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We address some general issues related to torsion and Noether currents for Fermi fields in the presence
of boundaries, with emphasis on the conditions that guarantee charge conservation. We also describe
exact solutions of these boundary conditions and some implications for string vacua with broken
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1. Introduction

String compactifications have been widely explored during the
last decades, but almost exclusively with closed internal man-
ifolds [1], so that the boundary conditions needed for Fermi
fields when the manifold has a border have received little at-
tention. Two notable exceptions are the Neveu-Schwarz-Ramond
(NSR) open string [2] and the Horava-Witten link [3] between the
Eg x Eg heterotic string and the Cremmer-Julia-Scherk [4] eleven-
dimensional form of Supergravity [5]. Boundaries, however, have
played so far a prominent role in vacuum configurations for orien-
tifolds [6] with “brane supersymmetry breaking” [7,8], whose pro-
totype is the nine-dimensional Dudas-Mourad solution of [9]. This
involves regions of strong coupling, but is classically stable [10]
and the tension from branes and orientifolds, which signals the
breaking of supersymmetry, renders the length of its internal in-
terval finite. This compactification also concerns the U(32) non-
supersymmetric orientifold of [11], while a variant [9] applies to
the non-supersymmetric heterotic model of [12]. These examples
motivate, in our view, a closer look at their Fermi fields.

For definiteness, we choose a coordinate system such that the
boundary .M of the D-dimensional manifold M lies at r =0 and
the metric takes nearby the form

ds? = gMNdxM dxN = grrdr2 + dszl. (1.1)

The variation of the Dirac action for a spinor A yields boundary
terms, which can be removed provided'
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(hyTor—8ay"2) [, 0 = 0. (1.2)
Any boundary condition
(1 — M)Al =0, (1.3)

with a Hermitian matrix A such that

{A, yoyr] =0 (1.4)

solves eq. (1.2). Different choices are possible, however, depend-
ing on the symmetries to be preserved: for example, A = " and
A =1iy? are two solutions, and there are more options. One of our
aims is to connect the allowed choices of A to the conservation of
Noether Killing charges.

In Sections 2 and 3 we discuss the matter and gravity Bianchi
identities related to diffeomorphisms and local Lorentz symme-
tries, taking into account that the back-reaction of Fermi fields
includes in general the emergence of torsion. In Section 4 we
connect diffeomorphisms and local Lorentz Bianchi identities to
Noether Killing currents for global isometries, whose normal com-
ponents should vanish on the boundary d.M to grant charge con-
servation. This places further constraints on A, which we explore
in Section 5 with an eye to string models with broken supersym-
metry.

A =1,

2. Bianchi identities and Bose fields

Let us begin by reviewing briefly the behavior of Bose fields
with reference to the simplest case, a real scalar ¢. If the metric
takes the form (1.1) near the boundary dM of a D-dimensional
manifold M, the variation of the standard kinetic term yields the
boundary condition

8¢ drplgpm = 0, (21)
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which is solved by the familiar Neumann (d-¢p = 0) or Dirichlet
(8¢ = 0) choices. Notice that the latter only implies that ¢ is a
fixed function on 9 M. Similar remarks apply to forms and to the
metric tensor, up to Gibbons-Hawking terms [13].

Let us now explore whether eq. (2.1) suffices to guarantee
the conservation of Noether Killing charges, which are built from
symmetric energy-momentum tensors TMN defined via the metric
variations

8Sm = /dea/—g sgmn TN . (2.2)
M

A consistent coupling to gravity demands that §S vanish for the
metric variations

5gun = Dmén + Dnén, (2.3)

which describe the effect of diffeomorphisms §x™ = £ when
keeping fixed the coordinates in fields, and with &M of local sup-
port a partial integration leads to the Bianchi identity

DuyTMN = 0. (2.4)

Continuous symmetries of gyn are generated by Killing vectors
M solutions of (2.3) with 8gyn =0, and lead to the covariantly
conserved Noether currents

JM = TMN ¢y (2.5)

The combinations /—g J satisfy the ordinary conservations law
oM («/—g JM) =0, and in the absence of a boundary the charges
Q (t), which we write for brevity in the form

Q@) = /de(S(xo—t)«/—g T, (2.6)
M

are conserved. However, when M has a boundary o.M

dQ(t) dD_l)((S(XO_t)\/__gjra (27)

e
IM

and the condition

jr‘aM = TrN§N|aM =0, (2.8)

is needed to prevent charge flow across the boundary. It involves
off-diagonal components of the energy-momentum tensor since
¢" should vanish on 3. M in order not to affect it. For the bosonic
actions of interest, the boundary conditions like (2.1) that emerge
from the equations of motion must be supplemented in general
by eq. (2.8). For instance, Killing translation symmetries on d.M
require for a Dirichlet scalar ¢ that

tMomel,, =0, (2.9)

whereas for a Neumann scalar eq. (2.8) is identically satisfied.
3. Bianchi identities and Fermi fields

When Fermi fields are present, local Lorentz transformations
also acquire a key role, and there are consequently a few novel-
ties. The metric tensor leaves way to the vielbein ey” and the
spin connection w8, while the variation of the matter action,

§Sm = /dee [(SeMA TMa + Syt yMAB] , (3.1)
M

now defines generally a non-symmetric energy-momentum tensor
TM, and a new tensor Y 4z. In the following, early Latin labels
describe flat indices, while late Latin labels describe curved ones.
The vielbein is covariantly constant,

B

Duen® = duen® + wn®eng — MPynep? =0, (3.2)

and this condition defines the I'"y;y, whose antisymmetric part

SPun = TPun — TPym (3.3)
is the torsion tensor.

A local Lorentz transformation with parameters €48 = — B4
acts as
5€MA — B evB , 5wMAB = —Dy eAB (3.4)

Rephrasing the argument reviewed for Bose fields, eq. (3.1) yields
88n = /dee [eAB emp T4 — Dy e® yMAB] ) (3.5)
and after a partial integration one obtains the Bianchi identity

1
DudMag — SPpmIMap = 5(7743 — Tsa) . (3.6)

This step entails a small subtlety, since in the presence of torsion

the covariant derivative of a vector VM, equal to eA8YM 45 in this
case, does not lead to a total derivative, but
1
DuVM = sMyunvN + ~ oy (e vM) . (3.7)
e

Up to a local Lorentz rotation, diffeomorphisms act on ey and
AB
wy™? as

AB

Sy = — Ryn B eV

sem? = Due? — shyneV,

k]

(3.8)
when keeping fixed the coordinates in fields, where we define the

Riemann tensor, following the conventions in [17], as

AB AC AC

Run® =y on™® — dyom™® + on“ onc® — onC onc®
=ePBe4 (anTPuq — amTPng
+ IMPNrTRuq — TPMrTRNg) (3.9)
Resorting again to (3.7), a partial integration now leads to a second
Bianchi identity,
DuTMy + SPunTVp — SPpm TN = — Run™® YMys .
(3.10)

For a spin—% Fermi field A the Hermitian Dirac action

Sm = —é/d”xe[XyMDMA—DMXny] (3.11)
determines

T™, = ;;[XJ/MDAA _ DAXyMk] ,

IMup = — %)_\VABC)LE'MC, (3.12)

where we have kept in 7 only terms that do not vanish on
shell. The boundary condition is now eq. (1.2), and in this case
Y is totally antisymmetric, so that the traces SM ;4 are absent in
egs. (3.6), (3.7) and (3.10). However, they play a role for a spin—%
Fermi field vy, since the Hermitian Rarita-Schwinger action
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i _ _
Sm = — 3 /dee [WM yMNP Dy wp — Dy g y MNP lﬁp]
(3.13)

determines

i - _
TMy= - [DA InyMNP Y — g MNP D yp ] ,

\S]

i - ic- -
yMAB — Z 1/fN J/MNPAB 1#1’ _ Z[lpAyM 1/jB + wN 7/N WA EMB

+9 Y yp et — (A< B)], (3.14)
and consequently
D-2) /- B}
M =i O (Mt - M) 319)

In 7 we have kept again only terms that do not vanish on shell,
and the counterpart of the boundary conditions (1.2) and (2.1) is
now

(ELM yMPsyp — Sy yMT WP)‘ =0

» (3.16)

In a similar fashion, varying the vielbein and the spin connec-
tion in the Einstein-Hilbert action

1
SEH = — /dDXE(?MAeNB RMNAB (3.17)
2k?
M
yields
1
§Spy = — p/dee[ﬁwNABGNAB + sem” GMA] ., (3.18)
M
where

1
GMA = (EMCePA — geMAePc>eQDRCDpQ

1
=RM, — ieMAR (3.19)
is generally a non-symmetric Einstein tensor, and
1 1
ONap = — 3 <SPPA eNg — STpp eNA> —3 SNap.  (3.20)

Retracing the preceding arguments leads to the Bianchi identities

1
DyOMap — SPpy@Mp = i(GAB — Gga) ,
DuGMy 4+ SPunGMp — SPpm GMy = — @M 45 Run?E
(3.21)

that reflect the invariance of the Einstein-Hilbert Lagrangian under
local Lorentz transformations and diffeomorphisms, while putting
together matter and gravity sectors leads to the equations of mo-
tion

OMup = 2k2 YMyp,

GM,y = 2K27TM, (3.22)

which are manifestly compatible with the Bianchi identities of
egs. (3.6), (3.10) and (3.21). Notice, finally, that egs. (3.21) would
follow directly from the Bianchi identities for the Riemann tensor,
R[MNP]A = Diu SANPJ — SRiun SAPJR,
Dim Rnpi 8 = SRiun Rpir?E (3.23)

here expressed in terms of covariant derivatives including the tor-
sion contribution, under which the vielbein is covariantly constant.

4. Killing vectors and Fermi fields

In the presence of Fermi fields, continuous symmetries and
Killing vectors are to be defined with reference to diffeomor-
phisms, with parameters ¢™, and local Lorentz rotations, with
parameters §48, whose combined effects leave both e and w in-
variant. These two conditions read

Sem = Due? — ShuneN + 628 enp = 0,
3a)MABE—RMNAB§N —~ Dyo*t =0, (41)

and the first determines

QAB — DA {B _ SBAch, (42)

while the antisymmetry of 648 translates into the modified Killing
equation

DmiN + Dnim = (SMNP + SNMP) Zp . (4.3)

Moreover, using eq. (4.2), the second of egs. (4.1) can be cast in
the form

Dy Datp = (DM SBAN) N
+ Sga" Dmin — Runas¢" . (44)

which generalizes the usual result for the second derivatives of
Killing vectors.

Noether currents should now satisfy the modified conservation
laws
Dy JIM — sMyngN =0, (4.5)
a subtlety whose origin we already highlighted in eq. (3.7). Given
a Killing vector ¢# solving eq. (4.3), one can indeed verify that

TN = Ty eN — M apohP (4.6)
with 648 given by eq. (4.2), satisfies the modified conservation
law (4.5). To this end, notice that the Bianchi identities of egs. (3.6)
and (3.10) give
Dy M — SPpu M =— (SPMNTMP + Run"® yMAB) N
+ T8 (Datp — 0ag) — Y as DM 0"8
(4.7)

while using the definition of §48 this expression reduces to

DuJIM — sPpygM=—YMup (RMNABKN + DMQAB) ,
(4.8)

whose right-hand side vanishes on account of the second of
egs. (4.1). Repeating considerations made in Section 2 one can now
conclude that, if the modified conservation laws (4.5) are supple-
mented by the boundary conditions

Ty = 0. (49)

the corresponding charges are conserved even in the presence of a
boundary a M.
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5. Lower-dimensional spinors from an interval

In [14] we shall explore families of D-dimensional warped
metrics of the type

ds? = e?B0dr? 4 A0 g, (x)dx* dx” + e*D gii(y)dy'dy’
(51)

where g, is typically a Minkowski metric 7,, of dimension d
and g;;, the metric of an internal compact space of dimension N,
is typically §;;. Examples of this type were also recently described
in [15], and a wide portion of these solutions involve, just as the
ones in [9], r-intervals of finite length. When g,, and g;; are flat
metrics, the relevant Killing symmetries are translations in space-
time and along an internal torus, together with spacetime Lorentz
rotations. The former correspond to constant £ or ¢!, so that

TV = TM et + T (52)

while the latter correspond to ¢# = 6HVx,, with constant anti-
symmetric 6", so that

IM = TM, 0% x, — M, 017 (5.3)

For the currents in eqs. (5.2) and (5.3), the conditions in eq. (4.9)
therefore demand that
T T r
Tulame =00 Tlilia =00 Yuwlyp =0 (54)
For a spin—% fermion, 7 and ) are given in eq. (3.12), and the
first two sets of conditions are implied by eqgs. (1.3) and (1.4). The
last set puts on A the additional constraints

AY Vv |y =0, (5.5)

which are also solved by a matrix A in egs. (1.3) and (1.4), pro-
vided

[A,yw] = 0. (5.6)

In settings of interest for Supergravity and String Theory, A is often
subject to further restrictions. If the dimension D of M is even
and X is a Weyl spinor, one should demand that

[A,v] =0, (5.7)

where y, is the chirality matrix of M, while if A is a Majorana
spinor one should demand that

CTATC = —p0A 90, (5.8)

where C is the charge-conjugation matrix of M. When D is
odd, with no other internal manifold, the choice A = y", which
rests on the chirality matrix of .M, satisfies eqs. (1.3), (1.4), (5.8)
and commutes with all spacetime Lorentz generators of d M. This
case is central to the Horava-Witten construction [3]. When D
is even, similar settings obtain with non-chiral spinors. For ex-
ample, in type-IIA supergravity the choice A = y', used in [16],
respects all Lorentz symmetries in nine dimensions while connect-
ing the two chiralities on d.M, and the Neveu-Schwarz-Ramond
open string [2] was a first example of this type. The situation be-
comes less conventional when starting from chiral spinors, which
is the case for the solutions in [9]. Now the choice A =y vi-
olates the Weyl constraint (5.7), so that no solutions exist that
respect the whole nine-dimensional Lorentz symmetry. However,
when a compact internal manifold is also present, the Weyl con-
straint can be solved combining " with an odd number of internal

y’s, and a first option also compatible with the Majorana con-
straint (5.8), as needed in [9], is A = y6y7y8y". It respects the
six-dimensional Lorentz group, which suffices when Z combines
with a three-torus.

In general, in D-dimensional spacetimes of “mostly plus”

Minkowski signature,

(i) "T" A p—o,....D, (5.9)

with D =D if D is even or D =’V if D is odd, are a basis for

2[%] X 2[%] matrices. The matrices in eq (5.9) are self-adjoint and
square to one when all A; # 0, and otherwise they are self-adjoint
and square to one when multiplied by i. One can distinguish the
two sets

(l) n(n;—l) yrh,..

: .. (mid=1)(m+d) 1\ :
.in and 1(1)72 yOl‘..(d 1iq,...im ,

(5.10)

with n < min(N,D — 1) and m + d < min(N + d, D), which we
call n-type and m-type matrices, all of which satisfy the con-
straints (1.4). When D is even, one can also start from a Weyl
fermion, but eq. (5.7) then demands that n+ 1 andfor m +d be
even. Moreover, when D = 2,3,4 modulo 8, the Majorana con-
straint is possible, and eq. (5.8) then demands that n =0,3,4,7
modulo 8 or m+d =2, 3,6,7 modulo 8. Alternatively, when D =
2,8,9 modulo 8 the pseudo-Majorana constraint is possible and
allows the same options. Finally, when D =2 modulo 8 the Weyl-
Majorana constraint is possible [20], and eq. (5.8) then demands
that n =3, 7 modulo 8 or m+d =2, 6 modulo 8. In particular, the
example given above eq. (5.9) rests on an n-type A with n=3. In
conclusion, when starting in D = 11 with a Majorana spinor, there
are n-type A's with n =0, 3,4, and m-type A’s with m+d =2, 3,
because D = 5. Moreover, when starting in D = 10 with a Weyl
spinor, there are n-type A’s with n odd and m-type A’s with
m + d even. Finally, when starting in D = 10 with a Majorana-
Weyl spinor, there are n-type A’s with n =3,7 and m-type A’s
with m+d = 2, 6. These solutions are compatible with the Lorentz
symmetry in six or fewer dimensions.

A gravitino vy, contains lower-dimensional spin—% modes ¥,
in its space-time components, which are selected by the additional
constraint

Yy =0, (5.11)

to which the preceding considerations apply almost verbatim.
1

There are also internal spin-5 components that mix, in general,
with other spinor modes. For example, the internal component
of a Majorana-Weyl gravitino in nine dimensions yields a spinor
of chirality opposite to the one present in the ten-dimensional
(1,0) supergravity multiplet. The two build a Majorana spinor, so
that at the ends of Z one can relate them with A = ", but the
other Fermi modes of the Sugimoto model [7] do not satisfy the
boundary conditions (1.3) compatibly with the full Lorentz sym-
metry of more than six non-compact dimensions. Notice, finally,
that different choices of A at the two ends of Z could be used, in
general [18], to induce Scherk-Schwarz deformations [19].

These considerations have counterparts in AdS»,, which have a
boundary at infinity, so that, in view of the preceding discussion,
chiral fermions are not compatible with their isometries. The chiral
limit of a massive fermion propagator is indeed singular in AdS4,
while the order parameter () acquires a vacuum value inversely
proportional to the AdS radius [21].



J. Mourad, A. Sagnotti / Physics Letters B 804 (2020) 135368 5

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

We are grateful to Sergio Ferrara for a stimulating discussion.
AS was supported in part by Scuola Normale, by INFN (IS GSS-Pi)
and by the MIUR-PRIN contract 2017CC72MK_003. JM is grateful
to Scuola Normale Superiore for the kind hospitality, while AS is
grateful to U. Paris VII and DESY-Hamburg for the kind hospitality,
and to the Alexander von Humboldt Foundation for the generous
support, while this work was in progress.

References

[1] For reviews see: M.B. Green, J.H. Schwarz, E. Witten, Superstring Theory, vol. 2,
Cambridge Univ. Press, Cambridge, UK, 1987;
J. Polchinski, String Theory, vol. 2, Cambridge Univ. Press, Cambridge, UK, 1998;
C.V. Johnson, D-Branes, Cambridge Univ. Press, USA, 2003, p. 548;
B. Zwiebach, A First Course in String Theory, Cambridge Univ. Press, Cambridge,
UK, 2004;
K. Becker, M. Becker, J.H. Schwarz, String Theory and M-Theory: A Modern In-
troduction, Cambridge Univ. Press, Cambridge, UK, 2007;
E. Kiritsis, String Theory in a Nutshell, Princeton Univ. Press, Princeton, NJ,
2007.

[2] A. Neveu, ]J.H. Schwarz, Nucl. Phys. B 31 (1971) 86;
P. Ramond, Phys. Rev. D 3 (1971) 2415.

[3] P. Horava, E. Witten, Nucl. Phys. B 460 (1996) 506, arXiv:hep-th/9510209;
P. Horava, E. Witten, Nucl. Phys. B 475 (1996) 94, arXiv:hep-th/9603142.

[4] E. Cremmer, B. Julia, J. Scherk, Phys. Lett. B 76 (1978) 409.

[5] D.Z. Freedman, P. van Nieuwenhuizen, S. Ferrara, Phys. Rev. D 13 (1976) 3214;
S. Deser, B. Zumino, Phys. Lett. B 62 (1976) 335;
For a recent review see: D.Z. Freedman, A. Van Proeyen, Cambridge Univ. Press,
Cambridge, UK, 2012, p. 607.

[6] A. Sagnotti, Non-perturbative quantum field theory, in: G. Mack, et al. (Eds.),
Cargese '87, Pergamon Press, 1988, p. 521, arXiv:hep-th/0208020;
G. Pradisi, A. Sagnotti, Phys. Lett. B 216 (1989) 59;

P. Horava, Nucl. Phys. B 327 (1989) 461;

P. Horava, Phys. Lett. B 231 (1989) 251;

M. Bianchi, A. Sagnotti, Phys. Lett. B 247 (1990) 517

M. Bianchi, A. Sagnotti, Nucl. Phys. B 361 (1991) 519;

M. Bianchi, G. Pradisi, A. Sagnotti, Nucl. Phys. B 376 (1992) 365;

A. Sagnotti, Phys. Lett. B 294 (1992) 196, arXiv:hep-th/9210127;

For reviews see: E. Dudas, Class. Quantum Gravity 17 (2000) R41, arXiv:hep-
ph/0006190;

C. Angelantonj, A. Sagnotti, Phys. Rep. 371 (2002) 1;

C. Angelantonj, A. Sagnotti, Phys. Rep. 376 (2003) 339 (Erratum), arXiv:hep-th/
0204089/0204089.

[7] S. Sugimoto, Prog. Theor. Phys. 102 (1999) 685, arXiv:hep-th/9905159;
I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464 (1999) 38, arXiv:hep-th/
9908023;
C. Angelantonj, Nucl. Phys. B 566 (2000) 126, arXiv:hep-th/9908064;
G. Aldazabal, A.M. Uranga, ]. High Energy Phys. 9910 (1999) 024, arXiv:hep-th/
9908072;
C. Angelantonj, I. Antoniadis, G. D’Appollonio, E. Dudas, A. Sagnotti, Nucl. Phys.
B 572 (2000) 36, arXiv:hep-th/9911081.

[8] E. Dudas, ]. Mourad, Phys. Lett. B 514 (2001) 173, arXiv:hep-th/0012071;

G. Pradisi, F. Riccioni, Nucl. Phys. B 615 (2001) 33, arXiv:hep-th/0107090;
N. Kitazawa, J. High Energy Phys. 1804 (2018) 081, arXiv:1802.03088 [hep-th].
[9] E. Dudas, J. Mourad, Phys. Lett. B 486 (2000) 172, arXiv:hep-th/0004165.

[10] I. Basile, J. Mourad, A. Sagnotti, ]J. High Energy Phys. 1901 (2019) 174, arXiv:
1811.11448 [hep-th].

[11] A. Sagnotti, arXiv:hep-th/9509080, Nucl. Phys. B, Proc. Suppl. 56 (1997) 332,
arXiv:hep-th/9702093;
For a review see: ]. Mourad, A. Sagnotti, arXiv:1711.11494 [hep-th].

[12] LJ. Dixon, J.A. Harvey, Nucl. Phys. B 274 (1986) 93;
L. Alvarez-Gaume, PH. Ginsparg, G.W. Moore, C. Vafa, Phys. Lett. B 171 (1986)
155.

[13] G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15 (1977) 2752.

[14] J. Mourad, A. Sagnotti, in preparation.

[15] R. Antonelli, I. Basile, J. High Energy Phys. 1911 (2019) 021, arXiv:1908.04352
[hep-th].

[16] J. Polchinski, E. Witten, Nucl. Phys. B 460 (1996) 525, arXiv:hep-th/9510169.

[17] R.M. Wald, General Relativity, Univ. of Chicago Press, Chicago, 1984.

[18] E. Dudas, C. Grojean, Nucl. Phys. B 507 (1997) 553, arXiv:hep-th/9704177;
E. Dudas, C. Grojean, Nucl. Phys. Proc. Suppl. 62 (1998) 321.

[19] J. Scherk, ].H. Schwarz, Nucl. Phys. B 153 (1979) 61;
E. Cremmer, J. Scherk, J.H. Schwarz, Phys. Lett. B 84 (1979) 83.

[20] F. Gliozzi, ]. Scherk, D.I. Olive, Nucl. Phys. B 122 (1977) 253.

[21] B. Allen, C.A. Lutken, Commun. Math. Phys. 106 (1986) 201.


http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s4
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s4
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s5
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s5
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s6
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib6BB038850338C3F9BABB7DA8A2D10EB8s6
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibA4D2477C8462DE217A1F328426DB1B5As1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibA4D2477C8462DE217A1F328426DB1B5As2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib4BD2241A3A809D3CC2BB28E951CC183As1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib4BD2241A3A809D3CC2BB28E951CC183As2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD33E245249FA301DA97EFC7055DB71F2s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibF6703FC7E5D3BABE963CB883659DB935s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibF6703FC7E5D3BABE963CB883659DB935s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibF6703FC7E5D3BABE963CB883659DB935s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibF6703FC7E5D3BABE963CB883659DB935s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s4
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s5
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s6
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s7
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s8
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s9
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s9
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s10
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s11
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib47349EC82DB49E856F534203DFC748B9s11
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s4
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s4
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s5
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD318FD5062373CA1B12D05AC9DC0F9A6s5
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib5811497559EF71F5A415D0679ED30496s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib5811497559EF71F5A415D0679ED30496s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib5811497559EF71F5A415D0679ED30496s3
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibE4C5E131150C5A04FC41303A1A64B1BCs1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib71BAA0B71725058671C6E86CA7F06181s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib71BAA0B71725058671C6E86CA7F06181s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib1690C63837E205AE5044E60601E91C9Ds1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib1690C63837E205AE5044E60601E91C9Ds1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib1690C63837E205AE5044E60601E91C9Ds2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibCD1F625CAC5B67DDB909135C87DE9785s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibCD1F625CAC5B67DDB909135C87DE9785s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibCD1F625CAC5B67DDB909135C87DE9785s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib19B19FFC30CAEF1C9376CD2982992A59s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib187EF4436122D1CC2F40DC2B92F0EBA0s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib187EF4436122D1CC2F40DC2B92F0EBA0s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib8FE4C11451281C094A6578E6DDBF5EEDs1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bibD86F0ABD633E6E9B67AC7FA574E258B4s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib40D73A96851E7F8B3102C5137320FD46s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib40D73A96851E7F8B3102C5137320FD46s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib3691308F2A4C2F6983F2880D32E29C84s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib3691308F2A4C2F6983F2880D32E29C84s2
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib96F70DBEF1131B89B5C668717D3E79C1s1
http://refhub.elsevier.com/S0370-2693(20)30172-6/bib9077B33123D58A39F3BAEB9B431EF095s1

	On boundaries, charges and Fermi fields
	1 Introduction
	2 Bianchi identities and Bose fields
	3 Bianchi identities and Fermi fields
	4 Killing vectors and Fermi fields
	5 Lower--dimensional spinors from an interval
	Acknowledgements
	References


