated
38 39 40 41	1017	calculations on water. J. Chem. Phys. 1997, 106, 9639–9646.
42 43 44 45	1018	(77) Knizia, G.; Adler, T. B.; Werner, H. J. Simplified CCSD(T)–F12 methods: Theory and
46 47 48 49	1019	benchmarks. J. Chem. Phys. 2009, 130, 054104.
50 51 52		
54 55 56		80
57 58		
59 60		ACS Paragon Plus Environment

1 2		
2 3 4 5	1020	(78) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,
6 7 8	1021	J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; et al. <i>Gaussian 16</i> , revision C.01; Gaussian
9 10 11 12	1022	Incorporated: Wallingford, CT, 2016.
13 14 15	1023	(79) Werner, H. J.; Knowles, P. J.; Knizia, G. et al. MOLPRO, version 2019.2, a package of
16 17 18 19	1024	ab initio programs, 2019 .
20 21		
22 23	1025	(80) Werner, H. J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Molpro: a general-
24 25 26 27	1026	purpose quantum chemistry program package. WIREs Comput Mol Sci 2012, 2, 242–253.
28 29 30	1027	(81) Werner, H. J.; Knowles, P. J.; Manby, F. R. et al. The Molpro quantum chemistry
31 32 33 34	1028	package. J. Chem. Phys. 2020, 152, 144107.
35 36 37 38	1029	(82) Nicolaides, A.; Rauk, A.; Glukhovtsev, M. N.; Radom, L. Heats of Formation from G2,
39 40 41	1030	G2(MP2), and G2(MP2,SVP) Total Energies. J. Phys. Chem. 1996, 100, 17460–17464.
42 43 44 45 46	1031	(83) Iraqi, M.; Schwarz, H. Experimental Evidence for the Gas Phase Existence of HSOH
47 48 49	1032	(Hydrogen Thioperoxide) and SOH2 (Thiooxonium Ylide). Chem. Phys. Lett. 1994, 221,
50 51 52	1033	359–362.
53 54 55		
56 57		81
58 59		ACS Paradon Plus Environment
00		

1 2		
3 4 5	1034	(84) Denis, P. Theoretical Characterization of the HSOH, H ₂ SO and H ₂ OS Isomers. <i>Mol.</i>
6 7 8 9	1035	<i>Phys.</i> 2008 , <i>106</i> , 2557–2567.
10 11 12 13	1036	(85) Grant, D. J.; Dixon, D. A.; Francisco, J. S.; Feller, D.; Peterson, K. A. Heats of
13 14 15 16	1037	Formation of the H1,2O _m S _n (m, n = $0-3$) Molecules from Electronic Structure Calculations,
17 18 19 20	1038	J. Phys. Chem. A 2009, 113, 11343–11353.
21 22 23	1039	(86) Kumar, M. R.; Farmer, P. J. Chemical trapping and characterization of small oxoacids
24 25 26 27	1040	of sulfur (SOS) generated in aqueous oxidations of H ₂ S, <i>Redox Biol.</i> 2018, 14, 485–491.
28 29 30 31	1041	(87) Góbi, S.; Csonka, I. P.; Bazsó, G.; Tarczay, G. Successive Hydrogenation of SO and
32 33 34	1042	SO ₂ in Solid para-H ₂ : Formation of Elusive Small Oxoacids of Sulfur, ACS Earth Space
35 36 37 38	1043	<i>Chem.</i> 2021 , <i>5</i> , 1180–1195.
39 40 41 42	1044	(88) Penn, R. E.; Olsen, R. J. Microwave spectrum, centrifugal distortion, substitution
43 44 45	1045	structure, and dipole moment of sulfine, CH2SO. J. Mol. Spectr. 1976, 61, 21–28.
40 47 48 49	1046	(89) Bouchoux, G.; Salpin, J. Y. Gas-Phase Basicity and Heat of Formation of Sulfine
50 51 52 53	1047	CH ₂ =S=O. J. Am. Chem. Soc. 1996, 118, 6516–6517.
54 55 56 57		82
58 59 60		ACS Paragon Plus Environment

2 3 4	1063	(95) Nagy, B.; Szakács, P.; Csontos, J.; Rolik, Z.; Tasi, G.; Kállay, M. High-Accuracy
5 6 7 8	1064	Theoretical Thermochemistry of Atmospherically Important Sulfur–Containing Molecules,
9 10 11	1065	J. Phys. Chem. A 2011, 115, 7823–7833.
12 13 14 15	1066	(96) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; People, J. A. Assessment of Gaussian-2
16 17 18 19	1067	and density functional theories for the computation of enthalpies of formation. J. Chem. Phys.
20 21 22 23	1068	1997 , <i>106</i> , 1063–1079.
24 25 26	1069	(97) Simmie, J. M. Kinetics and Thermochemistry of 2,5-Dimethyltetrahydrofuran and
27 28 29 30	1070	Related Oxolanes: Next Next–Generation Biofuels, J. Phys. Chem. A 2012, 116, 4528–4538
31 32 33 34	1071	(98) Williams, T. G.; Wilson, A. K. Performance of the correlation-consistent composite
35 36 37	1072	approach for sulfur species. J. Sulfur Chem. 2008, 29, 353-365.
38 39 40 41	1073	(99) Ruscic, B.; Bross, D. H. Active Thermochemical Tables (ATcT) values based on ver.
42 43 44 45	1074	1.122r of the Thermochemical Network (2021); available at ATcT.anl.gov.
46 47 48		
49 50 51 52		
53 54 55		84
57 58 59		
60		ACS Paragon Plus Environment

(100) Ruscic, B.; Pinzon, R. E., Morton, M. L.; Laszewski, G. v.; Bittner, S.; Nijsure, S. G.;

ן ר	
2 3 4 5	1075
6 7 8	1076
9 10 11 12	1077
13 14 15 16	1078
17 18 19	1079
20 21 22 23	1080
24 25 26 27	1081
28 29 30	1082
31 32 33 34	1083
35 36 37	1084
38 39 40 41	1085
42 43 44 45	1086
46 47 48	1087
49 50 51 52	1088
53 54	
55 56	
57	
58 50	

60

6 Amin, K. A.; Minkoff, M.; Wagner, A. F. Introduction to Active Thermochemical Tables: 7 Several "Key" Enthalpies of Formation Revisited, J. Phys. Chem. A 2004, 108, 9979–9997. 8 (101) Ruscic, B.; Pinzon, R. E.; Laszewski, G. v.; Kodeboyina, D.; Burcat, A.; Leahy, D.; 9 Montova, D.; Wagner, A. F. Active Thermochemical Tables: Thermochemistry for the 21st 0 Century. J. Phys. Conf. Ser. 2005, 16, 561-570. (102) Ruscic, B.; Berkowitz, J., Photoionization mass spectrometry of CH2S and HCS, J. 1 2 Chem. Phys., 1993, 98, 2568-2579. 3 (103) Penocchio, E.; Piccardo, M.; Barone, V. Semiexperimental Equilibrium Structures for Building Blocks of Organic and Biological Molecules: The B2PLYP Route. J. Chem. Theory 4 5 Comput. 2015, 11, 4689-4707. 6 (104) Penocchio, E.; Mendolicchio, M.; Tasinato, N.; Barone, V. Structural features of the carbon-sulfur chemical bond: a semi-experimental perspective. Can. J. Chem. 2016, 94, 7 1065-1076. 8

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
20	
21	
22	
∠3 ⊃4	
24 25	
25	
20	
27 20	
20	
29	
30	
37	
32	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

1089	(105) Boussessi, R.; Ceselin, G.; Tasinato, N.; Barone, V. DFT meets the segmented
1090	polarization consistent basis sets: Performances in the computation of molecular structures,
1091	rotational and vibrational spectroscopic properties. J. Mol. Struct. 2020, 1208, 127886.
1092	(106) Ceselin, G.; Barone, V.; Tasinato, N. Accurate Biomolecular Structures by the Nano-
1093	LEGO Approach: Pick the Bricks and Build Your Geometry. J. Chem. Theory Comput. 2021,
1094	<i>17</i> , 7290–7311.
1095	(107) Winnewisser, G.; Lewen, F.; Thorwirth, S.; Behnke, M.; Hahn, J.; Gauss, J.; Herbst E.
1096	Gas-Phase Detection of HSOH: Synthesis by Flash Vacuum Pyrolysis of Di-tert-butyl
1097	Sulfoxide and Rotational–Torsional Spectrum. <i>Chem. Eur. J.</i> 2003, <i>9</i> , 5501–5510.
1098	(108) Baum, O.; Esser, S.; Gierse, N.; Brünken, S.; Lewen, F.; Hahn, J.; Gauss, J.;
1099	Schlemmer, S.; Giesen, T. F. Gas-phase detection of HSOD and empirical equilibrium
1100	structure of oxadisulfane. J. Mol. Struct. 2006, 795, 256–262.
1101	(109) Dalbouha, S.; Senent, M. L.; Komiha, N. Theoretical spectroscopic characterization at
1102	low temperatures of methyl hydroperoxide and three S-analogs. J. Chem. Phys. 2015, 142,
1103	074304.

1 2		
2 3 4 5	1104	(110) Penn, R. E.; Block, E.; Revelle, L. K.; Flash vacuum pyrolysis studies. 5.
6 7 8	1105	Methanesulfenic acid. J. Am. Chem. Soc. 1978, 100, 3622–3623.
9 10 11 12	1106	(111) Devarie-Baez, N. O.; Silva Lopez, E. I.; Furdui, C. M. Biological chemistry and
13 14 15 16	1107	functionality of protein sulfenic acids and related thiol modifications. Free Rad. Res. 2015,
10 17 18 19	1108	<i>50</i> , 172–194.
20 21 22 23	1109	(112) Reddy, S. G.; Wong, K. K.; Parast, C. V.; Peisach, J.; Magliozzo, R. S.; Kozarich, J.
24 25 26	1110	W. Dioxygen Inactivation of Pyruvate Formate–Lyase: EPR Evidence for the Formation of
27 28 29 30	1111	Protein–Based Sulfinyl and Peroxyl Radicals. <i>Biochem.</i> 1998, <i>37</i> , 558–563.
31 32 33 34	1112	(113) Gauld, J. W.; Eriksson, L. A. Oxidative Degradation of Pyruvate Formate-Lyase. J.
35 36 37	1113	<i>Am. Chem. Soc.</i> 2000 , <i>122</i> , 2035–2040.
38 39 40 41	1114	(114) Borissenko, D.; Kukui, A.; Laverdet, G.; Le Bras, G. Experimental Study of SO ₂
42 43 44 45	1115	Formation in the Reactions of CH_3SO Radical with NO_2 and O_3 in Relation with the
46 47 48	1116	Atmospheric Oxidation Mechanism of Dimethyl Sulfide. J. Phys. Chem. A 2003, 107, 1155-
49 50 51 52	1117	1161.
53 54 55		87
56 57 58		67
59 60		ACS Paragon Plus Environment

1	
2 3 4 5	11
6 7 8	11
9 10 11 12	11
13 14 15	11
16 17 18 19	11
20 21 22	11
23 24 25 26	11
27 28 29	11
30 31 32 33	11
34 35 36 27	11
37 38 39 40 41	11
42 43 44	11
45 46 47 48	11
49 50 51 52	11
53 54 55	11
56 57	
58 59	
60	

1118	(115) Simmie, J. M.; Würmel, J. An Organized Collection of Theoretical Gas-Phase
1119	Geometric, Spectroscopic, and Thermochemical Data of Oxygenated Hydrocarbons,
1120	CxHyOz (x, y = 1, 2; z = $1-8$), of Relevance to Atmospheric, Astrochemical, and Combustion
1121	Sciences. J. Phys. Chem. Ref. Data 2020, 49, 023102, pp. 105–106.
1122	(116) Blanksby, S. J.; Ramond, T. M.; Davico, G. E.; Nimlos, M. R.; Kato, S.; Bierbaum, V.
1123	M.; Lineberger, C.; Ellison, G. B., Okumura, M. Negative–Ion Photoelectron Spectroscopy,
1124	Gas-Phase Acidity, and Thermochemistry of the Peroxyl Radicals CH3OO and
1125	CH3CH2OO. J. Am. Chem. Soc. 2001 123, 9585–9596.
1126	(117) Gurvich, L.V.; Veyts, I. V.; Alcock, C. B., Thermodynamic Properties of Individual
1127	Substances, Fouth Edition, Hemisphere Pub. Co., New York, 1989.
1128	(118) Denis, P. A. The enthalpy of formation of the HSO radical revisited, <i>Chem. Phys. Lett.</i>
1129	2005 , <i>402</i> , 289–293.
1130	(119) Balucani, N.; Stranges, D.; Casavecchia, P.; Volpi, G. G. Crossed beam studies of the
1131	reactions of atomic oxygen in the ground ${}^{3}P$ and first electronically excited ${}^{1}D$ states with
1132	hydrogen sulfide, J. Chem. Phys. 2004, 120, 9571–9582.
	88

2 3 4	1133	(120) Bise, R. T.; Choi, H.; Pedersen, H. B.; Mordaunt, D. H.; Neumark, D. M.
5 6 7 8	1134	Photodissociation spectroscopy and dynamics of the methylthio radical (CH ₃ S). J. Chem.
9 10 11 12	1135	<i>Phys.</i> 1999 , <i>110</i> , 805–816.
13 14 15	1136	(121) Hynes, A. J.; Wine, P. H. Kinetics and mechanism of the Oxidation of Gaseous Sulfur
16 17 18 19	1137	Compounds, in W.C. Gardiner (Ed.), Gas-phase Combustion Chemistry, Springer, New
20 21 22 23	1138	York 1999 , Chapter 3, pp 343–388.
24 25 26	1139	(122) Colussi, A. J.; Benson, S. W. The very low-pressure pyrolysis of phenyl methyl sulfide
27 28 29 30	1140	and benzyl methyl sulfide. The enthalpy of formation of the methylthio and phenylthiol
31 32 33 34	1141	radicals, Int. J. Chem. Kinet. 1977, 9, 295–306.
35 36 37	1142	(123) Nobes, R. H.; Radom, L. The thermochemistry of the mercaptomethyl (CH_2SH_+) and
38 39 40 41	1143	thiomethoxy (CH ₃ S+) cations: a comparison of G2 theory and experiment. <i>Chem. Phys. Lett.</i>
42 43 44	1144	1992 , <i>189</i> , 554–559.
45 46 47 48	1145	(124) Resende, S. M.; Ornellas, F. R. Thermochemistry of atmospheric sulfur compounds.
49 50 51 52	1146	Chem. Phys. Lett. 2003, 367, 489–494.
53 54 55		20
56 57 58 59		89
60		ACS Paragon Plus Environment

2 3 4	1147	(125) Reisenauer, H. P.; Romański, J.; Mlostoń, G.; Schreiner, P. R. Reactions of the
5 6 7	1148	methylsulfinyl radical (CH ₂ (O)S [']) with oxygen ($^{3}O_{2}$) in solid argon <i>Chem Commun</i> 2015
8 9	1140	ineuryisunniyi radical (CI13(O)S) with oxygen (O ₂) in solid argon. Chem. Commun. 2013,
10 11 12 13	1149	<i>51</i> , 10022–10025.
14 15 16 17	1150	(126) Estep, M. L.; Schaeffer III, H. F. The methylsulfinyl radical CH ₃ SO examined. <i>Phys.</i>
18 19 20	1151	Chem. Chem. Phys. 2016, 18, 22293–22299.
22 23 24	1152	(127) Ramphal, I. A.; Lee, C.; Neumark, D. M. Photodissociation dynamics of the
25 26 27 28	1153	methylsulfinyl radical at 248 nm. Mol. Phys. 2019, 117, 3043–3055.
29 30 31 32	1154	(128) Wu, Z.; Wang, L.; Lu, B.; Eckhardt, A. K.; Schreiner, P. R.; Zeng, X. Spectroscopic
33 34 35	1155	characterization and photochemistry of the vinylsulfinyl radical. Phys. Chem. Chem. Phys.
36 37 38 39	1156	2021 , <i>23</i> , 16307.
40 41 42	1157	(129) Bordwel, F. G.; Zhang, X–M, Satish, a. V.; Cheng, J.–P Assesment of the importance
43 44 45 46	1158	of Changes in the Ground_State Energies of the Bond Dissociation Enthalpies of the O-H
47 48 49	1159	bond in Phenols and the S-H Bonds in Thiophenols. J. Am. Chem. Soc. 1994, 116, 6605-
50 51 52 53 54	1160	6610.
55 56 57 58		90
59 60		ACS Paragon Plus Environment

1 2	
2 3 4 5	1161
6 7 8	1162
9 10 11 12	1163
13 14 15	
16 17 18	
19 20 21	
21 22 23	
24 25 26	
27 28 29	
30 31 32	
33 34 35	
36 37 38	
39 40 41	
42 43 44	
45 46 47	
48 49 50	
51 52 53	

82x44mm (300 x 300 DPI)