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Abstract
We recently proposed a class of type IIB vacua that yield, at low energies,
four–dimensional Minkowski spaces with broken supersymmetry and a con-
stant string coupling. They are compactifications with an internal five-torus
bearing a five–form flux Φ and warp factors depending on a single coordinate.
The breaking of supersymmetry occurs when the internal space includes a
finite interval. A probe-brane analysis revealed a gravitational repulsion and a
charge attraction of equal magnitude from the left end of the interval, together
with a singularity at the other end. Here we complete the analysis revealing
the presence, at one end, of an effective O3 of negative tension and positive
five–form charge. We also determine the values of these quantities, showing
that T=−Q=Φ, and characterize the singularity present at the other end of
the interval, which hosts an opposite charge. Finally, we discuss various forms
of the gravity action in the presence of a boundary and identify a self–adjoint
form for its fluctuations.
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1. Introduction and summary

Different scenarios for supersymmetry breaking in String Theory [1] have been explored over
the years. The resulting pictures are captivating, but they all entail, in one way or another,
strong back reactions on the vacuum, with the typical emergence of runaway potentials. These
arise from quantum corrections in Scherk–Schwarz compactifications [2, 3], and already at
the (projective) disk level for the non–tachyonic ten–dimensional strings of [4–6]. The first
model is a variant of the heterotic string, while the others are orientifolds [7]. Supersymmetry
is absent in the first two, while it is non–linearly realized in the third [8], which provides
the simplest instance of ‘brane supersymmetry breaking’ [9]. The Dudas–Mourad vacua [10]
provide, in all these cases, compactifications to lower–dimensional Minkowski spaces that are
perturbatively stable [11, 12], notwithstanding the breaking of supersymmetry. These vacua
have the interesting feature of including an internal interval, but in some regions the string
coupling, and/or the space–time curvature, become unbounded. On the other hand, more con-
ventional fluxed AdS vacua [13, 14], where curvatures and string couplings are everywhere
weak, typically host unstable modes [11].

This paper concerns a class of type IIB compactifications to four–dimensional Minkowski
space with internal fluxes [15–17], which also include an interval but avoid the emergence of
regions where the string coupling becomes unbounded3. In [16], a probe brane was shown to
experience a gravitational repulsion and a five–form charge attraction of equal magnitude near
the left end of the interval, while a singularity whose features were less transparent revealed
itself at the other end. The purpose of the present paper is to take a closer look at the endpoints,
in order to unveil the key properties of the objects present there. The result will be especially
neat for the left end, and the present analysis should also favor the comparison between the
work of [15, 18] and the current literature on ‘dynamical cobordism’, some of which can be
found in [19].

The backgrounds of interest are characterized by a constant dilaton profile ϕ0, which we
shall set to zero for brevity, and by metric and five-form profiles that depend on a single
coordinate, r, and are given by

ds2 = e2A(r) dx2 + e2B(r) dr2 + e2C(r) dy2

=
ηµν dxµ dxν[

2 |H|ρ sinh
(
r
ρ

)] 1
2

+

[
2 |H| ρ sinh

(
r
ρ

)] 1
2 [
e−

√
10

2ρ r dr2 + e−
√

10
10ρ r (dyi)2] ,

H(0)
5 = H

 dx0 ∧ . . .∧ dx3 ∧ dr[
2 |H| ρ sinh

(
r
ρ

)]2 + dy1 ∧ . . .∧ dy5

 . (1.1)

The xµ are coordinates of a four–dimensional Minkowski space, and positive values of r para-
metrize the interior of the internal interval. The five yi coordinates have a finite range,

0 ⩽ yi ⩽ 2πR , (1.2)

and parametrize an internal torus, which for simplicity we take to be the direct product of
five circles of radius R. The other parameters that enter the background, ρ and H, emerge as

3 The strong curvatures present in these vacua can be confined to small portions of the internal space with suitable
choices of their free parameters.

2



J. Phys. A: Math. Theor. 57 (2024) 035401 J Mourad and A Sagnotti

integration constants from the equations of the low–energy supergravity. The former charac-
terizes the length of the internal interval parametrized by the variable r, while the latter clearly
characterizes the five–form field strength.

The contents of this paper are as follows. In section 2 we discuss boundary conditions at
the singular ends of an interval for a toy scalar field theory, relying on a conformal internal
coordinate z, with emphasis on the distinction between the first–order formulation and the
self–adjoint, second–order one. In section 3 we adapt the Arnowitt–Deser–Misner (ADM)
decomposition [20] to our setting and discuss the role of theYork–Gibbons–Hawking term [21]
in defining a first–order action for gravity. We also describe a self–adjoint form for its four–
dimensional and internal traceless fluctuations. In section 4 we identify the opposite values of
the tension and charge of an effective BPS O3 orientifold that, as we had anticipated in [16],
lies at one end of the interval. The result,

T = − Q = − Φ

k210
, (1.3)

is particularly simple: both quantities are proportional to the five–form flux on the internal
torus

Φ = H(2πR)5 . (1.4)

To the best of our knowledge, this is the first time that the effective emergence of a BPS
object is revealed at the endpoint of a compactification. Clearly supersymmetry plays a role
in our derivation, and the link between charge and tension stabilizes the latter. We also show
that the singularity at the opposite end corresponds to an extended object with the expected
opposite charge, but its characterization is admittedly less neat, since it involves a contribution
proportional to the extrinsic curvature of that boundary and another (singular) tension–like
contribution. Presumably, quantum corrections will play a role in determining the final form
of these contributions. Appendix collects some properties of the background that are useful in
our derivations.

The ADMdecomposition, which plays an important role in our considerations, ranks highly
among the many important contributions that Stanley Deser gave to Theoretical Physics over
the years. We are honored to contribute the present article to the volume dedicated to his
memory.

2. Boundary terms and boundary conditions

Our background includes an interval of finite length, which can parametrized by the variable
r in equations (1.1) valued in the range 0< r<∞, or alternatively by a conformal variable,
related to r according to

z =

ˆ r

0
eB(ξ)−A(ξ) dξ , (2.1)

which has also a finite span 0< z< zm. When working in terms of z, the metric in
equations (1.1) takes the form

ds2 = e2A(z)
(
dx2 + dz2

)
+ e2C(z) dy2 , (2.2)

3
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and

zm =

ˆ ∞

0
dr ′ eB(r

′)−A(r ′) (2.3)

characterizes the range of the new variable.
One should demand that the action yield the equations of motion if it is stationary under

arbitrary variations of all fields in the bulk. To this end, one must supplement it with bound-
ary conditions to eliminate the boundary terms that accompany the field equations. Before
addressing our problem, it is convenient to consider a toy model, a complex scalar field in a
five–dimensional spacetime that also includes an interval parameterized by a real variable z,
with 0< z< zm, and with the background metric

ds2 = e2A(z)
(
ηµν dx

µ dxν + dz2
)
, (2.4)

where the exponential factor behaves as a power at both ends of the interval:

e2A ∼ z2α0 , e2A ∼ (zm − z)2αm . (2.5)

The standard presentation of the equation of motion

1√
−g

∂M
[√

−g gMN
]
∂Nϕ = 0 (2.6)

for four–dimensional modes of mass m can be turned into the Schrödinger form

HΨ ≡ − ∂2
z Ψ + V(z) Ψ = m2Ψ (2.7)

by the field redefinition

ϕ = Ψ e−
3
2 A , (2.8)

and the resulting potential is

V(z) =
9
4
A2
z +

3
2
Azz , (2.9)

where Az and Azz indicate the first and second derivatives of A(z). Note that close to the two
ends the potential V(z) behaves as

V(z) ∼
µ2
0 − 1

4

z2
, V(z) ∼

µ2
m − 1

4

(zm − z)2
, (2.10)

where

µ2
0 =

1
4
(3α0 − 1)2 , µ2

m =
1
4
(3αm − 1)2 . (2.11)

As discussed in [12], the Hamiltonian in equation (2.7) can be self–adjoint if it is supple-
mented with proper boundary conditions. These depend crucially on the behavior at the two
ends, and specifically on whether 0⩽ µ0,m < 1 or µ0,m ⩾ 1. In detail, for boundary conditions
given independently at the ends,

4
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• if 0< µ0 < 1, the self–adjoint boundary conditions that are allowed at z= 0 depend on a real
parameter. This result reflects the possibility of allowing, at that end, the general limiting
behavior available for Ψ,

Ψ ∼ C1

(
z
zm

) 1
2+µ0

+ C2

(
z
zm

) 1
2−µ0

, (2.12)

compatibly with the conditions that Ψ and HΨ be both in L2. The possible self–adjoint
extensions are in one–to–one correspondencewith the different values of the ratio C1

C2
. Similar

considerations hold for the other end, if 0< µm < 1, with

Ψ ∼ C3

(
1 − z

zm

) 1
2+µm

+ C4

(
1 − z

zm

) 1
2−µm

, (2.13)

• If µ0 = 0 or µm = 0, there are logarithmic contributions, and

Ψ ∼ C1

(
z
zm

) 1
2

log

(
z
zm

)
+ C2

(
z
zm

) 1
2

,

Ψ ∼ C3

(
1 − z

zm

) 1
2

log

(
1 − z

zm

)
+ C4

(
1 − z

zm

) 1
2

, (2.14)

and both types of limiting behaviors are allowed.
• In the complementary range µ0 ⩾ 1 there is a unique choice of self–adjoint boundary condi-
tions, with C2 = 0, since the other limiting behavior is incompatible with the L2 condition,
and similarly at the other end one must choose C4 = 0 if µm ⩾ 1.

Let us now consider the action for a complex scalar field ϕ in the second–order form, while
focusing on four–dimensional mass eigenstates, which reads

S =

ˆ
M

d4x dz ϕ⋆ ∂M
(√

−g gMN∂N ϕ
)
. (2.15)

Performing the field redefinition (2.8), this action takes the form

S =

ˆ
M

d4x dz Ψ⋆
(
H − m2

)
Ψ , (2.16)

and its variation reads

δS = lim
z⋆→0,Z⋆→zm

2
ˆ
M⋆

d4x dz δΨ⋆
(
H − m2

)
Ψ

− lim
z⋆→0,Z⋆→zm

ˆ
d4x(Ψ⋆ ∂z δΨ − ∂zΨ

⋆ δΨ)

∣∣∣∣z=Z⋆
z=z⋆

. (2.17)

It is important to stress that the field Ψ in equation (2.16) andHΨ should be both in L2, so
that Ψ should behave as in equations (2.12) or (2.13) near the ends of the interval. Moreover,
when two coefficients are allowed in the limiting behavior, the variation δΨ is computed for
a fixed value of their ratio so that, for example, for the behavior in equation (2.12)

δΨ ∼ δC2

[
C1

C2

(
z
zm

) 1
2+µ0

+

(
z
zm

) 1
2−µ0

]
, (2.18)
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if the ratio C1
C2

is finite, and otherwise

δΨ ∼ δC1

(
z
zm

) 1
2+µ0

. (2.19)

The preceding conditions grant the vanishing of the boundary term in equation (2.17), and the
consequent recovery of the Schrödinger–like equation (2.7) from the action principle.

Summarizing, when singularities are present at the ends of the interval, the boundary condi-
tions are not defined directly in terms ofΨ and its derivative. Rather, they are defined in terms
of the ratios C1

C2
and C3

C4
of the coefficients characterizing their limiting behavior, which are

well defined despite the fact that this is generally singular. Note that, to this end, we displaced
the two endpoints to z⋆ and Z⋆, slightly away from the singular ends at z= 0 and z= zm and
toward the interior of the interval. The resulting regularized manifold is denoted by M⋆, and
we shall follow the same procedure in the following section.

The action (2.16) is equivalent to the first–order form

S = −
ˆ
M⋆

d4x dz
√
−g ∂Mϕ⋆ ∂Mϕ + lim

z⋆→0,Z⋆→zm

ˆ
d4x

√
−g ϕ⋆ gzN ∂Nϕ

∣∣∣∣z=Z⋆
z=z⋆

,

(2.20)

or, in terms of Ψ, to

S =

ˆ
M⋆

d4x dz
[
− |∂zΨ|2 +

(
m2 − V(z)

)
|Ψ|2

]
+ lim

z⋆→0,Z⋆→zm

ˆ
d4x Ψ⋆ ∂zΨ

∣∣∣∣z=Z⋆
z=z⋆

.

(2.21)

The second contribution to this expression is singular when C2 or C4 do not vanish, and gives
rise to divergent boundary terms proportional to |C2|2 and |C4|2. These contributions are com-
pensated by other singular portions of the first term, while equation (2.16) contains no singular
terms, since by assumptionHΨ is in L2. Consequently, the standard practice of removing the
boundary term in equation (2.21), while also insisting on the same set of Ψ eigenfunctions,
would lead to divergent contributions proportional to |C2|2 and |C4|2. The first–order action
without the boundary term is thus equivalent to the Schrödinger–like form (2.16) only for
boundary conditions whereby C2 and C4 vanish. These considerations extend to other bosonic
fluctuations, and in particular to the gravitational field, to which we can now turn.

3. General relativity and boundary terms

As was the case for the scalar field, the Einstein–Hilbert action can be linked to a first–order
form, but neither of them is the analog of the self–adjoint action (2.16), whose variation leads
to the Schrödinger–like equation(

H − m2
)
Ψ = 0 , (3.1)

once it is supplemented by self–adjoint boundary conditions.
Let us see this in detail, recalling, to begin with, that the Einstein–Hilbert action SEH can

be related to a first–order form, SG, by the addition of a York–Gibbons–Hawking term [21] at
the spatial boundary. This boundary term is conveniently formulated in terms of an ADM–like
decomposition [20] that singles out constant-z hypersurfaces. The decomposition rests on a

6
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nine–dimensional symmetric tensor g̃mn, which is the metric on constant-z hypersurfaces, on
a nine–dimensional ‘shift’ vectorNm and on a ‘lapse’ functionN . A ten–dimensional labelM
thus splits into z and a nine–dimensional label m, and

g̃mn = gmn , Nm = gmz , N 2 + NmNm = gzz . (3.2)

Nine–dimensional indices are raised and lowered with the nine–dimensional metric g̃, whose
associated covariant derivatives and scalar curvature we denote by D̃m and R̃, and another
important ingredient is the extrinsic curvature of the boundary,

Kmn =
1

2N

(
∂z g̃mn − D̃(mNn)

)
. (3.3)

The Einstein–Hilbert action then decomposes as

SEH = SG − lim
z⋆→0,Z⋆→zm

1
2k210

ˆ
d9 x

√
−g̃ K

∣∣∣∣Z⋆
z⋆

(3.4)

where

K = g̃mn Kmn , (3.5)

and SG, the first–order action for the gravitational field, reads

SG =
1

2k210

ˆ
M⋆

d9 xdz
√
−g̃N

[
R̃ + KmnKpq (g̃

mn g̃pq − g̃mp g̃nq)
]
. (3.6)

By construction, the variation of SG contains a boundary term that originates solely from
the last contributions involving the extrinsic curvature, and

δSG =
1

2k210

ˆ
M⋆

d10 x
√

−g̃ N δgMN GMN

+ lim
z⋆→0,Z⋆→zm

1
2k210

ˆ
d9 x

√
−g̃ δg̃mn (Kmn − g̃mnK)

∣∣∣∣z=Z⋆
z=z⋆

(3.7)

does not contain any terms involving ∂z δ g̃mn at the boundary. This property makes SG the
counterpart of the first–order scalar action discussed in the previous section, and this very
fact motivated the modification of the Einstein–Hilbert action proposed in [21]. In contrast,
the self–adjoint formulation for the scalar field described in the previous section does accom-
modate terms containing both ∂z δΨ and δΨ, as can be seen in equation (2.17). However, the
two quantities are not independent. In fact, in view of equations (2.18) and (2.19) the limiting
behavior of the scalar field near the boundary relates δΨ and ∂z δΨ there, according to

∂z δΨ =
f0 (z)
z

δΨ , ∂z δΨ =
fm (z)
zm− z

δΨ . (3.8)

The two functions f0(z) and fm(z) approach constant values near the boundary, which depend
on the given choice of self–adjoint boundary conditions, and more precisely on the indicial
exponents characterizing the limiting behavior allowed by them.Aswe shall see in [17],µ0 ̸= 0

7
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in all bosonic mode sectors of the background (1.1), and consequently at a point z⋆ close to
z= 0

f0 (z
⋆) =

C1
(
1
2 + µ0

)(
z⋆

zm

)2µ0

+ C2
(
1
2 − µ0

)
C1

(
z⋆
zm

)2µ0

+ C2

, (3.9)

which approaches 1
2 + µ0 if C2 = 0, and 1

2 − µ0 otherwise. On the other hand, if µm ̸= 0, at a
point Z⋆ close to z= zm

fm (Z
⋆) = −

C3
(
1
2 + µm

)(
1 − Z⋆

zm

)2µm

+ C4
(
1
2 − µm

)
C3

(
1 − Z⋆

zm

)2µm

+ C4

, (3.10)

which approaches−
(
1
2 + µm

)
if C4 = 0, and−

(
1
2 − µm

)
otherwise. However, if µm = 0, one

should start from equations (2.14) and then

fm (Z
⋆) = − 1

2

C3 log
(
1 − Z⋆

zm

)
+ 2 C3 + C4

C3 log
(
1 − Z⋆

zm

)
+ C4

, (3.11)

which approaches − 1
2 in all cases.

Einstein’s theory is highly non linear, and thus far more complicated than the scalar toy
model, but the analogy is nonetheless very useful in the study of its linear fluctuations around
the background (1.1). Aswe saw in [12], after proper field redefinitions the bosonic fluctuations
of the Dudas–Mourad vacua [10] can be linked to Schrödinger–like systems with double–pole
singularities at the ends. This type of analysis is extended to the different bosonic sectors of the
more complicated background (1.1) in [17], where we show, in particular, that two Schrödinger
fields Ψ1(z) and Ψ2(z) with identical potentials, which can be defined according to

hµν (x,z) = e
A− 5C

2 hµν (x) Ψ1 (z) , hij (x,z) = e−
3A+C

2 hij (x) Ψ2 (z) , (3.12)

describe both traceless spin-2 hµν and traceless spin-0 hij fluctuations. The identical
Schrödinger potentials for Ψ1(z) and Ψ2(z) have the limiting behavior discussed in the previ-
ous section, with µ0 =

1
3 and µm = 0. Making use of equations (3.8), one can thus obtain

∂z δhµν =
1
z⋆

[
z⋆

2
(Az − 5Cz) + f0 (z

⋆)

]
δhµν ,

∂z δhij =
1
z⋆

[
− z⋆

2
(3Az + Cz) + f0 (z

⋆)

]
δhij , (3.13)

and taking the results in appendix into account, one can conclude that

∂z δhµν =± µ0

z⋆
δhµν = ± 1

3z⋆
δhµν ,

∂z δhij =
2
3 ± µ0

z⋆
δhij =

2 ± 1
3z⋆

δhij , (3.14)

8
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where the upper sign applies if C2 = 0. In a similar fashion, near the other end of the interval,

∂z δhµν =

[
Az − 5Cz

2
+

fm (Z⋆)
zm − Z⋆

]
δhµν = − 2 +

√
10

3(zm − Z⋆)
δhµν = 2Az δhµν ,

∂z δhij =

[
− 3Az + Cz

2
+

fm (Z⋆)
zm − Z⋆

]
δhij =

√
10

5(zm − Z⋆)
δhij = 2Cz δhij . (3.15)

Note that the same relations linking the limiting behaviors of the fluctuations and their deriv-
atives to Az and Cz hold, at the left end, for the lower sign choices in equations (3.14), which
apply whenever C2 ̸= 0.

One can also identify a counterpart of the action (2.16) for the gravitational field. Confining
initially the attention to the spin–2 variation δgµν alone, the second–order action is

Ssa = SG − lim
z⋆→0,Z⋆→zm

1
4k210

[ˆ
d9 x

√
−g̃ (K + Λ(z))

] ∣∣∣∣z=Z⋆
z=z⋆

+ lim
z⋆→0,Z⋆→zm

c(z)

k210

ˆ
ϵα1...α4 e

α1 ∧ ·· · eα4 ∧ H5

∣∣∣∣z=Z⋆
z=z⋆

, (3.16)

where Λ(Z⋆) and Λ(z⋆) are a pair of nine–dimensional cosmological constants, while the last
term is pair of tension–like contributions, all localized at the two ends. In the background, the
second pair of terms is equivalent to

lim
z⋆→0,Z⋆→zm

H c(z)

k210

ˆ
d9 x

√
−det g̃µν

∣∣∣∣z=Z⋆
z=z⋆

(3.17)

Using equation (3.7), one can now show that the full variation reads

δSsa =
1

2k210

ˆ
M⋆

d10 x
√
−g̃ N δgMN GMN

+ lim
z⋆→0,Z⋆→zm

1
4k210

ˆ
d9x

√
−g̃

(
δ g̃mn Kmn − g̃mn δKmn − 3

2
δ g̃mn g̃mnK

) ∣∣∣∣z=Z⋆
z=z⋆

+ lim
z⋆→0,Z⋆→zm

1
8k210

ˆ
d9x

√
−g̃ Λ(z) δ g̃mn g̃mn

∣∣∣∣z=Z⋆
z=z⋆

− lim
z⋆→0,Z⋆→zm

H c(z)

2 k210

ˆ
d9 x

√
−det gµν δ g̃µν g̃µν

∣∣∣∣z=Z⋆
z=z⋆

. (3.18)

For traceless and divergence–free δgµν and δgij the first two terms in the second line recover
precisely the structure that emerged for the scalar field in equation (2.17). The correspond-
ence becomes manifest performing the separation of variables and the first redefinition in
equation (3.12), after which the quadratic contributions around the background (1.1) become

9
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δSsa =
1

4k210

ˆ
M⋆

d9x hαβ (x) h
αβ (x) δΨ1

(
− ∂2

z + V(z) − m2
)
Ψ1

+
1

4k210

ˆ
M⋆

d9x hij (x) h
ij (x) δΨ2

(
− ∂2

z + V(z) − m2
)
Ψ2

+ lim
z⋆→0,Z⋆→zm

1
8k210

ˆ
d9x hαβ (x) h

αβ (x) (Ψ1 ∂z δΨ1 − δΨ1 ∂zΨ1)

∣∣∣∣z=Z⋆
z=z⋆

+ lim
z⋆→0,Z⋆→zm

1
8k210

ˆ
d9x hij (x) h

ij (x) (Ψ2 ∂z δΨ2 − δΨ2 ∂zΨ2)

∣∣∣∣z=Z⋆
z=z⋆

+ lim
z⋆→0,Z⋆→zm

1
8k210

ˆ
d9x hαβ (x) h

αβ (x)

×
[
11Az + 20Cz − eA

(
Λ(z) + 4Hc(z) e−5C

)]
δΨ1Ψ1

∣∣z=Z⋆
z=z⋆

+ lim
z⋆→0,Z⋆→zm

1
8k210

ˆ
d9x hij (x) h

ij (x)
(
15Az + 16Cz − eAΛ(z)

)
δΨ2Ψ2

∣∣∣∣z=Z⋆
z=z⋆

,

(3.19)

where for brevity we are setting hαi = 0 and we have used the four–dimensional mass–shell
conditions

□hαβ = m2 hαβ , □hij = m2 hij (3.20)

Using the results in the appendix, one can see that the resulting potential for Ψ1

V(z) =
1
4
(3Az + 5Cz)

2
+

1
2
(3Azz + 5Czz) (3.21)

has double poles at the ends of the interval, with µ0 =
1
3 and µm = 0.

The two nine–dimensional cosmological termsΛ(Z⋆) andΛ(z⋆), and the four–dimensional
one proportional to c(z), can be chosen so that the last two lines in equation (3.19) vanish
identically, and

Λ(z) = e−A (15Az + 16Cz) , Hc(z) = e−A+5C (Az + Cz) . (3.22)

At the lower end z⋆

Λ(z⋆) =
(3H)

1
6

6 (z⋆)
5
6

, Hc(z⋆) = 0 . (3.23)

while at the upper end z= Z⋆

Λ(Z⋆) =− 50 +
√
10

15

(
h
2

) 1
4

[√
5−

√
2

2

(
zm−Z⋆

z0

)]−
√

10+ 2
6

,

Hc(Z⋆) =
5 +

√
10

15

(
h
2

) 3
2

[√
5−

√
2

2z0

]− 5
√

10+ 4
12

(zm−Z⋆)−
5
√

10+ 16
12 . (3.24)

Let us stress again the two main limitations of this analysis. First of all, it is confined to linear-
ized perturbations, and moreover it leaves out lower–spin terms that receive contributions from

10
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the matter. Still, the self–adjoint form that was discussed in the previous section is recovered
both for the spin–two perturbations described by hµν and for the traceless scalar ones described
by hij. In the same spirit, the variation of the action vanishes on the background if the variations
δ g̃µν and δ g̃ij are confined to their traceless portions.

Note also that the link in equation (3.4) between SG and the Einstein–Hilbert action SEH

implies that its variation is

δSEH =
1

2k210

ˆ
M⋆

d10 x
√
−g̃N δgMN GMN

− lim
z⋆→0,Z⋆→zm

1
2k210

ˆ
d9 x

√
−g̃

(
1
2
δg̃mn gmnK + g̃mn δKmn

)∣∣∣∣z=Z⋆
z=z⋆

. (3.25)

Consequently, the Einstein–Hilbert action SEH is somehow intermediate between the first–
order and second–order actions for gravity fluctuations.

Let us conclude this section by deducing from equation (3.18) some properties of the bound-
ary fields that can be present in this case, along the lines of what did in detail in [17] for the
type–IIB two-forms. To begin with, when the metric field is varied in the bulk, the r derivatives
present in

δgmr = ∇m ξr + ∇r ξm , δgrr = 2∇r ξr (3.26)

give rise to the boundary terms in

δξ SEH =
1
k210

ˆ
∂M⋆

d9 x
√
−g̃N [ξm G

mr + ξr G
rr] . (3.27)

These contributions can be canceled adding

∆S =
1
k210

ˆ
∂M⋆

d9 x
√

−g̃N [Am G
mr + Ar G

rr] , (3.28)

where the Stückelberg fields, a real vector Am and a real scalar A r, transform as

δAm = − ξm , δA r = − ξr . (3.29)

There is in principle a subtlety with Am, which is a vector and should satisfy a gauge invari-
ant equation of motion around the background of equations (1.1). In analogy with what was
done for the type–IIB two-forms in [17], the kinetic operator for Am can be deduced from the
variation δgmr, when this is expressed in terms of the extrinsic curvature. From the bulk term
SG in the ADM decomposition of equation (3.6), one can deduce the variation

δSG =
1
k210

ˆ
d10 x

√
− g̃ δNn D̃m [K

mn − g̃mnK] , (3.30)

and the comparison with the corresponding expression in the standard ten–dimensional
Einstein–Hilbert form links the mixed components Gmr of the Einstein tensor to the extrinsic
curvature, according to

Gnr = − 1
N

D̃m [K
mn − g̃mnK] . (3.31)

11
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Consequently the term in the action (3.28) involving Am takes the form

∆S = − 1
k210

ˆ
∂M⋆

d9 x
√
− g̃ Am D̃m [K

mn − g̃mnK] , (3.32)

and one can now vary Nm in this expression, making use of equation (3.3). After a partial
integration one is thus led to

δ (∆S) = − 1
2k210

ˆ
∂M⋆

d9 x
√

− g̃ δNn Dm [α
mn − gmnα] , (3.33)

where

αmn =
1
N

(Dmαn + Dnαm) (3.34)

and α is its trace. Around the background of equations (1.1), after an integration by parts,
equation (3.33) reduces to

δ (∆S) =
1

2k210

ˆ
∂M⋆

d9 x

√
− g̃
N

δgnr [□9A
n − ∂n ∂mAm] , (3.35)

and thus involves the flat Maxwell kinetic operator for Am, since in the background of
equations (1.1) all ‘reduced’ nine–dimensional ADM covariant derivatives Dm are flat and do
not involve r, on whichN depends. The fluctuations around the background of equations (1.1)
are thus consistent with a gauge–invariant formulation for the Stückelberg vector field Am.

4. The effective orientifolds of the background

In [16] the dynamics of a probe D brane unveiled, near the z= 0 end of the internal interval, a
gravitational repulsion and a charge attraction of equal magnitude, two effects that point to an
effective BPS orientifold localized there. In [16] we did not compute the tension and charge
of this object, but we did show that they have opposite signs and equal magnitudes. A closer
look at the background can determine them precisely, as we can now show.

As described in appendix, the equations solved by the background contain indeed contact
terms localized at the singular ends of the interval. In particular, equations (A.12) imply for
the Einstein tensor the singular limiting behavior

Gµν =
δ (z)
3z

gµν e
−2A + . . . (4.1)

near the origin. Taking equations (A.15) into account, the preceding result can be cast in the
suggestive form

√
−gGµν = H

√
−det gµν gµν δ (z) + . . . , (4.2)

where we have added to the left–hand side the full metric determinant, which equals one in this
coordinate system, to emphasize the link with the complete Einstein equations. The contact
term can thus be associated to the variation of

∆S1 =
H

k210

ˆ
M
d10 x

√
−det gµν δ (z) . (4.3)

12
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thanks to the special behavior of the background metric gµν as z→ 0, which grants that

det (gµν) = e4A ∼ 1
3Hz

e−2A . (4.4)

Note that equation (4.3) lacks the full nine–dimensional covariance, but this difficulty could
be overcome considering the term in the second line of equation (3.16),

∆S2 =
1

4! k210

ˆ
z=0

ϵα1...α4 e
α1 ∧ ·· · eα4 ∧ H5 , (4.5)

where eα is the four–dimensional vielbein one-form. This alternative expression still breaks
the ten–dimensional Lorentz symmetry to SO(1,3)× SO(5), just like the boundary conditions
of Fermi fields in [18, 22], but possesses ten–dimensional general covariance. Equations (4.5)
and (4.3) coincide in the background, and integrating over the internal torus, whose volume
shrinks to zero as z→ 0, turns them into the DBI action for an effective O3 orientifold. The
resulting tension is

T = − Φ

k210
, (4.6)

where

Φ = H(2πR)5 (4.7)

is the five–form flux on the internal torus. The tension T of the effective orientifold is indeed
negative, consistently with the probe analysis in [16].

Near the other end of the internal interval, which lies at z= zm, a closer look at the back-
ground of (1.1) reveals the presence of additional contact terms in the Einstein equations, so
that the counterpart of equation (4.1) reads

Gµν =− δ (zm − z)
zm − z

gµν e
−2A + . . . ,

Gij =−
4
(
5 +

√
10
)

15
δ (zm − z)
zm − z

gij e
−2A + . . . . (4.8)

These additional contact terms concern both Gµν and Gij, and the different limiting behavior
of the metric requires a more detailed scrutiny of the available options.

The simplest alternative to equation (4.3) is provided by counterterms involving a single
z-derivative. In addressing them, we continue to excise small regions around the ends of the
interval, thus working within the regularized bulk manifoldM⋆.

We can now try to link the contact term in equations (4.8) to an extrinsic curvature term,

∆S3 =
α

2κ2
10

ˆ
d9x

√
− g̃ g̃mnKmn , (4.9)

whose variation is

δ (∆S3) = − α

4κ2
10

ˆ
d9x

√
−g̃ e−A (4Az + 5Cz)

(
δ g̃µν g̃µν + δ g̃ij g̃ij

)
, (4.10)

13
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taking equations (3.15) into account. In fact, equations (3.15) imply that the variations of
g̃µνKµν and g̃ijKij vanish, so that these results are only determined by the variation of the
determinant. The resulting contributions to the µν and ij equations are proportional to those
that a nine–dimensional cosmological term would produce.

A contribution proportional to the term in equation (4.5), or equivalently to the term in
equation (4.5),

∆S4 = − lim
Z⋆→zm

T(Z⋆)

4! Φ k210

ˆ
ϵα1...α4 e

α1 ∧ ·· · eα4 ∧ H5 , (4.11)

is also compatible with the residual symmetry of the background, and its variation is

δ (∆S4) = lim
Z⋆→zm

T(Z⋆)

2 k210

ˆ
z=Z⋆

√
− gµν δgµν gµν . (4.12)

Taking equations (4.8) and the additional contributions from ∆S3 and ∆S4 into account,
one finds that the contact terms in equations (4.8) can be accounted for if

α =
8
√
10

45

(
1 +

√
10
)
, T(Z⋆) = − 5 + 4

√
10

15(zm−Z⋆)
e−A+5C . (4.13)

Note, however, that T(Z⋆) tends to −∞ as Z⋆ approaches zm from lower values.
We can now turn to the simpler task of identifying the charges lying at the ends of the

interval. To this end, we take as our starting point the naive action for the four-form gauge
potential,

S = − 1
2× 5!k210

ˆ
d10 x

√
−gHMNPQR HMNPQR , (4.14)

which must be supplemented by the self-duality condition. In the bulk the equation of motion
is

∂M
[√

−gHMNPQR
]
= 0 , (4.15)

and taking into account the detailed form of the background in equations (1.1) one can see
that, for 0< z< zm,4

√
−gHµνρσz = H ϵµνρσ . (4.16)

With H vanishing outside the interval one can thus conclude that

∂z
[√

−gHµνρσz
]
= H ϵµνρσ [δ (z) − δ (zm− z)] . (4.17)

More precisely, these results could be obtained resorting to the Henneaux-Teitelboin action
[23], which can be adapted to the presence of the boundaries at the ends of the internal interval,
compatibly with the full residual symmetry of the background, but the conclusion is at any rate
that the bulk action should be supplemented with the contribution

SQ = − 1
k210

ˆ
∂M10

B ∧ H(0)
5 . (4.18)

4 In our conventions ϵ0123 = 1=−ϵ0123, and this choice determines the overall sign in equation (4.20).

14



J. Phys. A: Math. Theor. 57 (2024) 035401 J Mourad and A Sagnotti

However, writing

H5 = H(0)
5 + dB , (4.19)

and taking into account that d(B∧B) = 2B∧ dB, equation (4.18) is equivalent to the back-
ground independent expression

SQ = − 1
k210

ˆ
∂M10

B ∧ H5 . (4.20)

Finally, after integrating over the internal torus, one can conclude that SQ adds to the five–
dimensional effective action resulting from the compactification the terms

SQ = lim
z⋆→0,Z⋆→zm

[
− Φ

k210

ˆ
M4(Z⋆)

B +
Φ

k210

ˆ
M4(z⋆)

B

]
, (4.21)

where Φ denotes, as in equation (4.6), the five–form flux over the internal torus. This expres-
sion associates opposite five–form charges to the two endpoints of the internal interval. In par-
ticular, the contribution at the left end captures precisely the positive charge of the effective
O3 orientifold at r= 0, and comparing with equation (4.6) finally shows that the magnitudes
of the charge and tension present there are such that

Q = − T , (4.22)

consistently with the analysis in [16].
Summarizing, the low–energy five–dimensional theory for the background of

equations (1.1) hosts, at one end of the interval, an effective BPS O3 orientifold with neg-
ative tension and positive five–form charge, whose opposite values are proportional to the
five-form flux on the internal torus. At the other end, the low–energy effective action contains
an extrinsic curvature term and a singular tension term, but the corresponding charge is, as
expected, opposite to the one present at the origin.
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Appendix. Some properties of the background

In this appendix we collect some useful properties of the background of equations (1.1) of
section 1. In our conventions, capital Latin labels like M denote curved ten–dimensional
indices, while Greek or Latin labels like (µ,r, i) denote their spacetime or internal portions.
Moreover, when we need to distinguish the curved radial index r or z from the remaining nine–
dimensional ones, as in the ADM decomposition of section 3, we denote them collectively by
m. We use a ‘mostly–plus’ signature, defining the Riemann curvature tensor via 5

[∇M,∇N]VP = RMNP
QVQ , (A.1)

so that

RMNP
Q = ∂NΓ

Q
MP − ∂MΓQNP + ΓQNRΓ

R
MP − ΓQMRΓ

R
NP , (A.2)

and define the Ricci tensor as

RMQ = RMNQ
N . (A.3)

The background (1.1) is of the type

ds2 = e2A(r) dx2 + e2B(r) dr2 + e2C(r) dy2 , (A.4)

where the xµ–coordinates, with µ= 0, . . . ,3, refer to the four–dimensional spacetime, while
the yi–coordinates, with i = 1, . . . ,5 refer to the internal torus. We work mostly in terms of the
z variable, defined by

z =

ˆ r

0
dξ eB(ξ)−A(ξ) , (A.5)

whose upper limit is

zm =

ˆ ∞

0
dξ eB(ξ)−A(ξ) ≃ 2.24 z0 , (A.6)

where

z0 = ρh
1
2 =

(
2Hρ3

) 1
2 , with h = 2Hρ . (A.7)

When the Einstein equations

GMN =
1
4!

(
H5

2
)
MN

=
1
24

gPP
′
gQQ

′
gRR

′
gSS

′
H5MPQRS H5NP ′Q ′R ′S ′ (A.8)

are written for the background (A.4), in the z coordinate the G(0)
zz equation, which we often

refer to as Hamiltonian constraint, becomes

3(Az)
2
+ 10AzCz + 5(Cz)

2
= − 2 W2

5 , (A.9)

5 These conventions are as in [15, 18].
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where we have introduced the convenient combination

W5 =
h
4ρ

eA−5C , (A.10)

while the remaining Einstein equations take the form

Gµν ≡ gµνe
−2A

[
3Azz + 5Czz + (3Az+ 5Cz)

2
+ 4W5

2
]
= − 4W2

5 e
−2A gµν ,

Gij ≡ gije
−2A

[
4(Azz + Czz) + 4(3Az+ 5Cz)(Az+Cz) + 4W5

2
]
= 4W2

5 e
−2Agij .

(A.11)

Combining them, one can deduce that

Azz = 4W2
5 − (3Az+ 5Cz)Az , Czz = − 4W2

5 − (3Az+ 5Cz)Cz . (A.12)

Recalling also equations (1.1), close to z= 0

z
z0

∼ 2
3

(
r
ρ

) 3
2

,
r
ρ

∼
(

3z
2z0

) 2
3

, (A.13)

and therefore

eA ∼ 1

h
1
4

(
2z0
3z

) 1
6

eC ∼ h
1
4

(
3z
2z0

) 1
6

,

Az ∼− 1
6z

, Cz ∼ 1
6z

, W2
5 ∼ 1

36z2
. (A.14)

The leading behavior of the metric and five–form backgrounds close to z= 0 is thus

ds2 ∼ dx2 + dz2

(3 |H|z)
1
3

+ (3 |H|z)
1
3 d y⃗2 ,

H5 ∼ H

{
dx0 ∧ . . .∧ dx3 ∧ dz

[3 |H|z]
5
3

+ dy1 ∧ . . .∧ dy5
}

, (A.15)

but the limiting behavior of Azz and Czz actually includes contact terms

zAzz ∼ 1
6z

− 1
6
δ (z) , zCzz ∼ − 1

6z
+

1
6
δ (z) . (A.16)

This can be seen, for example, if one regulates the two limiting forms for Az and Cz according
to

Az ∼ − lim
ϵ→0

1

6
√
z2 + ϵ2

, Cz ∼ lim
ϵ→0

1

6
√
z2 + ϵ2

. (A.17)

As a result, the contact terms are to be included in equations (A.12), which become

z Azz = 4zW2
5 − z(3Az+ 5Cz)Az − 1

6
δ (z) ,

z Czz = − 4zW2
5 − z(3Az+ 5Cz)Cz +

1
6
δ (z) , (A.18)
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and consequently one can conclude that the equation for gµν in (A.11) is actually

Gµν =
δ (z)
3z

gµν e
−2A + . . . , (A.19)

and includes a contact term at the origin, while the equation for gij does not.
As z approaches the finite value zm of equation (A.6), one can see that

zm− z
z0

∼
√
2
3

(√
10 + 2

)
e−

r
4ρ (

√
10−2) , e−

r
2ρ ∼

[√
5−

√
2

2

(
zm− z
z0

)]√
10+ 2
3

,

e2A ∼
√

2
h

[√
5−

√
2

2

(
zm− z
z0

)]√
10+ 2
3

, e2C∼
√
h
2

[√
5−

√
2

2

(
zm− z
z0

)]−
√

10
5

,

Az ∼ − 1
6

√
10 + 2
zm− z

, Cz ∼
1√
10

1
zm− z

,

W5 ∼
√
2

2z0

[√
5 −

√
2

2

(
zm− z
z0

)] 2
√

10+ 1
3

. (A.20)

The leading behavior of the metric and five–form backgrounds close to z= zm is thus

ds2 ∼
√

2
h

[√
5−

√
2

2

(
zm− z
z0

)]√
10+ 2
3 (
dx2 + dz2

)
+

√
h
2

[√
5−

√
2

2

(
zm− z
z0

)]−
√

10
5

d y⃗2,

H5 ∼ H


(
2
h

) 5
2

[√
5−

√
2

2

(
zm− z
z0

)] 4
√

10+ 5
3

dx0 ∧ . . .∧ dx3 ∧ dz + dy1 ∧ . . .∧ dy5

 .

(A.21)

From these expressions, proceeding as above, one can deduce that

(zm − z)Azz =−
√
10 + 2
6

δ (zm − z) + . . . ,

(zm − z)Czz =
1√
10

δ (zm − z) + . . . , (A.22)

and consequently the Einstein equations for gµν and gij contain at the right end of the interval
the contact terms

Gµν =− δ (zm − z)
zm − z

gµν e
−2A + . . . ,

Gij =−
4
(
5 +

√
10
)

15
δ (zm − z)
zm − z

gij e
−2A + . . . . (A.23)
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