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Abstract. We show that given a homeomorphism f : G → Ω where G is a open
subset of R2 and Ω is a open subset of a 2-Ahlfors regular metric measure space
supporting a weak (1, 1)-Poincaré inequality, it holds f ∈ BVloc(G,Ω) if and only
f−1 ∈ BVloc(Ω, G). Further if f satisfies the Luzin N and N−1 conditions then

f ∈W1,1
loc(G,Ω) if and only if f−1 ∈W1,1

loc(Ω, G).

1. Introduction

In 2007, [HKO07], Hencl, Koskela and Onninen proved that a planar homeomor-
phism is in BV if and only if its inverse is BV with the variation of the inverse bounded
by a constant multiple of the variation of the map. This result was enhanced by
D’Onofrio and Schiattarella [DS13] in 2013 by including an equality between varia-
tions of the map and variations of its inverse.

The study of BV maps on metric measure spaces dates back to the seminal paper
[Mir03] (see also [Amb01, Amb02]). A natural extension of the result in [HKO07] is
to ask whether the result still holds when we replace the target space or the domain
with a metric measure space. In general we cannot expect to achieve the D’Onofrio,
Schiattarella type estimate because it depends on a standard choice of metric and
measure on the spaces involved. To see this it suffices to consider the identity map
from the Euclidean space with the Lebesgue measure to the Euclidean space with the
Lebesgue measure multiplied by a constant density not equalling 1. In particular, the
form of Theorem 3.3 below can not be improved.

Further motivation for our study arises from an attempt to extend novel tech-
niques for approximating homeomorphisms with diffeomorphisms (see [IKO11, HP18,
DPP19]) in the plane to the R3 context. A core component of each of these methods
is the use of ‘grids’, i.e. the separation of the plane (either in the image or preimage
or both) into rectangular parts. Typically, this is done in such a way that the re-
striction of the map (or its inverse) to the boundaries of the rectangles belongs to the
corresponding Sobolev or BV space. Hence we want to know whether the restriction
of a Sobolev (or BV) homeomorphism from R3 to R3 onto (almost any) hyperplane
has BV inverse. We show that if the image of the plane is a sufficiently regular metric
measure space, then the claim is true. Our main result is as follows:
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Theorem 1. Let (X, d,m) be a 2-Ahlfors regular metric measure space supporting a
weak (1, 1)-Poincaré inequality. Let moreover G ⊆ R2 open, Ω ⊆ X open and f : G→
Ω a homeomorphism. Then f ∈ BVloc(G,Ω) if and only if f−1 ∈ BVloc(Ω, G).

Further we prove, as a corollary, the following

Theorem 2. Let (X, d,m) be a 2-Ahlfors regular metric measure space supporting
a weak (1, 1)-Poincaré inequality. Let moreover G ⊆ R2 open, Ω ⊆ X open and
f : G→ Ω a homeomorphism such that

m(f(N)) = 0 if N ⊆ G is a Borel set with L2(N) = 0,(N)

L2(f−1(N)) = 0 if N ⊆ Ω is a Borel set with m(N) = 0.(N−1)

Then f ∈W1,1
loc(G,Ω) if and only if f−1 ∈W1,1

loc(Ω, G).

It is common to refer to (N) as the Luzin N condition satisfied by f , whereas (N−1)
states the Luzin N condition satisfied by f−1, or, in other words, the Luzin N−1

condition satisfied by f .

1.1. Overview of the approach of the proof. To prove the fact that a homeomor-
phism between open planar sets has locally bounded variation if and only its inverse
has locally bounded variation, in [HKO07] [DS13] different strategies were used. In
particular, it is not clear how to adapt the approximation strategy used in the former
to our context. On the other hand, the “slicing” strategy employed by the latter can
be adapted, which allows us to prove that a BV homeomorphism from the plane into
a metric measure space has BV inverse. Of course, when the original and target space
are both R2 this is enough to conclude, but this is not our case. We therefore have
to find a way to “reverse” the technique.

The main obstacle to the approach is that we have to recover a quantitative H1

bound for the boundaries of particular sets of finite perimeter in terms of their perime-
ter (the sets of finite perimeter will be the ones enclosed by Jordan curves – in this
way we have a definite interior and exterior to the curve). This will be Lemma 3.1
whose proof, in the context of (regular enough) metric measure spaces faces the diffi-
culty of the lack of a powerful smooth differential structure. Indeed, when we try to
approximate the boundary of a set of finite perimeter, the first attempt is to regular-
ize the set and then look at level sets of functions in an approximating sequence. In
R2 we can choose level sets that have a nice “piecewise curve” structure, using a com-
bination of Sard’s theorem and the implicit function theorem, but this is definitely
not easy in the context of metric measure spaces. We show that such a procedure
can be carried out also in our context, where the approximating sequence is obtained
through discrete convolutions and a weak “piecewise curve” structure is obtained by
a purely topological argument.

Of course, we cannot hope to generalize the result of [HKO07] unless we add
assumptions to the metric measure space. In particular, the class of functions of
bounded variation into a metric space depends on the metric, while the class of func-
tions of bounded variation on a metric measure space depends both on the metric and
the measure. For this reason, conditions assuring a sufficient compatibility between
metric and measure are clearly needed. We add examples showing that without the 2-
Ahlfors regularity the result is false, and we remark here that the weak (1, 1)-Poincaré



BV AND SOBOLEV HOMEOMORPHISMS 3

inequality is needed only in one direction, to require a deeper compatibility between
metric and measure.

2. Preliminaries

2.1. General material. Besides the Euclidean setting (for which we adopt the usual
notation de for the distance and Ln for the n dimensional Lebesgue measure) we work
with metric measure spaces. A metric measure space (m.m.s. for short) is a triplet
(X, d,m) where X is a set, d is a complete and separable distance on X and m is a
Borel measure that is finite on balls. We exclude the case in which a m.m.s. is a
single point and we adopt the convention that a m.m.s. has full support, that is to
say that for any x ∈ X, r > 0, we have m(Br(x)) > 0. Here Br(x) denotes the open
ball of radius r centred at x. We assume that balls have a definite centre and radius,
although there may be more than one couple centre-radius describing the same subset
of X. If B = Br(x) is ball, by αB we denote Bαr(x) whenever α > 0. When relevant
we emphasize the dependence on the metric as follows Bd

r (x). If A ⊆ X, by Br(A) we
denote

⋃
x∈ABr(x). As customary, if A ⊆ X we write dist(x,A) := infy∈A d(x, y). If

A ⊆ X is open we write A′ b A if A′ is a bounded subset of A with d(A′,X \A) > 0.
Clearly, if the space is proper (i.e. bounded sets are relatively compact), A′ b A if
and only if A′ has compact closure contained in A. Of course, some of the notions
above and several ones in what follows in this introductory section make sense in the
framework of metric spaces, not necessarily endowed with a measure. We implicitly
extend all these notions to the more general framework.

If f is a Borel function and A ⊆ X is open, we write

−
∫
A
f dm := fA :=

1

m(A)

∫
A
f dm

whenever it makes sense (e.g. f ∈ L1(A)).
Given A ⊆ X open, we denote with LIP(A) the space of functions that are L-

Lipschitz on A for some L ∈ (0,∞), that means that |f(x)− f(y)| ≤ Ld(x, y) for
every x, y ∈ A. LIPloc(A) denotes the space of functions that are Lipschitz in a
neighbourhood of x for any x ∈ A. If the space is locally compact, LIPloc(A) coincides
with the space of functions that are Lipschitz on compact subsets of A. Given f ∈
LIPloc(A), we define on A the Borel function

lip(f)(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

where lip(f)(x) is understood to be 0 if x is an isolated point.
A m.m.s. (X, d,m) is said to be doubling if there exists a constant CD ≥ 1 such

that

m(B2r(x)) ≤ CDm(Br(x)) for every r > 0 and x ∈ X.

It is easy to show that in a doubling m.m.s. balls are totally bounded, hence the
space is proper. A more stringent notion is the one of Ahlfors regularity: more
precisely, given ν > 0, we say that (X, d,m) is ν-Ahlfors regular if there exist constants
0 < C ′H ≤ C ′′H such that

(2.1) C ′Hr
ν ≤ m(Br(x)) ≤ C ′′Hr

ν for every 0 < r < diam(X) and x ∈ X.
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2.2. Hausdorff measures. Given ν ∈ (0,∞), we define the ν-dimensional Hausdorff
measure through the Carathéodory construction ([Fed69, 2.10]) as

Hν(B) := sup
δ>0
Hν
δ (B),

where

Hν
δ (B) :=

ων
2ν

inf

{∑
i∈N

diam(Bi)
ν : diam(Bi) < δ, B ⊆

⋃
i∈N

Bi

}
where

ων :=
πν/2

Γ(ν/2 + 1)

and Γ is the Euler’s gamma function. Notice that ωk = Lk(B1(0)) in Rk if k ∈ N,
k ≥ 1.

If (X, d,m) is a doubling m.m.s. the natural measure is the 1-codimensional Haus-
dorff measure, defined through the Carathéodory construction ([Fed69, 2.10] again)
as

Hh(B) := sup
δ>0
Hh
δ (B),

where

Hh
δ (B) := inf

{∑
i∈N

h(Bri(xi)) : ri < δ, B ⊆
⋃
i∈N

Bri(xi)

}
where

h(Bri(xi)) :=
m(Bri(xi))

ri
.

Recall that [Fed69, 2.10] implies that the two classes of measures defined above are
Borel measures.

A crucial property that we are going to exploit in the derivation of the main result
is that if (X, d,m) is 2-Ahlfors regular, then the measures Hh and H1 are comparable,
in the sense that there exists C > 0 such that for every B ⊆ X Borel

(2.2) C−1Hh(B) ≤ H1(B) ≤ CHh(B).

2.3. Curves. A curve γ is a continuous (possibly non injective) map γ : [0, l] → X,
where l > 0. A Jordan curve is a curve γ such that

x < y and γ(x) = γ(y) if and only if x = 0 and y = l.

In other words, a Jordan curve is an embedding S1 → X, up to reparametrizations.
We often denote, with a slight abuse, with γ both the curve and the image of the
curve (its support). Given a curve γ, we define its length as

(2.3) L(γ) := sup

{
N∑
i=1

d(γti , γti−1
) : 0 ≤ t0 ≤ t1 . . . , tN ≤ l

}
and by [Fed69, Theorem 2.10.13] the following formula holds

L(γ) =
∫
X
N(γ|[0, l], x) dH1(x)

where N(γ|A, x) := H0(γ−1(x)∩A). In particular, if γ is either injective or a Jordan
curve, then

(2.4) L(γ) = H1(γ).
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If L(γ) <∞ we say that γ is rectifiable and, if this is the case, following e.g. [Fed69,
2.5.16] we can parametrize γ by arc-length, γ : [0, L(γ)]→ X.

We say that a curve γ is absolutely continuous and we write γ ∈ AC([0, l],X) if
there exists g ∈ L1([0, l]) such that

d(γt, γs) ≤
∫ t

s
g(r) dr for every 0 ≤ s ≤ t ≤ l

and we define also |γ̇t|, the metric speed of γ, as the minimal (in the L1-a.e. sense)
function for which the above inequality holds. Moreover it holds that ([AGS08, The-
orem 1.1.2])

|γ̇t| = lim
s→t

d(γs, γt)

|s− t|
for L1-a.e. t.

We say that a metric space (X, d) is quasi-convex if there exists a constant CQ > 0
such that for every x, y ∈ X there exists a curve γ : [0, 1]→ X with L(γ) ≤ CQd(x, y)
such that γ0 = x and γ1 = y. A quasi-convex space with CQ = 1 is called geodesic.

Lemma 2.1 ([AT04, Theorem 4.4.7]). Let (X, d) be a complete metric space and
C ⊆ X a closed connected set such that H1(C) <∞. Then C is compact and arcwise
connected, in the sense that given x, y ∈ C, we can find an injective curve η : [0, 1]→
C with η(0) = x and η(1) = y.

2.4. Differential structure. Besides 2-Ahlfors regularity, the other standing as-
sumption will be that (X, d,m) supports a weak (1, 1)-Poincaré inequality, that is
that there exist constants CP > 0 and λ ≥ 1 such that

(2.5) −
∫
Br(x)

∣∣∣f − fBr(x)

∣∣∣ dm ≤ CP r−
∫
Bλr(x)

g dm

whenever f ∈ L1
loc(X) and g is an upper gradient of f according to the notion in-

troduced by Heinonen and Koskela in [HK98] (other references on this topic are e.g.
[BB11, Haj96, Sha00]). Precisely, a Borel function g is an upper gradient of a Borel
function f if

|f(γ1)− f(γ0)| ≤
∫ 1

0
g(γt)|γ̇t| dt for every γ ∈ AC([0, 1],X).

If f ∈ LIPloc(X), then it is clear that lip(f) is an upper gradient of f and, if the space
is doubling and supports a weak (1, 1)-Poincaré inequality, it is minimal, in the sense
that if g is another upper gradient for f on A, then lip(f) ≤ g m-a.e. ([Che99]).

It is common to denote a doubling m.m.s. that supports a weak (1, 1)-Poincaré
inequality PI space. This structure has several important consequences, among them,
the fact that PI spaces are quasi-convex ([Amb02, Theorem 3.2]). Taking into account

that PI spaces are proper, it follows that there exists a geodesic metric d̃ that is bi-
Lipschitz to d, in the sense that

d(x, y) ≤ d̃(x, y) ≤ CQd(x, y) for every x, y ∈ X.

If (X, d,m) is a geodesic PI space (e.g. (X, d̃,m) as above), it was shown in [HK00,
Corollary 9.8] that it supports a (1, 1)-Poincaré inequality, i.e. a weak (1, 1)-Poincaré
inequality with λ = 1.
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2.5. Functions of bounded variation on and into metric measure spaces.
We assume that the reader is familiar with the basics of the theory of functions of
bounded variation and sets of finite perimeter in metric measure spaces developed in
[Amb01, Amb02, Mir03, Amb90]. We recall here the main notions for the reader’s
convenience.

Let (X, d,m) be a m.m.s. Given A ⊆ X open and f ∈ L1
loc(A), we define the total

variation

|Df |(A) := inf
ß

lim inf
k

∫
A

lip(fk) dm : fk ∈ LIPloc(A) ∩ L1
loc(A), fk → f in L1

loc(A)
™

and we write f ∈ BV(A) if |Df |(A) < ∞ and f ∈ BVloc(A) if f ∈ BV(A′) for
every A′ open with A′ b A. When we feel the need to specify the reference measure,
we write BV(A;m) or BVloc(A;m). If χE is the characteristic function of a Borel
subset E ⊆ A, we say that E is a set of locally finite perimeter in A provided that
χE ∈ BVloc(A) and, of course, we say that E is a set of finite perimeter in A if
χE ∈ BV(A). If f ∈ BVloc(A), |Df |( · ) turns out to be the restriction to open subsets
of A of a Borel measure that we still denote with the same symbol and we call total
variation. If f = χE, we denote |Df |( · ) also with Per(E, · ). It holds the following
coarea formula.

Proposition 2.2 (Coarea). Let (X, d,m) be a m.m.s. Given A ⊆ X open and f ∈
L1

loc(A), then

(2.6) |Df |(A) =
∫
R

Per({f > r}, A) dr .

In particular, if the right hand side of (2.6) is finite, then f ∈ BV(A).

We also recall that sets of finite perimeter are an algebra, more precisely, if E and
F are sets of (locally) finite perimeter, then

Per(E, · ) = Per(X\E, · ) and Per(E∩F, · )+Per(E∪F, · ) = Per(E, · )+Per(F, · ).
Notice that |D(ϕ ◦ f)| ≤ L|Df | whenever f ∈ BV(A) and ϕ is L-Lipschitz. Also, it
is easy to verify that if (X, d,m) = (Rn, de,Ln) then the definition of total variation,
and hence of function of (locally) bounded variation, coincides with the classical one.

We will also need the following that is [Lah16, Lemma 3.1].

Lemma 2.3. Let X be a (X, d,m) be a PI space. Then there exists a constant C > 0
such that for any U ⊆ X open and f ∈ LIPloc(U) it holds that

(2.7)
∫ ∞
−∞
Hh(U ∩ ∂{f > t}) dt ≤ C

∫
U

lip(f)dm.

Notice that under the additional assumption of 2-Ahlfors regularity, (2.2) implies
that we can read (2.7) as

(2.8)
∫ ∞
−∞
H1(U ∩ ∂{f > t}) dt ≤ C

∫
U

lip(f)dm;

also, for L1 almost every t it holds that m({f = t} ∩ U) = 0 and for such t it holds

{f = t} ∩ U ⊆ (∂{f > t} ∩ U) ∪ (∂{f < t} ∩ U)

and therefore

(2.9)
∫
R
H1({f = t} ∩ U) dt ≤ C

∫
U

lip(f) dm .
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Let now (Y, ρ) be a locally compact and separable metric space. Given A ⊆ X open
and f : A→ Y such that for some (hence all) ȳ ∈ Y it holds ρ(f( · ), ȳ) ∈ L1

loc(A) we
define (see [Amb90, Definition 2.1])

|Df | := sup {|D(ϕ ◦ f)| : ϕ ∈ LIP(Y) is 1-Lipschitz}

and extend obviously the definitions of the classes BV(A) and BVloc(A) to this setting.
Notice that in the case (Y, d) = (R, de) this definition coincides with the one given
above, and, if (Y, d) = (Rn, de) and f = f1, . . . , fn then f ∈ BV(A) if and only if
fi ∈ BV(A) for every i = 1, . . . , n.

Assume now (X, d,m) = (R, de,L1). Let γ : [0, l] → Y be a curve. Then [Amb90,
Remark 2.2] implies that (recall (2.3))

L(γ) = |Dγ|(0, l)

and, in particular, if γ is either injective or a Jordan curve, then, by (2.4),

(2.10) |Dγ|(0, l) = H1(γ).

If G ⊆ R2 is open and (Y, ρ) is a locally compact metric space, we often consider
a map f : G → Y. We denote Gx := {y ∈ R : (x, y) ∈ G} and similarly Gy := {x ∈
R : (x, y) ∈ G}. We then consider the restriction of f to the lines {x} × Gx as fx
i.e. fx : Gx → Y is defined as y 7→ f(x, y). Similarly, f y : Gy → Y is defined as
x 7→ f(x, y). We recall that [Amb90, Proposition 2.1] implies that

(2.11)
∫
R
|Dfx|(Gx) dx ≤ |Df |(G),

∫
R
|Df y|(Gy) dy ≤ |Df |(G).

2.6. Sobolev functions on and into metric measure spaces. Let (X, d,m) be a
PI space and (Y, ρ) be a locally compact and separable metric space. Let A ⊆ X open
and f : A → Y. We say f ∈W1,1(A) (resp. W1,1

loc(A)) if f ∈ BV(A) (resp. BVloc(A))
and moreover |Df | � m.

We justify now this approach, as defining Sobolev functions with integrability expo-
nent 1 on metric measure spaces is a rather delicate question (here we take advantage
of the PI assumption). We will deal with only two cases: either X = R2 or Y = R2,
that is to say that either the domain or the codomain of the map will be Euclidean.
In the former case, our approach is proved to be equivalent to the one by Reshetnyak
([Res97, Res04]) and then to the one by Korevaar and Schoen ([KS93]). For the latter
case, notice first that if f = (f1, f2) : A → R2, then f ∈ W1,1(A,R2) if and only if
fi ∈ W1,1(A,R) for i = 1, 2. Then, for a comprehensive discussion on equivalent
definitions of the space W1,1(A,R), we refer to [DM14, Section 4.6] and the references
therein. In particular, it is possible to prove (see the proof of [HKLL16, Theorem
4.6] and [Che99, Proposition 4.26]) that f ∈ W1,1(A,R) if and only if we can find
a sequence {fn}n ⊆ LIPloc(A) ∩ L1(A) such that fn → f in L1(A) and lip(fn) ⇀ g
weakly in L1(A) for some g ∈ L1(A). Also, it has been proved that f ∈ W1,1(A,R)

if and only if there exists f̃ : A→ X with f̃ = f m-a.e. and f̃ ∈ N1,1(A) (see [Sha00]
for the definition of the Newtonian space N1,1(A)).

2.7. Connectedness. Let S be a topological space. We call connected components
of S the maximal connected subsets of S. If S ′ ⊆ S and a, b ∈ S \ S ′, we say that S ′

separates a and b (in S) if a and b are in different connected components of S \ S ′.
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We are mainly interested in connectedness in R2. Recall that an open set A ⊆ R2

is connected if and only if it is connected by smooth curves. In particular, a closed
set C ⊆ R2 separates a, b ∈ R2 \ C if and only if there exists no smooth curve
γ : [0, 1]→ R2 \ C with γ(0) = a and γ(1) = b.

We will use the following result taken from [New39, V.14.3], that is a consequence
of the so called Alexander lemma, see e.g. [Moi77, Theorem 30.1], that we write below
in a simplified version.

Theorem 2.4. Let C ⊆ R2 closed and a, b ∈ R2 \ C. If C separates a and b, then
there exists a connected component of C that separates a and b.

Lemma 2.5 (Alexander). Let C1, C2 ⊆ R2 closed and connected and let a, b ∈ R2 \
(C1 ∪ C2). If C1 ∪ C2 separates a and b, then either C1 or C2 separate a and b.

3. Main results

3.1. Jordan curves.

Proposition 3.1. Let (X, d,m) be a 2-Ahlfors regular m.m.s. supporting a weak (1, 1)-
Poincaré inequality. Let γ ⊆ X be a Jordan curve such that there exists an open set
D ⊆ X that is homeomorphic to an open set E ⊆ R2 with γ ⊆ D. Assume moreover
that γ separates D into exactly two connected components, say A1 and A2. Then

H1(γ) ≤ C min{Per(A1, D), Per(A2, D)}
where C is a constant that depends only on the space (X, d,m). In particular, if
Per(A1, D) <∞ or Per(A2, D) <∞, then m(γ) = 0 so that Per(A1, D) = Per(A2, D).

Proof. In the sequel we let C denote a constant. It may vary during the proof, but
in a way that depends only on the properties of the space (X, d,m). Of course, we
can assume that Per(A1, D) < ∞ or Per(A2, D) < ∞, otherwise there is nothing to
prove. For simplicity, set A = A1 or A = A2 so that Per(A,D) <∞.

For g : D → E the homeomorphism, from the statement we have that g(γ) ⊆ R2

is a Jordan curve. Therefore, thanks to the Jordan–Schoenflies theorem (e.g. [Cai51]
or [Moi77, Theorem 10.4]), there is no loss of generality in assuming that g(γ) =
S1 ⊆ R2. We call Eδ = Bde

δ (S1) and Dδ = g−1(Eδ). Then there exists a δ0 > 0 such
that D5δ0 b D and the restrictions g|D5δ0

and g−1
|E5δ0

are uniformly continuous. In the

following we replace D with D5δ0 = g−1(E5δ0), A with A ∩ D5δ0 and E with E5δ0 .
Clearly we still have γ ⊆ D and D is connected.

We take now {un}n ⊆ LIPloc(D) a sequence of discrete convolutions of the function
χA ∈ BV(D) ∩ L1

loc(D) (see [KLLS17, Section 5]). Clearly, un(x) ∈ [0, 1] for every
x ∈ D. By the results on discrete convolutions, we know that

(3.1)
∫
D

lip(un) dm ≤ CPer(A,D).

Also, as a consequence of the compactness of γ and the construction of discrete
convolutions, there exists a sequence {rn}n with rn ↘ 0, Brn(γ) ⊆ D and

(3.2) un(x) = χA(x) if x /∈ Brn(γ).

By (2.9) and (3.1), ∫ 1

0
H1({un = t} ∩D) dt ≤ CPer(A,D)
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so that we can find {tn}n ⊆ (0, 1) such that if we define

Kn := {un = tn} ∩D,

then

(3.3) H1(Kn) ≤ CPer(A,D) for every n.

Assume now that n is big enough so that

(3.4) g(Bd
rn(γ)) ⊆ Bde

δ0
(S1),

in particular, by (3.2),

g(Kn) ⊆ Bde
δ0

(S1),

and so Kn is compact.
Take now any two points P̄ , Q̄ ∈ E ⊆ R2 with

de(P̄ , (0, 0)) < 1− 2δ0 and de(Q̄, (0, 0)) > 1 + 2δ0.

It is easy to show that g(Kn) separates the points P̄ and Q̄ in R2 (see Subsection
2.7 for the definition). Indeed, by (3.2) and by the choice of n in (3.4), we have
that (un(g−1(P̄ )), un(g−1(Q̄))) is either (1, 0) or (0, 1). Then, any smooth curve ϕ :
[0, 1] → R2 with ϕ(0) = P̄ and ϕ(1) = Q̄ must intersect g(Kn) = g({un = tn} ∩D),
as tn ∈ (0, 1). Then, using Theorem 2.4, we have a connected component of Kn, call
it K ′n, such that g(K ′n) separates P̄ and Q̄ and also, by (3.3),

(3.5) H1(K ′n) ≤ CPer(A,D).

We notice now that K ′n → γ in the Hausdorff sense (see [AT04, Definition 4.4.9]),
this is to say that there exists a sequence {sn}n with sn ↘ 0 such that eventually

K ′n ⊆ Bd
sn(γ) and γ ⊆ Bd

sn(K ′n).

Indeed, the fist inclusion (with sn ≥ rn) follows from (3.2) whereas the second can be
easily proved by contradiction using the uniform continuity of the maps g and g−1, the
first inclusion and the fact that g(K ′n) separates P̄ and Q̄ for every n. We conclude
now using Golab’s semicontinuity theorem ([AT04, Theorem 4.4.17]) to infer, using
also (3.5),

H1(γ) ≤ lim inf
n
H1(K ′n) ≤ CPer(A,D). �

If (X, d,m) = (R2, de,L2) we can show with a simple cone-density argument (e.g.
[Mat95, Remark 2 at page 214 and Theorem 15.19]) that the conclusion of Proposition
3.1 (in the case H1(γ) <∞) improves to the stronger form

H1(γ∆(∂∗Ai ∩D)) = 0 for i = 1, 2.

This stronger result, in the Euclidean framework, can be also obtained directly as
a consequence of [ACMM01, Theorem 7]. Conversely, if we were able to obtain an
estimate of this type in our context, then Proposition 3.1 would follow. We point
out that in the proof above we did not pursue an optimal value for constant C: the
outcome can be easily quantitatively improved.
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3.2. Homeomorphisms of bounded variation.

Proposition 3.2. Let (X, d,m) be a metric measure space such that there exists C ′′H >
0 with

(3.6) m(Br(x)) ≤ C ′′Hr
2 for every x ∈ X and r > 0.

Let moreover G ⊆ R2 open, Ω ⊆ X open and f : G → Ω a homeomorphism. If
f ∈ BVloc(G), then f−1 ∈ BVloc(Ω).

Proof. In the sequel we let C denote a constant. It may vary during the proof, but
in a way that depends only on the properties of the space (X, d,m). Notice that,
as we have to prove that f−1 ∈ BVloc(Ω), we can assume with no loss of generality
that G = B1(0) and that f ∈ BV(G). We denote f−1 = (g1, g2). Now we follow the
argument used in the proof of [DS13, Theorem 1.3] to prove that g1 ∈ BVloc(Ω). As
the same argument applies to g2, this will be enough to conclude the proof.

Notice that all the sets Gx for x ∈ (−1, 1) are segments, so that, by (2.11) and
(2.10) it follows that

(3.7)
∫ 1

−1
H1(fx(Gx)) dx ≤ |Df |(G) <∞.

Therefore, by Proposition 2.2, the conclusion will follow from

(3.8) Per({g1 > x},Ω) ≤ CH1(fx(Gx)) for L1-a.e. x.

We prove now (3.8). Let ψ : R→ R be the Lipschitz function defined as

ψ(x) =


1 if x ≤ 1/3

−3x+ 2 if x ∈ [1/3, 2/3]

0 if x ≥ 2/3.

Fix x such that L := H1(fx(Gx)) < ∞ and (recall (2.4)) let γ : [0, L] → Ω be the
arc-length parametrization of the curve fx( · ). Notice that, if n ∈ N, n > 0 and
rn := L/n, we have that

Brn(γ) ⊆
⋃

t∈{0,rn,2rn,...,nrn}
B3rn(γ(t)).

Using also (3.6) it follows that

m(Brn(γ)) ≤ C(n+ 1)r2
n ≤ CLrn.

Notice that, being f a homeomorphism,
(3.9)
γ = fx(Gx) = f(∂{(u, v) ∈ G : u > x}) = ∂(f({(u, v) ∈ G : u > x})) = ∂{g1 > x}.

Now we can check (3.8) using the sequence of locally Lipschitz function (depending
on n)

ϕn := χ{g1>x}( · ) ∨ ψ(r−1
n dist( · , ∂{g1 > x})).

Indeed, as

ψ(r−1
n dist( · , ∂{g1 > x}))→ χ∂{g1>x} for every x ∈ Ω
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and ∂{g1 > x} is m-negligible (as it has finite H1 measure and (3.6)), it holds ϕn →
χ{g1>x} in L1(Ω). Then, by the very definition of total variation,

Per({g1 > x},Ω) ≤ lim inf
n

∫
Ω

lip(ϕn) dm ≤ m(Brn(γ))Cr−1
n ≤ CL. �

Proof of Theorem 1. Proposition 3.2 shows that if f ∈ BVloc(G), then also f−1 ∈
BVloc(Ω). We remark that, under the more restrictive hypothesis on the space in
force here, we can shorten the proof of Proposition 3.2 using [Lah20, Theorem 1.1],
according to which (3.8) immediately follows from (3.9).

We prove then the converse implication. In the sequel we let C denote a constant.
It may vary during the proof, but in a way that depends only on the properties of the
space (X, d,m). Notice that we can assume with no loss of generality that G = (0, 1)2

and f−1 ∈ BV(Ω).
Assume for the moment that for every ε > 0 it holds

(3.10)
∫ 1−ε

ε
H1(fx0((ε, 1− ε))) dx0 <∞ and

∫ 1−ε

ε
H1(f y0((ε, 1− ε))) dy0 <∞.

We claim that this is enough to conclude. Take ϕ ∈ LIP(X) 1-Lipschitz. Notice that
ϕ ◦ f : R2 → R and so it is well known that if U ⊆ (ε, 1− ε)2 is open we can estimate
(with the obvious meaning for the restriction of ϕ ◦ f to lines)

|D(ϕ ◦ f)|(U) ≤
∫ 1−ε

ε
|D(ϕ ◦ f)x|(Ux) dx+

∫ 1−ε

ε
|D(ϕ ◦ f)y|(Uy) dy

where Ux := {y ∈ R : (x, y) ∈ U} ⊆ (ε, 1 − ε) and similarly Uy := {x ∈ R : (x, y) ∈
U} ⊆ (ε, 1− ε). Clearly,

|D(ϕ ◦ f)|(U) ≤
∫ 1−ε

ε
|Dfx|(Ux) dx+

∫ 1−ε

ε
|Df y|(Uy) dy .

It follows that the finite Borel measure defined as

(ε, 1− ε)2 ⊇ B 7→
∫ 1−ε

ε
|Dfx|(Bx) dx+

∫ 1−ε

ε
|Df y|(By) dy

is an upper bound for |Df | (ε, 1− ε)2, that reads as, taking into account (2.10),

(3.11) |Df |((ε, 1−ε)2) ≤
∫ 1−ε

ε
H1(fx0((ε, 1−ε))) dx0 +

∫ 1−ε

ε
H1(f y0((ε, 1−ε))) dy0 .

Therefore, being ε > 0 arbitrary, this shows that f ∈ BVloc(G).
We prove now the first inequality in (3.10) (as the second follows from the same

argument). Denote f−1 = (g1, g2). Fix now x1, y0, y1 with 1− ε < x1 < 1, 0 < y0 < ε
and 1− ε < y1 < 1 such that

Per({g1 < x1},Ω), Per({g2 > y0},Ω), Per({g2 < y1},Ω) <∞

(this is possible thanks to (2.6)).
Notice that, for any x0 with ε < x0 < 1− ε such that Per({g1 > x0},Ω) <∞ (that

is for L1-a.e. x0, thanks to (2.6)) we have that ∂((x0, x1)× (y0, y1)) ⊆ R2 is a Jordan
curve γx0 such that the Jordan curve f(γx0) encloses the set of finite perimeter

{x0 < g1 < x1, y0 < g2 < y1}.
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By Proposition 3.1 (with Ω in place of D) and the submodularity of the perimeter
we obtain

H1(f(γx0)) ≤ C
Å

Per({g1 > x0},Ω) + Per({g1 < x1},Ω)

+ Per({g1 > y0},Ω) + Per({g2 < y1},Ω)
ã
.

(3.12)

Notice that (2.6) applied to g1 yields that the right hand side of (3.12) is integrable
with respect to L1(dx0) on (ε, 1− ε) and in light of this we can recall the trivial fact

H1(f(γx0)) ≥ H1(fx0((ε, 1− ε)))
to prove our claim (3.10). �

In the proofs above we sacrificed the possibility to obtain a stronger result in
favour of the simplicity of notation. However one may adapt the arguments to show
the following

Theorem 3.3. Let (X, d,m) be a 2-Ahlfors regular metric measure space supporting
a weak (1, 1)-Poincaré inequality. Let moreover G ⊆ R2 open, Ω ⊆ X open and
f : G → Ω a homeomorphism. Then there exists a constant C, depending only on
the space (X, d,m) (in particular, only on the constants appearing in (2.1) and (2.5))
such that

(3.13) C−1|Df |(G) ≤
∣∣∣Df−1

∣∣∣(Ω) ≤ C|Df |(G).

Proof. The proof of this result is more or less a careful inspection of the arguments
used above. We can clearly assume either f ∈ BV(G) or f−1 ∈ BV(Ω) so that,
thanks to Theorem 1, we know that both |Df | and |Df−1| are (possibly infinite)
Borel measures.

In what follows C will denote a constant that depends only on the properties of
(X, d,m) as described above, and, as usual, it may vary during the proof. First, we
show that

(3.14) C−1|Df |(B) ≤
∣∣∣Df−1

∣∣∣(f(4B)) ≤ C|Df |(4B)

whenever B = Br(x) ⊆ G ⊆ R2 is such that 4B ⊆ G (C is independent of such ball).
The last inequality is precisely the content of Proposition 3.2, indeed the centre and
radius of the ball in consideration did not play any role in the proof of Proposition
3.2. To prove the first inequality, for r > 0 and x ∈ R2 let Qr(x) := Bd∞

r (x), i.e. the
open cube in R2 defined as follows

Qr((x1, x2)) := {(y1, y2) : max{|x1 − y1|, |x2 − y2|} < r} .
Notice now that as Br(x) ⊆ Qr(x) ⊆ Q2r(x) ⊆ B4r(x) we only have to show

|Df |(Qr(x)) ≤ C
∣∣∣Df−1

∣∣∣(f(Q2r(x))),

that is a consequence of (3.12) and (2.6). Namely, we only need to improve the
argument used in the proof of Theorem 1. Using the notation of the proof of Theorem
1 (specifically recall that f−1 = (g1, g2)), we can show along the same lines that if we
consider, for every x0 ∈ (−r, r), the curve γx0 , that is the boundary of the set

{x0 < g1 < 3r/2 + x0/2,−3r/2 + x0/2 < g2 < 3r/2 + x0/2}
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and we set, for simplicity, Ã := f(Q2r(x)), then we have∫ r

−r
H1(fx0(−r, r)) dx0 ≤

∫ r

−r
C
Å

Per({g1 > x0}, Ã) + Per({g1 < 3r/2 + x0/2}, Ã)

+ Per({g2 > −3r/2 + x0/2}, Ã) + Per({g2 < 3r/2 + x0/2}, Ã)
ã

dx0

and we can also prove a similar estimate for
∫ r
−rH1(f y0(−r, r)). Now the conclusion

follows as in the proof of Theorem 1, employing a suitable variant of (3.11), that
follows from the integral inequality above. Indeed, as for (3.11), we can easily show
that

|Df |(Qr(x)) ≤
∫ r

−r
H1(fx0((−r, r))) dx0 +

∫ r

−r
H1(f y0((−r, r))) dy0

and, by what said right above and (2.6), we can bound the first summand by

C
Ä
|Dg1|(Ã) + |Dg2|(Ã)

ä
≤ C

∣∣∣Df−1
∣∣∣(f(Q2r(x)))

and argue similarly for the second summand.
We show now how (3.14) allows us to conclude. Using Whitney-type covers for

G ⊆ R2 in the form described in [KLLS17, Section 5] (see more precise references
therein) we obtain that there exists a sequence of balls {Bj}j such that 4Bj ⊆ G, and

(3.15) 1 ≤
∑
j

χBj ≤
∑
j

χ4Bj ≤ C on G.

We sketch here a possible construction of such cover for the reader’s convenience.
Consider the family of balls

{Brx(x), rx = min{1, dist(x,X \G)/25}}
and, using the Vitali covering lemma (see e.g. [Hei01, Theorem 1.2]) extract a sequence
of pairwise disjoint balls {Bj = Brj(xj)}j with Bj ⊆ G ⊆ ∪j5Bj. We only have to
show the bounded overlap property

(3.16)
∑
j

χ20Bj ≤ C on G,

then the claim follows choosing {B′j := 5Bj}j. Assume now 20Bī ∩ 20Bj̄ 6= ∅. If
dist(xī,X \ U) ≥ 25 then rī = 1. Otherwise, if dist(xī,X \ U) < 25, then

25rj̄ ≤ dist(xj̄,X \ U) ≤ d(xj̄, xī) + dist(xī,X \ U) ≤ 20rī + 20rj̄ + 25rī

so that rī ≥ Crj̄. To sum up, if 20Bi ∩ 20Bj 6= ∅ then ri ≥ Crj. Now recall that the
balls in {Bj}j are pairwise disjoint and that R2 satisfies a doubling inequality, then a
classical argument shows that (3.16) follows. We show this last fact in our particular
case, R2 (R2 is 2-Ahlfors regular and so the notation is slightly simpler than in the
doubling case). Fix any x ∈ G and a sub collection {Bi}i∈I , where I is a finite subset
of N, such that x ∈ 20Bi for every i ∈ I. Assume for simplicity of notation that I =
1, . . . , N and denote, as before, Bi = Bri(xi) for every i = 1, . . . , N . For every i ∈ I,
as x ∈ 20B1∩ 20Bi, we know that ri ≤ Cr1. Then Bi ⊆ B20r1+40ri(x1) ⊆ BCr1(x1) for
every i ∈ I so that, being {Bi}i=i,...,N pairwise disjoint balls, we have

N∑
i=1

r2
i ≤ Cr2

1.
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On the other hand, ri ≥ Cr1 for every i = 1, . . . , N (as above), so that we get
Nr2

1 ≤ Cr2
1. As the constant C did not depend neither on N nor on x, the claim is

proved.
We conclude now using (3.15) twice, as by also (3.14),

|Df |(G) ≤
∑
j

|Df |(Bj) ≤
∑
j

C
∣∣∣Df−1

∣∣∣(f(4Bj)) ≤ 4C
∣∣∣Df−1

∣∣∣(f(G))

and similarly∣∣∣Df−1
∣∣∣(f(G)) ≤

∑
j

∣∣∣Df−1
∣∣∣(f(Bj)) ≤ C

∑
j

|Df |(Bj) ≤ C|Df |(G). �

Proof of Theorem 2. We notice that, up to shrinking G and accordingly Ω, we can just
show that f ∈W1,1(G) if and only if f−1 ∈W1,1(Ω). Assume then that f ∈W1,1(G)
or f−1 ∈ W1,1(Ω). Then, by Theorem 3.3, |Df | is a finite Borel measure on G and
|Df−1| is a finite Borel measure on Ω.

As the constant C in (3.13) is independent of G and Ω (once that (X, d,m) is fixed)
we have that for every A ⊆ G open, (3.13) is satisfied with A in place of G and f(A)
in place of Ω. Therefore, taking into account (N) and (N−1), it follows |Df | � L2 if
and only |Df−1| � m, that is our claim. �

We have proved our main Theorem 1 under the assumption that (X, d,m) is a
2-Ahlfors regular m.m.s. supporting a weak (1, 1)-Poincaré inequality. There has
been much interest in so-called PI spaces (without requiring 2-Ahlfors regularity).
Therefore it is natural to ask whether the 2-Ahlfors regularity assumption is necessary.
Recall that in our proof we used the 2-Ahlfors regularity to prove the fact that Hh

and H1 are comparable. Below we give two elementary examples in which we show
that 2-Ahlfors regularity is indeed necessary. The first example shows the necessity
of the upper bound m(Br(x)) ≤ C ′′Hr

2 whereas the second deals with the necessity of
the lower bound m(Br(x)) ≥ C ′Hr

2. We use the fact (see e.g. [BB11, Appendix A.2,
pag. 347]) that if ν > −n, then (Rn, de, | · |νLn) is a doubling space supporting a weak
(1, 1)-Poincaré inequality, where | · | denotes the Euclidean norm.

We make use of polar coordinates in the image and in the preimage. That means
that for every (x1, x2) ∈ B1(0) \ {(0, 0)} we find a r ∈ (0, 1) and a θ ∈ [0, 2π) such
that (x1, x2) = r(cos θ, sin θ). Further, for the map f : B1(0) → R2, we find a pair
R : B1(0)→ [0,∞) and Θ : B1(0)→ R such that

f(x1, x2) = R(x1, x2) (cos Θ(x1, x2), sin Θ(x1, x2)) .

Composing with the polar coordinates in the preimage we have

f(Ψ(r, θ)) = R(Ψ(r, θ)) (cos Θ(Ψ(r, θ)), sin Θ(Ψ(r, θ))) .

For every f ∈ C1(B1(0) \ {(0, 0)}), defining u = x
|x| and a unit vector v with v⊥u,

we calculate |Df | ≈ C max{|∂uf |, |∂vf |}. Using ∂uf(Ψ(r, θ)) = ∂rf ◦ Ψ(r, θ) and
|∂uf | = 1

r
|∂θf ◦Ψ(r, θ)| we get

(3.17) |Df | ≈ max
ß
|∂rR ◦Ψ|, R|∂rΘ ◦Ψ|, 1

r
|∂θR ◦Ψ|, R ◦Ψ(r, θ)

r
|∂θΘ ◦Ψ|

™
.

Example. Let 0 < α < 1
2

and (X, d,m) := (R2, de, | · |αL2). Notice that (X, d,m) does
not satisfy the lower 2-Ahlfors bound. Let now G := B1(0) ⊆ R2 and Ω := B1(0) ⊆
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X. Using the notation above we define f using the functions R(Ψ(r, θ)) := r and
Θ(Ψ(r, θ)) := θ + r−2. It is easy to observe that f is a homeomorphism and that the
inverse can be calculated as

f−1(Ψ(r, θ)) = R̃(Ψ(r, θ))
î
cos
Ä
Θ̃(Ψ(r, θ))

ä
, sin
Ä
Θ̃(Ψ(r, θ))

äó
where R̃(Ψ(r, θ)) = r and Θ̃(Ψ(r, θ)) = θ − r−2. A simple calculation using (3.17)
gives

|Df(Ψ(r, θ))| ≈ 1

r2
≈ |Df−1(Ψ(r, θ))|

for all r ∈ (0, 1).
By the change of variables formula (using JΨ = r−1) we have that∫

B1(0)
|Df | dm ≈

∫ 1

0

r1

r2
rα dr =

∫ 1

0

1

r1−α dr <∞.

On the other hand, for all δ > 0 we have∫
Bδ(0)
|Df−1| dL2 ≈

∫ δ

0

r

r2
dr =∞.

It is now immediate that f ∈ BV(Ω;m) but f−1 /∈ BVloc(G;L2).

Example. Let 0 < α < 1
2

and (X, d,m) := (R2, de, | · |−αL2). Notice that (X, d,m)
does not satisfy the upper 2-Ahlfors bound. Let now G := B1(0) ⊆ R2 and Ω :=
B1(0) ⊆ X. Using the notation above we define f using the functions R(Ψ(r, θ)) := r
and Θ(Ψ(r, θ)) := θ+rα−2. It is easy to observe that f is a homeomorphism and that
the inverse can be calculated as

f−1(Ψ(r, θ)) = R̃(Ψ(r, θ))
î
cos
Ä
Θ̃(Ψ(r, θ))

ä
, sin
Ä
Θ̃(Ψ(r, θ))

äó
where R̃(Ψ(r, θ)) = r and Θ̃(Ψ(r, θ)) = θ − rα−2. A simple calculation using (3.17)
gives

|Df(Ψ(r, θ))| ≈ 1

r2−α ≈ |Df
−1(Ψ(r, θ))|

for all r ∈ (0, 1).
By (3.17) and by the change of variables formula (using JΨ = r−1) we have that∫

Bδ(0)
|Df | dm ≈

∫ δ

0

r

r2−α r
−α dr =

∫ δ

0

1

r
dr =∞

for all δ > 0. On the other hand,∫
B1(0)
|Df−1| dL2 ≈

∫ 1

0

r

r2−α dr <∞.

It is now immediate that f−1 ∈ BV(G;L2) but f /∈ BVloc(Ω;m).
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