PROCEEDINGS OF SCIENCE

Improved determination of $|V_{us}|$ with au decays

Alberto Lusiani*[†]

Scuola Normale Superiore and INFN, sezione di Pisa E-mail: alberto.lusiani@pi.infn.it

 $|V_{us}|$ is computed using the exclusive τ lepton branching fractions $\mathscr{B}(\tau^- \to K^- \nu_{\tau})$ and $\mathscr{B}(\tau^- \to \pi^- \nu_{\tau})$ and using the inclusive τ branching fraction to all "strange" final states, $\mathscr{B}(\tau^- \to X_s^- \nu_{\tau})$, computed as the sum of all the relevant exclusive branching fractions. Assuming the Standard Model, the kaon branching fractions measurements $\mathscr{B}(K^+ \to \ell^+ \nu_{\ell})$ and $\mathscr{B}(K^+ \to \ell^+ \pi^0 \nu_{\ell})$ with $\ell = e, \mu$ are used to improve the experimental determination of $\mathscr{B}(\tau^- \to X_s^- \nu_{\tau})$ and $|V_{us}|$.

European Physical Society Conference on High Energy Physics - EPS-HEP2019 -10-17 July, 2019 Ghent, Belgium

*Speaker. [†]On behalf of the HFLAV-Tau group.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

 $|V_{us}|$ determinations using τ measurements provide additional experimental information to the precise evaluations based on kaon measurements and lattice QCD estimates of form factors and decay constants. When the total branching fraction of the τ decaying to final states with strangeness $[\mathscr{B}(\tau \to X_s v) \text{ or } \mathscr{B}_s]$ is used, $|V_{us}|$ can be computed without using lattice QCD results and therefore free of the related systematic uncertainties. \mathscr{B}_s is computed as the sum of all exclusive τ branching fractions into any strange final state. Its precision can be improved by using kaon measurements to predict some τ branching fraction [1], obtaining the most precise measurement of $|V_{us}|$ that is independent of lattice QCD techniques.

The τ branching fractions obtained in the HFLAV 2018 global fit of τ measurements [2] are used. That fit includes recent measurements made public by BABAR in 2018 [3, 4, 5].

2. $|V_{us}|$ determinations

We compute $|V_{us}|_{\tau s}$ using the total branching fraction of the τ to strange final states, \mathscr{B}_s , following Ref. [6]:

$$|V_{us}|_{\tau s} = \sqrt{R_s / \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}}\right]} = 0.2195 \pm 0.0019 ,$$

where $|V_{ud}| = 0.97420 \pm 0.00021$ [7], $R_s = \Gamma_s / \Gamma_e^{\text{uni}} = \mathscr{B}_s / \mathscr{B}_e^{\text{uni}}$, $R_{\text{VA}} = \Gamma_{\text{VA}} / \Gamma_e^{\text{uni}} = \mathscr{B}_{\text{VA}} / \mathscr{B}_e^{\text{uni}}$, \mathscr{B}_{VA} is the inclusive τ branching fraction to non-strange final states, $\mathscr{B}_e^{\text{uni}}$ is the universalityimproved branching fraction $\mathscr{B}(\tau \to ev\bar{v}) = \mathscr{B}_e^{\text{uni}} = (17.814 \pm 0.022)\%$ [8, 9], and the SU(3)breaking term $\delta R_{\text{theory}} = 0.242 \pm 0.033$ is computed using inputs from Ref. [6] and $m_s = (95.00 \pm 6.70)$ MeV [10] (the uncertainties on m_s have been symmetrized).

We compute $|V_{us}|$ using the ratio $\mathscr{B}(\tau \to K\nu)/\mathscr{B}(\tau \to \pi\nu)$ as

$$|V_{us}|_{\tau K/\pi} = |V_{ud}| \frac{f_{\pi\pm}}{f_{K\pm}} \frac{m_{\tau}^2 - m_{\pi}^2}{m_{\tau}^2 - m_K^2} \sqrt{\frac{\mathscr{B}(\tau^- \to K^- \nu_{\tau})}{\mathscr{B}(\tau^- \to \pi^- \nu_{\tau})}} \frac{R_{\tau/\pi}}{R_{\tau/K}} \frac{1}{R_{\tau K/\tau \pi}} = 0.2236 \pm 0.0015 \; ,$$

where $f_{K\pm}/f_{\pi\pm} = 1.1932 \pm 0.0019$ from the FLAG 2019 lattice QCD averages with $N_f = 2 + 1 + 1$ [11, 12, 13, 14]. The radiative correction terms are $R_{\tau/K} = 1 + (0.90 \pm 0.22)\%$, $R_{\tau/\pi} = 1 + (0.16 \pm 0.14)\%$ [15, 16, 17, 18], $R_{\tau K/\tau\pi} = 1 + (-0.69 \pm 0.17)\%$ [19, 20, 21]. The other parameters are taken from the Review of Particle Physics (RPP) 2018 [10].

We compute $|V_{us}|$ using $\mathscr{B}(\tau \to K\nu)$ as

$$|V_{us}|_{\tau K} = \sqrt{\frac{\mathscr{B}(\tau^- \to K^- \nu_{\tau})}{f_{K\pm}^2 \tau_{\tau} m_{\tau}^3}} \frac{16\pi\hbar}{G_F^2} \frac{m_{\tau}^2}{m_{\tau}^2 - m_K^2} \frac{1}{R_{\tau/K} R_{K\mu 2}}} = 0.2234 \pm 0.0015 ,$$

where $f_{K\pm} = 155.7 \pm 0.3$ MeV from the FLAG 2019 lattice QCD averages with $N_f = 2 + 1 + 1$ [11, 12, 22, 13], $R_{\tau/K} = 1 + (0.90 \pm 0.22)\%$ [15, 16, 17, 18] and $R_{K\mu2} = 1 + (1.07 \pm 0.21)\%$ [20, 23, 24], which includes short and long-distance radiative corrections. The physical constants have been taken from RPP 2018 (which uses CODATA 2014 [25]).

The average of the three $|V_{us}|$ determinations is $|V_{us}|_{\tau} = 0.2221 \pm 0.0013$. All correlations documented in the HFLAV 2018 report have been included. The correlation between $f_{K\pm}$ and $f_{K\pm}/f_{\pi\pm}$ has been assumed to be zero.

Table 1: Deviations of $|V_{us}|$ computed with τ data with respect to $|V_{us}|$ obtained with CKM unitarity. The third row reports the $|V_{us}|_{\tau s}^{K}$ determination performed in this paper. The HFLAV Spring 2017 did not include the determination of $|V_{us}|_{\tau K}$ with $\mathscr{B}(\tau \to K v)$.

	$\Delta V_{us} _{ au s} = [\sigma]$	$\Delta V_{us} _{ au K/\pi} \ [\sigma]$	$\Delta V_{us} _{ au K} \ [\sigma]$
HFLAV Spring 2017	-3.0	-1.0	
HFLAV 2018	-2.9	-1.2	-1.3
HFLAV 2018 + kaon predictions	-2.7		

3. τ branching fraction predictions from kaon measurements

Assuming the validity of the Standard Model (SM), three τ branching fractions have been computed using the precisely measured $K_{\ell 2}$ and $K_{\ell 3}$ branching fractions and the measured $\tau^- \rightarrow (K\pi)^- v_{\tau}$ spectra [1]:

$\mathscr{B}(au^- o K^- au_ au)$	$= (0.713 \pm 0.003)\%$,
$\mathscr{B}(\tau^- \to K^- \pi^0 v_{\tau})$	$= (0.471 \pm 0.018)\%$,
$\mathscr{B}(\tau^- \to K^0 \pi^- \nu_{\tau})$	$= (0.857 \pm 0.030)\%$.

The uncertainties on the last two results are fully correlated. It has been observed [1, 19] that all the above indirect values are higher than the corresponding directly measured τ branching fractions. If the indirect values replace the direct ones, $|V_{us}|_{\tau s} = 0.2207 \pm 0.027$ [1].

We add the kaon-indirect determinations of the three above τ branching fractions to the dataset of the HFLAV 2018 global fit and we perform a new fit for the τ branching fractions. Using the results of this second fit, we obtain an improved calculation of $|V_{us}|_{\tau s}^{K} = 0.2202 \pm 0.0018$.

4. Consistency of $|V_{us}|$ with the CKM matrix unitarity

Assuming the CKM matrix unitarity,

$$|V_{us}|_{\text{uni}} = \sqrt{1 - |V_{ud}|^2 - |V_{ub}|^2} = 0.22565 \pm 0.00089$$
,

using $|V_{ud}| = 0.97420 \pm 0.00021$ [7] and $|V_{ub}| = (0.3940 \pm 0.0360) \cdot 10^{-2}$ [10]. Table 1 summarizes the residuals, expressed as numbers of standard deviations, of the $|V_{us}|$ determination from τ data with respect to $|V_{us}|_{uni}$. The Table includes the $|V_{us}|$ values described in this work and the $|V_{us}|$ values listed in the HFLAV Spring 2017 report [8]. The discrepancies reported in the HFLAV Spring 2017 report persist with a moderate reduction in the slightly more precise values described here.

Figure 1 reports the $|V_{us}|_{\tau s}$ determinations described above together with the three results published in two recent papers [26, 27].

Figure 1: $|V_{us}|_{\tau s}$ determinations. From the top: $|V_{us}|_{uni}$ as reported in RPP 2018 [10], $|V_{us}|_{\tau s}$ with HFLAV Spring 2017 results, $|V_{us}|_{\tau s}$ with HFLAV 2018 results, $|V_{us}|_{\tau s}$ computed here with the results of a new fit on HFLAV 2018 data and the three τ branching fractions predicted from the kaon measurements, (Lusiani 2019), $|V_{us}|_{\tau s}$ from Ref. [1] (Antonelli 2013), from Ref. [26] (Hudspith 2018) and from Ref. [27] (Boyle 2018a and Boyle 2018b). Please refer to the references for the details on the experimental measurement that have been used.

5. Conclusions

 $|V_{us}|$ has been computed in several ways using τ lepton and kaon measurements. Recent new results made public by BABAR have improved the precision on the $|V_{us}|$ calculations based on τ measurements. When $|V_{us}|$ is obtained using the total inclusive τ width into "strange" final states, the value is significantly lower than the value of $|V_{us}|$ obtained from $|V_{ud}|$ and $|V_{ud}|$ assuming the CKM matrix unitarity. The significance of the anomaly moderately decreases when one includes the τ branching fractions measurements made public by BABAR in 2018 and when one includes three τ branching fractions predictions obtained using kaon measurements. Two recent studies point out that modifications of the $|V_{us}|$ τ -inclusive extraction procedure produce values that are consistent with the CKM matrix unitarity. More precise experimental data would be instrumental for a better understanding of the discrepancy.

References

[1] M. Antonelli, V. Cirigliano, A. Lusiani and E. Passemar, *Predicting the* τ *strange branching ratios and implications for* V_{us} , *JHEP* **10** (2013) 070, [1304.8134].

- [2] HFLAV COLLABORATION, Y. S. Amhis et al., Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018, 1909.12524.
- [3] BABAR COLLABORATION, J. P. Lees et al., *Measurement of the spectral function for the* $\tau^- \rightarrow K^- K_S v_\tau$ *decay*, *Phys. Rev.* **D98** (2018) 032010, [1806.10280].
- [4] T. Lueck, "Recent results on τ -lepton decays with the BABAR detector." Talk given at the 'XXXIX International Conference On High Energy Physics, Seoul, South Korea', July, 2018.
- [5] A. Lusiani, Measurement of the branching fractions of the decays $\tau^- \to K^- n \pi^0 v_{\tau}$ (n = 0, 1, 2, 3) and $\tau^- \to \pi^- n \pi^0 v_{\tau}$ (n = 3, 4) by BaBar, EPJ Web Conf. **212** (2019) 08001, [1906.02626].
- [6] E. Gamiz, M. Jamin, A. Pich, J. Prades and F. Schwab, |V_{us}| and m_s from hadronic tau decays, Nucl. Phys. Proc. Suppl. 169 (2007) 85–89, [hep-ph/0612154].
- [7] J. Hardy and I. S. Towner, $|V_{ud}|$ from nuclear β decays, PoS CKM2016 (2016) 028.
- [8] HFLAV COLLABORATION, Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, Eur. Phys. J. C77 (2017) 895, [1612.07233].
- [9] A. Lusiani, HFAG 2016 and PDG 2016 τ lepton averages and |V_{us}| determination from τ data, Nucl. Part. Phys. Proc. 287-288 (2017) 29–32.
- [10] PARTICLE DATA GROUP COLLABORATION, M. Tanabashi et al., *Review of Particle Physics*, *Phys. Rev.* D98 (2018) 030001.
- [11] FLAVOUR LATTICE AVERAGING GROUP COLLABORATION, S. Aoki et al., *FLAG Review 2019*, 1902.08191.
- [12] R. J. Dowdall, C. T. H. Davies, G. P. Lepage and C. McNeile, *Vus from pi and K decay constants in full lattice QCD with physical u, d, s and c quarks, Phys. Rev.* D88 (2013) 074504, [1303.1670].
- [13] N. Carrasco et al., Leptonic decay constants f_K , f_D , and f_{D_s} with $N_f = 2 + 1 + 1$ twisted-mass lattice *QCD*, *Phys. Rev.* **D91** (2015) 054507, [1411.7908].
- [14] A. Bazavov et al., *B- and D-meson leptonic decay constants from four-flavor lattice QCD*, *Phys. Rev.* D98 (2018) 074512, [1712.09262].
- [15] W. J. Marciano and A. Sirlin, Radiative corrections to pi(lepton 2) decays, Phys. Rev. Lett. 71 (1993) 3629–3632.
- [16] R. Decker and M. Finkemeier, *Radiative corrections to the decay tau* \rightarrow *pi* (*K*) *tau- neutrino.* 2, *Phys. Lett.* **B334** (1994) 199–202.
- [17] R. Decker and M. Finkemeier, *Short and long distance effects in the decay* $\tau \rightarrow \pi v_{\tau}(\gamma)$, *Nucl. Phys.* **B438** (1995) 17, [hep-ph/9403385].
- [18] R. Decker and M. Finkemeier, *Radiative corrections to the decay* $\tau \rightarrow \pi v_{\tau}$, *Nucl. Phys. Proc. Suppl.* **40** (1995) 453, [hep-ph/9411316].
- [19] A. Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75 (2014) 41–85, [1310.7922].
- [20] V. Cirigliano and H. Neufeld, A note on isospin violation in Pl2(gamma) decays, Phys. Lett. B700 (2011) 7, [1102.0563].
- [21] W. J. Marciano, Precise determination of IV(us) from lattice calculations of pseudoscalar decay constants, Phys. Rev. Lett. 93 (2004) 231803, [hep-ph/0402299].

- [22] FERMILAB LATTICE, MILC COLLABORATION, A. Bazavov et al., Charmed and light pseudoscalar meson decay constants from four-flavor lattice QCD with physical light quarks, Phys. Rev. D90 (2014) 074509, [1407.3772].
- [23] C. Patrignani et al., *Review of particle physics, Chin. Phys.* C40 (2016) 100001.
- [24] J. L. Rosner, S. Stone and R. S. Van de Water, *Leptonic Decays of Charged Pseudoscalar Mesons* 2015, *Submitted to: Particle Data Book* (2015), [1509.02220].
- [25] P. J. Mohr, D. B. Newell and B. N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys. 88 (2016) 035009, [1507.07956].
- [26] R. J. Hudspith, R. Lewis, K. Maltman and J. Zanotti, A resolution of the inclusive flavor-breaking τ $|V_{us}|$ puzzle, Phys. Lett. **B781** (2018) 206–212, [1702.01767].
- [27] RBC, UKQCD COLLABORATION, P. Boyle, R. J. Hudspith, T. Izubuchi, A. Jüttner, C. Lehner, R. Lewis et al., Novel |Vus| Determination Using Inclusive Strange τ Decay and Lattice Hadronic Vacuum Polarization Functions, Phys. Rev. Lett. **121** (2018) 202003, [1803.07228].