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Abstract
This paper deals with the theory of rectifiability in arbitrary Carnot groups, and in particular
with the study of the notion ofP-rectifiable measure. First, we show that in arbitrary Carnot
groups the natural infinitesimal definition of rectifiabile measure, i.e., the definition given in
terms of the existence of flat tangent measures, is equivalent to the global definition given
in terms of coverings with intrinsically differentiable graphs, i.e., graphs with flat Hausdorff
tangents. In general we do not have the latter equivalence if we ask the covering to be made
of intrinsically Lipschitz graphs. Second, we show a geometric area formula for the centered
Hausdorff measure restricted to intrinsically differentiable graphs in arbitrary Carnot groups.
The latter formula extends and strengthens other area formulae obtained in the literature in
the context of Carnot groups. As an application, our analysis allows us to prove the intrinsic
C1-rectifiability of almost all the preimages of a large class of Lipschitz functions between
Carnot groups. In particular, from the latter result, we obtain that any geodesic sphere in
a Carnot group equipped with an arbitrary left-invariant homogeneous distance is intrinsic
C1-rectifiable.

Mathematics Subject Classification 53C17 · 22E25 · 28A75 · 49Q15 · 26A16

1 Introduction

In the Euclidean setting the notion of rectifiable set, and more in general that of rectifiable
measure, can be given in two equivalent ways. Either one could prescribe the infinitesimal
behaviour of the measure by saying that it has flat tangent measures almost everywhere, i.e.,
Hausdorff measures supported on vector subspaces of dimension k or, following a global
approach, one could say that the measure is absolutely continuous with respect to the Haus-
dorff k-dimensional measure, and that it is supported on a countable union of k-dimensional
Lipschitz graphs. In Euclidean spaces the latter two notions are equivalent, pretty well-
understood and thoroughly studied, see [10,15,38,42].
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In the last two decades an increasing interest has grown towards the understanding of recti-
fiability in some specific non-smooth contexts, such as the context of Carnot groups, see Sect.
2 for details. A Carnot group G is a simply connected nilpotent Lie group, whose Lie algebra
is stratified and generated by its first layer. Carnot groups are a generalization of Euclidean
spaces, and we remark that (quotients of) Carnot groups arise as the infinitesimal models of
sub-Riemannian manifolds. The geometry of a Carnot group, even at an infinitesimal scale,
might be very different from the Euclidean one. On every Carnot group we have a natural
family of anisotropic dilations {δλ}λ>0. We always endow G with an arbitrary left-invariant
homogeneous (with respect to {δλ}λ>0) distance d , and we recall that any two of them are
bi-Lipschitz equivalent. We denote Q the Hausdorff dimension of G with respect to any of
such distances.

As shown in the fundamental papers [21,22], in step-2Carnot groups the reduced boundary
of a finite perimeter set can be covered up toHQ−1-negligible sets by countablymany intrinsic
C1-regular hypersurfaces, C1

H hypersurfaces from now on, see Definition 5.2. The positive
De Giorgi’s rectifiability result in [22] has started an effort to study Geometric Measure
Theory in sub-Riemannian Carnot groups, and in particular to study various notion(s) of
rectifiability, mostly given following the global approach described at the beginning of this
paragraph.

One of the big efforts in this study is trying to understand what is the correct class of
building blocks to consider in order to give a satisfactory global definition of rectifiable set,
or measure, in the setting of Carnot groups. The first notion of rectifiability that has been
proposed and studied is the one which considers as building blocksC1

H-surfaces, as explained
above, see [21,23,24,27,35]. Then a notion of intrinsic Lipschitz graph (see Definition 2.12)
has been proposed and studied in [17,20], and relations between the notion of intrinsic
Lipschitz rectifiability and the notion of C1

H-rectifiability have been investigated in [16,
19]. The problem of linking the latter two definitions of rectifiability with the infinitesimal
viewpoint was raised in [39] in the setting of Heisenberg groups H

n . From the results in
[39] one deduces that in H

n the natural infinitesimal notion of rectifiable measure—namely
the one given in terms of the existence of flat tangent measures almost everywhere—agrees
with the one given in terms of intrinsic Lipschitz graphs in low dimensions, and with the one
given in terms of C1

H-surfaces in low codimensions. Eventually, it took about ten years to
conclude that a Rademacher theorem for intrinsic Lipschitz functions in low codimensions
holds in H

n , see [43]. As a consequence, at least in H
n , the natural infinitesimal definition of

rectifiability always agrees with the one given in terms of coverings with intrinsic Lipschitz
graphs. An analysis similar to the one of [39] has been pursued in [26] in the setting of
homogeneous groups and for measures with horizontal tangents.

Other notions of rectifiability modelled on Lipschitz images of (homogeneous subgroups
of) Carnot groups have been proposed by Pauls and Cole-Pauls in [8,41]. An interesting
open question asks whether in H

1 the notion of rectifiability by means of C1
H-hypersurfaces

is equivalent to the one of Cole-Pauls given in [8], see [5,11] for some partial results. Never-
theless, in arbitrary Carnot groups, the two notions could be very different, see the results in
[2]. A weak notion of rectifiability in terms of building blocks that satisfy some mild cone
property has also been recently investigated in [12].

On the other hand, from the infinitesimal viewpoint, a notion that makes sense in arbitrary
Carnot groups has been proposed in [40] by the second-named author, namely the notion of
P-rectifiable measure, which we recall here. We recall that a subgroup V of G is said to be
homogeneous if it is closed under the action of the dilations {δλ}λ>0. Again we remark that
G is endowed with a left-invariant homogeneous distance d .
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Definition 1.1 (P-rectifiable measures) Fix a natural number 1 ≤ h ≤ Q. A Radon measure
φ on G is said to be Ph-rectifiable if for φ-almost every x ∈ G we have

(i) 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < +∞,
(ii) Tanh(φ, x) ⊆ {λSh�V(x) : λ ≥ 0}, where V(x) is a homogeneous subgroup of G of

Hausdorff dimension h,

where �h∗(φ, x) and �h,∗(φ, x) are, respectively, the lower and the upper h-density of φ at
x , see Definition 2.7, Tanh(φ, x) is the set of h-tangent measures to φ at x , see Definition
2.6, and Sh is the spherical Hausdorff measure of dimension h, see Definition 2.4.

In [4] we started to study structure results for the class ofP-rectifiable measures, proving
a Marstrand-Mattila type rectifiability criterion in the co-normal case [4, Theorem 1.3]. The
latter theorem directly leads to the proof of Preiss’s theorem in the first Heisenberg group H

1

equipped with the Koranyi norm, see [4, Theorem 1.4]. In this paper we complete the study
of the notion of P-rectifiable measure, when the tangents are complemented, showing that
the notion ofP-rectifiability, which is infinitesimal in nature, is equivalent to the global one
given in terms of intrinsic differentiable graphs, see Theorem 1.1.We stress that our Theorem
1.1 extends to arbitrary Carnot groups and to all the dimensions the results given in [39].

All in all we conclude that, in Carnot groups, the correct building blocks to consider in
order to give a global definition of rectifiability that agrees with the infinitesimal one seem to
be intrinsic differentiable graphs. We also provide an area formula for such building blocks,
see Theorem 1.3. We stress that, due to the existence of intrinsic Lipschitz graphs that are
nowhere intrinsically differentiable, see [28], one cannot give a geometric area formula in the
spirit of Theorem 1.3 for arbitrary intrinsic Lipschitz graphs. Nevertheless the area formulae
in Theorem 1.2 and Theorem 1.3 extend the area formula given in [27, Theorem 1.1], see the
discussion after Theorem 1.3.

We stress that one of the main achievements of this paper is also the rectifiability criterion
in Proposition 3.9 which allows to prove the P-rectifiability of almost all the preimages of
a large number of Lipschitz functions, see Proposition 1.4, and Corollary 1.5.

Remark Some of the results presented in this paper use results proven in [4, Sections 2-3-
4-6]. We recall the most important ones in the preliminary section of this work, see Sect. 2.
During the proofs we give precise references to the results of [4] when we need them.

1.1 Main results

Wediscuss themain contributions of the present paper.We fixG a Carnot group andwe equip
it with a left-invariant homogeneous distance.We recall that whenwe say that a homogeneous
subgroup V admits a complementary subgroup, we mean that there exists a homogeneous
subgroup L such that G = V · L and V ∩ L = {0}. The first result of this work is a com-
plete characterization ofPh-rectifiable sets with complemented tangents in arbitrary Carnot
groups either in terms of the existence of flat h-dimensional complemented Preiss’s tangents
almost everywhere or in terms of a covering property with h-dimensional intrinsically dif-
ferentiable graphs with complemented tangents. We recall that, while Tanh(φ, x) captures
the behaviour of tangent measures obtained rescaling with the h-th power of the scale, see
Definition 2.6, the Preiss’s tangent Tan(φ, x), see Definition 2.6, captures the behaviour of
all the possible tangent measures, namely

Tan(φ, x) := {ν : there exist {ci }, with ci > 0, and {ri }
with ri →i 0 such that ci Tx,riφ⇀iν},
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where the convergence of measures is meant in the duality with Cc(G), see Definition 2.5.
For the reader’s convenience we recall here that an intrinsic graph with respect to a splitting
G = V · L of the group is said to be intrinsically differentiable at one of its points if the
Hausdorff tangent at that point is a homogeneous subgroup, see Definition 3.1 for a precise
definition. For the proof of the next statement, see the end of Sect. 3.

Theorem 1.1 Let G be a Carnot group and fix a natural number 1 ≤ h ≤ Q. Let � ⊆ G

be a Borel set such that Sh(�) < +∞, where Sh is the h-dimensional spherical Hausdorff
measure. Then the following are equivalent

1. Sh�� is a Ph-rectifiable measure with complemented tangents, i.e., a Pc
h-rectifiable

measure, see Definition 2.14,
2. For Sh��-almost every x ∈ G we have

Tan(Sh��, x) = {λSh�V(x) : λ > 0,V(x) is acomplemented hom. subgroup of G

with dimHV(x) = h},
3. There exist countably many compact intrinsic Lipschitz graphs�i that are h-dimensional

intrinsically differentiable graphs at Sh-almost every x ∈ �i , that have complemented
Hausdorff tangents at Sh-almost every x ∈ �i , and such that

Sh(� \ ∪+∞
i=1�i ) = 0.

Moreover, denoting with Ch the centered Hausdorff measure of dimension h, see Definition
2.4, if any of the previous holds, then �h(Ch��, x) = 1 exists for Ch��-almost every x ∈ G

and

r−h(Tx,r )∗(Ch��)⇀Ch�V(x), for Ch�� − almost every x ∈ G,

where the convergence of measures is meant in the duality with Cc(G).

Let us observe that when a Rademacher theorem is available, we can equivalently consider
as the building blocks in item 3. of Theorem 1.1 the class of h-dimensional intrinsically
Lipschitz graphs, without asking anything a priori on the differentiability. Let us recall that
a Rademacher theorem is proved in [16,19] in the setting of Carnot groups G of type 	, i.e.,
a class strictly larger than Carnot groups of step 2, and for maps ϕ : U ⊆ W → L, where
W and L are complementary subgroups of G, with L horizontal and one-dimensional.
Moreover, with the recent results of [32], the latter codimension-one Rademacher theorem
can be extended to the groups of type diamond introduced in [32]. Recently, by making
use of the theory of currents, the author of [43] has proved the Rademacher theorem for
intrinsically Lipschitz maps between complementary subgroups of any dimension in the
Heisenberg groups H

n , while in [3] we proved the validity of a Rademacher theorem for
co-normal intrinsically Lipschitz graphs.

Nevertheless, Rademacher theorem is now known to be false in arbitrary Carnot groups in
a very strict sense, i.e., there exists an h-dimensional intrinsically Lipschitz graph in a Carnot
group such that at every point of it there exist infinitely many blow-ups and each of these
blow-ups is not a homogeneous subgroup, see [28, Theorem1.1]. This latter result implies that
in general in item 3. of Theorem 1.1 one cannot equivalently consider as building blocks of
a locally well-behaved definition of rectifiable sets the family of h-dimensional intrinsically
Lipschitz graphs. So, in some sense, the result of Theorem 1.1 is sharp also in view of the
negative result of [28].

Let us further notice that we do not consider in this work the relations between the
three items in Theorem 1.1 and the existence of an approximate tangent in the sense of [38,
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Definition 15.17] (cf. [39, Definition 3.7]). This relationwill be target of future investigations.
All in all, taking into account that Sh�� isPc

h-rectifiable with co-horizontal tangents if and
only if � is C1

H (G,RQ−h)-rectifiable, see Definition 5.3 and Corollary 5.3, our result in
Theorem 1.1 extends and strengthens [39, (i)⇔(ii)⇔(iv)⇔(v) of Theorem 3.15]. Notice
also that in the previous chain of equivalences, we can also drop the assumption on the lower
density in [39, (iv),(v)]. Moreover, taking into account the Rademacher theorem of [3] in
the co-normal case, our result in Theorem 1.1 extends [39, (i)⇔(ii)⇔(iv)⇔(v) of Theorem
3.14] as well. Let us recall, for the reader’s convenience, that [39, Theorem 3.15] deals with
the characterization of co-horizontal rectifiability in the Heisenberg groups H

n , while [39,
Theorem 3.14] deals with the characterization of horizontal rectifiability in the Heisenberg
groups H

n .
Let us final notice that we stated our result in Theorem 1.1 for measures of the form

Sh��, but we could also give a version of it for Radon measures with�h,∗(φ, x) < +∞ for
φ-almost every x ∈ G, after having proven the analogue of Theorem 3.7 for measures.

The second result of the work is an area formula for intrinsic Lipschitz graphs that are in
addition Pc

h-rectifiable. The proof of the following statement is at the end of Sect. 4.

Theorem 1.2 Let V,L be homogeneous complementary subgroups of a Carnot group G

such that h := dimH V. Let � be the graph of an intrinsic Lipschitz map ϕ : A ⊆ V → L

(see Definition 2.12), with A Borel, such that Sh�� isPc
h-rectifiable with tangent measures

Sh��-almost everywhere supported on homogeneous subgroups complemented by L. Then,
for every Borel function ψ : � → [0,+∞) the following area formula holds∫

�

ψdCh�� =
∫
A
ψ(a · ϕ(a))A(V(a · ϕ(a)))dCh�V, (1)

where Ch is the centered Hausdorff measure, see Definition 2.4, V(a · ϕ(a)) is the tangent
on which it is supported the tangent measure of Sh�� at the point a · ϕ(a) ∈ �, and A(·) is
the centered area factor defined with respect to the splitting G = V · L, see Definition 4.1.

A consequence of the previous result is the following one, which is an area formula for
intrinsic Lipschitz graphs that are also intrinsically differentiable. The proof of the following
statement can be found at the end of Sect. 4.

Theorem 1.3 LetV,L be homogeneous complementary subgroups of a Carnot groupG such
that h = dimH V. Let � be the graph of an intrinsic Lipschitz map ϕ : A ⊆ V → L, with A
Borel. Let us assume� is an intrinsically differentiable graph (seeDefinition3.1) atSh-almost
every x ∈ � and let us assume that the Hausdorff tangent V(x) of � at x is complemented
by L at Sh-almost every x ∈ �. Then, for every Borel function ψ : � → [0,+∞), the area
formula in (1) holds.

Let us remark that, taking into account that �h(Ch��, x) = 1 for Ch��-almost every
x ∈ G, see Theorem 1.1, and considering the result in [27, Corollary 3.6] one can show
that (1) extends and strengthens the area formula of [27, Theorem 1.1]. Indeed, the graph
of a C1

W,V
function as in the statement of [27, Theorem 1.1] is a Pc

h-rectifiable set, see [4,
Proposition 6.2]. Moreover, we stress that Theorem 1.2 strictly strengthens [27, Theorem
1.1] for two reasons: there exists natural examples of graphs that are Ph-rectifiable but not
C1
H-rectifiable, see [4, Remark 6.3], and moreover in our result the map ϕ does not need to

be defined on an open set but just on a Borel set.
Let us notice that the area formula in Theorem1.3 is geometric. It roughly asserts thatwhen

an intrinsic Lipschitz graph over the splitV·L has almost everywhere a flat Hausdorff tangent
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complemented by L, then the area of this graph can be obtained integrating on V a geometric
area factor. With geometric we mean that the factor only depends on the tangent. Let us
stress that when a Rademacher theorem is available, one can remove the hypothesis about
the intrinsic differentiability in Theorem1.3. Nevertheless, as discussed above, a Rademacher
theorem might not hold in arbitrary Carnot groups, see [28].

Let us point out that in the literature one can find many more analytic area formulae
in Carnot groups, i.e., in which the area element is expressed in terms of properly defined
intrinsic derivatives of the map ϕ. This is the case of [9, Theorem 1.1 and Theorem 1.2]
for low-codimensional C1

H-surfaces in Heisenberg groups (cf. also [20, Theorem 2]), which
has been extended to intrinsic Lipschitz low-codimensional surfaces in [43, Theorem 1.3]
(cf. also [7, Theorem 1.6]); and of [1, Proposition 1.8] for one-codimensional C1

H-graphs
in arbitrary Carnot groups. These formulas could be derived from Theorem 1.3 explicitly
writing the area element in terms of the intrinsic derivatives of the parametrisation map ϕ.
Other geometric area formulae for Euclidean C1 or C1,1-submanifolds in Carnot groups
have been investigated in [34,36,37]. Let us remark that our point of view is intrinsic while
on the contrary the works [34,36,37] investigate Euclidean-regular manifolds. The results in
[37, Theorem 1.1 and Theorem 1.2], [36, Theorem 1.1], and [34, Theorem 1.1 and Theorem
1.2] roughly assert that whenever a point of a Euclidean-regular submanifold is sufficiently
nice, then the intrinsic blow-up at that point exists and it is a homogeneous subgroup; and
as a consequence also the density—of the correct dimension—of the (Euclidean) volume
measure of the submanifold exists at that point. Then what one notices is that in a lot of
cases the nice points are almost all—with respect to the intrinsic Hausdorff measure of
the correct dimension—the points of the submanifold, cf. [36, Theorem 1.2]. These latter
results have to be compared with our Proposition 3.9 in which we prove that having almost
everywhere an intrinsic complemented blow-up implies the existence of the density of the
Hausdorff measure. Let us notice that when a negligibility theorem, a blow-up theorem, and
the existence of the density hold in the sense of [34,36,37] discussed above for a Euclidean-
regular submanifold �, then one gets that Tanh(Sh��, x) ⊆ {λSh�V(x) : λ > 0} holds
for Sh-almost every x ∈ �, where h is the Hausdorff dimension of �, and where V(x) is a
homogeneous subgroup. This last observation easily follows arguing as in the last lines of the
proof of Proposition 3.9. As a result, when a negligibility theorem, a blow-up theorem, and the
existence of the density hold in the sense of [34,36,37] for a Euclidean-regular submanifold
�, one gets that Sh�� is a Ph-rectifiable measure.

Let us finally notice that the area formula in Theorem 1.3 is a formula for the building
blocks for the global notion of rectifiability in item 3. of Theorem 1.1. Thus, by localization,
one obtains from Theorem 1.3 and Theorem 1.1, an area formula for arbitraryPc

h-rectifiable
measures, see Corollary 4.7.

The third result of the work is a rectifiability result for the level sets of Lipschitz functions
between Carnot groups. For the proof of the following statement, we refer the reader to
Proposition 5.1.

Proposition 1.4 Let B be a Borel set in G and suppose H is a Carnot group of homogeneous
dimension Q′ with Q ≥ Q′. Let f : B ⊆ G → H be a Lipschitz map such that

Ker(d f (x)) is a complemented homogeneous subgroup of G for SQ

−almost every x ∈ {z ∈ B : d f (z) exists surjective},
where d f (x) is the Pansu differential that exists for SQ-almost every x ∈ G, see Definition
5.1. Then, forSQ′

-almost every y ∈ f (B), themeasureSQ−Q′� f −1(y) isPc
Q−Q′ -rectifiable
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in G and

TanQ−Q′(SQ−Q′� f −1(y), x) ⊆ {λSQ−Q′�Ker(d f (x)) : λ > 0}, forSQ−Q′

-almost everyx ∈ f −1(y).

As an immediate consequence of the previous result we have the following corollary,
which is worth pointing out explicitly, since, even if simple to state, it seems to be not present
in the literature up to the authors’ knowledge. For a proof, see Corollary 5.4. We remark that
a more general statement, in the co-horizontal case, is still true and can be found in Corollary
5.2.

Corollary 1.5 Suppose f : B ⊆ G → R is a Lipschitz map, where B is a Borel set. Then, for
S1-almost every y ∈ f (B) the set f −1(y) is C1

H-rectifiable. In particular, for every r > 0
and x ∈ G, every geodesic sphere ∂Br (x) is C1

H-rectifiable.

Notice that the last part of the previous result comes from the first applied to the distance
function from x , and the observation that, by dilating, once ∂Br (x) is C1

H-rectifiable for one
radius r > 0, then it is C1

H-rectifiable for every radius r > 0. The previous corollary should
be compared with [44, Theorem 3.2], where an intrinsic Lipschitz rectifiability for Lipschitz
surfaces is proved in CC-spaces. Notice, however, that nowadayas it is not known whether,
in codimension-one, intrinsic Lipschitz rectifiability and C1

H-rectifiability are equivalent in
arbitrary Carnot groups; while being intrinsic Lipschitz rectifiable is weaker than being
C1
H-rectifiable. Nevertheless, our previous corollary provides the C1

H-rectifiability of all the
spheres in every Carnot group. It is however interesting to point out how the Euclidean
rectifiability of the geodesic spheres in Carnot groups is still an intriguing open question in
general, and it is related to asymptotic volume expansion in nilpotent Lie groups [6,31].

Let us remark that the previous results in Proposition 1.4 and Corollary 1.5 follow from
the rectifiability criterion in Proposition 3.9. It is worth pointing out that, given a Lipschitz
function f : B ⊆ G → R, for every y ∈ f (B), the set { f ≤ y} is of locally finite perimeter
in G, see, e.g., [13, Theorem 2.40]. Hence, taking into account Corollary 1.5, we deduce the
following consequence: S1-almost all the sublevel sets of real-valued Lipschitz functions
defined on Borel subsets of Carnot groups are examples of sets of locally finite perimeter
whose boundary isC1

H-rectifiable—namely De Giorgi’s rectifiability Theorem holds for such
sets.

Let us finally stress that the previous results in Proposition 1.4 and Corollary 1.5 open the
way to proving slicing theorems and coarea formulae forP-rectifiable and Lipschitz slicing
functions. This will be target of future investigations.

Let us briefly comment on the proof of Theorem 1.1. For what concerns the implications
1. ⇒ 2., and 1. ⇒ 3., the first is just a matter of routine argument, see [38, Remark 14.4(3)],
and the second is a consequence of [4, Theorem 1.8]. The main new contributions of this
paper, which lead to the equivalence in Theorem 1.1, are the implications 2. ⇒ 1., and 3. ⇒
1., both of them non-trivial.

For what concerns the implication 2. ⇒ 1., we first use that the hypothesis of flat Preiss’s
tangents allows to conclude that � is Sh-almost everywhere covered by countably many
h-dimensional graphs �i of intrinsically Lipschitz functions, namely Sh(� \ ∪+∞

i=1�i ) = 0,
see Proposition 2.26. Hence we exploit the general fact, that dates back to Preiss’s paper (cf.
[42, Corollary 2.7]), that a measure with a compact-based tangent at a point is asymptotically
doubling at that point. Joining the latter two observations, we deduce that, for every i , the
measure Sh��i is asymptotically doubling, and then this enables us to prove that �i has big
projections on the plane over which �i is a graph, see Proposition 3.3. The latter proposition
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is just a straightforward empowerment of our result already proved in [4, Proposition 4.6].
Finally, the big projections property of Proposition 3.3 allows us to conclude that the h-lower
density �h∗(Sh��i , ·) is positive Sh��i almost everywhere, see Proposition 3.6. Hence, the
proof of the implication 2. ⇒ 1. is concluded since we can argue, by exploiting Lebesgue
differentiation theorem, that �h∗(Sh��, ·) is positive Sh��-almost everywhere, which was
the non-trivial missing information to prove 1. Let us notice that in 2. we are not requiring
anything a priori on the positivity of the h-lower density of Sh��, otherwise the implication
2.⇒ 1. would have been trivial. Nevertheless, we deduce the positivity of the h-lower density
from the fact that the tangents are flat and complemented as we discussed above.

The proof of the implication 3. ⇒ 1. relies on the fact that an arbitrary h-dimensional
(almost everywhere) intrinsically differentiable graph � with complemented Hausdorff tan-
gents has the property that Sh�� isPc

h-rectifiable. This is exactly the content of Proposition
3.9. In order to prove the latter proposition, we show that when we have an arbitrary h-
dimensional (almost everywhere) intrinsically differentiable graph � with complemented
Hausdorff tangents, at (Sh��-almost) every point we have that the graph � is, at arbitrarily
small scales, contained in a cone with arbitrarily small opening and with basis the Hausdorff
tangent at that point. This observation enables us to perform a covering argument and to show
directly that�h(Ch��, ·) = 1 at Ch��-almost every point. Then the fact that Ch��, and hence
Sh��, is Pc

h-rectifiable is reached by using a classical argument, see Proposition 2.3 and
Proposition 2.4. Let us notice that in Proposition 3.9 it is essential to work with the centered
Hausdorff measure Ch��, since we consider coverings with balls centered on �. It is also
worth noticing that Sh�� and Ch�� are mutually absolutely continuous so any rectifiability
property for one measure is transferred to the other by means of Lebesgue differentiation
theorem and the locality of tangents.

The final part of the statement in Theorem1.1 is a consequence of the fact that the h-density
of Ch�� is 1 as a consequence of the previous reasoning, and the fact that Ch�V(B(0, 1)) = 1
for every homogeneous subgroup V of Hausdorff dimension h, see Lemma 2.1.

Let us briefly comment on the proof of Theorem 1.2. The strategy of the proof is similar
to the one in [27] and it is based on a continuity property of the volumes through a blow-up
procedure, see Proposition 4.4. Nevertheless, in order to prove Proposition 4.4, one needs
to face some delicate technical problems due to the fact that the map ϕ is not necessarily
defined on an open set, but just on a Borel set. Hence, one needs to argue directly on the
graph by using a Vitali-type differentiation theorem, see Proposition 4.3, and a new delicate
estimate on the volumes of the projections of balls in �, see Proposition 3.8.

2 Preliminaries

2.1 Carnot groups

In this subsection we briefly introduce some notations on Carnot groups that we will exten-
sively use throughout the paper. For a detailed account on Carnot groups we refer to [29].

A Carnot group G of step κ is a connected and simply connected Lie group whose Lie
algebra g admits a stratification g = V1 ⊕ V2 ⊕· · ·⊕ Vκ . We say that V1 ⊕ V2 ⊕· · ·⊕ Vκ
is a stratification of g if g = V1 ⊕ V2 ⊕ · · · ⊕ Vκ ,

[V1, Vi ] = Vi+1, for any i = 1, . . . , κ − 1, and [V1, Vκ ] = {0},
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where [A, B] := span{[a, b] : a ∈ A, b ∈ B}. We call V1 the horizontal layer of G. We
denote by n the topological dimension of g, by n j the dimension of Vj for every j = 1, . . . , κ .
Furthermore, we define πi : G → Vi to be the projection maps on the i-th strata. We will
often shorten the notation to vi := πiv.

The exponential map exp : g → G is a global diffeomorphism from g to G. Hence,
if we choose a basis {X1, . . . , Xn} of g, any p ∈ G can be written in a unique way as
p = exp(p1X1 + · · · + pn Xn). This means that we can identify p ∈ G with the n-tuple
(p1, . . . , pn) ∈ R

n and the group G itself with R
n endowed with · the group operation

determined by the Baker-Campbell-Hausdorff formula. From now on, wewill always assume
that G = (Rn, ·) and, as a consequence, that the exponential map exp acts as the identity.

The stratificaton of g carries with it a natural family of dilations δλ : g → g, that are Lie
algebra automorphisms of g and are defined by

δλ(v1, . . . , vκ ) := (λv1, λ
2v2, . . . , λ

κvκ), for any λ > 0,

where vi ∈ Vi . The stratification of the Lie algebra g naturally induces a gradation on each
of its homogeneous Lie sub-algebras h, i.e., a sub-algebra that is δλ-invariant for any λ > 0,
that is

h = V1 ∩ h ⊕ . . . ⊕ Vκ ∩ h. (2)

We say that h = W1⊕· · ·⊕Wκ is a gradation of h if [Wi ,Wj ] ⊆ Wi+ j for every 1 ≤ i, j ≤ κ ,
wherewemean thatW� := {0} for every � > κ . Since the exponentialmap acts as the identity,
the Lie algebra automorphisms δλ are also group automorphisms of G.

Definition 2.1 (Homogeneous subgroups) A subgroup V of G is said to be homogeneous if
it is a Lie subgroup of G that is invariant under the dilations δλ.

We recall the following basic terminology: a horizontal subgroup of a Carnot group G is
a homogeneous subgroup of it that is contained in exp(V1); a Carnot subgroup W = exp(h)
of a Carnot group G is a homogeneous subgroup of it such that the first layer V1 ∩ h of the
grading of h inherited from the stratification of g is the first layer of a stratification of h.

Homogeneous Lie subgroups of G are in bijective correspondence through exp with the
Lie sub-algebras of g that are invariant under the dilations δλ. For any Lie algebra h with
gradation h = W1 ⊕ . . . ⊕ Wκ , we define its homogeneous dimension as

dimhom(h) :=
κ∑

i=1

i · dim(Wi ).

Thanks to (2) we infer that, if h is a homogeneous Lie sub-algebra of g, we have dimhom(h) :=∑κ
i=1 i · dim(h ∩ Vi ). It is well-known that the Hausdorff dimension (for a definition of

Hausdorff dimension see for instance [38, Definition 4.8]) of a graded Lie group G with
respect to a left-invariant homogeneous distance coincides with the homogeneous dimension
of its Lie algebra. For a reference for the latter statement, see [30, Theorem 4.4]. From now
on, if not otherwise stated, G will be a fixed Carnot group.

For any p ∈ G, we define the left translation τp : G → G as

q �→ τpq := p · q.
As already remarked above, the group operation · is determined by the Campbell-Hausdorff
formula, and it has the form (see [21, Proposition 2.1])

p · q = p + q + Q(p, q), for all p, q ∈ R
n,
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7 Page 10 of 52 G. Antonelli, A. Merlo

where Q = (Q1, . . . ,Qκ ) : R
n × R

n → V1 ⊕ . . . ⊕ Vκ , and the Qi ’s have the following
properties. For any i = 1, . . . κ and any p, q ∈ G we have

(i) Qi (δλ p, δλq) = λiQi (p, q),
(ii) Qi (p, q) = −Qi (−q,−p),
(iii) Q1 = 0 and Qi (p, q) = Qi (p1, . . . , pi−1, q1, . . . , qi−1).

Thus, we can represent the product · as
p · q = (p1 + q1, p2 + q2 + Q2(p1, q1), . . . , pκ + qκ

+Qκ (p1, . . . , pκ−1, q1, . . . , qκ−1)). (3)

Definition 2.2 (Homogeneous left-invariant distance and norm) A metric d : G × G → R

is said to be homogeneous and left-invariant if for any x, y ∈ G we have, respectively

(i) d(δλx, δλy) = λd(x, y) for any λ > 0,
(ii) d(τz x, τz y) = d(x, y) for any z ∈ G.

Given a homogeneous left-invariant distance, its associated norm is defined by ‖g‖d :=
d(g, 0), for every g ∈ G, where 0 is the identity element of G.

Given a homogeneous left-invariant distance d on G, for every x ∈ G and every E ⊆ G

we define dist(x, E) := inf{d(x, y) : y ∈ E}.
Throughout the paper we will always endow, if not otherwise stated, the group G with

an arbitrary homogeneous and left-invariant metric. We will denote such a distance with
d . We remark that two homogeneous left-invariant distances on a Carnot group are always
bi-Lipschitz equivalent.

Definition 2.3 (Metric balls and tubular neighbourhoods) Suppose a homogeneous and left-
invariant metric d has been fixed on G. Then, we define Ud(x, r) := {z ∈ G : d(x, z) < r}
to be the open metric ball relative to the distance d centred at x at radius r > 0. The closed
ball will be denoted with Bd(x, r) := {z ∈ G : d(x, z) ≤ r}. Moreover, for a subset E ⊆ G

and r > 0, we denote with Bd(E, r) := {z ∈ G : dist(z, E) ≤ r} the closed r -tubular
neighborhood of E and with Ud(E, r) := {z ∈ G : dist(z, E) < r} the open r -tubular
neighborhood of E. When the metric d is understood, we will tacitly drop the dependence
on the metric in the notation.

Definition 2.4 (Hausdorff Measures) Let d be a homogeneous and left-invariant metric on
G and A ⊆ G be a Borel set. For any 0 ≤ h ≤ Q and δ > 0, define

C h
d,δ(A) := inf

{ ∞∑
j=1

rhj : A ⊆
∞⋃
j=1

Bd(x j , r j ), r j ≤ δ and x j ∈ A

}
,

S h
d,δ(A) := inf

{ ∞∑
j=1

rhj : A ⊆
∞⋃
j=1

Bd(x j , r j ), r j ≤ δ

}
,

and S h
δ,E (∅) := 0 =: C h

δ (∅). Eventually, we let
Chd (A) := sup

B⊆A
sup
δ>0

C h
d,δ(B) = sup

B⊆A
Chd,0(B) be the centred spherical Hausdorff measure,

Sh
d (A) := sup

δ>0
S h

d,δ(A) be the spherical Hausdorff measure.
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We stress that Chd is an outer measure, and thus it defines a Borel regular measure, see [14,
Proposition 4.1], and that the measures Sh

d ,H
h
d , C

h
d are all equivalent measures, see [15,

Section 2.10.2] and [14, Proposition 4.2]. When the metric d is understood, we will tacitly
drop the dependence on the metric in the notation.

We recall here the following result that has been proved in [4, item (iii) of Proposition
2.11], and that will often be used in the paper.

Lemma 2.1 Let V be a homogeneous subgroup of a Carnot group G endowed with a left-
invariant homogeneous distance d. Let us call h the homogeneous dimension of V. Hence

Chd (Bd(x, r) ∩ V) = rh,

for every x ∈ V and any r > 0.

2.2 Densities and tangents of Radonmeasures

Throughout the rest of the paper we will always assume that G is a fixed Carnot group
endowed with a left-invariant homogeneous distance d . The homogeneous, and thus Haus-
dorff, dimension with respect to d will be denoted with Q. Furthermore, as discussed in the
previous subsection, we will assume without loss of generality that G coincides with R

n

endowed with the product induced by the Baker-Campbell-Hausdorff formula.

Definition 2.5 (Weak convergence of measures) Given a family {φi }i∈N of Radon measures
on G we say that the sequence φi weakly* converges to a Radon measure φ, and we write
φi⇀φ, if

∫
f dφi →

∫
f dφ for any f ∈ Cc(G),

where Cc(G) is the space of compactly supported functions on G.

Definition 2.6 (Tangent measures) Let φ be a Radon measure on G. For any x ∈ G and any
r > 0 we define the measure

Tx,rφ(E) := φ(x · δr (E)), for any Borel set E .

Furthermore, we define Tan(φ, x), the tangent measures to φ at x , to be the collection of
the non-null Radon measures ν for which there is a sequence {ri }i∈N, with ri → 0, and a
sequence {ci }i∈N, with ci > 0, such that

ci Tx,riφ⇀ν.

Moreover, we define Tanh(φ, x), the h-tangent measures to φ at x , to be the collection of
Radon measures ν for which there is a sequence {ri }i∈N, with ri → 0, such that

r−h
i Tx,riφ⇀ν.

Definition 2.7 (Lower and upper densities) Suppose d is a fixed homogeneous left-invariant
metric on G. If φ is a Radon measure on G, and h > 0, we define

�h
d,∗(φ, x) := lim inf

r→0

φ(Bd(x, r))

rh
, and �

h,∗
d (φ, x) := lim sup

r→0

φ(Bd(x, r))

rh
,
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and we say that �h
d,∗(φ, x) and �

h,∗
d (φ, x) are the lower and upper h-density of φ at the

point x ∈ G, respectively. Furthermore, we say that measure φ has h-density if

0 < �h
d,∗(φ, x) = �

h,∗
d (φ, x) < ∞, for φ-almost any x ∈ G.

When the metric d is understood, we will tacitly drop the dependence on the metric in the
notation.

Proposition 2.2 Assume φ is a Radon measure on G and suppose that r−h
i Tx,riφ⇀ν. Then,

for any z ∈ supp(ν) there exists a sequence yi ∈ supp(φ) such that δ1/ri (x
−1yi ) → z.

Proof A simple argument by contradiction yields the claim. The proof follows verbatim its
Euclidean analogue, see for instance the proof of [10, Proposition 3.4]. ��
Definition 2.8 (Definition of E(ϑ, γ )) Let φ be a Radon measure on G that is supported on
the compact set K , i.e., such that φ(G \ K ) = 0. For any ϑ, γ ∈ N we define

E(ϑ, γ ) := {
x ∈ K : ϑ−1rh ≤ φ(B(x, r)) ≤ ϑrh for any 0 < r < 1/γ

}
. (4)

The following two propositions can be found in [4, Proposition 2.4 and Proposition 2.5].

Proposition 2.3 ([4,Proposition2.4 andProposition2.5]) Assumeφ is aRadonmeasure sup-
ported on the compact set K such that 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < ∞ for φ-almost every
x ∈ G. Then, for everyϑ, γ ∈ N the set E(ϑ, γ ) is compact andφ(G\⋃

ϑ,γ∈N E(ϑ, γ )) = 0.

Proposition 2.4 Supposeφ is aRadonmeasurewith h-density. Then forφ-almost every x ∈ G

we have that Tanh(φ, x) is not empty and for any ν ∈ Tanh(φ, x) we have 0 ∈ supp(ν), and
ν(B(y, s)) = �h(φ, x)sh for any y ∈ supp(ν) and any s > 0.

Proof The proof follows verbatim its Euclidean counterpart, see for instance [10, Proposition
3.4]. ��
Proposition 2.5 Suppose thatμ is aBorel regularmeasure onG supported on a homogeneous
subgroup V ∈ G(h), such that 0 ∈ supp(μ) and assume that there exists a constant C > 0
such that for any z ∈ supp(μ) and any s > 0 we have

μ(B(z, s)) = Csh .

Then μ is a Haar measure of the subgroup V.

Proof Without loss of generality we can assume C = 1. Thanks to [18, Theorem 3.1] we
thus infer that μ = Ch�supp(μ). Moreover, for any x ∈ supp(μ), thanks to Lemma 2.1, we
have that μ(B(x, r)) = Ch�V(B(x, r)) for every r > 0. If by contradiction supp(μ) �= V,
then there would exist a p ∈ V and a r0 > 0 such that B(p, r0)∩ supp(μ) = ∅. This however
is impossible since we would have

Ch�V(B(0, 2(‖p‖ + r0)))

≥ Ch(B(0, 2(‖p‖ + r0)) ∩ supp(μ)) + Ch(B(p, r0) ∩ V) > μ(B(0, 2(‖p‖ + r0))),

and this is a contradiction with what we found above, since by assumption 0 ∈ supp(μ). ��
A very useful property of locally asymptotically doubling measures is that Lebesgue

theorem holds and thus local properties are stable under restriction to Borel subsets. The
forthcoming result is a direct consequence of [25, Theorem 3.4.3] and the Lebesgue differ-
entiation Theorem in [25, page 77].
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Proposition 2.6 Suppose d is a fixed homogeneous left-invariant metric on G and that φ is
a Radon measure on G such that for φ-almost every x ∈ G we have

lim sup
r→0

φ(Bd(x, 2r))

φ(Bd(x, r))
< ∞. (5)

Then

(i) for any Borel set B ⊆ G the measure φ�B is a locally asymptotically doubling measure,
and we have that the following equalities hold for φ-almost every x ∈ B

�h
d,∗(φ�B, x) = �h

d,∗(φ, x), and �
h,∗
d (φ�B, x) = �

h,∗
d (φ, x),

(ii) for every non-negative ρ ∈ L1(φ), and for φ-almost every x ∈ G we have Tan(ρφ, x) =
ρ(x)Tan(φ, x). More precisely, for φ-almost every x ∈ G the following holds

if ri → 0 is such that ci Tx,riφ⇀ν then ci Tx,ri (ρφ)⇀ρ(x)ν. (6)

We recall that any Radon measure φ on (G, d) that satisfies (5) for φ-almost every x ∈ G is
said to be locally asymptotically doubling, or simply asymptotically doubling.

2.3 Intrinsic Grassmannian in Carnot groups

We recall in this section some useful properties about homogeneous subgroups in Carnot
groups. We equip G with a fixed left-invariant homogeneous distance d that will sometimes
be understood.

Definition 2.9 (Intrinsic Grassmanian on Carnot groups) For any 1 ≤ h ≤ Q, we define
G(h) to be the family of homogeneous subgroups V of G that have Hausdorff dimension h.
Let us recall that if V is a homogeneous subgroup of G, any other homogeneous subgroup L

such that

V · L = G, and V ∩ L = {0},
is said to be a complement ofG.We letGc(h) to be the subfamily of thoseV ∈ G(h) that have
a complement and we will refer to Gc(h) as the h-dimensional complemented Grassmanian.
Finally, for any 1 ≤ h ≤ Q we endow G(h) with the metric

dG(W1,W2) := dH ,G(W1 ∩ B(0, 1),W2 ∩ B(0, 1)),

where dH ,G is the Hausdorff distance of sets induced by the distance d . For more details we
refer to [4].

We recall here the following proposition from [4, Proposition 2.7] that will be used several
times.

Proposition 2.7 (Compactness of the Grassmannian) For any 1 ≤ h ≤ Q (G(h), dG) is a
compact metric space.

Definition 2.10 (Projections related to a splitting) For any V ∈ Gc(h), if we choose a com-
plement L of V, we can find two unique elements gV := PVg ∈ V and gL := PLg ∈ L such
that

g = PV(g) · PL(g) = gV · gL.
We will refer to PV(g) and PL(g) as the splitting projections, or simply projections, of g
onto V and L, respectively.
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Proposition 2.8 ([17, Proposition 2.12 and Corollary 2.15], [4, Proposition 2.14]) Suppose d
is a fixed homogeneous left-invariant metric onG and let ‖·‖d be the associated homogeneous
norm. Then, for any V ∈ Gc(h) with complement L there is a constant C1(d,V,L) > 0 such
that for any p ∈ G we have

C1(d,V,L)‖PL(p)‖d ≤ dist(p,V) ≤ ‖PL(p)‖d ,
C1(d,V,L)(‖PL(p)‖d + ‖PV(p)‖d) ≤ ‖p‖d ≤ ‖PL(p)‖d + ‖PV(p)‖d . (7)

Furthermore, for any r > 0, there exists a constant C2 we have Sh
d �V

(
PV(Bd(p, r))

) =
C2(d,V,L)r

h and, for any Borel set A ⊆ G for which Sh
d (A) < ∞, we have

Sh
d �V(PV(A)) ≤ 2C2(d,V,L)S

h
d (A). (8)

When the metric d is understood, we will tacitly drop the dependence on the metric in the
notation.

Remark 2.1 (About the definition of C1) We stress that we fix C1 to be the supremum of all
the constants for which the inequalities in (7) hold.

We recall here the following proposition that will be useful later on.

Proposition 2.9 ([4, Proposition 2.10], [17, Proof of Lemma 2.20]) Suppose d is a fixed
homogeneous left-invariant metric on G. Let us fix V ∈ Gc(h) and L two complementary
homogeneous subgroups of G. Then, for any x ∈ G the map � : V → V defined as
�(z) := PV(xz) is invertible and it has unitary Jacobian. As a consequence Sh

d (PV(E)) =
Sh
d (PV(x PV(E))) = Sh

d (PV(xE)) for every x ∈ G and E ⊆ G Borel.

The following proposition will be useful in the proof of Corollary 5.2. We omit the proof.
The first part of the statement, i.e., the one about the homeomorphism, can be reached by
using elementary Linear Algebra; while the second part of the statement follows from the
first. We stress that in the following statement we are endowing g, that is identified with R

n

through a choice of a basis of left-invariant vector fields X1, . . . , Xn , with a scalar product
〈·, ·〉 that makes X1, . . . , Xn orthonormal.

Proposition 2.10 Let L(g, g) be the set of linear maps from the Lie algebra g of G into itself,
endowed with the operator norm ρ. Then, being G(g) the Grassmannian of the vector space
g, the map P : G(g) → L(g, g) defined as P(V ) := �V⊥ , where �V⊥ is the orthogonal
projection onto V⊥, is a homeomorphism onto its image.

Then, a map V : g → exp−1(G(h)) is Borel measurable if and only if the projection map
πV⊥ : g → L(g, g) defined as

πV⊥(x) := �V (x)⊥ ,

where �V (x)⊥ is the orthogonal projection onto V (x)⊥, is Borel measurable. In addition to
this, the Borelianity of πV⊥ is also equivalent to saying that for any fixed v,w ∈ g, the map
x �→ 〈v,�V (x)⊥[w]〉 is Borel.

2.4 Cones over homogeneous subgroups and intrinsic Lipschitz functions

In this section we recall some basic definitions about intrinsic cones in Carnot groups.
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Definition 2.11 (Intrinsic cone) Suppose d is an homogeneous left-invariant distance on G.
For any α > 0 and V ∈ G(h), we define the cone CV,d(α) as:

CV,d(α) := {w ∈ G : distd(w,V) ≤ α‖w‖d}.
Furthermore, given V ∈ G(h) and an α > 0, we say that a Borel set E ⊆ G is a CV,d(α)-set
if

E ⊆ pCV,d(α) for any p ∈ E .

When the metric d is understood, we will tacitly drop the dependence on the metric in the
notation.

Remark 2.2 (Equivalent intrinsic cones) Suppose d is a homogeneous left-invariant distance
on G. For some benefits toward the rest of the paper, let us prove that if V ∈ Gc(h), L is a
complementary subgroup of V, and α < C1(d,V,L), then

CV,d(α) ⊆
{
w ∈ G : ‖PLw‖d ≤ α

C1(d,V,L) − α
‖PVw‖d

}
. (9)

Indeed, let us take an element w in the complement of the set in the right-hand-side above.
Thanks to the fact that ‖w‖d ≤ ‖PLw‖d + ‖PVw‖d < C1(d,V,L)α

−1‖PLw‖d and to
Corollary 2.8 we have

distd(w,V) ≥ C1(d,V,L)‖PL(w)‖d > α‖w‖d . (10)

Therefore, any such w is contained in the complement of the left-hand-side of (9), and thus
we get the sought conclusion. Moreover, for any V ∈ Gc(h) and any of its complementary
subgroup L, let us show that for any α > 0

CV,L,d(α) := {w ∈ G : ‖PLw‖d ≤ α‖PVw‖d} ⊆ CV,d(C1(d,V,L)
−1α).

Indeed, ifw is an element in the left-hand-side above, we can readily see thanks to Corollary
2.8 that

distd(w,V) ≤ ‖PLw‖d ≤ α‖PVw‖d ≤ αC1(d,V,L)
−1‖w‖d .

All in all we have proved that if V ∈ Gc(h), L is one of its complementary subgroups and
α < C1(d,V,L) we have

CV,L,d(C1(d,V,L)α) ⊆ CV,d(α) ⊆ CV,L,d(α/(C1(d,V,L) − α)),

thus showing that, below some threshold on the opening, the cones CV,d and CV,L,d are
equivalent.

Remark 2.3 (Equivalent distances and cones) Let d1, d2 be two homogeneous and left-
invariant metrics on G. Since they are bi-Lipschitz equivalent, we can find a constant
0 < c < 1 such that cd1(x, y) ≤ d2(x, y) ≤ c−1d1(x, y) for any x, y ∈ G. Then for
any α > 0 and any V ∈ G(h) we have

CV,d1(c
2α) ⊆ CV,d2(α) ⊆ CV,d1(c

−2α).

We now recall two results that were already proven in [4]. We refer the reader to the
reference [4] for the simple proofs.
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Lemma 2.11 ([4, Lemma 2.16]) Suppose d is a homogeneous left-invariant distance on G.
For any V ∈ Gc(h), given L to be a complementary subgroup of V, there exists 0 < ε1 :=
ε1(d,V,L) < 1 such that

L ∩ CV,d(ε1) = {0}.
and for the aims of this paper, we can and will fix ε1(d,V,L) := C1(d,V,L)/2.

Proposition 2.12 Suppose d is a homogeneous left-invariant distance on G. The function
e : Gc(h) → R defined as

e(V) := sup{ε1(d,V,L) : L is a complement of V}, (11)

is lower semicontinuous. In particular the following conclusion holds

• if G ⊆ Gc(h) is compact with respect to dG, then there exists a eG > 0 such that
e(V) ≥ eG for any V ∈ G .

Proof It follows verbatim from the proof of [4, Proposition 2.22], taking [4, Remark 2.5]
into account. ��

Let us recall the classical definition of intrinsic Lipschits function, see [17, Definition 11].

Definition 2.12 (Intrinsic Lipschitz function) Let W ∈ Gc(h), assume L is a complement of
W, and let E ⊆ W. A function f : E → L is said to be an intrinsic Lipschitz function if
there exists an α > 0 such that for every p ∈ graph( f ) := {v · f (v) : v ∈ E} we have

graph( f ) ∩ pCW,L(α) = graph( f ),

where the cones CW,L(α) have been defined in Remark 2.2.

We finally state two properties of intrinsic Lipschitz graphs that will be useful later on,
and whose simple proofs can be found in [4].

Proposition 2.13 ([4, Proposition 2.19]) Suppose d is a homogeneous left-invariant distance
on G and let us fix V ∈ Gc(h) with complement L. If � ⊂ G is a CV(α)-set for some
α ≤ ε1(d,V,L), then the map PV : � → V is injective. As a consequence � is the intrinsic
graph of an intrinsically Lipschitz map defined on PV(�).

Lemma 2.14 ([4, Lemma 2.21]) Let L and V be homogeneous complementary subgroups of
G endowed with a left-invariant homogeneous distance d. Suppose � is a CV,d(α)-set with
α ≤ ε1(d,V,L). Then there exists a constant C(α) = C(α, d,V,L) > 0 such that

Sh
d (PV(Bd(x, r) ∩ �)) ≥ Sh

d

(
PV

(
Bd(x,C(α)r) ∩ xCV,d(α)

) ∩ PV(�)
)
,

for any x ∈ �, and any r > 0.

2.5 Rectifiable measures in Carnot groups

In what follows we are going to define the class of h-flat measures on a Carnot group and
then we will give proper definitions of rectifiable measures on Carnot groups.
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Definition 2.13 (Flat measures) For any h ∈ {1, . . . , Q} we letM(h) to be the family of flat
h-dimensional measures in G, i.e.,

M(h) := {λSh�W : for some λ > 0 and W ∈ G(h)}.
Furthermore, if G is a subset of the h-dimensional Grassmanian G(h), we letM(h,G) to be
the set

M(h,G) := {λSh�W : for some λ > 0 and W ∈ G}. (12)

Definition 2.14 (Ph andPc
h-rectifiable measures) Let h ∈ {1, . . . , Q}. A Radon measure φ

on G is said to be a Ph-rectifiable measure if for φ-almost every x ∈ G we have

(i) 0 < �h∗(φ, x) ≤ �h,∗(φ, x) < +∞,
(ii) there exists a V(x) ∈ G(h) such that Tanh(φ, x) ⊆ {λSh�V(x) : λ ≥ 0}.
Furthermore, we say that φ is Pc

h-rectifiable if (ii) is replaced with the weaker

(ii)* there exists a V(x) ∈ Gc(h) such that Tanh(φ, x) ⊆ {λSh�V(x) : λ ≥ 0}.
Remark 2.4 (About λ = 0 in Definition 2.14) It is readily noticed that, since in Definition
2.14 we are asking �h∗(φ, x) > 0 for φ-almost every x , we can not have the zero measure
as an element of Tanh(φ, x) thanks to [4, Proposition 2.26]. As a consequence, a posteriori,
we have that in item (ii) and item (ii)* we can restrict to λ > 0. We will tacitly work in this
restriction from now on, see [4, Remark 2.7].

Remark 2.5 (About the rectifiability of Hausdorff measures) We observe that if � is a Borel
set in G, Sh�� isPh-rectifiable if and only if Ch�� (or alsoHh��) isPh-rectifiable. This is
becauseSh,Hh, Ch are equivalentmeasures (seeDefinition 2.4), thePh-rectifiability implies
being locally asymptotically doubling, and then we can transfer the property of being Ph-
rectifiable from one measure to the other by using Lebesgue–Radon–Nikodym theorem (see
[25, page 82]) and the locality of tangents in Proposition 2.6.

We introduce now a way to estimate how far two measures are.

Definition 2.15 (Definition of FK ) Given φ and ψ two Radon measures on G, and given
K ⊆ G a compact set, we define

FK (φ, ψ) := sup

{∣∣∣∣
∫

f dφ −
∫

f dψ

∣∣∣∣ : f ∈ Lip+
1 (K )

}
, (13)

where Lip+
1 (K ) denotes the class of 1-Lipschitz nonnegative function with compact support

contained in K . We also write Fx,r for FB(x,r).

Remark 2.6 (Properties of FK ) With few computations that we omit, it is easy to see
that Fx,r (φ, ψ) = r F0,1(Tx,rφ, Tx,rψ). Furthermore, FK enjoys the triangular inequality.
Indeed, if φ1, φ2, φ3 are Radon measures and f ∈ Lip+

1 (K ), then∣∣∣
∫

f dφ1 −
∫

f dφ2
∣∣∣ ≤

∣∣∣
∫

f dφ1

−
∫

f dφ3
∣∣∣ +

∣∣∣
∫

f dφ3 −
∫

f dφ2
∣∣∣ ≤ FK (φ1, φ2) + FK (φ2, φ3).

The arbitrariness of f concludes that FK (φ1, φ2) ≤ FK (φ1, φ3) + FK (φ3, φ2).
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Definition 2.16 (Definition of Fr ) For a given Radon measure φ on G and for r > 0, let us
define Fr (φ) := ∫

dist(z,U (0, r)c)dφ(z).

Lemma 2.15 For anyRadonmeasureφ onG and any r > 0wehave that Fr (φ) = F0,r (φ, 0).

Proof It is immediate to see that F0,r (φ, 0) ≥ Fr (φ) for any r > 0. In order to prove the
viceversa, note that for any f ∈ Lip+

1 (B(0, r)) we have that f |∂B(0,r) = 0. Thanks to this
observation, for any y ∈ B(0, r) if we let x ∈ ∂B(0, r) be a point of minimal distance of y
from U (0, r)c we have

f (y) = | f (y) − f (x)| ≤ d(y, x) = dist(y,U (0, r)c),

and this finally shows that F0,r (φ, 0) = Fr (φ), concluding the proof of the lemma. ��
Proposition 2.16 The function defined on M × M as

d(φ, ψ) :=
∞∑
p=0

2−p min{1, F0,p(φ, ψ)},

is a distance and (M, d) is a separable metric space. The topology induced by d on M
coincides with the one given by the weak* topology.

Moreover, let us assume {φi }i∈N is a sequence of Radonmeasures such that lim supi→∞ φi
(B(0, r)) < ∞ for every r > 0. Then {φi }i∈N has a converging subsequence with respect to
the weak* topology.

Proof The result is stated in [42, Proposition 1.12] in the Euclidean case, but the proof works
verbatim for Radon measures on Carnot groups. ��
Proposition 2.17 The function F0,1(·, ·) is a metric on B(h) := {ψ ∈ M(h) : F1(ψ) = 1}
and (B(h), F0,1) is a compact metric space.

Proof First of all, we note that for any μ, ν ∈ B(h) we have that F0,1(μ, ν) = 0 if and only
if μ = ν and this is an immediate consequence of the fact that μ and ν are cones. Symmetry
follows directly form the definition and the triangular inequality follows from Remark 2.6.

We are left to show that (B(h), F0,1) is a compact metric space. Let �i be a sequence
in B(h) and note that since Ch�V(B(0, 1)) = 1 for every V ∈ G(h), because of Lemma
2.1, we deduce that �i = (h + 1)Ch�Vi for some Vi ∈ G(h). Thus, we can find a (non-
relabeled) subsequence of the planes Vi that converges to some V ∈ G(h) in the Hausdorff
metric thanks to the compactness of the Grassmanian G(h), see Proposition 2.7. Hence, by
[4, Proposition 2.29] we infer that�i⇀(h+ 1)Ch�V ∈ B(h) and therefore the compactness
follows. ��

Now we are going to define some functionals that quantifies how far is a measure from
being flat around a point x ∈ G and at a certain scale r > 0.

Definition 2.17 (Definition of dx,r ) For any x ∈ G, any h ∈ {1, . . . , Q} and any r > 0 we
define the functional

dx,r (φ,M(h)) := inf
V∈G(h) F0,1(Tx,rφ/F1(Tx,rφ), (h + 1)Ch�V). (14)

Furthermore, if G is a subset of the h-dimensional Grassmanian G(h), we also define

dx,r (φ,M(h,G)) := inf
V∈G F0,1(Tx,rφ/F1(Tx,rφ), (h + 1)Ch�V). (15)
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Remark 2.7 (About the definition of dx,r ) For any Radon measure φ on G and any r > 0 it is
immediate to see that F1(T0,rφ) = r−1Fr (φ). Moreover, thanks to the first part of Remark
2.6, we get by few simple computations

F0,1

(
Tx,rφ

F1(Tx,rφ)
, (h + 1)Ch�V

)
= r−(h+1)F0,r

(
Tx,1φ

r−(h+1)Fr (Tx,1φ)
, (h + 1)Ch�V

)
,

(16)

for all r > 0 and V ∈ G(h). Hence, since F1((h + 1)Ch�V) = 1 as a consequence of
[4, Proposition 2.12] and Lemma 2.1, we notice that the definition in (15) agrees with
the definition given in [42, §2.1(3)]. Namely, dx,r (φ,M(h,G)) = dr (Tx,1φ,M(h,G)) =
d1(Tx,rφ,M(h,G)), where dr is the one defined in [42, §2.1(3)].

For the sake of completeness, and for some benefits toward subsequent calculations, let
us recall here the precise definition of the function d Preiss gave in his setting. Let C be
an arbitrary cone of measures without the origin, that means 0 /∈ C and μ ∈ C implies
λT0,νμ ∈ C for every λ, ν > 0. Then, for every r > 0 and φ a Radon measure we define

dr (φ,C ) := inf

{
Fr

(
φ

Fr (φ)
, ψ

)
: ψ ∈ C , Fr (ψ) = 1

}
. (17)

By the explicit expression and the continuity of Fr (·)with respect to the weak* convergence,
one easily verifies that, for every r > 0

φk⇀kφ, Fr (φ) > 0 ⇒ dr (φk,C ) →k dr (φ,C ), (18)

compare [42, 2.1(6)]. Moreover, due to a slight modification of (16), we have, for every r > 0
and every Radon measure φ,

dr (φ,C ) = d1(T0,rφ,C ). (19)

We now adapt some classical results contained in [42] to our context. The aim will be to
prove that when a Radon measure on G has a tangent at a point that is a cone (of measures)
with compact basis, then the measure is locally asymptotically doubling. The following
proposition is the analogue of [42, Propostion 2.2].

Proposition 2.18 Assume that T is a non-empty cone of Radon measures, i.e., for any ν ∈ T
and any λ, η > 0 we have ηT0,λν ∈ T , and moreover 0 /∈ T . Then, the following are
equivalent

(i) the setB(T ) := {ν ∈ T : F1(ν) = 1} is weak* compact,
(ii) for any sequence {νi }i∈N ⊆ T such that limi→∞ F1(νi ) = 0, we have νi⇀0,
(iii) there is a q ∈ (0,∞) such that ν(B(0, 2r)) ≤ qν(B(0, r)) for every r > 0 and any

ν ∈ T .

Proof Let us first prove that (i)⇒(ii). Let νi be a sequence in T and let us assume that
limi→∞ F1(νi ) = 0. We note that νi⇀0 if and only if F0,t (νi , 0) = Ft (νi ) →i 0 for any
t > 0. This means that if νi does not converge to 0, we infer that there are a t > 0 and an
ε > 0 such that, up to passing to subsequences, we have Ft (νi ) > ε for any i ∈ N. Let us
define

ri := sup{r ∈ [1, t] : Fr (νi ) ≤ F1(νi ) + 1/i}.
It is immediate to see that up to further subsequences F1(T0,ri νi ) = r−1

i Fri (νi ) > 0 and that

lim
i→∞

Ft/ri (T0,ri νi )

F1(T0,ri νi )
= lim

i→∞
Ft (νi )

Fri (νi )
> ε lim

i→∞(F1(νi ) + 1/i)−1 = ∞.
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Thanks to the fact that T is a cone, we know that F1(T0,ri νi )
−1T0,ri νi ∈ B(T ) and thus

there must exists a converging (non-relabeled) subsequence of ri and a ν ∈ B(T ) such that
F1(T0,ri νi )

−1T0,ri νi⇀ν. This however implies that

∞ = lim
i→∞

Ft/ri (T0,ri νi )

F1(T0,ri νi )
≤ lim

i→∞
Ft (T0,ri νi )

F1(T0,ri νi )
= lim

i→∞ Ft (F1(T0,ri νi )
−1T0,ri νi ) = Ft (ν),

that is a contradiction with the fact that ν is a Radon measure.
Secondly, let us show that (ii)⇒(iii). Since T is a cone, it suffices to prove that there

exists q ∈ (0,+∞) such that ν(B(0, 2)) ≤ qν(B(0, 1)) for every ν ∈ T . Indeed, we
thus would get that for every ν ∈ T and r > 0 we have ν(B(0, 2r)) = T0,rν(B(0, 2)) ≤
qT0,rν(B(0, 1)) = qν(B(0, r)). Suppose by contradiction that there exists a sequence of
measures νi ∈ T such that νi (B(0, 2)) > iνi (B(0, 1)). Note now that since T is a cone, the
measures νi (B(0, 2))−1νi are still in T and limi→∞ F1(νi (B(0, 2))−1νi ) = 0. Thanks to (ii)
this shows in particular that

νi (B(0, 2))
−1νi⇀0 (20)

However, since F3(νi (B(0, 2))−1νi ) ≥ 1 for any i ∈ N, this is a contradiction with (20),
according to which one should have

lim
i→∞ F3(νi (B(0, 2))

−1νi ) = F3(0) = 0,

as clearly F3 is a weak* continuous operator on Radon measures.
Finally, let us prove the implication (iii)⇒(i). Let {νi }i∈N be a sequence inB(T ) and note

that for any i ∈ N we have

νi (B(0, 1/2)) ≤ 2F1(νi ) = 2,

and thus thanks to (iii) we infer that for any r > 0we have νi (B(0, r)) ≤ 4max{1, q log2(r)+1}
for any i ∈ N. Proposition 2.16 and the weak* continuity of F1 conclude the proof. ��
Remark 2.8 For some benefit towards the remaining part of this section, let us notice that if
T is a non-empty cone of Radon measure such thatB(T ) is weak* compact, for every λ > 1
there is τ > 1 such that Fτr (ψ) ≤ λFr (ψ) for every r > 0 and ψ ∈ T . The proof follows
verbatim from the five lines in [42, (1)⇒(5) of Proposition 2.2].

Proposition 2.19 For any Radonmeasureφ onG andφ-almost every x ∈ G the setTan(φ, x)
is either empty or a cone. Suppose φ is a Radon measure on G such that the setB(φ, x) :=
{ν ∈ Tan(φ, x) : F1(ν) = 1} is a non-empty weak* compact for φ-almost every x ∈ G. Then
φ is locally asymptotically doubling.

Proof In order to prove the first part of the statement, let x ∈ supp(φ) be a point where
Tan(φ, x) is non-empty, choose a ν ∈ Tan(φ, x) and assume that ri and ci are two sequences
such that

ci Tx,riφ⇀ν.

To conclude the proof of the claim we need to show that for any η, λ > 0 we have ηT0,λν ∈
Tan(φ, x) and to do this, we just note that

ηci Tx,λriφ = ηT0,λ(ci Tx,riφ)⇀ηT0,λν.

This shows that ηT0,λν ∈ Tan(φ, x) and thus Tan(φ, x) is a cone.
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Fix a point inGwhere the setB(φ, x) is a compact cone and thanks to Proposition 2.18(iii)
we infer there exists a q > 0 such that ν(B(0, 2r)) ≤ qν(B(0, r)) for any ν ∈ Tan(φ, x)
and every r > 0. Let d := inf{dist(z,U (0, 1/2)c) : z ∈ B(0, 1/4)} > 0. We now prove that

lim sup
r→0

F1(Tx,2rφ)/F1(Tx,rφ) ≤ 2d−1q2. (21)

Indeed, if by contradiction ri is an infinitesimal sequence such that F1(Tx,2riφ) >

2d−1q2F1(Tx,riφ), then for any ν ∈ B(φ, x) we have

F1(Tx,2riφ/F1(Tx,2riφ), ν) ≥ F1/2(Tx,2riφ/F1(Tx,2riφ), ν)

≥ F1/2(ν) − F1/2(Tx,2riφ)/F1(Tx,2riφ), (22)

where the last inequality comes from Remark 2.6 and Lemma 2.15. Furthermore, we also
have for any ν ∈ B(φ, x) that

F1/2(ν) = F1/2(ν)

F1(ν)
≥ dν(B(0, 1/4))

2ν(B(0, 1))
≥ d

2q2
. (23)

Thanks to the absurd hypothesis and the fact that for any s > 0 we have Fs(Tx,rφ) =
sF1(Tx,rsφ), we infer that

F1/2(Tx,2riφ)/F1(Tx,2riφ) = F1(Tx,riφ)/2F1(Tx,2riφ) ≤ d/4q2. (24)

Putting (22), (23) and (24) together, we conclude that

F1(Tx,2riφ/F1(Tx,2riφ), ν) ≥ d/4q2 ≥ min{d/4q2, 1/2} =: ε, (25)

for any ν ∈ B(φ, x). Let us now denote, for simplicity, T := Tan(φ, x). By taking
into account the definition of d1 in (17), we get from the previous computations that
d1(Tx,2riφ,T ) ≥ ε for every i . Let us fix ν ∈ Tan(φ, x) such that ci Tx,siφ⇀ν and let
us note that (17) and (18) imply that

lim
i→0

d1(Tx,siφ,T ) = lim
i→∞ d1(ci Tx,siφ,T ) = d1(ν,T ) = 0.

Thanks to the above chain of identities, for i sufficiently large, we denote by �i the smallest
number among those � ∈ [0, si ] with the property that d1(Tx,η,T ) < ε for every � <

η ≤ si . Since d1(Tx,2riφ,T ) ≥ ε we conclude that �i > 0 for i sufficiently large and
d1(Tx,�iφ,T ) = ε by the minimality of �i and the continuity of the map η �→ d1(Tx,ηφ,T ).

If, up to subsequences, �i/si →i t > 0, we conclude that, thanks to (18),

d1(T0,tν,T ) = lim
i→+∞ d1(Tx,tsiφ,T )

≥ ε,

where the last inequality is true since tsi is arbitrarily near to �i for i large enough, and
d1(Tx,�iφ,T ) ≥ ε. The previous inequality gives a contradiction since T0,tν ∈ T and hence
we should have d1(T0,tν,T ) = 0. Thus, �i/si → 0. This means that for every r ≥ 1, taking
into account (19), we have

lim sup
i→+∞

dr (Tx,�iφ,T ) = lim sup
i→+∞

d1(Tx,r�iφ,T ) ≤ ε, (26)

since �i ≤ r�i ≤ si for i sufficiently large. Since ε < 1, we have that λ := 2/(1 + ε) > 1,
and hence, by Remark 2.8, there exists τ > 1 such that Fτr (ψ) ≤ λFr (ψ) for every ψ ∈ T
and for every r > 0, since T has a compact basis. Hence, taking (26) into account with τr
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instead of r , we get that, whenever r ≥ 1 and i is sufficiently big, there exists ψ ∈ T with
Fτr (ψ) = 1 and

Fτr

(
Tx,�iφ

Fτr (Tx,�iφ)
, ψ

)
≤ ε/2.

As a consequence, whenever r ≥ 1 and i is sufficiently big, by the triangle inequality for F
(cf. Proposition 2.17) and by the fact that Fτr (·) ≥ Fr (·), we get that

Fr (Tx,�iφ)

Fτr (Tx,�iφ)
≥ Fr (ψ) − ε/2 ≥ λ−1Fτr (ψ) − ε ≥ 1/2.

Hence, iterating, we have shown that there exists τ > 1 such that that for every r ≥ 1 and
every p ∈ N,

lim sup
i→+∞

Fτ pr (Tx,�iφ)

Fr (Tx,�iφ)
< +∞.

By the arbitrariness of p ∈ N and r ≥ 1, this implies that we are in a position to apply

Proposition 2.16 to the sequence
Tx,�i φ

F1(Tx,�i φ)
, which then converges, up to subsequences, to

ν̃ ∈ T with F1(̃ν) = 1. But then, by (18),

d1(̃ν,T ) = lim
i→+∞ d1(Tx,�iφ,T ) ≥ ε,

that is a contradiction since d1(̃ν,T ) = 0. Hence we finally have proven (21).
Hence, from (21), we deduce

lim sup
r→0

φ(B(x, 2r))

φ(B(x, r))
≤ lim sup

r→0

2F1(Tx,4rφ)

2−1F1(Tx,rφ)
≤ 16d−2q4,

whence the conclusion. ��
Let us now prove a simple consequence of the previous Proposition.

Proposition 2.20 Let φ be a Radon measure on G such that for φ-almost every x ∈ G we
have Tan(φ, x) = {λSh�V(x), λ > 0} for some homogeneous subgroup V(x) of Hausdorff
dimension h ∈ N. Then, for φ-almost every x ∈ G, the measure Tx,rφ/F1(Tx,rφ) weak*
converges to (h + 1)Ch�V(x).

Proof For φ-almost every x ∈ G we have that B(φ, x) = {(h + 1)Ch�V(x)}, taking into
account [4, Proposition 2.12] and Lemma 2.1. HenceB(φ, x) is clearly compact forφ-almost
every x ∈ G, and thenφ is locally asymptotically doubling, due to Proposition 2.19.Hence for
every sequence ri → 0 we can extract a subsequence in i such that Tx,riφ/F1(Tx,riφ)weak*
converges to some ν ∈ Tan(φ, x), due to the fact that φ is locally asymptotically doubling
and thus the hypothesis of Proposition 2.16 is verified. Since F1(ν) = 1 by continuity of F1,
we conclude that ν = (h + 1)Ch�V(x). Thus, being the sequence ri arbitrary, we obtain the
thesis. ��

The following proposition, which is inspired by [42, 4.4(4)], will be of crucial importance
in the proof of the two fundamental results of this section, namely Proposition 2.25, and
Proposition 2.26.

Proposition 2.21 Let 0 < σ < 1/5, φ be a Radon measure on G, h ∈ {1, . . . , Q}, and
dz,t (φ,M(h, {V})) ≤ σ h+4, then

φ(B(y, s) ∩ B(yV, σ 2t/(h + 1))) ≥ (1 − 5σ)(s/r)hφ(B(x, r)),
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whenever x, y ∈ zV ∩ B(z, (1 − σ)t), σ t ≤ r ≤ (1 − σ)t − ‖z−1x‖, and σ t ≤ s ≤
(1 − σ)t − ‖z−1y‖.
Proof The definition of dz,t (·,M(h, {V})) implies that

F0,1(Tz,tφ/F1(Tz,tφ), (h + 1)Ch�V) ≤ σ h+4,

and thus up to redefining φ we can assume without loss of generality that z = 0, t = 1 and
that F1(φ) = 1. Thus, let q := σ 2/(h + 1), x ∈ V and r > 0 as in the hypothesis of the
proposition. Define

g(w) := min{1, dist(w,G \ B(x, r + q))/q}.
Notice that B(x, r) � B(0, 1), and thanks to the assumptions on φ we infer that, calling
Lip(g) the Lipschitz constant of the function g,

φ(B(x, r))

≤
∫

g(w)dφ(w) ≤ (h + 1)
∫

g(w)dCh�V(w) + Lip(g)F0,1(φ, (h + 1)Ch�V(w))

≤ (h + 1)Ch�V(B(x, r + q)) + σ h+4/q = (h + 1)(r + q)h + σ h+4/q.

(27)

With the same argument used above,see [4, Equation (37)], for any y and s > 0 as in the
hypothesis of the proposition one can also show that

(h + 1)(s − q)h = (h + 1)Ch�V(B(y, s − q)) ≤ φ(B(y, s) ∩ B(V, q)) + σ h+4/q.

(28)

Thus, putting together (27) and (28) we infer that

φ(B(y, s) ∩ B(V, q))

φ(B(x, r))

≥ (h + 1)(s − q)h − σ h+4/q

(h + 1)(r + q)h + σ h+4/q
=

( s
r

)h
(
1 − σ 2

s(h+1)

)h − σ h+2

sh(
1 + σ 2

r(h+1)

)h + σ h+2

rh

≥
( s
r

)h
(
1 − σ

h+1

)h − σ 2

(
1 + σ

h+1

)h + σ 2
≥

( s
r

)h 1 − h/(h + 1)σ − σ 2

1 + 2h/(h + 1)σ + σ 2 ≥
( s
r

)h 1 − 2σ

1 + 3σ

≥ (1 − 5σ)
( s
r

)h
,

where in the third inequality above we are using that σ ≤ r and σ ≤ s; in the fourth
inequality we are using that (1 − σ/(h + 1))h ≥ 1 − h/(h + 1)σ by Bernoulli inequality,
and (1 + σ/(h + 1))h ≤ 1 + 2h/(h + 1)σ , which can be easily verified by induction since
2hσ/(h + 1) ≤ 1. ��

Before proving the main results of this section, namely Proposition 2.25, and Proposition
2.26, we now state and prove three measurability results that will play a crucial role in the rest
of the paper. Roughly speaking, we prove that when ameasure has unique tangents (or unique
approximate tangents), the map that associates a point x ∈ G to its tangent (or approximate
tangent) is measurable.
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Lemma 2.22 Let φ be a Radon measure such that, for φ-almost every x ∈ G, there exists
τ(φ, x) ∈ G(h) such that

Tan(φ, x) = {λCh�τ(φ, x) : λ > 0}.
Then the map x �→ τ(φ, x) is φ-measurable as a map from G to G(h).

Proof First of all, from Proposition 2.19 we get that φ is locally asymptotically doubling.
We let {V�}�∈N be a countable dense set in G(h) that exists thanks to the compactness of the
Grassmanian, see Proposition 2.7. Furthermore, for any r ∈ (0, 1) ∩ Q any ε > 0, and any
� ∈ N we define the function

fr ,�,ε(x) := φ(B(x, r))−1φ({w ∈ B(x, r) : dist(x−1w,V�)

≥ ε‖x−1w‖}) =: φ(B(x, r))−1φ(I (x, r , �, ε)),

when φ(B(x, r)) > 0 and we set it to be +∞ if φ(B(x, r)) = 0. We claim that the functions
fr ,�,ε are upper semicontinuous. Let {xi }i∈N be a sequence of points converging to some
x ∈ G. If φ(B(x, r)) = 0 the upper semicontinuity on the sequence {xi }i∈N is trivially
verified bydefinition of fr ,�,ε. So let us assumewithout loss of generality thatφ(B(x, r)) > 0.
Since xi → x and φ is a Radon measure we have φ(B(x, r)) = limi φ(B(xi , r)), and then
we can assume withouot loss of generality that φ(B(xi , r)) > 0 for every i .

Since the sets I (xi , r , �, ε) are contained in B(x, 2) provided i is sufficiently big, we infer
thanks to Fatou’s Lemma that

lim sup
i→+∞

fr ,�,ε(xi ) = lim sup
i→+∞

φ(B(xi , r))
−1

∫
χI (xi ,r ,�,ε)(z)dφ(z)

≤ φ(B(x, r))−1
∫

lim sup
i→+∞

χI (xi ,r ,�,ε)(z)dφ(z). (29)

Furthermore, since xi → x and the sets I (xi , r , �, ε) and I (x, r , �, ε) are closed, we have

lim sup
i→+∞

χI (xi ,r ,�,ε)

= χlim supi→+∞ I (xi ,r ,�,ε) ≤ χI (x,r ,�,ε),

where the first equality is true in general. Then, from (29), we infer that

lim sup
i→∞

fr ,�,ε(xi ) ≤ φ(B(x, r))−1
∫

lim sup
i→+∞

χI (xi ,r ,�,ε)(z)dφ(z)

≤ φ(B(x, r))−1
∫

χI (x,r ,�,ε)(z)dφ(z) = fr ,�,ε(x),

and this concludes the proof that fr ,�,ε is upper semicontinuous. This shows that for every
� ∈ N and ε > 0, the function

f�,ε := lim inf
r∈Q∩(0,1),r→0

fr ,�,ε,

is φ-measurable. Hence also f̃�,ε := sup̃ε∈Q,̃ε>ε f�,ε is φ-measurable. As a consequence,
since Tan(φ, x) = {λCh�τ(φ, x) : λ > 0} for φ-almost every x ∈ G, we infer that the set

B�,ε := {
x ∈ G : f̃�,ε(x) = 0} ∩ {x ∈ G : there exists τ(φ, x)}

= {x ∈ G : τ(φ, x) ⊆ CV�
(ε)}, (30)
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is φ-measurable as well. Let us justify the last equality in the previous line. If f̃�,ε(x) = 0,
then f�,̃ε(x) = 0 for every ε̃ > ε, ε̃ ∈ Q. Hence, arguing as in [4, Proof of Proposition
5.5], in particular as in the lines slightly above [4, Equation (109)], we get τ(φ, x) ⊆ CV�

(̃ε)

for every ε̃ ∈ Q and ε̃ > ε. Let us explain this with further details. We first get that there
exist ri → 0 such that fri ,�,̃ε(x) →i 0. Since φ is locally asymptotically doubling, thanks to
Proposition 2.16we deduce that φ(B(x, ri ))−1Tx,riφ converges, up to subsequences, to some
tangent measure ν ∈ Tan(φ, x), and then from the hypothesis we have ν = λCh�τ(φ, x), for
some λ > 0. Then the same computations in the two displayed equations before [4, Equation
(109)] give the sought conclusion. Taking ε̃ → ε we get the first inclusion of (30). On the
other hand, if τ(φ, x) ⊆ CV�

(ε), we get that τ(φ, x) ⊆ {w ∈ G : dist(w,V�) < ε̃‖w‖} for
every ε̃ > ε. Hence we can argue as in [4, Equation (111)] in order to obtain that f�,̃ε(x) = 0
for every ε̃ > ε and then passing to the limit as ε̃ → ε we get the sought conclusion.

In order to prove that the map x �→ τ(φ, x) is φ-measurable, it suffices to check that the
for any open � ⊆ G(h) we have that τ−1(�) is φ-measurable. To show this we note that,
thanks to [4, Lemma 2.15], there is a sequence of radii rk > 0 such that

� =
⋃
k∈N
Vk∈�

{W ∈ G(h) : W ⊆ CVk (rk)}.

This implies that, up to φ-null sets, τ−1(�) = ⋃
k∈N Bk,rk , which thanks to the above

discussion is a φ-measurable set. ��
Lemma 2.23 Let φ be aPh-rectifiable measure. Denote τ(φ, x) to be the unique element of
G(h), that exists φ-almost everywhere by definition, for which

Tanh(φ, x) ⊆ {λCh�τ(φ, x) : λ > 0}.
Then the map x �→ τ(φ, x) is φ-measurable as a map from G to G(h).

Proof From a routine argument (cf. [38, Remark 14.4(3)]), we get that Tan(φ, x) =
{λCh�τ(φ, x)} for φ-almost every x ∈ G. Hence we can apply Lemma 2.22 ��

The proof of the following lemma follows as the ones above. We omit the details.

Lemma 2.24 Suppose d is a homogeneous left-invariant metric on G, let E be a Borel set
of finite Sh

d -measure, and suppose that for S
h
d -almost every x ∈ E there exists V(x) ∈ G(h)

for which for any 0 < ε < 1 and any 0 < β < 1 there exist a ρ(x, ε, β) > 0 such that

Sh
d �E(Bd(x, r) \ xCV(x),d(β)) ≤ εSh

d �E(Bd(x, r)), (31)

for any 0 < r < ρ(x, ε, β). Then the map x �→ V(x) from E to G(h) is Sh
d �E-measurable.

Notice that the previous statement could be also obtained arguing as in [39, Proposition
3.9], after having noticed that, since 2−h ≤ �

h,∗
d (Sh

d �E, x) ≤ 1 for Sh
d �E-almost every

x ∈ G due to [15, 2.10.19(1) and 2.10.19(5)], the condition (31) is equivalent to asking that
V(x) is an approximate tangent plane to E at x in the sense of [39, Equation (3.2)].

Remark 2.9 The results in Lemma 2.22, Lemma 2.23, and Proposition 2.24 are readily true
also when we allow τ(φ, x) (or V(x)) to be in some Borel subset of G(h).

Proposition 2.25 Suppose φ is a Radon measure on G such that, for φ-almost every x ∈ G,
we have Tan(φ, x) = {λSh�V(x) : λ > 0} for someV(x) ∈ G(h). Then, for every α ∈ (0, 1)
there exist {Vi }i∈N ⊆ G(h), and a family of compact CVi (α)-sets {�i }i∈N such that

φ(G \ ∪i∈N�i ) = 0.
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Proof First of all, by Proposition 2.19, the measure φ is locally asymptotically doubling. Up
to restricting φ to closed balls and by using the locality of tangents in Proposition 2.6 and
Lebesgue Theorem in Proposition 2.6, we may assume that φ is supported on a compact
set K and that it is still locally asymptotically doubling. Let S be dense countable subset
of (G(h), dG), that exists thanks to Proposition 2.7. Thanks to [4, Proposition 2.29], we
infer that also the countable set {(h + 1)Ch�W : W ∈ S} is dense in the metric space
({(h + 1)Ch�V : V ∈ G(h)}, F0,1).

Let us now fix e < 1/10, σ < 1/100(e/(3(1 + e)))h ,V ∈ S and let us denote

KV := {x ∈ K : F0,1((h + 1)Ch�V, (h + 1)Ch�V(x)) < σ h+4},

where V(x) ∈ G(h) is such that Tan(φ, x) = {λSh�V(x), λ > 0}. Since {(h + 1)Ch�W :
W ∈ S} is dense in the metric space ({(h + 1)Ch�V : V ∈ G(h)}, F0,1) we conclude that
K = ∪V∈SKV. By Lemma 2.22, one gets that KV is φ-measurable for every V ∈ S. Thus
by Proposition 2.6, we can assume without loss of generality that φ is locally asymptotically
doubling and supported on KV for some V ∈ S, which from now on we fix.

We now claim that for φ-almost every x ∈ G the following holds

lim
r→0+ dx,r (φ,M(h, {V})) = F0,1((h + 1)Ch�V, (h + 1)Ch�V(x)). (32)

Indeed, forφ-almost every x ∈ G themeasure Tx,rφ/F1(Tx,rφ) converges to (h+1)Ch�V(x)
as r → 0+, see Proposition 2.20 and thus, from the definition of dx,r , we get that

dx,r (φ,M(h, {V})) = F0,1(Tx,rφ/F1(Tx,rφ), (h + 1)Ch�V), (33)

from which we deduce the claim (32) by using the previous convergence and the continuity
of F0,1, see, e.g., [40, Proposition 1.10] or Proposition2.16. Moreover, the function x →
dx,r (φ,M(h, {V})) is continuous in x for every r > 0. Indeed, by (33) and the continuity of
F0,1, it is sufficent to see that, for every r > 0, the map x → Tx,rφ/F1(Tx,rφ) is continuous
fromG to the space of Radonmeasures equipped with the weak* convergence, which is clear
again by the continuity of F1(·) and by the continuity of the map x → Tx,rφ, which is readily
verified (see, e.g., the computations at the end of [40, page 22]). Hence, by using Severini-
Egoroff Theorem, we can assume without loss of generality that φ is supported on a compact
set E such that diam(E) < s and such that dx,r (φ,M(h, {V})) < σ h+4 whenever x ∈ E
and r ∈ (0, 400(h + 1)s). Let us now fix x̃, ỹ ∈ E and denote a := d (̃x, ỹ), t̃ := 2a(1+ e),
r̃ := a(1 + e) and s̃ := ae.

Let us apply Proposition 2.21 first with the choices x = y = z = ỹ, s = r = r̃ , t = t̃ and
σ as above, that yields

φ(B(ỹ, r̃) ∩ B(ỹV, σ 2̃t/(h + 1))) ≥ (1 − 5σ)φ(B(ỹ, r̃)), (34)

and secondly with x = y = z = x̃ , r = r̃ + a, s = s̃, t = 3a(1 + e) and σ , we get

φ(B (̃x, s̃) ∩ B (̃xV, σ 2 · 3a(1 + e)/(h + 1))) ≥ (1 − 5σ)(̃s/(̃r + a))hφ(B (̃x, r̃ + a)).

(35)
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Putting together (34) and (35), we conclude that

φ(B(ỹ, r̃) \ B(ỹV, 2aσ 2(1 + e)/(h + 1)))

= φ(B(ỹ, r̃)) − φ(B(ỹ, r̃) ∩ B(ỹV, 2aσ 2(1 + e)/(h + 1)))

≤ 5σφ(B(ỹ, r̃))

≤ 5σφ(B (̃x, r̃ + a))

≤ 5σ

1 − 5σ

(
2(1 + e)

e

)h

φ(B (̃x, s̃))

(36)

If by contradiction B (̃x, ea)∩ B(ỹV, 2aσ 2(1+ e)/(h+1))) = ∅ then from (36) and the fact
that B (̃x, s̃) ⊆ B(ỹ, r̃), we infer

φ(B (̃x, s̃)) ≤ 5σ

1 − 5σ

(
2(1 + e)

e

)h

φ(B (̃x, s̃)),

that is in contradiction thanks with the choice of σ . Hence, for every x̃, ỹ ∈ E we have that
B (̃x, ea)∩B(ỹV, 2aσ 2(1+e)/(h+1))) �= ∅ and thusd (̃x, ỹV) ≤ a(e+2σ 2(1+e)/(h+1)) =
d (̃x, ỹ)(e+2σ 2(1+ e)/(h+1)). Hence, the compact set E is a CV(e+2σ 2(1+ e)/(h+1))-
set. Since it is clear that, for any given α > 0, σ and e can be chosen small enough in order
to have e + 2σ 2(1 + e)/(h + 1) < α, the proof is thus concluded. ��

In the case the tangents are complemented we can give the following improvement of the
latter Proposition.

Proposition 2.26 Let 1 ≤ h ≤ Q be a natural number. There exist {Vi }i∈N ⊆ Gc(h) and Li

complementary subgroups of Vi such that the following holds.
Suppose φ is a Radon measure on G such that, for φ-almost every x ∈ G, we have

Tan(φ, x) = {λSh�V(x) : λ > 0} for some V(x) ∈ Gc(h). Then, for every α ∈ (0, 1) there
exists a family of compact sets {�i }i∈N such that

φ(G \ ∪i∈N�i ) = 0,

and, for every i ∈ N, �i is a compact intrinsic Lipschitz graph, which is also a CVi (α)-set,
of a map ϕi : Ai ⊆ Vi → Li , where Ai is compact.

Proof The proof follows exactly the same lines as the proof of Proposition 2.25, so we just
sketch it underlying the main differences. For every � ∈ N, with � ≥ 2, let us define

Gc(h, �) := {V ∈ Gc(h) : ∃ L complement of V s.t. 1/� < ε1(V,L) ≤ 1/(� − 1)}.
Observe that Proposition 2.7 implies that Gc(h, �) is separable for any � ∈ N, since
Gc(h, �) ⊆ G(h) and (G(h), dG) is a compact metric space. Let

D� := {Vi,�}i∈N, (37)

be a countable dense subset of Gc(h, �) and

for all i ∈ N, choose a complement Li,� of Vi,� s.t. 1/� < ε1(Vi,�,Li,�) ≤ 1/(� − 1).

Now, let S := {Vi,�}i,�∈N, which is a dense countable subset of (Gc(h), dG) thanks to the
definition given above. As in the above proposition we infer that also the countable set
{(h + 1)Ch�W : W ∈ S} is dense in the metric space ({(h + 1)Ch�V : V ∈ Gc(h)}, F0,1).
Let us now fix, for every � ∈ N, e� < min{1/10, 1/(2�), α/2}, where α is as in the statement,
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and σ� < min{1/100(e�/(3(1 + e�)))
h, σ ′

�}, where σ ′
� is chosen small enough such that

e� + 2(σ ′
�)

2(1 + e�)/(h + 1) < min{α, 1/�}. Moreover, for every Vi,� ∈ D�, let us denote

KVi,� := {x ∈ K : F0,1((h + 1)Ch�Vi,�, (h + 1)Ch�V(x)) < σ h+4
� },

where V(x) is the element of G(h) for which Tan(φ, x) = {λSh�V(x), λ > 0}. Arguing as
in the above proposition, being K the compact set on which we can assume φ is supported
without loss of generality, we have K = ∪�∈N∪Vi,�∈D�

KVi,� . Hence, we can assume without
loss of generality that φ is supported on KVi,� for some Vi,�. The computations in the proof
of the above proposition can be repeated substituting σ� with σ accordingly, allowing us
to conclude that φ-almost every KVi,� can be covered by compact sets that are CVi,� (e� +
2(σ�)2(1 + e�)/(h + 1)). By the very choice of σ ′

� this implies that the latter compact sets
are CVi,� (min{α, 1/�})-sets, and since 1/� < ε1(Vi,�,Li,�), we also conclude that they are
graphs according to the splitting G = Vi,� · Li,�, see Proposition 2.13. ��

3 From flat tangents toPPP-rectifiability

In this section we first prove that, in an arbitrary Carnot group, having flat (complemented)
tangent measures à la Preiss implies being P-rectifiable, see Theorem 3.7. Then we will
prove a rectifiable criterion, see Proposition 3.9, which will allow us to complete the proof
of Theorem 1.1.

In this section a Carnot group G will be fixed, along with a left-invariant homogeneous
distance on it, that sometimes will be understood. Throughout this section we assume that
V ∈ Gc(h) and that VL = G. In this chapter whenever we deal with CV(α)-sets we are
tacitly assuming that α ≤ ε1(V,L).

3.1 From flat Preiss’s tangents toP-rectifiability

We are going to prove that whenever a measure has flat (complemented) tangents á la Preiss,
then it is P-rectifiable. Throughout this section we assume that V ∈ Gc(h) and that L is
a complementary subgroup of V. Let us begin with a proposition that roughly tells us the
following. If � is a compact CV(α)-set with α ≤ ε1(V,L), and moreover we know that the
measure Sh�� is locally asymptotically doubling, hence � has big projections on V. This
will allow us to prove that the lower h-density of Sh�� is positive almost everywhere, see
Proposition 3.6. The latter conclusion eventually leads to the following result: if a set has flat
(complemented) Preiss’s tangents, then it is Pc-rectifiable, see Theorem 3.7.

Let us start by recalling two results from [4] and proving an adaption of [4, Proposition
4.6] to our context.

Lemma 3.1 ([4, Lemma 4.2]) Suppose d is a homogeneous left-invariant metric on G. Then,
there exists an A := A(d,V,L) > 1 such that for anyw ∈ Bd(0, 1/5A), any y ∈ ∂Bd(0, 1)∩
CV,d(ε1(d,V,L)) and any z ∈ Bd(y, 1/5A), we have w−1z /∈ L.

Proposition 3.2 ([4, Proposition 4.3]) Suppose d is a homogeneous left-invariant metric on
G. Let us fix α < ε1(d,V,L) and suppose � is a CV,d(α)-set. For any x ∈ � let ρ(x) to
be the biggest number satisfying the following condition. For any 0 < r < ρ(x) and any
y ∈ B(x, r) ∩ � we have

PV(Bd(x, r)) ∩ PV(Bd(y, s)) = ∅ for any r , s < d(x, y)/5A,
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where A = A(d,V,L) is the constant yielded by Lemma 3.1. Then, the function x �→ ρ(x)
is positive everywhere on � and upper semicontinuous.

Proposition 3.3 Let α ≤ ε1(V,L) and suppose � is a compact CV(α)-set of Sh-finite mea-
sure such that for Sh��-almost every x ∈ G we have

lim sup
r→0

Sh��(B(x, 2r))
Sh��(B(x, r)) < ∞.

Then, there exists a constant C3 := C3(h, A) > 0 such that for Sh-almost every x ∈ � there
exists an infinitesimal sequence {�i (x)}i∈N such that for any i ∈ N we have

Sh(PV(� ∩ B(x, �i (x)))) > C3�i (x)
h (38)

Proof We will just sketch the proof, that is an adaptation of [4, Proposition 4.6] and we
refer the reader to [4, Proposition 4.6] for the missing details. Let N ∈ N be the unique
natural number for which 5N−2 ≤ A < 5N−1, where A is as in Lemma 3.1. Notice that,
since 2−h ≤ �h,∗(Sh��, x) ≤ 1 for Sh��-almost every x ∈ G (cf. [15, 2.10.19(1) and
2.10.19(5)]), hence, for Sh��-almost every x ∈ G there exists an infinitesimal sequence
{�i (x)}i∈N such that

1

2h+1 ≤ Sh(� ∩ B(x, �i (x)))

�i (x)h
≤ 2. (39)

Thus, for any k ∈ N and 0 < δ < 1/2 we define the following sets

A(k) :={x ∈ � : ρ(x) > 1/k},

D(k) :=
{
x ∈ A(k) : lim

r→0

Sh(B(x, r) ∩ A(k))

Sh(B(x, r) ∩ �)
= 1

}
,

Fδ(k) :=
{
B(x, r) : x ∈ D(k), r ≤ min{k−1, δ}

1000A
and

1

2h+1 ≤ Sh��(B(x, 5N+1r))

(5N+1r)h
≤ 2

}
,

(40)

where ρ(x) is the number defined in Proposition 3.2. First of all notice that, thanks to (39),
Fδ(k) is a fine covering of Sh��-almost all D(k). Furthermore, for any k the sets A(k) are
Borel since thanks to Proposition 3.2, the function ρ is upper semicontinuous and, since by
assumptionSh�� is locally asymptotically doubling,we also know thatSh��(A(k)\D(k)) =
0. Finally, from Proposition 3.2 we infer that Sh(�\∪+∞

k=1A(k)) = 0. Let us apply [4, Lemma
4.5] to N and Fδ(k) and we obtain the disjoint subfamily Gδ(k) of Fδ(k) such that

(α) for any B, B ′ ∈ Gδ(k) we have that 5N B ∩ 5N B ′ = ∅,
(β)

⋃
B∈F δ(k) B ⊆ ⋃

B∈G δ(k) 5
N+1B.

Throughout the rest of the proof we fix a w ∈ D(k) such that there exists a sequence
{�i (w)}i∈N satisfying (39), �i (w) ≤ min{k−1, δ}/8, and

Sh�D(k)(B(w, �i (w)))

Sh��(B(w, �i (w)))
≥ 1

2
for any i ∈ N, (41)

where the inequality follows from the fact that Sh��-almost every point ofD(k) has density
onewith respect to the locally asymptotically doublingmeasureSh��. Notice that, according
to the previous discussion, the previous choice on w is made in a set of full Sh��-measure,
so that if we prove the estimate (38) with such a w we are done. For the ease of notation we

123



7 Page 30 of 52 G. Antonelli, A. Merlo

continue the proof fixing the radius �i (w) = R. We stress that the forthcoming estimates are
verified also for any �i (w). As in [4, Proposition 4.6], one can prove that for any couple of
closed balls B(x, r), B(y, s) ∈ Gδ(k) such that B(w, R) intersects both B(x, 5N+1r) and
B(y, 5N+1s), we have

PV(B(x, r)) ∩ PV(B(y, s)) = ∅. (42)

In order to proceed with the conclusion of the proof, let us define

Fδ(w, R) :={B ∈ Fδ(k) : 5N+1B ∩ B(w, R) ∩ D(k) �= ∅},
Gδ(w, R) :={B ∈ Gδ(k) : 5N+1B ∩ B(w, R) ∩ D(k) �= ∅},

Thanks to our choice of R, see (41), and the definition of Gδ(w, R) we have

Rh

2h+1 ≤ Sh��(B(w, R)) ≤ 2Sh�D(k)(B(w, R)) ≤ 2Sh�D(k)

( ⋃
B∈G δ(w,R)

5N+1B

)
.

Let Gδ(w, R) := {B(xi , ri )}i∈N and recall that xi ∈ D(k). This implies, thanks to Corollary
2.8, that

Sh�D(k)

( ⋃
B∈G δ(w,R)

5N+1B

)
≤ 2 · 5(N+1)h

∑
i∈N

rhi

= 2 · 5(N+1)hC2(V,L)
−1

∑
i∈N

Sh(PV(B(xi , ri )))

= 2 · 5(N+1)hC2(V,L)
−1Sh

(
PV

( ⋃
i∈N

B(xi , ri )

))

≤ 2 · 5(N+1)hC2(V,L)
−1Sh

(
PV

( ⋃
B∈F δ(w,R)

B

))
,

where the first inequality comes from the subadditivity of the measure and the upper estimate
that we have in the definition ofFδ(k); while the first identity of the second line above comes
from (42). Summing up, for any δ > 0 we have

C2(V,L)R
h

5(N+1)h2h+3
≤ Sh

(
PV

( ⋃
B∈F δ(w,R)

B

))
.

Arguing as in the end of the proof of [4, Proposition 4.6], we get the Hausdorff convergence

PV

( ⋃
B∈F δ(w,R)

B

)
−→
H ,δ→0

PV

(
D(k) ∩ B(w, R)

)
.

Thanks to the upper semicontinuity of the Lebesgue measure with respect to the Hausdorff
convergence we eventually infer that

C2(V,L)R
h

5(N+1)h2h+3
≤ lim sup

δ→0
Sh

(
PV

( ⋃
B∈F δ(w,R)

B

))

≤ Sh(PV(D(k) ∩ B(w, R))) ≤ Sh(PV(� ∩ B(w, R))),

where the last inequality above comes from the compactness of� and the fact thatD(k) ⊆ �.
��
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Proposition 3.4 Let us fix α ≤ ε1(V,L) and suppose � is a compact CV(α)-set of finite
Sh-measure such that

lim sup
r→0

Sh��(B(x, 2r))
Sh��(B(x, r)) < ∞,

for Sh-almost every x ∈ �. Let us set ϕ : PV(�) → L the map whose graph is �, see
Proposition 2.13, and set � : PV(�) → G to be the graph map of ϕ. Let us define �∗Sh�V

to be the measure on � such that for every measurable A ⊆ � we have �∗Sh�V(A) :=
Sh�V(�−1(A)) = Sh�V(PV(A)). Then �∗Sh�V is mutually absolutely continuous with
respect to Sh��.
Proof The fact that�∗Sh�V is absolutely continuous with respect to Sh�� is an immediate
consequence of the second part of Corollary 2.8. Viceversa, suppose by contradiction that
there exists a compact subset C of � of positive Sh-measure such that

0 = �∗Sh�V(C) = Sh(PV(C)). (43)

Since Sh�C is locally asymptotically doubling by Proposition 2.6 and C has positive and
finite Sh-measure, we infer thanks to Proposition 3.3 that the set C must have a projection
of positive Sh-measure. This however comes in contradiction with (43). ��

In order to prove the forthcoming Proposition 3.6 we need the following result, which is
precisely [4, Proposition 4.10].

Proposition 3.5 Suppose d is a homogeneous left-invariant distance on G, let V,L be com-
plementary subgroups of G such that V ∈ Gc(h), and let us fix α ≤ ε1(V,L). Suppose that
� is a compact CV,d(α)-set of finite Sh-measure. As in Proposition 3.4, let us denote with
� : PV(�) → G the graph map of ϕ : PV(�) → L whose intrinsic graph is �. Then, for
Sh
d -almost every w ∈ PV(�) we have

lim
r→0

Sh
d

(
PV

(
Bd(�(w), r) ∩ �(w)CV,d(α)

) ∩ PV(�)
)

Sh
d

(
PV

(
Bd(�(w), r) ∩ �(w)CV,d(α)

)) = 1. (44)

Proposition 3.6 Let α ≤ ε1(V,L) and suppose � is a CV(α)-set such that Sh�� is locally
asymptotically doubling. Then, �h∗(Sh��, x) > 0 for Sh-almost every x ∈ �.

Proof Assume by contradiction that there exists a compact setC ⊆ � of positive Sh-measure
such that�h∗(Sh��, x) = 0 for every x ∈ C . Since by Proposition 3.4 themeasuresSh�� and
�∗Sh�V are mutually absolutely continuous, the set PV(C) must have positive Sh-measure
as well. In particular we have thanks to Proposition 3.5, Lemma 2.14, Corollary 2.8, and
Proposition 2.9 that for Sh-almost every x ∈ C we have

Sh(PV(
B(0, 1) ∩ CV(α)

))

= lim inf
r→0

Sh
(
PV

(
B(x,C(α)r) ∩ xCV(α)

) ∩ PV(�)
)

Sh
(
PV

(
B(�(w),C(α)r) ∩ �(w)CV(α)

)) Sh
(
PV

(
B(�(w),C(α)r) ∩ �(w)CV(α)

))
(C(α)r)h

= lim inf
r→0

Sh
(
PV

(
B(x,C(α)r) ∩ xCV(α)

) ∩ PV(�)
)

(C(α)r)h

≤ lim inf
r→0

Sh�V(PV(B(x, r) ∩ �))

(C(α)r)h
≤ 2C1(V,L) lim inf

r→0

Sh��(B(x, r))
(C(α)r)h

= 0,

where C(α) is the constant introduced in Lemma 2.14. The above computation is in contra-
diction with the fact that Sh

(
PV

(
B(0, 1) ∩ CV(α)

))
is positive thus concluding the proof of

the proposition. ��

123



7 Page 32 of 52 G. Antonelli, A. Merlo

We are now in a position to state the main result of this subsection.

Theorem 3.7 Let � ⊆ G be compact such that Sh(�) < +∞. Assume that for Sh��-almost
every x ∈ G we have Tan(Sh��, x) = {λSh�V(x) : λ > 0, }, where V(x) ∈ Gc(h). Then,
Sh�� is Pc

h-rectifiable.

Proof Wehave thatSh�� is locally asymptotically doubling, see Proposition 2.19.Moreover,
from Proposition 2.26, there exist {Vi }i∈N ⊆ Gc(h), and {Li }i∈N, such that Li and Vi are
homogeneous complementary subgroups, with the property that for every α > 0 there exists
a family of compact sets {�i } such that �i is a CVi (min{α, ε1(Vi ,Li )})-set, and

Sh(� \ ∪i∈N�i ) = 0. (45)

SinceSh�� is locally asymptotically doubling, thenSh��i is locally asymptotically doubling
for every i ∈ N, see Proposition 2.6. Hence, we can apply Proposition 3.6 to conclude that
�h∗(Sh��i , x) > 0 for every i ∈ N and for Sh-almost every x ∈ �i . In addition, from the
previous inequality and [15, 2.10.19(5)] for every i ∈ N, we get that

0 < �h∗(Sh��i , x) ≤ �h,∗(Sh��i , x) < +∞, for Sh − almost every x ∈ �i . (46)

Moreover, since for Sh-almost every x ∈ � we have Tan(Sh��, x) = {λSh�V(x) : λ > 0}
with V(x) ∈ Gc(h), we deduce that, for every i ∈ N, the locality of tangents in Proposition
2.6 ensures that for Sh-almost every x ∈ �i we have Tan(Sh��i , x) = {λSh�V(x) : λ >

0}. From the previous equality, we conclude that for every i ∈ N we have Tanh(φ, x) ⊆
{λSh�V(x) : λ > 0}. Hence, from the latter conclusion and (46) we get that Sh��i is a
Pc

h-rectifiable measure for every i ∈ N. Finally, from (45) and Proposition 2.6 we conclude
that Sh�� is a Pc

h-rectifiable measure. ��

3.2 From approximate tangent planes toPPP-rectifiability

In this section we aim at proving that whenever an approximate (complemented) h-
dimensional tangent plane to a set � exists almost everywhere in the sense of Proposition
3.9, then the measure Sh�� isPc

h-rectifiable. First, we need a crucial estimate on projections
that will be useful also later on. Since none of the main results of this subsection depends on
the choice of the metric, in the following d will be an arbitrary homogeneous left-invariant
metric and ‖‖d its associated homogeneous norm.

Proposition 3.8 Suppose d is a homogeneous left-invariant distance on G and let V,W ∈
Gc(h) be complemented by the same subgroupL. Then, there exists an increasing function� :
(0,C1(d,W,L)] → (0,+∞), depending only onV,W,L and d, such that limβ→0�(β) =
0 and satisfying the following condition.

For any α ≤ ε1(V,L) and any CV,d(α)-set � of finite Sh-measure if there are an x ∈ �,
a β ≤ C1(d,W,L) and a ρ > 0 such that

� ∩ Bd(x, r) ⊆ xCW,d(β), for all 0 < r < ρ. (47)

then
∣∣∣S

h
d (PV(Bd(x, r) ∩ xCW,d(β)) ∩ PV(�))

rh
− Sh(PV(Bd(x, r) ∩ xCW,d(β) ∩ �))

rh

∣∣∣ ≤ �(β),

for any 0 < r < (1 + α(C1(d,V,L) − α)−1)−1C1(d,V,L)ρ =:  (ρ, α).
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Proof In order to simplify notation throughout the proof of the proposition, we will drop
everywhere the dependence on d .

Let us fix an x ∈ �, a 0 < β ≤ C1(W,L) and a ρ where (47) holds. We denote with
PV, PV

L
, respectively, the projections associated to the splitting G = V · L, and analogously

for the splittingG = W·L. For the sake of notation, for any fixed 0 < r < (1+α(C1(V,L)−
α)−1)−1C1(V,L)ρ we let

Ar := PV(B(x, r) ∩ xCW(β)) ∩ PV(�) and Br := PV(B(x, r) ∩ xCW(β) ∩ �).

Since the inclusion Br ⊆ Ar is always verified, we want to estimate the measure of those w
contained in Ar \ Br . If y ∈ Ar , there are w ∈ � such that PV(w) = y, and an � ∈ L such
that y� ∈ B(x, r) ∩ xCW(β). Let us notice that Corollary 2.8 implies that ‖PV(x−1y)‖ =
‖PV(x−1y�)‖ ≤ C1(V,L)

−1r . Moreover, since � is a CV(α)-set, we even get that, by
exploiting Remark 2.2,

‖PV

L
(x−1w)‖ ≤ α(C1(V,L) − α)−1‖PV(x−1w)‖ = α(C1(V,L) − α)−1‖PV(x−1y)‖

≤ α(C1(V,L) − α)−1C1(V,L)
−1r . (48)

This implies in particular that

‖x−1w‖ ≤ ‖PV(x−1w)‖ + ‖PV

L
(x−1w)‖ = ‖PV(x−1y)‖ + ‖PV

L
(x−1w)‖

≤ (1 + α(C1(V,L) − α)−1)C−1
1 (V,L)r .

Hence, from the choice of r , we infer that (1 + α(C1(V,L) − α)−1)C1(V,L)
−1r < ρ and

thus we can use the hypothesis in (47) applied to w to obtain that x−1w ∈ CW(β). Thus, by
also exploiting Remark 2.2 and the fact that x−1y� ∈ CW(β) we get that

‖PW

L
(x−1y)�‖ ≤ β(C1(W,L) − β)−1‖PW(x−1y)‖ and

‖PW

L
(x−1y)PV

L
(w)‖ ≤ β(C1(W,L) − β)−1‖PW(x−1y)‖, (49)

where the last inequality comes from the fact that PW

L
(x−1w) = PW

L
(x−1yPV

L
(w)) =

PW

L
(x−1y)PV

L
(w). Thanks to (49) we deduce that

‖�−1PV

L
(w)‖ ≤ ‖PW

L
(x−1y)�‖ + ‖PW

L
(x−1y)PV

L
(w)‖

≤ 2β(C1(W,L) − β)−1‖PW(x−1y)‖
= 2β(C1(W,L) − β)−1‖PW(x−1y�)‖
≤ 2β(C1(W,L) − β)−1C1(W,L)−1‖x−1y�‖
≤ 2β(C1(W,L) − β)−1C1(W,L)−1r .

(50)

This in particular implies that

‖x−1w‖ = ‖x−1yPV

L
(w)‖ ≤ r + ‖�−1PV

L
(w)‖ ≤ (1 + 2β(C1(W,L) − β)−1C1(W,L)−1)r =: f2(β)r .

The above chain of inequalities, together with the hypothesis (47), allows us to conclude that

Ar ⊆ PV(B(x, f2(β)r) ∩ xCW(β) ∩ �).

Finally this allows us to infer

Sh(Ar ) − Sh(Br ) ≤ Sh(PV(B(x, f2(β)r) ∩ xCW(β) ∩ �) \ PV(B(x, r) ∩ xCW(β) ∩ �))

= Sh(PV(B(x, f2(β)r) \ B(x, r) ∩ xCW(β) ∩ �)), (51)
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where the last identity comes from the injectivity of PV when restricted to �, since α ≤
ε1(V,L), see Proposition 2.13. Finally, Proposition 2.9 implies

Sh(Ar ) − Sh(Br ) ≤ Sh(PV(B(x, f2(β)r) \ B(x, r) ∩ xCW(β)))

= Sh(PV(B(0, f2(β)) \ B(0, 1) ∩ CW(β)))rh =: �(β)rh . (52)

The function � is easily seen to be increasing and thanks to the continuity from above of
the measure, the fact that limβ→0�(β) = 0 immediately follows too since f2(β) → 1 as
β → 0. ��
Proposition 3.9 Suppose d is a homogeneous left-invariant distance on G and that � is a
Borel set of Chd -finite measure such that at C

h
d -almost every x ∈ � there exists V(x) ∈ Gc(h)

for which for any 0 < β < 1 there exists a ρ(x, β) > 0 such that

� ∩ Bd(x, ρ(x, β)) ⊆ xCV(x),d(β). (53)

Then, the measure Chd�� is Pc
h-rectifiable. In addition we have that �h

d(C
h
d��, x) = 1 and

Tanh(Chd��, x) = {Chd�V(x)} for Chd��-almost every x.
Proof In order to simplify notation throughout the proof of the proposition, we will drop
everywhere the dependence on d . First of all we define the family of sets

F := {� ⊆ G : � is Borel, Sh�� is Pc
h − rectifiable and �h(Ch��, x)

= 1 for Sh�� − almost every x}.
Thanks to [40, Proposition 1.22] we can write � as � = �r ∪�u where �r is a Borel set for
which there are countable many �k ∈ F such that �r ⊆ ∪k�k and �u is a Borel set such
that Sh(� ∩ �) = 0 for any � ∈ F .

Let us prove that �r ∈ F . For any k ∈ N we define �̃k := �k \ ∪1≤i≤k−1�i . Thanks to
Proposition 2.6 the measures Sh��̃k is still Pc

h-rectifiable, the �̃k are pairwise disjoint and
their union still contains�r . Again by Proposition 2.6 we infer that for any k ∈ N themeasure
Sh�(�̃k ∩ �r ) is Pc

h-rectifiable and �h(Ch�(�̃k ∩ �r ), x) = 1 for Sh�(�̃k ∩ �r )-almost
every x and this finally implies that

�h(Ch��r , x) = 1,

for Sh��r -almost every x . Applying Proposition 2.6 to the measure Sh��r and to the Borel
set �̃k we infer that Tanh(Sh��r , x) is unique and flat Sh��r -almost everywhere on �̃k .
Since the �̃k countably cover �r this concludes the proof that Sh��r is Pc

h-rectifiable.
The above argument shows that we can assume by contradiction that � is compact set of

positive and finite Sh-measure and that

Sh(� ∩ �) = 0 for any � ∈ F . (54)

For any η > 0 we let

G
η
c (h) :=

{
V ∈ Gc(h) : inf

W∈G(h)\Gc(h)
dG(V,W) ≥ η

}
⊆ Gc(h).

Thanks to Proposition 2.7 it follows that G
η
c (h) is a closed, thus compact, subset of G(h).

Thanks to Proposition 2.24, for any η > 0 the set �η := {x ∈ � : (53) holds atxand V(x) ∈
G
η
c (h)} is Sh-measurable. In addition to this, since V(x) belongs Sh��-almost everywhere

to Gc(h), that is an open set in G(h), see [4, Proposition 2.17], we have

Sh(� \
⋃

η∈Q+\{0}
�η) = 0.

123



On rectifiable measures in Carnot groups: representation Page 35 of 52 7

In particular there exists an η0 > 0 such that Sh(�η0) > 0. In the following we let E be a
compact subset of �η0 such that

Sh(�η0 \ E) < Sh(�η0)/2.

Note further that thanks to Proposition 2.12 we have that

m(η0) := min
W∈Gη0

c (h)
e(V) > 0.

Let D := {V j } j∈N be a countable dense subset of G
η0
c (h) and

for all j ∈ N we choose a complement L j of V j s.t. ε1(V j ,L j ) > e(V j )/2 ≥ m(η0)/2.

From now on we let ε be a fixed positive number in (0,m(η0)/10) such that

1 − 3m(η0)
−1ε(1 + 3m(η0)

−2ε)/(m(η0) − ε) > 0, (55)

which we can do taking ε small enough. The previous estimate will play a role later on. For
any p, q ∈ N we define the set

F(p, q) := {x ∈ E : B(x, 1/q) ∩ � ⊆ xCVp (ε/6)}, (56)

and we claim that

Sh(E \
⋃

p,q∈N
F(p, q)

) = 0. (57)

By density of the family D in G
η0
c (h) and since by construction for any x ∈ �η0 we have

V(x) ∈ G
η0
c (h), we deduce that there must exist a plane Vp ∈ D such that dG(Vp,V(x)) <

30−1ε. This, jointly with [4, Lemma 2.15], implies that

CV(x)(30
−1ε) ⊆ CVp (6

−1ε). (58)

Since by definition of �η0 , (53) holds at every point x ∈ E , we can find a ρ(x) > 0 such that
for any 0 < r < ρ(x) we have

B(x, r) ∩ � ⊆ xCV(x)(30
−1ε). (59)

In particular, putting together (58) and (59) we infer that for Sh��-almost every x ∈ E there
are a p = p(x) > 0 and a ρ(x) > 0 such that whenever 0 < r < ρ(x) we have

B(x, r) ∩ � ⊆ xCVp (6
−1ε),

and this concludes the proof of (57). Thanks to [4, Proposition 3.3] and Proposition 2.13, we
get that there are countably many V j ∈ G

η0
c (h) complemented by some L j , compact subsets

K j of V j and intrinsic Lipschitz functions ϕ j : K j ⊂ V j → L j such that

1. for any z ∈ K j we have � j = {wϕ j (w) : w ∈ K j } ⊆ zϕ j (z)CVג
(ε), and � j ⊆ E

2. Sh(E \ ∪ j� j ) = 0.

Thanks to [14, Corollary 4.17] we know that �∗,h(Ch�E, x) ≤ 1 for Ch�E-almost every x
and now we wish to prove that �h∗(Ch�E, x) ≥ 1 for Ch�E-almost every x .

Fix a j ∈ N, and an x ∈ � j such that the conclusion in Proposition 3.5 holds. Notice that
such a choice of x can be made in a set of Ch�� j -full measure in � j . Suppose that rk is an
infinitesimal sequence such that

�h∗(Ch�� j , x) = lim
k→∞ r−h

k Ch�� j (B(x, rk)).
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Thanks to item 1. above and to Proposition 3.8 one infers that we have that for any k ∈ N we
get

∣∣∣C
h(PV j (B(x, rk) ∩ xCV j (ε)) ∩ PV j (� j ))

rhk
− Ch(PV j (B(x, rk) ∩ xCV j (ε) ∩ � j ))

rhk

∣∣∣
≤ � j (ε), (60)

where � j was introduced in the statement of Proposition 3.8 and depends only on the split
V j · L j = G. In addition to this, for any j ∈ N the definitions of ε1(·, ·) and of L j imply
that

C1(V j ,L j ) = 2ε1(V j ,L j ) > e(V j ) ≥ m(η0), (61)

and in turn this means that � j (ε) can be estimated with

� j (ε) = Ch(PV j (B(0, f2(ε)) \ B(0, 1) ∩ CV j (ε)))

= Ch(PV j (B(0, 1 + 2ε(C1(V j ,L j ) − ε)−1C1(V j ,L j )
−1) \ B(0, 1) ∩ CV j (ε)))

≤ Ch(PV j (B(0, 1 + 3m(η0)
−2ε) \ B(0, 1) ∩ CV j (ε))),

(62)

where the last inequality above comes from (61) and the fact that ε ∈ (0,m(η0)/10). From
(60), the invariance properties in Proposition 2.9, the fact that x ∈ � j was chosen in such a
way that Proposition 3.5 holds, and the homogeneity of Ch�V, we infer that

Ch(PV j (B(0, 1) ∩ CV j (ε)))

lim sup
k→+∞

(
Ch(PV j (B(x, rk) ∩ xCV j (ε)) ∩ PV j (� j ))

Ch(PV j (B(x, rk) ∩ xCV j (ε)))
− Ch(PV j (B(x, rk) ∩ xCV j (ε) ∩ � j )

Ch(PV j (B(x, rk) ∩ xCV j (ε)))
)

)

= Ch(PV j (B(0, 1) ∩ CV j (ε)))
(
1 − lim inf

k→+∞
Ch(PV j (B(x, rk) ∩ xCV j (ε) ∩ � j ))

Ch(PV j (B(x, rk) ∩ xCV j (ε)))

)
≤ � j (ε).

This implies that, for every 0 ≤ δ ≤ 1/100, up to passing to a non-relabelled subsequence
in k, we can assume without loss of generality that for any k ∈ N we have

1 − Ch(PV j (B(x, rk) ∩ � j ))

rhk Ch(PV j (B(0, 1) ∩ CV j (ε)))
= 1 − Ch(PV j (B(x, rk) ∩ xCV j (ε) ∩ � j ))

Ch(PV j (B(x, rk) ∩ xCV j (ε)))

≤ δ + � j (ε)

Ch(PV j (B(0, 1) ∩ CV j (ε)))
.

Now, let usfixa k ∈ N sufficiently large such that |Ch�� j (B(x, rk))/rhk −�h∗(Ch�� j , x)| ≤
δ, and let �′

j ⊆ � j be a Borel set such that |Ch(B(x, rk)∩ � j )− Ch0 (B(x, rk)∩ �′
j )| ≤ δrhk .

Finally, we choose a covering with balls {B(y�, s�)}�∈N of �′
j ∩ B(x, rk), with y� ∈ �′

j , such

that |∑�∈N sh� − Ch0 (B(x, rk) ∩ �′
j )| ≤ δrhk . This implies in particular that

|Ch(B(x, rk) ∩ � j ) −
∑
�∈N

sh� |

≤ |Ch(B(x, rk) ∩ � j ) − Ch0 (B(x, rk) ∩ �′
j )| + |

∑
�∈N

sh� − Ch0 (B(x, rk) ∩ �′
j )| ≤ 2δrhk .

(63)
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The above inequalities together imply in particular that for such a k ∈ N we have

1 − δ + � j (ε)

Ch(PV j (B(0, 1) ∩ CV j (ε)))
≤ Ch(PV j (B(x, rk) ∩ � j ))

rhk Ch(PV j (B(0, 1) ∩ CV j (ε)))

≤ Ch(PV j (B(x, rk) ∩ �′
j )) + C2(V j ,L j )δrhk

rhk Ch(PV j (B(0, 1) ∩ CV j (ε)))

≤ Ch(PV j (
⋃

�∈N B(y�, s�) ∩ y�CV j (ε))) + C2δr
h
k

rhk Ch(PV j (B(0, 1) ∩ CV j (ε)))

≤ r−h
k

∑
�∈N

sh� + C2δ

Ch(PV j (B(0, 1) ∩ CV j (ε)))
,

(64)

where in the second inequality we used

Ch(PV j (B(x, rk) ∩ � j )) − Ch(PV j (B(x, rk) ∩ �′
j ))

= Ch(PV j (B(x, rk) ∩ � j \ B(x, rk) ∩ �′
j ))

≤ C2C
h(B(x, rk) ∩ � j \ B(x, rk) ∩ �′

j )

= C2

(
Ch(B(x, rk) ∩ � j ) − Ch(B(x, rk) ∩ �′

j )
)

≤ C2

(
Ch(B(x, rk) ∩ � j ) − Ch0 (B(x, rk) ∩ �′

j )
)

≤ C2δr
h
k , (65)

that is true taking into account the second part of Corollary 2.8, the fact that PV j is injective
on � j , see Proposition 2.13, and the fact that Sh ≤ Ch by definition. Hence putting together
(63) and (64) we deduce that, for k large enough,

1 − (1+C2)δ+� j (ε)

Ch(PV j (B(0,1)∩CV j (ε)))

≤ r−h
k

∑
�∈N sh� ≤ Ch(B(x, rk) ∩ � j )/rhk + 2δ ≤ �h∗(Ch�� j , x) + 3δ.

Thanks to the arbitrariness of δ, this implies that for Ch�� j -almost every x we have, by
making use of (62)

1 − �(ε, j) := 1 − Ch(PV j (B(0, 1 + 3m(η0)−2ε) \ B(0, 1) ∩ CV j (ε)))

Ch(PV j (B(0, 1) ∩ CV j (ε)))

≤ 1 − � j (ε)

Ch(PV j (B(0, 1) ∩ CV j (ε)))

≤ �h∗(Ch�� j , x) ≤ �h∗(Ch�E, x).

(66)

Wenowwish to get a bound fromaboveof�(ε, j) that does not dependon j . In order to do this,
wefirst of all letρ1(ε) := 1+3m(η0)−2ε andρ2(ε) := 1−3m(η0)−1ερ1(ε)/(m(η0)−ε) > 0,
thanks to (55). We claim that the following inclusion holds

PV j (B(0, ρ1(ε)) \ B(0, 1) ∩ CV j (ε))

⊆ PV j (B(0, ρ1(ε)) ∩ CV j (ε)) \ PV j (B(0, ρ2(ε)) ∩ CV j (ε)).
(67)

By definition, if y ∈ PV j (B(0, ρ1(ε)) \ B(0, 1)∩CV j (ε)), there exists an �1 ∈ L j such that
y�1 ∈ B(0, ρ1(ε)) \ B(0, 1) ∩ CV j (ε). Notice that if � ∈ L j is such that y� ∈ CV j (ε), by
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Corollary 2.8 we have

m(η0)‖�‖ ≤ C1(V j ,L j )‖�‖ ≤ dist(y�,V j ) ≤ ε‖y�‖ ≤ ε‖y‖ + ε‖�‖,
and then ‖�‖ ≤ ε‖y‖/(m(η0)− ε). This implies that in order to prove that y does not belong
to PV j (B(0, ρ2(ε))∩CV j (ε)) we just need to show that y� /∈ B(0, ρ2(ε))∩CV j (ε) for any
� ∈ B(0, ε‖y‖/(m(η0) − ε)) ∩ L j . This however, follows from the following computation

‖y�‖ ≥ ‖y�1‖ − ‖�−1
1 �‖ ≥ 1 − 2ε‖y‖

m(η0) − ε
> ρ2(ε),

where the last inequality comes from the fact that ‖�−1
1 �‖ ≤ ‖�−1

1 ‖+‖�‖ ≤ 2ε‖y‖/(m(η0)−
ε), and ‖y‖ ≤ C1(V j ,L j )

−1‖y�1‖ ≤ m(η0)−1ρ1(ε). This proves (67) and in turn the
inequality�(ε, j) ≤ ρ1(ε)

h−ρ2(ε)
h , by homogeneity of Ch . Furthermore, since on the right-

hand side of the previous inequality we have an expression independent on j we conclude
that, by exploiting (66), for Ch-almost every x ∈ � j we have

1 − (ρ1(ε)
h − ρ2(ε)

h) ≤ �h∗(Ch�E, x).

Thanks to the arbitrariness of j and to the fact that Ch(E \ ∪ j� j ) = 0, we deduce that the
previous inequality holds for Ch-almost every x ∈ E . Since ε can be chosen arbitrarily small,
we conclude that�h∗(Ch�E, x) ≥ 1, and then�h(Ch�E, x) = 1 for Ch-almost every x ∈ E .

Eventually, Proposition 2.2 together with (53) concludes that for Ch-almost every x ∈ E
and for any ν ∈ Tanh(Ch�E, x) the support of ν is contained in V(x). In addition to this,
from Proposition 2.4 and Proposition 2.5 we have that for Ch�E-almost every x ∈ G we
have Tanh(Ch�E, x) = {Ch�V(x)}. This concludes the proof of the fact that Ch�E is Ph

c -
rectifiable and this comes in contradictionwith the fact that E ⊆ � has positiveSh��-measure
by construction and (54). ��

Let us now verify that an intrinsically differentiable graph satisfies the hypothesis of
Proposition 3.9. First, we recall the definition of intrinsically differentiable graph.

Definition 3.1 (Intrinsically differentiable graph) Let V and L be two complementary sub-
groups of a Carnot group G, with h := dimH V. Let ϕ : A ⊆ V → L be a continuous
function with A Borel in V. Let a0 ∈ A. We say that � := graph(ϕ) := {a · ϕ(a) : a ∈ A} is
an h-dimensional intrinsically differentiable graph at w ∈ � if there exists a homogeneous
subgroup V(w) such that for all k > 0

lim
λ→∞ dH ,G

(
δλ(w

−1 · �) ∩ B(0, k),V(w) ∩ B(0, k)
) = 0, (68)

where dH ,G is the Hausdorff distance between closed subsets of G. We will call V(w) the
Hausdorff tangent of � at w.

Lemma 3.10 Let ϕ : A ⊆ V → L be a map such that � := graph(ϕ) is an intrinsically
differentiable graph at w ∈ � with tangent V(w). Then, for every β there exists ρ = ρ(β)

such that

� ∩ B(w, ρ) ⊆ wCV(w)(β).

Proof We first claim that for every ε > 0 there exists r0 := r0(ε) such that

sup
p∈�∩B(w,r)

dist(p, wV(w)) ≤ εr , for all 0 < r ≤ r0. (69)
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Indeed, this follows just by taking k = 1 in the definition (68) and by exploiting the very
definition of Hausdorff distance.

Now let us take ε ≤ β/2. We claim that � ∩ B(w, r0(ε)) ⊆ wCV(w)(β). Indeed, let
p ∈ � ∩ B(w, r0(ε)), and k ≥ 1 be such that r02−k < ‖w−1 · p‖ ≤ r02−k+1. Since
p ∈ � ∩ B(w, r02−k+1), from (69) we get

dist(p, wV(w)) ≤ εr02
−k+1 ≤ 2ε‖w−1 · p‖ ≤ β‖w−1 · p‖,

thus showing the claim. ��

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1 We prove different implications in separate points.
1. ⇒ 2. If Sh�� isPc

h-rectifiable, then Sh�� is asymptoticall doubling. Hence, by a routine
argument (cf. [38, Remark 14.4(3)]) we get that, for Sh��-almost every x ∈ G, every
element in Tan(Sh��, x) is a constant multiple of an element of Tanh(Sh��, x), which is by
hypothesis of the form λSh�V(x) with V(x) ∈ Gc(h), whence the conclusion.
2. ⇒ 1. It follows from Theorem 3.7 by approximating the Borel set � from within by
compact sets.
1. ⇒ 3. It is a consequence of [4, Theorem 1.8], Proposition 2.26, and the fact that the
Hausdorff tangent at Sh��i -almost ever x of �i is complemented since it coincides almost
everywhere with the subgroup on which it is supported the tangent measure.
3. ⇒ 1. Since, for every i ∈ N, �i is an intrinsically differentiable graph at Sh��i -almost
every point of it, by Proposition 3.10 we conclude that the hypothesis of Proposition 3.9 is
verified. Hence, for every i ∈ N, Sh��i isPc

h-rectifiable. Hence, since Sh(� \∪+∞
i=1�i ) = 0,

by a routine argument involving the locality of tangents and the Lebesgue differentiation
theorem, see Proposition 2.6, we conclude that Sh�� is Pc

h-rectifiable as well.
Let us show that the item 3. implies the last part of the statement. Since, for every i ∈ N,

�i is intrinsically differentiable, arguing as above we can apply Proposition 3.9 and then
conclude that �h(Ch��i , x) = 1 for Ch��i -almost every x ∈ G. Hence, from the Lebesgue
differentiation theorem in Proposition 2.6, we conclude that, for every i ∈ N,�h(Ch��, x) =
1 for Ch��i -almost every x ∈ G, and hence the same conclusion holds for Ch��-almost every
x ∈ G since Ch(� \ ∪+∞

i=1�i ) = 0. The last convergence result is a direct consequence of the
fact that the density is 1 and [4, Proposition 2.26]. ��

4 Area formula

In this section G is an arbitrary Carnot group, and V and L are two homogeneous comple-
mentary subgroups, i.e., such that G = V · L and V ∩ L = {0}. Moreover, let h be the
Hausdorff dimension of V. We equip G with an arbitrary fixed left-invariant homogeneous
distance d that sometimes will be understood.

Lemma 4.1 ([16, Proposition 3.1.5]) Let V,L be two complementary subgroups in G. Let
P be a homogeneous subgroup that is a complementary subgroup of L. Then there exists a
map ϕP : V → L such that P = �P(V) := V · ϕP(V).

Definition 4.1 (Area factor, [27, Lemma 3.2]) Let V,L be two complementary subgroups
in G. Let P be a homogeneous subgroup that is a complementary subgroup of L. Take
ϕP : V → L as in Lemma 4.1 and let �P : v �→ v · ϕP(v) be its graph map. Then the
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centered area factor of P with respect to the splitting V · L is the unique 0 < A(P) < +∞
such that

Ch�P = A(P)(�P)∗(Ch�V). (70)

Let P, ϕP, and �P : V → P be as in Definition 4.1. It is readily seen that (�P)∗(Ch�V)

is a Haar measure on P, compare with the beginning of the proof of [27, Lemma 3.2]. From
[18, Theorem 3.1] we conclude

A(P)−1 = lim sup
r→0

((�P)∗(Ch�V))(B(0, r))

rh
= lim sup

r→0

Ch(PV(B(0, r) ∩ P))

rh

= Ch(PV(B(0, 1) ∩ P)), (71)

where in the last equality we used the homogeneity of Ch�V.

Lemma 4.2 Given the splitting G = V · L, the area factor A(·) is continuous on the set of
homogeneous subgroups that have L as a complementary subgroup.

Proof It directly follows from the explicit expression in (71) together with a simple argument
that can be found, e.g., at the end of [27, Proof of Lemma 3.2]. ��
Definition 4.2 (Elementary Ph-rectifiable graph) Let V,L be two homogeneous comple-
mentary subgroups of a Carnot group G, and α ≤ ε1(V,L). We say that a compact set
� is an α-elementary Pc

h-rectifiable graph with respect to V and L if the following four
conditions hold

(i) � is a compact CV(α)-set of Sh-finite measure and thus it is the intrinsic graph of a
continuous map ϕ : A ⊆ V → L, with A := PV(�), see Proposition 2.13,

(ii) Sh�� is a Pc
h-rectifiable measure,

(iii) for Sh��-almost every x ∈ G, the subgroup τ(�, x) := τ(Sh��, x) defined in Lemma
2.23 is complementary to L,

(iv) The value of A(τ (�, x)) is uniformly bounded above for Sh��-almost every x ∈ G,
where A is the centered area factor defined in Definition 4.1.

For the crucial limit result in Proposition 4.4, we need the following adaptation of [4,
Proposition 4.10].

Proposition 4.3 Let V,L be complementary subgroups of a Carnot group G. Let us fix α ≤
ε1(V,L) and suppose that � is a compact CV(α)-set of finite Sh-measure. For Sh��-almost
every x ∈ G, let Cx := CV(x)(βx ), for some V(x) ∈ Gc(h) that is complemented by L,
and some βx > 0. Let us further assume that A(V(x)), defined with respect to the splitting
G = V ·L (see Definition 4.1) is uniformly bounded above by a constant C for Sh��-almost
every x ∈ G. As in Proposition 3.4, let us denote with � : PV(�) → G the graph map of
ϕ : PV(�) → L whose intrinsic graph is �.

Then for Sh-almost every w ∈ PV(�) we have

lim
r→0

Sh
(
PV

(
B(�(w), r) ∩ �(w)C�(w)

) ∩ PV(�)
)

Sh
(
PV

(
B(�(w), r) ∩ �(w)C�(w)

)) = 1. (72)

Proof The proof is almost identical to the one of [4, Proposition 4.10], and we outline just
the main changes. First, the fine covering S is exactly the same of [4, Proposition 4.10],
except that in (β) one defines G(w, r) := PV(B(�(w), r) ∩ �(w)CV(�(w))(β�(w))) for
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w ∈ PV(�). Thus we need to check [4, Equation (84)] with the newly defined covering S.
The verification of [4, Equation (84)] for the part of the covering in (α) is precisely the same
as in [4]. Moreover, as it is readily seen by how the estimates are made, arguing verbatim as in
[4], and by using the same notation therein, we get whenever w ∈ PV(�) and 0 < r < r(w)
is sufficiently small we have

Ĝ(w, r) ⊆ PV(B(�(w), 50(A + 1)r)) ∪ PV(B(�(w),C(�)r)),

where C(�) is a suitable constant depending only on �. Hence whenever w ∈ PV(�) and
0 < r < r(w) is sufficiently small we have, by exploiting the homogeneity of Ch and the
invariance properties in Proposition 2.9,

Ch(Ĝ(w, r))
Ch(G(w, r))

≤ Ch(PV(B(0,max 50(A + 1),C(�))))

Ch(PV(B(0, 1) ∩ CV(�(w))(β�(w))))

≤ CCh(PV(B(0,max 50(A + 1),C(�))))

where the last inequality is true since

Ch(PV(B(0, 1) ∩ CV(�(w))(β�(w)))) ≥ Ch(PV(B(0, 1) ∩ V(�(w))))

= A(V(�(w)))−1 ≥ C−1.

Since the ratio of centeredHausdorff measures onV is the same as the ratio of spherical Haus-
dorff measures, the previous estimate allows to conclude that [4, Equation (84)] holds true
also for w ∈ PV(�) for this newly defined covering S described above. Hence applications
of standard differentiation results allow to conclude the proof of (72) as in [4]. ��
Proposition 4.4 Let V,L be two complementary subgroups of G and let α ≤ ε1(V,L) and.
Let � be an α-elementaryPc

h-rectifiable graph with respect to V,L, see Definition 4.2. Then
for Sh�� almost every x ∈ G, we have the following equality

lim
r→0

r−hCh(PV(B(x, r) ∩ �)) = Ch(PV(B(0, 1) ∩ τ(�, x))), (73)

where τ(�, x) is the tangent plane at x introduced in Lemma 2.23.

Proof Let us notice first that by means of Proposition 2.9 and from the homogeneity of the
measure we get that

Ch(PV(B(0, 1) ∩ δλ(x
−1�))) = λhCh(PV(B(x, λ−1) ∩ �)), (74)

for every x ∈ �, λ > 0. Let us call � : A ⊆ V → L the graph map of ϕ as in item
(i) of Definition 4.2. From Proposition 3.4 we get that the measure �∗(Ch�V) is mutually
absolutely continuous with respect to Ch��. As a consequence, if we fix ϑ, γ ∈ N, we have
that Ch��-almost every point x in E(ϑ, γ ), see Definition 2.8, is a point of density one for
the measure �∗(Ch�V), that is to say for every ϑ, γ ∈ N we have that

lim
r→0

(�∗(Ch�V))(B(x, r))

(�∗(Ch�V))(B(x, r) ∩ E(ϑ, γ ))

= lim
r→0

Ch(PV(B(x, r) ∩ �))

Ch(PV(B(x, r) ∩ E(ϑ, γ )))
= 1, for Ch�� − almost every x ∈ E(ϑ, γ ).

From the previous equality, Proposition 2.3, identity (74) and the invariance properties of
Proposition 2.9, we conclude that it is sufficient to prove that for every ϑ, γ ∈ N we have
that

lim
r→0

Ch(PV(B(0, 1) ∩ δ1/r (x
−1E(ϑ, γ )))) = Ch(PV(B(0, 1) ∩ τ(�, x))), (75)
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for Ch��-almost every x ∈ E(ϑ, γ ).
From now on we assume ϑ, γ ∈ N to be fixed. Thanks to [4, Proposition 3.2] for Ch��-

almost every x ∈ E(ϑ, γ ) and any β ≤ C1(τ (�, x),L), there exists a  ̃(x, β) such that
E(ϑ, γ ) ∩ B(x, r) ⊆ xCτ(�,x)(β) for very 0 < r <  ̃(x, β). For such an x and β ≤
C1(τ (�, x),L), note that Proposition 3.8 with the choices � = E(ϑ, γ ) and ρ =  ̃(x, β)
allows us to infer that∣∣∣∣C

h(PV(B(x, r) ∩ xCτ(�,x)(β)) ∩ PV(E(ϑ, γ )))

rh
− Ch(PV(B(x, r) ∩ xCτ(�,x)(β) ∩ E(ϑ, γ )))

rh

∣∣∣∣
≤ �x (β), (76)

for any 0 < r <  ( ̃(x, β), α). In addition to this, Proposition 4.3, the homogeneity of
Ch�V, and the invariance properties of Proposition 2.9 imply that, for any β > 0, we get that
for Ch��-almost every x ∈ E(ϑ, γ ) we have

lim
r→0

Ch(PV(B(x, r) ∩ xCτ(�,x)(β)) ∩ PV(E(ϑ, γ )))

rh

= lim
r→0

Ch(PV(B(x, r) ∩ xCτ(�,x)(β)) ∩ PV(E(ϑ, γ )))

Ch(PV(B(x, r) ∩ xCτ(�,x)(β)))
· C

h(PV(B(x, r) ∩ xCτ(�,x)(β)))

rh

= Ch(PV(B(0, 1) ∩ Cτ(�,x)(β))).

(77)

Finally, from the continuity of measures, for Ch��-almost every x ∈ E(ϑ, γ ) there exists a
function �′

x (β) with �
′
x (β) → 0 as β → 0 (pointwise in x), and

|Ch(PV(B(0, 1) ∩ Cτ(�,x)(β))) − Ch(PV(B(0, 1) ∩ τ(�, x)))| ≤ �′
x (β), for all β > 0. (78)

Let us define En as the set of points x in E(ϑ, γ ) such that τ(�, x) exists andC1(τ (�, x),L) >
1/n. Obviously Ch(E(ϑ, γ ) \ ∪+∞

n=1En) = 0. Thus it is sufficient to prove the claim (75) for
Ch��-almost every x ∈ En . Let us fix n ∈ N. The above discussion shows that, if we fix
β ≤ 1/n, then for Ch��-almost every x ∈ En we have that (76), (77) and (78) imply

lim sup
r→0

|Ch(PV(B(0, 1) ∩ δ1/r (x
−1E(ϑ, γ )))) − Ch(PV(B(0, 1) ∩ τ(�, x)))|

≤ �′
x (β) + lim sup

r→0
|Ch(PV(B(0, 1) ∩ δ1/r (x

−1E(ϑ, γ ))))

− Ch(PV(B(0, 1) ∩ Cτ(�,x)(β)))|

≤ �′
x (β) + lim sup

r→0

∣∣∣C
h(PV(B(x, r) ∩ xCτ(�,x)(β) ∩ E(ϑ, γ )))

rh

− Ch(PV(B(x, r) ∩ xCτ(�,x)(β)) ∩ PV(E(ϑ, γ )))

rh

∣∣∣
+ lim sup

r→0

∣∣∣C
h(PV(B(x, r) ∩ xCτ(�,x)(β)) ∩ PV(E(ϑ, γ )))

rh

− Ch(PV(B(x, r) ∩ xCτ(�,x)(β)))

rh

∣∣∣
≤ �′

x (β) + �x (β).

(79)

Thus by taking the intersection of the Ch��-full measure sets in En on which the previous
inequality holds for β = 1/m, with m ≥ n, we get that for Ch��-almost every x ∈ En , the
previous inequality holds for every β = 1/m, with m ≥ n. By fixing an x in such a set of
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full Ch��-measure in En and taking β = 1/m in (79) and m → +∞, we get the claim (75)
for Ch��-almost every x ∈ En , and thus the proof is concluded. ��
Proposition 4.5 There exist a family F := {Vk}k∈N ⊆ Gc(h) and Lk complementary sub-
groups of Vk such that the following holds. If φ is a Pc

h-rectifiable measure, there are
continuous maps ϕk : Ak ⊆ Vk → Lk , with Ak compact, such that

(i) for every k ∈ N we have �k := graph(ϕk) = Ak · ϕk(Ak) is an αk-elementary Pc
h-

rectifiable graph with respect to Vk and Lk for some αk , see Definition 4.2,
(ii) φ(G \ ∪k∈N�k) = 0,

Proof The result in [4, Theorem 3.4] implies that we can find countably many Vk ∈ Gc(h)
complemented by some Lk such that the following holds. If φ is a Pc

h-rectifiable measure,
then there exist compact sets �k such that

1. φ(G \ ∪k∈N�k) = 0,
2. for any k ∈ N the set �k is a CV�

(min{ε1(Vk,Lk), �G})-set, where �G > 0 is the
constant in [4, Proposition 2.8].

It is immediate to see that the measures φ and Ch are mutually absolutely continuous (see,
e.g., [4, Proposition 2.6]) and hence by the Lebesgue differentiation theorem and the locality
of tangents, cf. Proposition 2.6, the measure Ch��k is still a Pc

h-rectifiable measure. This
proves that each �k verifies the hypothesis (i) and (ii) of Definition 4.2. In order to check
(iii) we note that that, from item 2. above, for Ch��k-almost every x we have that the tangent
V(x) is contained in CVk (min{ε1(Vk,Lk), �G}) =: Ck . This implies thanks to [4, Proof of
Proposition 2.17] that V(x) is a complementary subgroup of Lk . In order to conclude the
proof of item (iv) of Definition 4.2, we must prove that for any k ∈ N there exists a constant
C > 0 such that

Ch(PVk (B(0, 1) ∩ V(x)))−1 =: A(V(x)) ≤ C for Ch��k-almost any x ∈ G.

Since V(x) ⊆ Ck for Ch��k-almost every x ∈ G, it is sufficient to show that there exists a
constant c > 0 such that for any W ∈ Gc(h) contained in Ck we have

Ch(PVk (B(0, 1) ∩ W)) ≥ c.

Suppose by contradiction that there exists a sequence of planes Wi ∈ Gc(h) contained in Ck

such that

Ch(PVk (B(0, 1) ∩ Wi )) ≤ i−1.

The compactness result in Proposition 2.7 implies that there exists a W ∈ G(h) such that
limi→0 dG(W,Wi ) = 0. Since Wi ∈ Ck for every i we also get W ∈ Ck and then, since the
aperture of the cone Ck is smaller than min{ε1(Vk,Lk), �G}, [4, Proof of Proposition 2.17]
we have that Lk and W are complementary subgroups, and thus W ∈ Gc(h). Finally Lemma
4.2 implies that Ch(PVk (B(0, 1)∩ W)) = 0. This is not possible since the area factorA(W)

relative to the splitting G = Vk · Lk should be finite, see Definition 4.1. ��
Theorem 4.6 (Area formula for the centered measure) Let V,L be two complementary sub-
groups of G. Suppose further � is an α-elementary Pc

h-rectifiable graph with respect to V

and L, see Definition 4.2. Then, for every Borel function ψ : � → [0,+∞) we have∫
�

ψ(w)dCh =
∫
A
ψ(a · ϕ(a))A(τ (�, a · ϕ(a)))dCh�V. (80)

where A(·) denotes the centered area factor introduced in Definition 4.1.
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Remark 4.1 Note that the above expression is well defined since thanks to Proposition 3.4
the map a → τ(�, a · ϕ(a)) is defined up to Ch-null sets on V.

Proof As a first step, let us show that the map a �→ A(τ (�, a · ϕ(a))) =: f (a) is Ch�V-
measurable. To do so let us first recall that

1. the map a �→ a · ϕ(a) is continuous from A to �,
2. the map x �→ τ(�, x) sending points of � into elements of Gc(h) is Ch��-measurable

thanks to Lemma 2.23 and for Sh��-almost every x ∈ � the plane τ(�, x) is a comple-
mentary subgroup of L thanks to Definition 4.2(iii),

3. thanks to Lemma 4.2, the function W �→ A(W) is continuous when restricted to those
W ∈ Gc(h) that are complements of L.

Finally, items 1., 2. and 3. conclude the proof of the Ch�V-measurability of the function f .
In addition to this, thanks to Definition 4.2(iv) we know that f is uniformly bounded on A
and thus it is an element of L1

loc(A).
We now introduce a measure μ supported on � such that for any Borel set E we have

μ(E) =
∫
PV(�∩E)

f (a)dCh�V(a).

Since Ch�� is aPc
h-rectifiable measure, it is locally asymptotically doubling and thus Propo-

sition 3.4 implies that μ � Ch��. Therefore, if we are able to prove that�h,∗(μ, x) = 1 for
μ-almost every x ∈ �, then [18, Theorem 3.1] concludes the proof.

Let us now proceed and prove that �h,∗(μ, x) = 1 for μ-almost every x ∈ �. As a first
step, we note that

∣∣∣r−h
∫
PV(B(z·ϕ(z),r)∩�)

( f (a) − f (z))dCh(a)
∣∣∣

≤ Ch(PV(B(0, 1)))
Ch(PV(B(z · ϕ(z), r) ∩ �))

∫
PV(B(z·ϕ(z),r)∩�)

| f (a) − f (z)|dCh(a), (81)

for any z ∈ A and where, in order to obtain the above inequality, we used the fact that

Ch(PV(B(z · ϕ(z), r) ∩ �)) ≤ Ch(PV(B(z · ϕ(z), r))) = rhCh(PV(B(0, 1)).

In addition to this, since Ch�� is supposed to be a Pc
h-rectifiable measure, we infer by [4,

Proposition 4.9] that for any z ∈ PV(�) there exists a 0 < ρ(z) < 1 such that the covering
relation of PV(�)

{(z, PV(B(�(z), r) ∩ �)) : z ∈ PV(�) and 0 < r < ρ(z)}},
is a Ch�PV(�)-Vitali relation. Hence, since f ∈ L1

loc(A), [15, Corollary 2.9.9] allows to
conclude that

lim
ε→0+ sup

{∫
PV(B(z·ϕ(z),r)∩�) | f − f (z)|dCh
Ch(PV(B(z · ϕ(z), r) ∩ �))

: r < ρ(z), diam(PV(B(z · ϕ(z), r) ∩ �)) < ε

}
= 0,

(82)

for Ch�PV(�)-almost every z ∈ PV(�). As a consequence, thanks to (81) and (82) we get

lim sup
r→0

∣∣∣r−hμ(B(z · ϕ(z), r)) − f (z)r−hCh(PV(B(z · ϕ(z), r) ∩ �))

∣∣∣

≤ lim sup
r→0

Ch(PV(B(0, 1)))
Ch(PV(B(z · ϕ(z), r) ∩ �))

∫
PV(B(z·ϕ(z),r)∩�)

| f (a) − f (z)|dCh(a) = 0,
(83)
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for Ch�PV(�)-almost every z ∈ PV(�). Thanks to the absolute continuity of μ with respect
to Ch��, and to (83) we infer that for μ-almost every x ∈ � we have

�∗,h(μ, x) = f (x) lim sup
r→0

r−hCh�V(PV(B(x, r) ∩ �)) = f (x)Ch(PV(B(0, 1) ∩ τ(�, x))) = 1,

where the last identity follows from the definition of f , (71) and Proposition 4.4. ��
Corollary 4.7 For any Pc

h-rectifiable measure φ there are countably many Vk ∈ Gc(h)
respectively complemented by some Lk , and countably many pairwise disjoint elementary
Pc

h-rectifiable graphs �k with respect to Vk and Lk such that for every Borel function
ψ : G → [0,+∞) we have∫

ψ(w)dφ(w) =
∑
k∈N

∫
ψ(a · ϕ(a))�h(φ, x)Ak(τ (�, a · ϕ(a)))dCh�Vk, (84)

where Ak(·) denotes the centered area factor with respect to the splitting G = Vk · Lk

introduced in Definition 4.1.

Proof First of all, thanks to [4, Theorem 3.4, Proposition 2.5 and Proposition 2.6] there exists
a Ch-σ -finite Borel set � on which φ is supported, and moreover φ is mutually absolutely
continuous with respect to Ch��. Moreover, from [4, Theorem 4.13] and [18, Theorem 3.1]
we conclude that

φ = �h(φ, x)Ch��.

Since clearly Ch�� is Ph
c -rectifiable thanks to Proposition 2.6, we infer by Proposition 4.5

that we can find the claimed disjoint Pc
h-elementary graphs �k covering Ch-almost all �.

Applying Theorem 4.6 to each one of the �ks concludes the proof. ��
Let us now conclude this section by giving the proof of Theorem 1.2 and Theorem 1.3.

Remark 4.2 We remark that Theorem 4.6 holds as well if we substitute the item (i) in the
definition of α-elementaryPc

h-rectifiable graph, see Definition 4.2, with the following item

(i) ∗ � is the compact graph of an intrinsic Lipschitz function ϕ : A ⊆ V → L,

see Definition 2.12. (85)

Indeed, the proof of Theorem 4.6 is ultimately based on Proposition 3.4, the differentiation
result in Proposition 3.5, and Proposition 4.4, which are themselves based on Proposition
3.4, the differentiation results Proposition 3.5, Proposition 4.3 and Proposition 3.8. All these
latter results do not specifically use the fact that � is a compact CV(α)-set for α ≤ ε1(V,L)
but just two basic consequences of this: namely, the fact that L ∩ CV(α) = {0}, see Lemma
2.11, and the fact that PV is injective on �, see Proposition 2.13. Since we obviously have,
by the very definition of the cone CV,L(α), that L ∩ CV,L(α) = {0} for every α > 0, and
since we also readily have that if � is an intrinsic Lipschitz graph then PV is injective on �,
we conclude that the same strategy of the proof can be adapted to prove Theorem 4.6 with
the above modification of the definition of α-elementary Pc

h-rectifiable graph.

Proof (Proof of Theorem 1.2) First of all, let us notice that we can assume A, and hence �,
to be compact. Indeed, since A is Borel, � is Borel, because it is the image of A under the
graph map of ϕ, which is a continuous injective map. Since Sh�� isPc

h-rectifiable we hence
deduce that � is Sh-σ -finite, cf. [4, Proposition 2.4 and Proposition 2.5]. Hence we have
that there exists an increasing sequence {Ei }i∈N of compact sets such that χEi → χ� holds
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Sh��-almost everywhere. From (8) we also deduce that χPV(Ei ) → χPV(�) holds Sh�A-
almost everywhere. Hence if we know the Theorem 1.2 to be true for each Ei we are done
by monotone convergence.

Hence we now prove Theorem 1.2 assuming A, and then �, to be compact. Taking into
account Remark 4.2, we observe that the proof of Theorem 1.2 is concluded if we have in
addition thatA(V(x)) is uniformly bounded above for Sh��-almost every x ∈ G, since it is
the only reamining hypothesis to verify in order to apply the modified version of Theorem 4.6
discussed in Remark 4.2. But since a → A(V(a ·ϕ(a))) is Ch�V-measurable, see the first part
of the proof of Theorem 4.6, we can divide the set A into countably many disjoint measurable
subsets where A(·) is uniformly bounded above. Hence, by approximating each of these
countably many pieces from the inside with compact sets as explained at the beginning of this
proof, and applying Theorem 4.6 as discussed in Remark 4.2, we conclude by approximation
that Theorem 4.6 holds on each piece of the latter disjoint union. Then summing together
finishes the proof of Theorem 1.2. ��
Proof of Theorem 1.3 It is a consequence of Theorem 1.2 and Proposition 3.9, taking into
account that the intrinsic differentiability implies the hypothesis of Proposition 3.9 (cf. Propo-
sition 3.10) from which we get that Sh�� is Pc

h-rectifiable. ��

5 Applications

In this section we provide some applications of the rectifiability criterion proved in Proposi-
tion 3.9, which was at the core of the proof of 3. ⇒ 1. of Theorem 1.1. Let us first recall the
definition of C1

H-function.

Definition 5.1 (C1
H-function) LetG andG

′ be two Carnot groups endowedwith left-invariant
homogeneous distances d and d ′, respectively. Let � ⊆ G be open and let f : � → G

′ be
a function. We say that f is Pansu differentiable at x ∈ � if there exists a homogeneous
homomorphism d fx : G → G

′ such that

lim
y→x

d ′( f (x)−1 · f (y), d fx (x−1 · y))
d(x, y)

= 0.

Moreover we say that f is of class C1
H in� if the map x �→ d fx is continuous from� to the

space of homogeneous homomorphisms from G to G
′.

Proposition 5.1 Let B be a Borel set in G and suppose H is a Carnot group of homogeneous
dimension Q′ with Q ≥ Q′. Let f : B ⊆ G → H be a Lipschitz map such that

Ker(d f (x)) ∈ Gc(G) for SQ − almost every x ∈ {z ∈ B : d f (z) exists and is surjective}, (86)

where Gc(G) denotes the set of complemented homogeneous subgroups in G. Then, for SQ′
-

almost every y ∈ f (B), the following holds. For SQ−Q′
-almost every x ∈ f −1(y) and any

0 < β < 1 there exists a ρ(x, β) > 0 such that

f −1(y) ∩ B(x, ρ(x, β)) ⊆ xCKer(d f (x))(β).

In particular the measure SQ−Q′� f −1(y) is Pc
Q−Q′ -rectifiable in G and

TanQ−Q′(SQ−Q′� f −1(y), x) ⊆ {λCQ−Q′�Ker(d f (x)) : λ > 0} for SQ−Q′−almost every x∈ f −1(y).
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Proof Without loss of generality we can assume that B is a bounded Borel set. Thanks to
[33, Equation (9) and Proposition 1.12], since B is bounded and f is Lipschitz on B, one
infers that for SQ′

-almost every y ∈ f (B) we have SQ−Q′
( f −1(y)) < ∞. Moreover, from

[33, Theorem 2.6 and Theorem 2.7] we have

SQ−Q′
( f −1(y) ∩ N ) = 0, and SQ−Q′

( f −1(y) ∩ N ′) = 0, (87)

where N is the SQ-null set on which the Pansu differential d f (x) does not exists and N ′ is
the SQ-measurable set where d f (x) is not surjective. In addition to this, thanks to (86), we
know that

SQ({z ∈ B \ (N ∪ N ′) : Ker(d f (x)) /∈ Gc(G)}) = 0,

and thus, [33, Theorem 2.6] implies that for SQ′
-almost every y ∈ f (B) we have

SQ−Q′
({z ∈ f −1(y) : d f (z) exists, is surjective and Ker(d f (z)) /∈ Gc(G)}) = 0. (88)

We can further refine the above condition thanks to the following observation. Since for
SQ′

-almost every y ∈ f (B) and for SQ−Q′
-almost every z ∈ f −1(y) the Pansu differential

d f (z) exists and is surjective, then by the first homomorphism theorem G/Ker(d f (z)) ∼= H

and in particular the subgroup Ker(d f (z)) must have homogeneous dimension Q − Q′.
Therefore, throughout the rest of the proof,wefix a y ∈ f (B) such thatSQ−Q′

( f −1(y)) <
∞, and recall that for SQ−Q′

-almost every z ∈ f −1(y) the Pansu differential d f (z) exists,
is surjective and Ker(d f (z)) ∈ Gc(Q − Q′).

In order to conclude the proof we show that the hypothesis of Proposition 3.9 is satisfied.
Fix a point x ∈ f −1(y) such that d f (x) exists, is surjective and Ker(d f (x)) ∈ Gc(Q−Q′).
Notice that thanks to what we proved above, such x can be chosen in a set of SQ−Q′

-full
measure in f −1(y). Let us note that for any ε > 0 there exists an η := η(x, ε) > 0 such that
for any w ∈ B(x, η) we have

dH( f (x)d f (x)[x−1w], f (w)) ≤ εdG(w, x).

This in particular implies that for any w ∈ B(x, η) ∩ f −1(y) we have

0 = dH( f (w), f (x)) ≥ dH( f (x)d f (x)[x−1w], f (x)) − dH( f (x)d f (x)[x−1w], f (w))
≥ dH( f (x)d f (x)[x−1w], f (x)) − εdG(w, x),

implying that

‖d f (x)[PL(x)(x−1w)]‖H = ‖d f (x)[x−1w]‖H ≤ ε‖x−1w‖G,
where L(x) is a complementary subgroup of Ker(d f (x)) and PL(x) is the splitting projection
onL(x) associated to the splitKer(d f (x))·L(x). Thanks to a standard compactness argument,
it is not hard to see that there exists a constantC(x) > 0 such that ‖d f (x)[PL(x)(x−1w)]‖H ≥
C(x)‖PL(x)(x−1w)‖G for every w ∈ B(x, η), and thus

distG(x
−1w,Ker(d f (x))) ≤ ‖PL(x)(x−1w)‖G ≤ C(x)−1ε‖x−1w‖G,

for everyw ∈ B(x, η)∩ f −1(y), proving that f −1(y)∩ B(x, η) ⊆ xCKer(d f (x))(C(x)−1ε)∩
B(x, η). Since we fall in the hypothesis of Proposition 3.9, the proof of the proposition is
achieved. ��

Before stating the following corollaries of Proposition 5.1, let us recall the definition of
(G,G′)-rectifiable sets.
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Definition 5.2 (C1
H-submanifold) Given an arbitrary Carnot group G, we say that � ⊆ G is

a C1
H-submanifold of G if there exists a Carnot group G

′ such that for every p ∈ � there
exists an open neighborhood � of p and a function f ∈ C1

H(�; G
′) such that

� ∩ � = {g ∈ � : f (g) = 0}, (89)

and d f p : G → G
′ is surjective with Ker(d f p) complemented. In this case we say that � is

a C1
H(G,G′)-submanifold.

Definition 5.3 ((G,G′)-rectifiable set) Given two arbitrary Carnot groupsG andG
′ of homo-

geneous dimensions Q and Q′, respectively, we say that � ⊆ G is a (G,G′)-rectifiable set
if there exist countably many subsets �i of G that are C1

H(G,G′)-submanifolds, such that

HQ−Q′
(
� \

+∞⋃
i=1

�i

)
= 0.

Corollary 5.2 Suppose Q ≥ m, let B ⊆ G a Borel subset and f : B → R
m be a Lipschitz

map such that

Ker(d f (x)) ∈ Gc(G) for SQ − almost every x ∈ {z ∈ B : d f (z) exists and is surjective}.
(90)

Then, m ≤ dim(V1) and for Sm-almost every y ∈ f (B) the set f −1(y) is C1
H (G,Rm)-

rectifiable.

Proof First of all, let us note that Proposition 5.1 immediately implies that for Sm-almost
every y ∈ f (B), the measure SQ−m� f −1(y) is Pc

Q−m-rectifiable.
A necessary step to conclude the proof is to investigate further the structure of Ker(d f (x))

whenever it exists. In order to do so, we fix a point where d f (x) exists and note that for any
v ∈ G we have d f (x)[δλ(v)] = λd f (x)[v] for any λ > 0. Since, thanks to the identification
through exp of G with its Lie algebra, d f (x) can be expressed as a matrix, thus we conclude
that for every v ∈ Vj with 2 ≤ j ≤ κ , where κ is the step of the group, we have

d f (x)[v] = lim
λ→0

d f (x)[δλ(v)]
λ

= lim
λ→0

λ j d f (x)[v]
λ

= 0.

So, Ker(d f (x)) is a normal subgroup containing V2 ⊕ . . . ⊕ Vκ and on the points where
d f (x) is surjective we must have

dimhom(Ker(d f (x))) = Q − m ≥ dimhom(V2 ⊕ . . . ⊕ Vk) = Q − dim(V1),

proving that we have m ≤ dim(V1).
Throughout the rest of the proof we fix an y ∈ f (B) such that f −1(y) is a Pc

Q−m-
rectifiable measure. In addition to this, since f −1(y) is closed we may as well assume
without loss of generality that f −1(y) is compact with SQ−m-finite measure since the class
ofPc

Q−m-rectifiablemeasures is closed under restriction to aBorel subset by splitting f −1(y)
as in [4, Proposition 2.4, Proposition 2.5 and Proposition 2.6].

Thanks to Lemma 2.23 applied to the measure SQ−m� f −1(y), and thanks to Proposition
5.1, we know that the map x �→ Ker(d f (x)) ∈ Gc(Q − m) is SQ−m� f −1(y)-measurable.
Calling {ei }ni=1 a basis of g, the latter observation in conjunction with Proposition 2.10 yields
that for any i = 1, . . . , n the vector fields x �→ �Ker(d f (x))⊥[ei ] =: vi (x) areSQ−m� f −1(y)-
measurable. Moreover, thanks to the above discussion, according to which Ker(d f (x)) ⊇
V2 ⊕ · · · ⊕ Vκ , each vi (x) belong SQ−m� f −1(y)-almost everywhere to GV1.
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For any ε > 0 thanks to Lusin’s theorem and the Borel regularity of the measure
SQ−m� f −1(y), we can find a compact set Kε ⊆ G such that SQ−m( f −1(y) \ Kε) ≤
εSQ−m( f −1(y)) and the vector fields vi (x) are continuous on Kε for any i = 1, . . . , n. In
particular we can split Kε into a finite partition {K I

ε : I = (i1, . . . , im) ∈ {1, . . . , n}m} of
Borel subsets on which the vector fields vi1(x), . . . , vim (x) are a basis for Ker(d f (x))

⊥.
In the following we will show that for any choice of I ∈ {1, . . . , n}m such that

SQ−m� f −1(y)(K I
ε ) > 0 and of ϑ, γ ∈ N, the set E(ϑ, γ ) relative to the measure

SQ−m�K I
ε , introduced in Definition 2.8, can be covered SQ−m-almost all with countably

many C1
H (G,Rm)-rectifiable sets. This would imply that K I

ε can be covered SQ−m-almost
all with C1

H (G,Rm)-rectifiable sets thanks to Proposition 2.3 and thus so can Kε thanks to
the finiteness of the family I . Finally, the arbitrariness of ε would conclude the proof of the
proposition.

For any j = 1, . . . ,m we let

ρ j,δ(x) := sup

{ |〈vi j (x), π1(x−1z)〉|
‖x−1z‖ : z ∈ E(ϑ, γ ) and ‖x−1z‖ ≤ δ

}
,

and we claim that for any j = 1, . . . ,m we have limδ→0 ρ j,δ(x) = 0 for any x ∈ E(ϑ, γ )
at which for any β > 0 there exists a ρ = ρ(x, β) > 0 such that

f −1(y) ∩ B(x, ρ) ⊆ xCKer(d f (x))(β). (91)

Note that thanks to Proposition 5.1, the above condition (91) is satisfied for SQ−m-almost
every x ∈ E(ϑ, γ ). We remark that the functions ρ j,δ are measurable for any i ∈ N and
δ > 0. Indeed, on the one hand the function (x, z) �→ |〈vi j (x), π1(x−1z)〉|/d(x, z) is
SQ−m� f −1(y)-measurable since it is the quotient of two SQ−m� f −1(y)-measurable func-
tions. On the other, since G is separable, it is immediate to see that ρ j,δ can be rewritten as
the supremum on z over a countable subset of E(ϑ, γ )∩ B(x, δ), showing that ρ j,δ is indeed
measurable. Thanks to [40, Proposition 1.5], we know that at any x ∈ E(ϑ, γ ) where (91) is
satisfied for some β and some ρ > 0, we have

|〈vi j (x), π1(x−1z)〉|
‖x−1z‖ = dist(x−1z,V(vi j (x)))

‖x−1z‖ ≤ dist(x−1z,Ker(d f (x)))

‖x−1z‖ ≤ β, (92)

for any z ∈ B(x, ρ) ∩ f −1(y), where V(vi j (x)) is the 1-codimensional homogeneous sub-
group orthogonal (in the Euclidean sense) to the vector vi j (x), and where the second last
inequality above comes from the fact that Ker(d f (x)) is contained in V(vi j (x)). The bound
(92) together with Proposition 5.1 conclude that limδ→0 ρ j,δ(x) = 0 for SQ−m�E(ϑ, γ )-
almost every x ∈ G. Thanks to Severini-Egoroff’s theorem for any ε̃ > 0 we can find a
compact set K̃ ε̃ inside E(ϑ, γ ) such that

1. SQ−m(E(ϑ, γ ) \ K̃ ε̃) ≤ ε̃SQ−m(E(ϑ, γ )),
2. vi j (x) is continuous on K̃ ε̃ for any j = 1, . . . ,m,

3. ρ j,δ converges uniformly to 0 on K̃ ε̃ for any j = 1, . . . ,m.

Thanks to Whitney extension theorem, see for instance [21, Theorem 5.2], we infer that we
can find m C1

H-functions defined on all of G such that f j,ε̃|K̃ ε̃
= 0 and ∇H f j,ε̃(x) = vi j (x)

for any x ∈ K̃ ε̃. This shows that, thanks to arbitrariness of ε̃ and to the fact that the vi j ’s are
independent everywhere on E(ϑ, γ ), the set E(ϑ, γ ) can be covered SQ−m-almost all by the
0-level set of countably many C1

H (G,Rm)-maps. Thus the proof is concluded. ��

123



7 Page 50 of 52 G. Antonelli, A. Merlo

We end this section with some consequences of the previous Corollary 5.2. The first part
of the forthcoming corollary follows verbatim from the second part of the proof above; while
the second part of the forthcoming corollary is a byproduct of the first part in conjunction
with [4, Proposition 6.2].

Corollary 5.3 Let G be a Carnot group of homogeneous dimension Q, and let 1 ≤ h ≤ Q be
a natural number. Let � ⊆ G be a compact set such that Sh(�) < +∞. The following are
equivalent

1. Sh�� is a Pc
h-rectifiable measure, and at Sh��-almost every x ∈ G the tangent plane

is complemented by a horizontal subgroup.
2. � is C1

H(G,RQ−h)-rectifiable.

If any of the previous holds we have Q − h ≤ dim(V1).

Proof 1. ⇒ 2. is obtained arguing precisely as in the second part of the proof of Corollary
5.2. 2. ⇒ 1. is an immediate consequence of [4, Proposition 6.2] ��
Corollary 5.4 Let B ⊆ G be a Borel subset. Suppose f : B → R is a Lipschitz map. Then,
for S1-almost every y ∈ f (B) the set f −1(y) is C1

H-rectifiable.

Proof Let us assume that x is point where the Pansu’s differential d f (x) exists and is surjec-
tive. Thanks to the first homomorphism theorem we know that G/Ker(d f (z)) ∼= R and in
particular Ker(d f (z)) is a 1-codimensional homogeneous subgroup of G. These subgroups
are always complemented, and thus Corollary 5.2 concludes the proof. ��
Corollary 5.5 Let B ⊆ G be a Borel subset. Suppose f : B → R

m is a Lipschitz function
withQ ≥ m. Then for Sm-almost every y ∈ f (B) there are m C1

H -rectifiable sets �i (y) such
that

f −1(y) =
m⋂
i=1

�i (y).

Proof Since f (z) = y if and only if for any i = 1, . . . ,m we have fi (z) = yi , the claim
immediately follows thanks to Corollary 5.2 and Corollary 5.4. ��
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