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We study the eigendecompositions of para-Hermitian matrices 
H(z), that is, matrix-valued functions that are analytic and 
Hermitian on the unit circle S1 ⊂ C. In particular, we fill 
existing gaps in the literature and prove the existence of a 
decomposition H(z) = U(z)D(z)U(z)P where, for all z ∈ S1, 
U(z) is unitary, U(z)P = U(z)∗ is its conjugate transpose, 
and D(z) is real diagonal; moreover, U(z) and D(z) are 
analytic functions of w = z1/N for some positive integer 
N , and U(z)P is the so-called para-Hermitian conjugate of 
U(z). This generalizes the celebrated theorem of Rellich for 
matrix-valued functions that are analytic and Hermitian on 
the real line. We also show that there exists a decomposition 
H(z) = V (z)C(z)V (z)P where C(z) is pseudo-circulant, V (z)
is unitary and both are analytic in z. We argue that, in 
fact, a version of Rellich’s theorem can be stated for matrix-
valued function that are analytic and Hermitian on any line 
or any circle on the complex plane. Moreover, we extend these 
results to para-Hermitian matrices whose entries are Puiseux 
series (that is, on the unit circle they are analytic in w but 
possibly not in z). Finally, we discuss the implications of 
our results on the singular value decomposition of a matrix 
whose entries are S1-analytic functions of w, and on the sign 
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characteristics associated with unimodular eigenvalues of ∗-
palindromic matrix polynomials.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

In the 1930s, F. Rellich proved a famous theorem [17] on the existence of unitary real-
analytic eigendecompositions of real-analytic matrix-valued functions that are Hermitian 
on the real line. Rellich’s result, that has since become classic [6,9,18], is stated below 
in a slightly more general version that only assumes real-analyticity on an interval (see 
e.g. [1,7,14,20]).

Theorem 1.1 (Rellich’s theorem). Let each entry of the matrix A(x) be a function analytic 
in the open interval I ⊆ R, and suppose that A(x) = A(x)∗ is a Hermitian matrix for 
every x ∈ I. Then there exists an analytic eigenvalue decomposition of the form

A(x) = U(x)D(x)U(x)∗

where U(x) is unitary for every x ∈ I and D(x) is real and diagonal for every x ∈ I; 
moreover, all the entries of D(x) and U(x) are analytic in I.

The main goal of this paper is to analyze how and when Rellich’s theorem can be 
generalized to the case of a matrix that is analytic and Hermitian on the unit circle. 
While it is tempting to conjecture that such a generalization is a corollary of Theorem 1.1
via an appropriate change of variable such as, e.g., x = eit, we will see that actually the 
different topology of the unit circle induces several subtleties and complications with 
respect to the case of the real line.

There are at least two motivations to study this problem and attempt to clarify the 
above mentioned subtleties. On one hand, in the context of signal processing several 
algorithms of practical importance rely on the numerical computation of an eigende-
composition of matrices that are analytic and Hermitian on the unit circle S1 (called 
para-Hermitian in the signal processing literature): see [21] and the references therein 
for a survey of the numerous engineering applications. A related problem is to com-
pute the singular value decomposition of matrices that are analytic on S1. The signal 
processing literature has mainly focused on the development of numerical algorithms 
that could achieve the task of approximating these decompositions. Some papers did 
tackle the mathematical theory, but occasionally imprecise or incorrect statements have 
appeared. The article [22] stands out in terms of mathematical quality: indeed, it pro-
vided an almost complete proof of an analogue of Rellich’s theorem on the unit circle. 
Unfortunately, though, the proof in [22] still had a gap concerning the existence of the 
(orthonormal) eigenvectors. The present paper aims to fill this gap and to provide a 
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fully complete theoretical analysis. On the other hand, in the context of numerical linear 
algebra it is known that Rellich’s theorem provides one way to define the sign char-
acteristics of real eigenvalues of Hermitian matrix polynomials and Hermitian matrix 
functions: see [5,6,14] and the references therein. The sign characteristic is important 
also for the unimodular eigenvalues of *-palindromic matrix polynomials, another class 
of structured matrix polynomials of interest in numerical linear algebra [12]. In fact, a *-
palindromic matrix polynomial is equal to a para-Hermitian matrix times a (not always 
analytic, depending on the parity of the grade of palindromicity) scalar function. Thus, 
the theory developed in this paper is also useful for the study of the sign characteristics 
of *-palindromic matrix polynomials.

The structure of the paper is as follows. In Section 2, we recall background material 
including previous generalizations of Rellich’s Theorem, previous partial results on the 
case of matrix-valued functions Hermitian on the unit circle, and notions of algebra and 
analysis that are useful to our further developments. In Section 3, we prove our main 
results concerning the existence of unitary decompositions for certain classes of matrix-
valued functions that are Hermitian on the unit circle, including analytic para-Hermitian 
matrices that have only analytic eigenvalues (they admit an analytic unitary eigende-
composition) and para-Hermitian matrices that are analytic functions of w = z1/N for 
some positive integer N (they admit a unitary eigendecomposition in the same class); we 
also discuss how to further generalize Rellich’s theorem to matrix-valued functions that 
are analytic and Hermitian on an arbitrary line or on an arbitrary circle in the complex 
plane, and we give a proof of the existence of the so-called pseudo-circulant eigendecom-
position. In Section 4, we apply our results to discuss the singular value decomposition 
of any matrix, possibly rectangular, whose entries belong to the previously mentioned 
class of functions that are analytic in w = z1/N on the unit circle, for some N ; this is 
an extension of a result proved in [23] for matrices that are analytic on the unit circle 
(N = 1), and even for that case our proof is new. In Section 5 we turn our attention to 
the implications for the theory of the sign characteristics of unimodular eigenvalues of 
∗-palindromic matrix polynomials. We finally draw some conclusions in Section 6.

2. Background material

Recall that if z = x + iy (x, y ∈ R) its complex conjugate is z = x − iy. For a matrix 
A = [aij ] ∈ Cm×n, we denote its conjugate transpose by A∗ = [aji] ∈ Cn×m.

Rellich’s theorem was previously generalized in several papers, such as [1,7,20]. There, 
the authors extended the result to different kinds of functions on subsets of the complex 
plane, but always under the assumption that the matrix function A(x) is Hermitian 
on a real interval. As a consequence, they defined the conjugation operation on square 
matrices as A(z) = [ai,j(z)]1≤i,j≤n → A(z)∗ = [aj,i(z)]1≤i,j≤n. The reason for this choice 
stems from the classic representation of scalar power series and its canonical conjugation 
operation as
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f(z) = a0 + a1z + a2z
2 + . . . −→ f(z)∗ = f(z) = a0 + a1z + a2z

2 + . . .

from which one can easily derive that f(z)∗ = f(z) = f(z) when z is a real number, but in 
general for no other point. Moreover, in [1,7,20] the authors always focused on functions 
defined on a domain Ω that is symmetric with respect to the real line: this implies that 
the conjugation ∗ is an isomorphism of H(Ω), the ring of holomorphic functions on Ω.

In this paper, we are interested in H(S1), defined as the space of functions that 
are holomorphic on the unit circle S1 := {z ∈ C : |z| = 1} (note in passing that, if 
a function f(z) ∈ H(S1), then f(z) also has an holomorphic extension on some open 
neighbourhood of S1). As a consequence, we will work with matrices A(z) ∈ H(S1)n×n

that are Hermitian for every z ∈ S1.

Definition 2.1. Given A(z) = [ai,j(z)]1≤i≤m,1≤j≤n ∈ H(S1)m×n, its para-Hermitian 
conjugate is defined as A(z)P = [aj,i(z−1)]1≤i≤m,1≤j≤n. Moreover a matrix R(z) ∈
H(S1)n×n is called a para-Hermitian matrix if R(z) = R(z)P and a matrix U(z) ∈
H(S1)n×n is called para-unitary if U(z)U(z)P = U(z)PU(z) = I.

Example 2.2. Consider

A(z) =
[

1 + i z
exp(z) 0

]
, R(z) =

[
0 1 + z−1

1 + z 0

]
, U(z) = 1√

2

[
z z
z −z

]
.

Then R(z) is para-Hermitian, U(z) is para-unitary, and A(z)P =
[
1 − i exp(z−1)
z−1 0

]
.

Note that for a scalar function f(z)P := f(z−1) = f(z) when z ∈ S1, but in general 
for no other point. Para-Hermitian conjugation as defined in Definition 2.1 is indeed an 
isomorphism of the ring H(S1) and for any z0 ∈ S1, A(z0)P = A(z0)∗. Observing that 
para-Hermitian (resp. para-unitary) matrices are Hermitian (resp. unitary) on S1, it is a 
natural question whether an analogue of Rellich’s Theorem 1.1 holds for para-Hermitian 
matrices.

Question 2.3. Given a para-Hermitian matrix A(z) ∈ H(S1)n×n, when does it admit 
an analytic unitary eigendecomposition? That is, do there always exist U(z), D(z) ∈
H(S1)n×n such that U(z) is para-unitary, D(z) is diagonal real for all z ∈ S1, and 
A(z) = U(z)D(z)U(z)P ?

The authors of [22] answered Question 2.3 negatively, by providing the counterexample 
R(z) + 2I2, where R(z) is the para-Hermitian matrix3 of Example 2.2.

3 Adding 2I2 to R(z) makes the para-Hermitian matrix also positive semidefinite, in the sense that its 
eigenvalue functions become nonnegative on S1; in signal processing, an important role is played by the 
so-called cross spectral density matrices, which are both para-Hermitian and positive semidefinite. Having 
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To see why R(z) (and hence R(z) + 2I2) does not have S1-analytic eigenvalues, note 
that TrR(z) = 0, detR(z) = −(z+z−1 +2), and hence the eigenvalues of R(z) are λ± =
±(z1/2 + z−1/2). This example exposes a striking difference between Hermitian analytic 
matrix functions (whose eigenvalues are always all real-analytic) and para-Hermitian 
analytic matrices (that may have some eigenvalues that are not analytic on the whole S1). 
In fact, in [22] it is stated that any para-Hermitian matrix R(z) ∈ H(S1)n×n has a unitary 
eigendecomposition in the space of convergent Laurent series with respect to the variable 
z1/N for some positive integer N ; moreover, it is claimed that if the eigenvalues happen 
to be holomorphic then a unitary decomposition actually exists over H(S1). While the 
claims in [22] are correct, the proof therein is not fully complete. Indeed, the authors 
only directly prove the existence of the eigenvalues; for the eigenvectors, they attribute 
a proof of their existence to Rellich, but in fact this is not an immediate corollary of 
neither Theorem 1.1 nor its generalizations that have appeared in the literature. To fill 
this subtle gap, a new argument is thus necessary to properly complete the proof of the 
existence of the various eigendecompositions. Below, we will complete the proofs in [22]
and fill in all the missing justifications and details.

2.1. Elementary divisor domains, holomorphic functions and Laurent series

In this subsection, we recall some basic notions in algebra [4] and in analysis [19] that 
are needed in the paper.
Recall that in ring theory an integral domain R is a ring (with unity) that does not 
contain nonzero divisors of zero. A square matrix A ∈ Rn×n is called non-singular, or 
regular, if detA �= 0, or equivalently if there is no nonzero v ∈ Rn such that Av = 0; 
and it is called unimodular if detA is a unit (invertible element) of R, or equivalently if 
there exists A−1 ∈ Rn×n such that A−1A = AA−1 = I. The set of units of R is a group 
with respect to multiplication, and it is denoted by R×.

Algebraically, since S1 is a connected set, the space H(S1) is an Elementary Divisors 
Domain (EDD) [4, Theorem 1.5.3], and in particular an integral domain. Even more 
strongly, since S1 is also compact, then H(S1) is in fact a Principal Ideal Domain (PID) 
[4, Corollary 1.2.7, Lemma 1.3.8]. As a consequence, any matrix A(z) ∈ H(S1)n×m

admits a Smith canonical form [4, Theorem 1.14.1]. We state this result below in The-
orem 2.4. To this goal, recall that the rank of a matrix over any integral domain is the 
maximal size of a minor with non-vanishing determinant. Moreover, observe that the 
units, i.e., invertible elements, of H(S1) are the analytic functions with no zeros on S1, 
or more formally H(S1)× := {f(z) ∈ H(S1) s.t. f(z0) �= 0 ∀ z0 ∈ S1}.

Theorem 2.4. Let A(z) ∈ H(S1)n×m. Then, there exist unimodular matrices M(z) ∈
H(S1)n×n and N(z) ∈ H(S1)m×m such that S(z) = M(z)A(z)N(z) is (possibly rect-

this in mind, the authors of [22] wanted to construct a physically relevant counterexample. Here we are 
mainly focused on the mathematical aspects of the discussion, and positive semidefiniteness is not crucial 
to our goals.
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angular and) diagonal, with diagonal elements s1(A), s2(A), . . . , sr(A), 0, . . . , 0 where r
is the rank of A(z) and sj−1(A)|sj(A) for j = 2, . . . , r. The matrix S(z) is uniquely 
determined (up to multiplication of its nonzero diagonal elements by units in H(S1)×) 
by A(z) and it is called the Smith canonical form of A(z).

Changing our viewpoint from algebra to analysis, observe that f(z) ∈ H(S1) if and 
only if it can be represented as a Laurent series f(z) =

∑
n∈Z anz

n with radii of conver-
gence r < 1 < R, that is, with coefficients an that are exponentially decreasing on both 
sides. This in turn can be equivalently rewritten as F (θ) := f(eiθ) being a 2π-periodic an-
alytic function on R. Conversely, given such a function F (θ) one can generate the original 
f(z) substituting z for eiθ in its Fourier series to automatically obtain f(z) ∈ H(S1).

A Laurent series 
∑

n∈Z anz
n is said to be convergent on S1 when it is holomorphic 

on an open annulus containing S1, that is |an|1/n n→+∞−−−−−→ R−1 < 1 and |an|1/n n→−∞−−−−−→
r < 1, where r, R are the inner and outer radii of the annulus. Analogously, for any 
positive integer N , we can consider the series 

∑
n∈Z anz

n/N and say it is convergent on 
S1 if the associated Laurent series 

∑
n∈Z anz

n is convergent on S1. Here the fractional 
exponential is defined for any z �= 0 as z1/N := |z|1/N exp(i arg(z)/N) with arg(z) ∈
] − π, π]. We can thus define HN (S1) to be the space of convergent Laurent series with 
variable z1/N and P(S1) :=

⋃
N>0 HN (S1). Note that H(S1) = H1(S1) ⊆ P(S1) and 

that the (scalar) para-Hermitian conjugation of Definition 2.1 f(z)P := f(z−1) is still 
well-defined on P(S1) and it still coincides with the classic complex conjugation on S1, 
since z1/N = z1/N for all z �= 0. Moreover, z 	→ z1/N is holomorphic on C \ (R− ∪ {0})
and S1 is invariant. As a consequence, if f(z) ∈ H(S1) then necessarily f(z1/N ) ∈ P(S1)
is still holomorphic on an open neighbourhood of S1 minus the negative real semiline, 
but in general f(z1/N ) is not even continuous on S1. At the same time, consider the 
function F̃ (θ) = f(exp(iθ)1/N ) on the real interval ] − π, π] and observe that on this 
domain it coincides with F (θ) = f(exp(iθ/N)), but F (θ) is analytic on R and 2πN -
periodic. F̃ (θ) is thus analytic in ] − π, π[ and continuous at π. Conversely, given such a 
function F (θ) one can generate the original f(z1/N ) substituting z for eiθ in its Fourier 
series to automatically obtain f(z) ∈ HN (S1).

3. Unitary eigendecompositions of some classes of matrix-valued functions that are 
Hermitian on the unit circle

3.1. Existence of the holomorphic unitary eigendecomposition in the case of 
holomorphic eigenvalues

We start by analyzing a special situation that will also be useful to tackle the more 
general case. That is, we assume that all the eigenvalues of the para-Hermitian A(z) ∈
H(S1)n×n are in H(S1). This assumption suffices to establish an H(S1)-analogue of 
Rellich’s theorem. Our proof below mainly follows the lead of [20], generalizing the 
results therein to the case of our interest.
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Lemma 3.1. Let w(z) ∈ H(S1)n be such that w(z0) �= 0 for all z0 ∈ S1. Then there exists 
γ(z) ∈ H(S1)× such that for v(z) = w(z)γ(z) we have v(z)P v(z) = 1.

Proof. Since for any z0 ∈ S1 the value w(z0) is never zero and w(z0)P = w(z0)∗, we 
have that w(z0)Pw(z0) = ‖w(z0)‖2 > 0. Using the characterization of H(S1) in terms of 
Laurent series (see Subsection 2.1), and since w(z)Pw(z) ∈ H(S1), the function α(θ) =
w(eiθ)Pw(eiθ) is real, positive, 2π-periodic and analytic on R. Moreover, the function 
x 	→ x−1/2 is analytic on ]0, ∞[, so β(θ) := α(θ)−1/2 = ‖w(eiθ)‖−1 is still analytic, 
positive, and 2π-periodic. It thus induces a function γ(z) ∈ H(S1)× such that γ(eiθ) =
β(θ) = ‖w(eiθ)‖−1. If now v(z) = w(z)γ(z), then we have v(z0)P v(z0) = ‖v(z0)‖2 = 1
for any z0 ∈ S1, but v(z)P v(z) ∈ H(S1), so it must necessarily be identically 1 on the 
domain of convergence of v(z). �
Lemma 3.2. Given two column vectors v(z), w(z) ∈ H(S1)n, define the ‘para-Hermitian 
scalar product’ 〈v(z), w(z)〉 := v(z)Pw(z). Given a unimodular matrix N(z) ∈
H(S1)n×n, the Gram-Schmidt algorithm applied to its columns with respect to the para-
Hermitian scalar product 〈·, ·〉 produces a para-unitary matrix.

Proof. Observe that the unimodularity of the matrix N(z) ∈ H(S1)n×n is equivalent 
to detN(z) being a unit of H(S1), or in other words an analytic function without ze-
ros on S1. Hence, for any vector v(z) which is a column of N(z), necessarily we have 
det(N(z0)) �= 0 =⇒ v(z0) �= 0 for all z0 ∈ S1.

We need to show that all the steps of the Gram-Schmidt method are actually well-
defined inside the ring H(S1) and preserve the unimodularity of the matrix N(z) to which 
it is applied. More formally, we want to show that the Gram-Schmidt algorithm implicitly 
defines a (finite) sequence of unimodular matrices Nk(z) ∈ H(S1)n×n where N0(z) :=
N(z). Observe that each step in the Gram-Schmidt sequence constructs Nk+1(z) from 
Nk(z) either by normalizing a column or by orthogonalizing a column with respect to 
another one.

Let us first consider the normalization steps. From Lemma 3.1 we know that we can 
always normalize a vector in H(S1)n that is never zero on S1 by multiplication times 
a function γ(z) ∈ H(S1)×. Suppose that, before such a normalization step, the matrix 
Nk(z) in the sequence is unimodular, that is, detNk(z) ∈ H(S1)×; then, the normal-
ization produces a new matrix Nk+1(z) and detNk+1(z) = γ(z) detNk(z) ∈ H(S1)×. 
In other words, the normalization steps within the Gram-Schmidt algorithm preserve 
the unimodularity of the matrices in the sequence Nk(z), and are always well-defined in 
H(S1).

It remains to discuss what happens during the orthogonalization steps. There, we 
take two columns v(z), w(z) of the unimodular matrix Nh(z) in the sequence, where 
w(z)Pw(z) = 1, and then replace v(z) by the vector ṽ(z) = v(z) − w(z)〈v(z), w(z)〉. 
Since para-Hermitian conjugation is an isomorphism of H(S1), and since H(S1) is a 
ring, clearly ṽ(z) ∈ H(S1)n. Moreover the step is equivalent to setting Nh+1(z) =
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Nh(z)[I − eie
T
j 〈v(z), w(z)〉], where i, j are indices such that v(z) = Nh(z)ej and 

w(z) = Nh(z)ei. Hence, detNh+1(z) = detNh(z) and the orthogonalization step also 
preserves unimodularity of the matrices in the sequence.

Hence, the Gram-Schmidt algorithm can be applied to the columns of any unimodular 
matrix N(z) ∈ H(S1)n×n, and it eventually constructs as an output another unimodular 
matrix. Moreover, the output is a matrix U(z) ∈ H(S1)n×n with orthonormal columns, 
that, is U(z)PU(z) = I. �
Theorem 3.3. Given a para-Hermitian matrix A(z) ∈ H(S1)n×n and n functions 
μ1(z), . . . , μn(z) ∈ H(S1)n×n such that the eigenvalues of A(z0) are precisely (μ1(z0), . . . ,
μn(z0)) ∈ Rn for any z0 ∈ S1, then there exists a para-unitary matrix U(z) ∈ H(S1)n×n

such that A(z) = U(z)D(z)U(z)P , where D(z) ∈ H(S1)n×n is diagonal and its (i, i)
element, for i = 1, . . . , n, is equal to μi(z).

Proof. From the assumptions, we know that det(λI−A(z0)) =
∏n

i=1(λ −μi(z0)) for every 
z0 ∈ S1. Since μi(z0) is an eigenvalue of the Hermitian matrix A(z0) for all z0 ∈ S1, 
it holds that μi(S1) ⊆ R. As a consequence, μi(z) = μi(z)P , as for any z0 ∈ S1 they 
coincide since μi(z0) = μi(z0) = μi(z0)P . Let L(z) := A(z) − μ1(z)I ∈ H(S1)n×n and 
note that det(L(z0)) = 0 for all z0 ∈ S1, but since det(L(z)) ∈ H(S1) we have that 
det(L(z)) = 0. In addition, L(z) is para-Hermitian because L(z)P = A(z)P −μ1(z)P I =
L(z). H(S1) is a PID, and hence an EDD (see Section 2.1). Therefore L(z) admits a Smith 
Normal Form L(z) = M(z)S(z)N(z) with M(z), N(z) invertible and S(z) diagonal and 
such that, for all i, its i-th diagonal element divides its (i + 1)-th diagonal element. 
Since the rank of L(z) is not full, by Theorem 2.4 the last diagonal element of S(z) is 
surely 0 and S(z)en = 0 =⇒ L(z)N(z)−1en = 0. Defining w(z) := N(z)−1en, then 
det(N(z0)−1) �= 0 =⇒ w(z0) = N(z0)−1en �= 0 for all z0 ∈ S1. From Lemma 3.1, we can 
normalize w(z) to obtain a null vector of unit norm v(z) ∈ H(S1)n, i.e., v(z)P v(z) = 1
and L(z)v(z) = 0. Moreover, the equation v(z)P v(z) = 1 shows that v(z) is left invertible, 
and thus it has a trivial Smith normal form [2, Theorem 3.3], i.e., there is an invertible 
(over H(S1)) matrix Y (z) such that Y (z)v(z) = e1. Let yi(z) be the columns of Y (z)P . 
By Lemma 3.2, we can orthonormalize the invertible matrix 

[
y2(z) y3(z) . . . yn(z) y1(z)

]
into the para-unitary matrix 

[
ỹ2(z) ̃y3(z) . . . ỹn(z) ̃y1(z)

]
, but since yi(z)P v(z) = 0 for 

all i > 1 then it also holds that ỹi(z)P v(z) = 0 for all i > 1 and as a consequence 
the matrix V1(z) =

[
v(z) ̃y2(z) ̃y3(z) . . . ỹn(z)

]
is also para-unitary. From the relations 

L(z) = A(z) − μ1(z)I, L(z)v(z) = 0, V1(z)PV1(z) = I and L(z)P = L(z) it is clear 
that

V1(z)PA(z)V1(z) − μ1(z)I = V1(z)PL(z)V1(z) =
[
0

L̃1(z)

]
=⇒ V1(z)PA(z)V1(z) =

[
μ1(z)

L1(z)

]
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where L1(z) = L̃1(z) + μ1(z) is still para-Hermitian, and L1(z0) has eigenvalues 
(μ2(z0), . . . , μn(z0)) for any z0 ∈ S1. We can thus proceed by induction, producing 
a sequence of para-unitary matrices Vi(z) such that

Vk(z)P · · ·V2(z)PV1(z)PA(z)V1(z)V2(z) · · ·Vk(z) =

⎡⎢⎢⎣
μ1(z)

. . .
μk(z)

Lk(z)

⎤⎥⎥⎦
with Lk(z) para-Hermitian for all k ≤ n. If now U(z) =

∏n
i=1 Vi(z) we obtain the uni-

tary analytic eigendecomposition A(z) = U(z)D(z)U(z)P with [D(z)]i,i = μi(z) for all 
i = 1, . . . , n. �
Remark 3.4. The function z 	→ z is, of course, not holomorphic on any open domain. 
However, let Ω ⊂ C be either a circle or a line. Then, it can be shown that there exists 
a holomorphic Möbius transformation that coincide with z on Ω. Namely,

• Given β ∈ C and θ ∈] −π, π], consider the (generic) line Ω = {z = teiθ+β for some t ∈
R}. On this line, z |Ω= (αz + γ) |Ω where α = e−2iθ and γ = β − βe−2iθ.

• Given β ∈ C and ρ > 0, consider the (generic) circle Ω = {z = β + ρeia for some a ∈
] − π, π]}. On this circle, z |Ω= βz+α

z−β |Ω where α = ρ2 − |β|2.

Conversely, if f(z) is a Möbius transform, then it either has the form f(z) = αz + β

or the form f(z) = (αz + β)/(z + δ). In the former case, imposing that the solutions 
to f(z) = z are not just isolated point yields |α| = 1, and we obtain that the locus of 
the solutions is a generic line. In the latter case, again imposing that f(z) = z has more 
than just isolated solutions, we get that α = −δ, −|δ|2 < β ∈ R, and the locus of the 
solutions is a generic circle. Important special cases include the following: if Ω = R then 
z |R= z |R; if Ω = iR then z |iR= −z |iR; if Ω = S1 then z |S1= z−1 |S1 . Hence, Rellich’s 
Theorem 1.1 generalizes to the case of matrices that are Hermitian over a generic line, 
and Theorem 3.3 generalizes to the case of matrices that are Hermitian over a generic 
circle.

In general, let K be a connected set and suppose that z = g(z) on K where g(z) is 
holomorphic on some open connected neighbourhood of K. In addition, it is possible to 
prove that g(z) is injective (up to restricting the domain). As a consequence, f(z) 	→
f(g−1(z)) is an isomorphism of the ring H(K) such that f(g−1(z)) = f(z) for any z ∈ K. 
Theorem 3.3 can thus be generalized to matrices with entries in H(K) that are Hermitian 
with respect to the conjugation f(z) 	→ f(g−1(z)).

3.2. Existence of the unitary eigendecomposition over P(S1)

In Subsection 3.1, we have proved that any para-Hermitian matrix A(z) ∈ H(S1)n×n

whose eigenvalues are all analytic on S1 has an analytic unitary eigendecomposition over 
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H(S1). In [22, Theorem 1], it was claimed that more generally an n × n para-Hermitian 
matrix in H(S1)n×n has a unitary eigendecomposition as a product of matrices that lie 
in the space P(S1)n×n. While the theorem is true, the proof in [22] had a gap that we 
aim to fill in the present subsection. In fact, we are going to prove a stronger statement. 
We start by generalizing Definition 2.1 to matrices over P(S1).

Definition 3.5. Given A(z) = [ai,j(z)]1≤i≤m,1≤j≤n ∈ P(S1)m×n, its para-Hermitian 
conjugate is defined as A(z)P = [aj,i(z−1)]1≤i≤m,1≤j≤n. Moreover a matrix R(z) ∈
P(S1)n×n is called a para-Hermitian matrix if R(z) = R(z)P and a matrix U(z) ∈
P(S1)n× n is called para-unitary if U(z)U(z)P = U(z)PU(z) = I.

We are now going to prove that every para-Hermitian A(z) ∈ P(S1)n×n has an ana-
lytic unitary eigendecomposition on the space P(S1). We thus will obtain [22, Theorem 
1] (that assumed the stronger requirement A(z) ∈ H(S1)n×n) as a corollary. Our start-
ing step is a reordering lemma for the eigenvalues. Here and below, recall that given a 
permutation σ ∈ Sn and an element i ∈ {1, . . . , n}, the orbit of i is the set of points in 
the cycle containing i; the orbits of σ are thus the subsets of {1, . . . , n} corresponding 
to each cycle of σ.

Lemma 3.6. Let A(θ) be an analytic 2πN -periodic n × n Hermitian matrix on R with 
analytic eigenvalues μ1(θ), . . . , μn(θ). There exists a permutation σ on {1, . . . , n} satis-
fying μi(θ+2πN) = μσ(i)(θ) for all i and all θ. One can find such a permutation where, 
if μi(θ) has period 2πkN with k the least possible positive integer to obtain a period, then 
the orbit of σ containing i has length k.

Proof. Let Γ := {μ1(θ), . . . , μq(θ)} be, without loss of generality up to a relabelling of 
the indices, the subset of distinct eigenvalues. Recall that, here, μi and μj are considered 
equal if they are the same analytic function of θ; or in other words, if μi(θ) = μj(θ)
∀ θ ∈ R. Since the set of points where any two distinct analytic functions coincide 
is a discrete set [19, Theorem 10.18], there necessarily exists θ0 ∈] − π, π[ such that 
μ1(θ0), . . . , μq(θ0) are q distinct values. Since A(θ0) = A(θ0 + 2πN), they have the same 
eigenvalues up to permutation, so there exists a permutation σ such that μi(θ0 +2πN) =
μσ(i)(θ0). The eigenvalues in Γ are distinct in some open neighbourhood Ω of θ0, so 
μi(θ + 2πN) = μσ(i)(θ) for all i = 1, . . . , n and for all θ ∈ Ω in such neighbourhood. 
To conclude the proof, observe that by the identity theorem [19, Corollary of Theorem 
10.18] they must actually coincide on all R.

Consider the orbit of the index i, that is, {σ◦k(i) = j : k ∈ N}. Given now an 
eigenvalue μi(θ) with period 2πpN where p is the least possible positive integer to obtain 
a period, let q be the length of the orbit of σ containing i. Necessarily we have p|q, and 
moreover μi(θ) = μi(θ + 2πpN) = μσ◦p(i)(θ) and this relation holds for every μj(θ) with 
j in the same orbit of i. If the orbit is (i = i1, i2, i3, . . . , iq) then we have μis(θ) = μir (θ)
for every s and every r such that r ≡ s + p mod q. This is enough to conclude that 
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we can replace this orbit with (i1, . . . ip)(ip+1, . . . , i2p) . . . (iq−p+1, . . . , iq) and the new 
permutation still satisfies μi(θ+ 2πN) = μσ(i)(θ) and additionally the orbit of μi is now 
of the correct length p. Repeating the same argument for all the eigenvalues, we end up 
with a permutation with the correct orbit lengths. �

We are now ready to prove the main result in this Subsection, that is, Theorem 3.7
below.

Theorem 3.7. Let A(z) ∈ P(S1)n×n be a para-Hermitian matrix. There exists an eigen-
decomposition A(z) = U(z)D(z)U(z)P , where D(z) ∈ P(S1)n×n is diagonal and real for 
all z ∈ S1 and U(z) ∈ P(S1)n×n is para-unitary.

Proof. Note that Hα(S1) ⊆ Hαβ(S1) for any pair of positive integers α, β, so we can find 
an N such that A(z) ∈ HN (S1), namely if ai,j(z) ∈ Hαi,j

(S1), then take N to be the 
least common multiple of all the αi,j. As a consequence there exists B(z) ∈ H(S1) such 
that A(z) = B(z1/N ). Moreover A(z0) is Hermitian for all z0 ∈ S1 since A(z) is para-
Hermitian. Let A(θ) := B(exp(iθ/N)) on θ ∈ R and note that it coincides with A(exp(iθ))
for θ ∈ (−π, π] and that it is 2πN -periodic. Since A(θ) is analytic and Hermitian on R, by 
Rellich’s theorem there exists a unitary eigendecomposition A(θ) = U(θ)D(θ)U(θ)∗ with 
analytic entries on R. Call μi(θ) the analytic diagonal entries of D(θ). From Lemma 3.6, 
there exists a permutation σ ∈ Sn such that μi(θ + 2πN) = μσ(i)(θ), and given its 
associated permutation matrix Pσ we obtain D(θ + 2πN) = PσD(θ)PT

σ . If now L is the 
order of σ, then PL

σ = I and D(θ + 2πNL) = D(θ). If we call M := NL, this proves 
that all the eigenvalues μi(θ) are 2πM -periodic analytic functions and as a consequence 
μi(Mθ) are 2π-periodic and analytic. The matrix A(Mθ) = B(exp(iLθ)) is 2π-periodic 
(actually 2π/L-periodic) and analytic, and one can conclude that B(zL) ∈ H(S1)n×n

has eigenvalues λi(z) ∈ H(S1) with λi(exp(iθ)) = μi(Mθ) for any θ. From Theorem 3.3, 
B(zL) admits an eigendecomposition B(zL) = V (z)Σ(z)V (z)P on H(S1) where Σ(z) is 
diagonal and [Σ(z)]i,i = λi(z) for all i = 1, . . . , n. This allows us to conclude that

A(z) = B(z1/N ) = B((z1/M )L) = V (z1/M )Σ(z1/M )V (z1/M )P

is the sought eigendecomposition over P(S1). �
As anticipated, an immediate consequence of Theorem 3.7 is that every para-

Hermitian matrix A(z) ∈ H(S1)n×n admits a z1/N -analytic unitary eigendecomposition 
over P(S1), or more specifically over HN (S1) for some integer N ≥ 1.

Example 3.8. The para-Hermitian matrix R(z) ∈ H(S1)n×n of Example 2.2 admits the 
unitary eigendecomposition

(
1√

[
z−1/2 z−1/2

1 −1

])[
z1/2 + z−1/2 0

1/2 −1/2

](
1√

[
z−1/2 z−1/2

1 −1

])P
2 0 −z − z 2
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=: U(z)D(z)U(z)P .

It is clear that neither U(z) nor D(z) belong to H(S1)2×2; they both do, however, belong 
to H2(S1)2×2 and hence, a fortiori, to P(S1)2×2.

Let A(z) ∈ H(S1)n×n. Then, A(z) has a unitary eigendecomposition in P(S1)n×n

by Theorem 3.7, but this eigendecomposition is in general not unique. However, one 
can actually prove the existence of one eigendecomposition for which the periods of 
eigenvalues and their associated eigenvectors coincide. This is stated more precisely in 
Proposition 3.9 below.

Proposition 3.9. Let A(z) ∈ H(S1)n×n be a para-Hermitian matrix, and suppose 
μ1(z), . . . , μn(z) ∈ P(S1) are the eigenvalues of A(z). Moreover, for all i = 1, . . . , n, let 
αi ∈ N be the smallest integer such that μi(z) ∈ Hαi

(S1). Then, there exists an eigende-
composition A(z) = U(z)D(z)U(z)P , where (1) D(z) is diagonal with [D(z)]i,i = μi(z)
for all i = 1, . . . , n and (2) U(z) is para-unitary and its i-th column ui(z) := U(z)ei
belongs to Hαi

(S1) for all i = 1, . . . , n.

Proof. Let α := α1 and μ(z) := μ1(z) ∈ Hα(S1), where μ(z) has multiplicity q as 
an eigenvalue of A(z). With the potential exception of some special values of θ, that 
nevertheless must belong to a discrete subset of R, μ(θ) := μ(exp(iθ)) is an eigenvalue 
of A(θ) := A(exp(iθ)) of algebraic multiplicity precisely q; it follows that, for almost 
all θ, the relative eigenspace has dimension q. Suppose that A(z) = Ũ(z)D(z)Ũ(z)P
is a unitary eigendecomposition whose existence is guaranteed by Theorem 3.7. Then, 
let Ṽ (z) be the n × q matrix whose columns are the eigenvectors in Ũ(z) associated to 
μ(z), and Ṽ (θ) := Ṽ (exp(iθ)). By the observation above, for almost every θ the matrix 
A1(θ) := Ṽ (θ)μ(θ)Ṽ (θ)∗ is a multiple of the projection on the eigenspace relative to μ(θ). 
On the other hand, since A(θ) is 2π-periodic and μ(θ) is 2πα-periodic, then A1(θ) is a 
2πα-periodic analytic matrix whose eigenvalues are also 2πα-periodic. From Theorem 3.3
applied to A1(αθ), we have an analytic 2πα-periodic eigenvalue decomposition A1(θ) =
U1(θ)D1(θ)U1(θ)∗ with just two distinct eigenvalues, that is, μ(θ) with multiplicity q and 
0 with multiplicity n − q. In particular, one can write A1(θ) = V (θ)μ(θ)V (θ)∗ with V (θ)
being a n ×q matrix with orthonormal columns that spans the correct eigenspace and with 
2πα-periodic entries. This proves that in the eigendecomposition A(z) = Ũ(z)D(z)Ũ(z)P
we can substitute the eigenvectors relative to μ(z) with the columns of V (z) ∈ Hα(S1)n×d

associated to V (θ). Repeating the same procedure for all the eigenvalues, we obtain a 
unitary analytic eigendecomposition in which eigenvectors and eigenvalues have the same 
periods. �
Remark 3.10. One may wonder, given A(z) ∈ P(S1)n×n, how large N could be at worst 
to guarantee that there exist U(z), D(z) ∈ HN (S1)n×n yielding A(z) = U(z)D(z)U(z)P .

For all 1 ≤ i, j ≤ n, define αij := mink∈N{k : ai,j(z) ∈ Hk(S1)}. Then, the proof 
of Theorem 3.7 makes it clear that N ≤ LM where M = lcmαi,j and L is the largest 
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possible order of an element of the symmetric group Sn. The function n 	→ L(n) is 
sometimes referred to as Landau’s function (H. Landau studied it in [11]). It is possible 
to prove [13] that L(n) ≤ γ exp(

√
n log n) with γ � 1.05313, and that asymptotically 

L(n) ∼ exp(
√
n logn) [15]. In particular, if A(z) ∈ H(S1)n×n, then M = 1 and we have 

the bound N ≤ L(n) ≤ 1.0532 ·exp(
√
n log n). See [15, page 499] for a list of exact values 

of L(n) for 2 ≤ n ≤ 19.

We conclude this subsection summarizing the observations of Remark 3.10 and stating 
them more formally as a corollary.

Corollary 3.11. Let A(z) ∈ H(S1)n×n be a para-Hermitian matrix, and let L(n) be the 
largest possible order of an element of the symmetric group Sn. Then, there exists an 
integer N ≤ L(n) and an eigendecomposition A(z) = U(z)D(z)U(z)P , where D(z) ∈
HN (S1)n×n is diagonal and real for all z ∈ S1 and U(z) ∈ HN (S1)n×n is para-unitary.

3.3. Pseudo-circulant decomposition of holomorphic para-Hermitian matrices

In Subsection 3.2, we have proved in Theorem 3.7 that a para-Hermitian matrix A(z) ∈
H(S1)n×n always admits an eigendecomposition over P(S1) (in fact over HN (S1) for 
some N ≤ L(n), by Corollary 3.11), and in Proposition 3.9 that the eigenvectors can be 
chosen with the same period of the associated eigenvalues. Moreover, from Lemma 3.6 we 
know that there exists a permutation σ ∈ Sn that changes the ordering of the eigenvalues 
when considering points at a distance of precisely 2π. The orbits of σ partition the 
eigenvalues into k subsets C� = {μ�,1, . . . , μ�,α�

} (� = 1, . . . , k), such that there exists 
λ�(z) ∈ H(S1) for which

μ�,β(exp(iα�θ)) = λ�(exp(iθ) exp(iπ(2β − 1)/α�)))

∀θ ∈ (−π, π]/α�, ∀β = 1, . . . , α�, ∀� = 1, . . . , k.

In particular, for all �, j, the eigenvalues μ�,j belong to Hα�
(S1). In what follows we 

show that A(z) can be block diagonalized by para-unitary matrices over H(S1), where 
the blocks correspond to the eigenvalue subsets C�. We report a full proof following the 
lead of [22]. The first step is to establish two technical lemmata.

Lemma 3.12. Given a positive integer N , let FN be the N×N orthogonal Fourier matrix 
whose (i, j) element is, for any i, j = 1, . . . , N , equal to N−1/2 exp(i2π(i − 1)(j− 1)/N). 
Moreover, let DN (θ) be the N × N diagonal matrix whose (i, i) element is, for any 
i = 1, . . . , N , equal to exp(iθ(i − 1)/N). Then

DN (θ + 2π)FN = DN (θ)FNPN , PN =

⎡⎢⎢⎣
1

1
. . .

⎤⎥⎥⎦ .
1
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Proof. From a direct computation, we see that DN(θ + 2π) = DN (θ)DN (2π). On the 
other hand, for any 1 ≤ i, j ≤ N ,

[D(2π)FN ]ij = 1√
N

ei2π i−1
N · ei2π (i−1)(j−1)

N = 1√
N

ei2π (i−1)j
N = [FNPN ]ij . �

Lemma 3.13. Let μ1(θ), . . . , μN (θ) be 2πN -periodic analytic functions on R such that

μk(θ) = μ1(θ + 2π(k − 1)), ∀k

and let M(θ) be the N ×N diagonal matrix whose (i, i) element, for all i = 1, . . . , N , is 
equal to μi(θ). Given DN (θ) and FN as in Lemma 3.12, the matrix

C(θ) := DN (θ)FNM(θ)F ∗
NDN (θ)∗

is analytic, 2π-periodic and pseudo-circulant, i.e., there exist analytic 2π-periodic func-
tions φ0(θ), . . . , φN−1(θ) such that

C(θ) =

⎡⎢⎢⎢⎣
φ0(θ) e−iθφN−1(θ) . . . e−iθφ1(θ)

φ1(θ) φ0(θ)
. . .

...
...

. . . . . . e−iθφN−1(θ)
φN−1(θ) . . . φ1(θ) φ0(θ)

⎤⎥⎥⎥⎦ .

Further, if μi(θ) are real-valued, then C(θ) is also Hermitian.

Proof. All matrices involved are analytic, so C(θ) is also analytic. Moreover, by 
Lemma 3.12,

C(θ + 2π) = DN (θ)FNPNM(θ + 2π)P ∗
NF ∗

NDN (θ)∗.

On the other hand,

PNM(θ + 2π)P ∗
N =

⎡⎢⎢⎣
μN (θ + 2π)

μ1(θ + 2π)
. . .

μN−1(θ + 2π)

⎤⎥⎥⎦ = M(θ)

so we find C(θ + 2π) = C(θ). Furthermore,

C(θ)i,j =
N∑

k=1

DN (θ)i,i(FN )i,kμk(θ)(F ∗
N )k,jDN (θ)∗j,j

= 1
N

N∑
eiθ i−1

N ei2π (i−1)(k−1)
N μk(θ)e−i2π (k−1)(j−1)

N e−iθ j−1
N

k=1
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= 1
N

eiθ (i−j)
N

N∑
k=1

μk(θ)ei2π (i−j)(k−1)
N

is a function of i −j. Thus, C(θ) is a Toeplitz matrix and we can define C(θ)j+q,j =: φq(θ)
where q := i − j indexes the diagonals of C(θ). Showing that C(θ) is pseudo-circulant 
is tantamount to proving that e−iθφq(θ) = φq−N (θ) for all 0 < q ≤ N − 1. To this goal, 
note that for q > 0 it holds

φq(θ) = 1
N

eiθ q
N

N∑
k=1

μk(θ)ei2π q(k−1)
N

= 1
N

eiθeiθ q−N
N

N∑
k=1

μk(θ)ei2π (q−N)(k−1)
N

= eiθφq−N (θ).

Finally, it is immediate to check that φq(θ)∗ = φ−q(θ) when μi(θ) are all real, so in this 
case C(θ) is also Hermitian. �

Now, we can use Lemma 3.12 and Lemma 3.13 to show Theorem 3.14 below.

Theorem 3.14. Let A(z) ∈ H(S1)n×n be a para-Hermitian matrix. There exists a decom-
position A(z) = U(z)D(z)U(z)P in H(S1) where U(z) is para-unitary and D(z) is block 
diagonal with pseudo-circulant blocks.

Proof. From Proposition 3.9, we know that there exists a unitary eigendecomposition 
A(z) = V (z)Σ(z)V (z)P over P(S1) having the property that the periods of the eigenval-
ues μi(z) := eTi Σ(z)ei and of the respective eigenvectors vi(z) := V (z)ei are the same. 
Moreover, from Lemma 3.6 in the case N = 1, we know that there exists a permutation σ
such that μi(θ+2π) = μσ(i)(θ) where for all j we set μj(θ) := μj(exp(iθ)). Note that if q
is the multiplicity of the eigenvalue μi(z), then also μj(z) must have multiplicity q for all 
j in the orbit of i. Suppose without loss of generality that O := {μ1(z), . . . , μM (z)} are 
the eigenvalues corresponding to an arbitrary orbit of σ with μi(θ) = μ1(θ + (i − 1)2π)
for 1 ≤ i ≤ M . Necessarily, for all i such that μi(z) ∈ O, the function μi(θ) must 
have period 2πM and represent an eigenvalue of multiplicity q. Call now Vi(z) the 
submatrix of V (z) whose columns are q orthonormal eigenvectors associated with the 
eigenvalue μi(z). By construction, Vi(z) ∈ HM (S1)n×q for 1 ≤ i ≤ M , and we can 
define again Vi(θ) := Vi(exp(iθ)) which is, for all i, an analytic and 2πM -periodic 
function. Take now θ0 ∈ R with the property that any two distinct eigenvalues are 
different when evaluated at θ = θ0. In particular this implies that the eigenspaces 
Ei(θ0) associated with all distinct μi(θ0) are pairwise orthogonal and generated by the 
columns of Vi(θ0). Moreover, since A(exp(iθ)) is 2π-periodic, also at θ = θ0 + 2πk it 
must have pairwise orthogonal eigenspaces associated with distinct eigenvalues, and this 
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must hold for all k ∈ Z. For 1 ≤ i ≤ M , we have μi(θ0) = μ1(θ0 + (i − 1)2π), so 
Ei(θ0) = E1(θ0 + (i − 1)2π) and the respective eigenprojections are also equal. Thus, 
Vi(θ0)μi(θ0)Vi(θ0)∗ = V1(θ0 + (i − 1)2π)μ1(θ0 + (i − 1)2π)V1(θ0 + (i − 1)2π)∗. Since the 
set of possible values of θ0 for which this argument is valid is a dense open subset of 
R [19, Theorem 10.18], and every function involved is analytic (in θ), by the identity 
theorem [19, Corollary of Theorem 10.18] we get the functional identity

Vi(θ)μi(θ)Vi(θ)∗ = V1(θ + (i− 1)2π)μ1(θ + (i− 1)2π)V1(θ + (i− 1)2π)∗, i = 1, . . . ,M.

This shows that we can replace in V (z) the columns corresponding to Vi(θ) with the 
columns corresponding to V1(θ + (i − 1)2π), without losing the validity of the unitary 
eigendecomposition A(z) = V (z)Σ(z)V (z) since

A(z) =
∑

i:μi(z)∈O

Vi(θ)μi(θ)Vi(θ)∗ +
∑

i:μi(z)/∈O

Vi(θ)μi(θ)Vi(θ)∗.

If now vi(θ) is the leftmost column of Vi(θ), and thus an eigenvector relative to μi(θ), 
we have vi(θ) = v1(θ+ (i − 1)2π) for 1 ≤ i ≤ M and these vectors are all 2πM -periodic. 
Call Ṽ (θ) the matrix whose columns are v1(θ), . . . , vM (θ) and D̃(θ) the M ×M diagonal 
matrix whose (i, i)th element is μi(θ). From Lemma 3.13 we obtain that

Ṽ (θ)D̃(θ)Ṽ (θ)∗ = Ṽ (θ)F ∗
MDM (θ)∗C(θ)DM (θ)FM Ṽ (θ)∗ =: W (θ)C(θ)W (θ)∗

where W (θ) = Ṽ (θ)F ∗
MDM (θ)∗. On the other hand, Lemma 3.12 implies that

W (θ + 2π) = Ṽ (θ + 2π)P ∗
MF ∗

MDM (θ)∗

= [v2(θ) . . . vM (θ) v1(θ) ]P ∗
MF ∗

MDM (θ)∗

= Ṽ (θ)F ∗
MDM (θ)∗ = W (θ)

so that all matrices in W (θ)C(θ)W (θ)∗ are 2π-periodic, C(θ) is pseudo-circulant and 
W (θ) has still orthonormal columns. This is enough to conclude that we can substitute 
the eigenvalues in O (without multiplicity) and their associated eigenvectors with C(θ)
and W (θ). Repeating the reasoning for all orbits, we obtain an orthonormal basis as 
the union of the columns of all W (θ) and a block-diagonal matrix with pseudo-circulant 
block entries C(θ), and every entry is 2π-periodic. �
Remark 3.15. The permutation σ that realizes Lemma 3.6 may not be unique when there 
are eigenvalues with multiplicity greater than one, but from Lemma 3.6 we know that 
there exists one where the orbit lengths match the periods of the eigenvalues. This per-
mutation allows us to write a decomposition A(z) = U(z)D(z)U(z)P with the smallest 
possible pseudo-circulant diagonal blocks. Note that when all the eigenvalues have period 
2π, this decomposition coincides with the EVD of Theorem 3.3.
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Example 3.16. The para-Hermitian matrix

A(z) =

⎡⎢⎣ 0 0 1 + z−1 0
0 0 0 1 + z−1

1 + z 0 0 0
0 1 + z 0 0

⎤⎥⎦
is already in pseudo-circulant form. Its only block is 4 × 4, but it does not correspond to 
the minimal period of the eigenvalues of A(θ) := A(exp(iθ)) (such period is indeed easily 
checked to be equal to 4π = 2 ·2π and not 8π = 4 ·2π). However, Theorem 3.14 guarantees 
that it is para-unitarily similar to a pseudo-circulant with minimal-size blocks. Indeed, 
A(z) = U(z)D(z)U(z)P with

U(z) =

⎡⎢⎣1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎦ , D(z) = R(z) ⊕R(z)

where R(z) is the (pseudo-circulant) para-Hermitian matrix of Example 2.2. Clearly 
U(z) is para-unitary, while D(z) has two 2 × 2 diagonal blocks, and these sizes indeed 
correspond to the minimal periods of the eigenvalues of A(z).

4. Application to the singular value decomposition of matrices over P(S1)

If A(z) ∈ P(S1)m×n is not necessarily para-Hermitian (and generally not even nec-
essarily square), it is of interest to analyze its functional singular value decomposition. 
We argue that the latter exists provided that one accepts two relaxations with respect 
to the usual requirements of a singular value decomposition: the singular values must be 
allowed to be possibly negative, and are not necessarily ordered.

Theorem 4.1 below makes this claim more precise. Note that it is an extension of 
related results in [23] for matrices in H(S1)m×n; our proof, however, is different and 
inspired by the ideas in [3].

Theorem 4.1. Let A(z) ∈ P(S1)m×n. There exists a singular value decomposition A(z) =
U(z)S(z)V (z)P , where S(z) ∈ P(S1)m×n is diagonal and real for all z ∈ S1 and U(z) ∈
P(S1)m×m, V (z) ∈ P(S1)n×n are both para-unitary.

Proof. Consider the para-Hermitian matrix

H(z) =
[

0 A(z)
A(z)P 0

]
∈ P(S1)(m+n)×(m+n);

by Theorem 3.7, there is a unitary eigendecomposition over P(S1) of the form H(z) =
Q(z)D(z)Q(z)P . Moreover, it can be verified that λ(z) is a nonzero eigenvalue of the 

matrix H(z) with eigenvector 
[
b(z)
c(z)

]
and b(z) ∈ P(S1)m, c(z) ∈ P(S1)n if and only if 
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−λ(z) is a nonzero eigenvalue of H(z) with eigenvector 
[

b(z)
−c(z)

]
. In particular, by taking 

these eigenvectors to be orthonormal, we can pick selected columns of Q(z) and selected 
rows and columns of D(z) and write the equation

H(z) =
[
B(z) B(z)
C(z) −C(z)

] [
Λ(z) 0

0 −Λ(z)

] [
B(z) B(z)
C(z) −C(z)

]P
,

where 
[
B(z) B(z)
C(z) −C(z)

]
∈ P(S1)(m+n)×2r has orthonormal columns and Λ(z) ∈ P(S1)r×r

is nonsingular. The previous equation implies in turn that A(z)C(z) = B(z)Λ(z) and that 
A(z)PB(z) = C(z)Λ(z). Hence, noting that 

√
2B(z) and 

√
2C(z) also have orthonormal 

columns by construction, we have that A(z) = [
√

2B(z)]Λ(z)[
√

2C(z)]P is a “compact” 
singular value decomposition. To complete the proof, note that 

√
2B(z) can be completed 

to a square invertible matrix M(z): this follows by observing that HN (S1) is a PID for 
any N and again by [2, Theorem 3.3]. We can then apply Lemma 3.2 to obtain a para-
unitary matrix U(z) whose leftmost columns coincide with those of 

√
2B(z). A similar 

procedure can be employed to construct V (z) from 
√

2C(z); finally, we can define

S(z) =
[

Λ(z) 0r×(n−r)
0(m−r)×r 0(m−r)×(n−r)

]
and find that A(z) = U(z)S(z)V (z)P . �
Example 4.2. Consider the matrix

A(z) = [1 z ] ∈ H(S1)1×2 ⇒ A(z)P =
[

1
z−1

]
∈ H(S1)2×1.

Proceeding as in the proof of Theorem 4.1 we find

H(z) =
[

0 A(z)
A(z)P 0

]
=

⎡⎣z/
√

2 z/
√

2
z/2 −z/2
1/2 −1/2

⎤⎦[√
2 0

0 −
√

2

]⎡⎣z/
√

2 z/
√

2
z/2 −z/2
1/2 −1/2

⎤⎦P

and thus B(z) = z, C(z) = 1√
2

[
z
1

]
⇒ V (z) = 1√

2

[
z −z
1 1

]
. Hence,

A(z) = z︸︷︷︸
U(z)

·
[√

2 0
]︸ ︷︷ ︸

S(z)

·
(

1√
2

[
z−1 1
−z−1 1

])
︸ ︷︷ ︸

V (z)P

is one sought singular value decomposition, which in this particular case exists over 
H(S1).
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Example 4.3. For an example of a matrix over H(S1) whose singular value decomposition 
only exists over P(S1), but not over H(S1), consider the scalar A(z) = 1 + z ∈ H(S1). 
Since |1 + z| /∈ H(S1) there is no hope to decompose A(z) with an S1-analytic singular 
value decomposition. However,

A(z) = z1/2︸︷︷︸
U(z)

· (z1/2 + z−1/2)︸ ︷︷ ︸
S(z)

· 1︸︷︷︸
V (z)P

is a singular value decomposition over H2(S1) ⊂ P(S1).

5. Application to the sign characteristics of ∗-palindromic matrix polynomials

5.1. Sign characteristics of Hermitian matrix-valued functions

Let H(z) be a matrix-valued function which is analytic for all z in an open connected 
domain Ω ⊆ C. In numerical linear algebra, the finite eigenvalues of such a matrix-valued 
function H(z) are defined [14, Section 2] as the numbers z0 ∈ Ω such that rankH(z0) <
supz∈Ω rankH(z). In particular, if H(z) is square and regular, i.e., if its determinant 
detH(z) is not the zero function, the finite eigenvalues are the roots of detH(z). Since 
the set of analytic functions on Ω is, from the algebraic perspective, an EDD [4], one 
defines the partial multiplicities of a finite eigenvalue z0 of H(z) as the multiplicities of 
z0 as a root of the not identically zero diagonal elements in the Smith canonical form 
of H(z). In particular, if the only nonzero partial multiplicity is equal to 1, a finite 
eigenvalue is said to be simple.

Let us now further assume that Ω contains the real line and that H(z) is a Hermitian 
matrix-valued function, that is, H(x) = H(x)∗ for all x ∈ R. (Note that this implies that 
Theorem 1.1 applies to H(z).) Observe that the finite eigenvalues of H(z), defined above, 
are different than the eigenvalues of the matrix H(z) in the functional sense of Theo-
rem 1.1 and of the previous Sections in this paper – in particular, the finite eigenvalues 
of H(z) are complex numbers while the eigenvalues of the matrix H(z) are real-analytic 
functions of the variable z. However, it is clear by Theorem 1.1 itself that there is a con-
nection: suppose that H(z) = U(z)D(z)U(z)∗ is a Rellich unitary eigendecomposition 
as in Theorem 1.1. Since | detU(x)| = 1 for all x ∈ R, clearly detU(z) �= 0 for all z be-
longing to some open set that contains the real line, and hence the finite real eigenvalues 
of H(z) must be precisely the real roots of the nonzero eigenvalue functions of H(z), or 
equivalently the real roots of the nonzero diagonal elements of D(z). Now let λ ∈ R be 
a real root of a not identically zero diagonal element Di,i(z) of D(z), i.e., a real finite 
eigenvalue of H(z). Following [14, Definition 2.3], if Di,i(z) = εici(z−λ)mi +O(z−λ)mi+1

where εi ∈ {−1, 1} and ci > 0, then one says that mi is the i-th partial multiplicity of 
the finite eigenvalue λ (and it can be proved that this definition agrees with the one 
given above based on the Smith canonical form), and εi is its i-th sign characteristic. 
Moreover, in this case, the i-th sign feature of λ is defined as εi(1 − (−1)mi)/2 (hence, 
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a sign feature can be −1, 0, or +1). Furthermore, if H(z) is polynomial, one can also 
define partial multiplicities, sign characteristics and sign features associated with ∞, see 
[14, Definition 2.8]. It is discussed in the literature, e.g. in [14], that the sign character-
istics and features are important for the perturbation analysis of the real eigenvalues; in 
particular a pair of nearby real eigenvalues of a regular Hermitian function H(z) can be 
removed from the real line by a small Hermitian perturbation if and only if the sum of 
their sign features is 0 [14, Theorem 5.13]. There are also alternative, equivalent, alge-
braic definitions of the sign characteristics of a Hermitian matrix polynomial that can be 
shown to be equivalent to the analytic definition mentioned above: see [6,10,14] and the 
references therein. Here, it suffices to say that if λ is a simple real eigenvalue of a regular 
Hermitian matrix polynomial P (z), associated with right (and left) eigenvector v, then 
the sign characteristic of λ is v∗P ′(λ)v where P ′(z) denotes the derivative of P (z) with 
respect to z.

5.2. Sign characteristics of ∗-palindromic matrix polynomials

Given some matrices Pi ∈ Cn×n, i = 0, . . . , g, let P (z) =
∑g

i=0 Piz
i be a matrix 

polynomial. We say that P (z) is ∗-palindromic [12] if Pi = P ∗
g−i for all 0 ≤ i ≤ g. Here 

g is an integer, called the grade of palindromicity, greater than or equal to the degree of 
P (z). In other words, g is bounded below by the degree of the matrix polynomial P (z), 
but we admit the possibility that Pg = 0 and hence degP (z) < g.

When g is even, it is not difficult to verify that P (z) is ∗-palindromic of degree g if 
and only if R(z) := z−g/2P (z) ∈ H(S1)n×n is a para-Hermitian matrix whose elements 
are functions analytic on the unit circle S1. When g is odd, then z−g/2 has a branch 
point at z = −1 and thus R(z) is not holomorphic on the whole S1; however, in this 
case R(z) ∈ H2(S1)n×n ⊂ P(S1)n×n, so that Theorem 3.7 still applies. Moreover, R(z)
retains the property of being Hermitian on the unit circle and it is analytic on S1 \{−1}. 
In addition, it is clear that z ∈ S1 \{−1} is a finite eigenvalue of P (z) if and only if it is a 
finite eigenvalue of R(z). The analysis of this paper suggests one analytic definition of the 
sign characteristics (and features) of a ∗-palindromic matrix polynomial; it is expected 
that these objects also play a crucial role in the perturbation theory for this class of 
matrix polynomials, analogously to what happens for the Hermitian case. Indeed, this 
can be seen using the result for Hermitian matrices and the definition that we will give 
for the sign characteristic of ∗-palindromic matrix polynomials, and we will illustrate the 
relevance of the result for structured perturbation theory with some examples.

Let us first start from the case of even g. We know that for some N the Rellich 
eigenvalue functions of R(z) are analytic functions of w = z1/N . In other words, they 
are expressible as analytic and 2πN -periodic functions Fi(θ), where z = exp(iθ) (see 
Subsection 2.1, Theorem 3.7, and related remarks); these functions are in particular 
analytic in ] − π, π[. Hence, if −1 �= λ ∈ S1 is a unimodular eigenvalue of P (z), we may 
consider the Taylor expansions around θ0 of those nonzero eigenvalue functions Fi(θ)
that have a zero at θ0, with λ = exp(iθ0), say,
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Fi(θ) = εici(θ − θ0)mi + O(θ − θ0)mi+1,

where εi is a sign and ci > 0. Analogously to the Hermitian case, we can then define εi
to be the i-th sign characteristic, mi to be the i-th partial multiplicity, and the i-th sign 
feature can be defined accordingly, in the same way as in the case of Hermitian matrix 
polynomials.

Example 5.1. Consider P (z) =
[

2z 1 + z
z2 + z 2z

]
= zR(z) where R(z) is the para-

Hermitian matrix introduced in [22]. The finite eigenvalues of P (z) are the roots 
of detP (z) = −z3 + 2z2 − z. Hence, z0 = 1 is a unimodular eigenvalue of alge-
braic multiplicity 2. The eigenvalue functions of R(z) are F1(θ) = 2 + 2 cos(θ/2)
and F2(θ) = 2 − 2 cos(θ/2). Only the latter has a root at θ0 = 0, corresponding to 
z0 = exp(iθ0) = 1. We have the Taylor expansion

F2(θ) = (+1)1
4θ

2 + o(θ2),

and hence the eigenvalue 1 of P (z) has its only nonzero partial multiplicity equal to 2, 
sign characteristic +1, and sign feature 0.

Note that the Fi(θ) are the eigenvalues of the Hermitian matrix function

H(θ) := R(exp(iθ)) = exp(− igθ
2 )P (exp(iθ)). (1)

Suppose that P (z), and hence H(θ), is regular. Observe that z0 = exp(iθ0) ∈ S1 \ {−1}
is a simple unimodular eigenvalue of P (z) if and only if θ0 ∈] − π, π[ is a simple real 
eigenvalue of H(θ). Let v be a corresponding right (and left) eigenvector; then, taking 
into account that P (eiθ0)v = 0, in this case the sign characteristic can also be computed 
as the sign of [

v∗
dH(θ)
dθ

v

]
θ=θ0

= i z0

z
g/2
0

[
v∗

dP (z)
dz

v

]
z=eiθ0

. (2)

We thus recover the characterization of [5, Proposition 12.6.1].
For the case of odd grade of palindromicity g, R(z) as defined above is generally not 

analytic on the whole S1. Nevertheless, H(θ) as in (1) is still analytic and 4π-periodic (see 
Subsection 2.1); thus, its eigenvalues are still analytic on ] −π, π[ by Rellich’s Theorem 1.1, 
and there they coincide with the eigenvalues of R(z). Hence, the approach proposed above 
is still sensible; the choice of the branch of zg/2 in (2) should be coherent with that in 
the equation P (z) = zg/2R(z) when constructing H(θ). We can thus extend the above 
definition and results to odd grade polynomials; note that in [5] only the regular and 
even grade (in fact also even degree, as the leading coefficient was taken to be invertible) 
case was treated.
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For ease of reference, we formally collect the outcome of the previous analysis in the 
following Definition 5.2, in which the above mentioned care about the uniformity of the 
choice of a branch of the square root function must be taken.

Definition 5.2. Let P (z) be an n × n ∗-palindromic matrix polynomial with grade of 
palindromicity g. Suppose that −1 �= λ ∈ S1 is a unimodular finite eigenvalue of 
P (z). Define R(z) := z−g/2P (z) ∈ H2(S1)n×n, and let R(z) = U(z)D(z)U(z)P be 
its unitary eigendecomposition as in Theorem 3.7. Furthermore, let N ∈ N be such 
that U(z), D(z) ∈ HN (S1)n×n and, for all i = 1, . . . , n let Fi(θ) := [D(w(θ))]i,i where 
w = z1/N and w(θ) = exp(iθ/N). Then, there is at least a value of i for which Fi(θ) is 
not the zero function, it has a zero θ0 ∈] − π, π[ with λ = exp(iθ0), and it admits the 
corresponding Taylor expansion

Fi(θ) = εici(θ − θ0)mi + O(θ − θ0)mi+1,

where εi ∈ {−1, +1}, 0 < mi ∈ N and ci > 0. Moreover, assume without loss of generality 
that the Fi(θ) are ordered in such a way that (1) if j > i and Fi(θ) ≡ 0, then Fj(θ) ≡ 0
(2) if j > i and Fi(θ) �≡ 0 has a zero of order mi at θ = θ0, then either Fj(θ) ≡ 0 or 
Fj(θ) �≡ 0 has a zero of order mj ≥ mi at θ = θ0. In this setting, we say that:

1. if Fi(θ) �≡ 0, then the corresponding mi is the i-th partial multiplicity of the eigen-
value λ;

2. if mi > 0 then εi is the i-th sign characteristic of the eigenvalue λ;
3. if mi > 0 then

φi = εi
1 − (−1)mi

2

is the i-th sign feature of the eigenvalue λ.

In the special case where P (z) is regular and λ is simple, let H(θ) = R(exp(iθ)) and 
suppose that λ is associated with the right eigenvector v. Then, the sign characteristic 
of λ is

sign
[
v∗

dH(θ)
dθ

v

]
θ=θ0

= sign
(

i z0

z
g/2
0

[
v∗

dP (z)
dz

v

]
z=eiθ0

)
. (3)

Example 5.3. Consider the ∗-palindromic pencil

P (z) =
[

2z + 2 z + 1 − i
iz + z + 1 i − iz

]
⇒ P ′(z) =

[
2 1

i + 1 −i

]
.

It can be shown that its two finite eigenvalues are both unimodular and simple. 
A numerical computation yields the two eigenpairs λ1 � −0.9582 + 0.1716i, v∗1 �



G. Barbarino, V. Noferini / Linear Algebra and its Applications 672 (2023) 1–27 23
[0.9331 − 0.0669i 0.3888 + 0.0127i] and λ2 � 0.6852 + 0.7284i, v∗2 =
[0.3875 + 0.2298i −0.9685 + 0.0315i]. We can compute

iλ1/2
1 v∗1P

′(z)v1 � −2.4454, iλ1/2
2 v∗2P

′(z)v2 � 1.4238;

hence, the eigenvalue λ1 has sign characteristic (and sign feature) −1 while λ2 has sign 
characteristic (and sign feature) +1.

Remark 5.4. When g is odd, changing the choice of a branch of the function zg/2 in the 
definition of R(z) within Definition 5.2, or in (3) for the case of simple eigenvalues of 
regular ∗-palindromic polynomials, induces in turn a change of the sign characteristics 
of the eigenvalue of interest. However, this is a global change in the sense that, as long as 
the same choice of a branch is coherently made for all unimodular eigenvalues, then all 
the sign characteristics are simultaneously flipped. In practical applications of the sign 
characteristics, such as signature constraint theorems or perturbation theory results [14], 
all that matters is whether two (or more) eigenvalues have the same sign characteristic 
(feature) or different sign characteristics (feature); see [5,14] for more details. Thus, a 
global change is unimportant and does not hinder the coherence of the theory. Neverthe-
less, and for the same reasons outlined above, it is important to make the same choice 
for all eigenvalues.

In the next two examples, we illustrate the relation between sign characteristics and 
structured perturbation theory in the most common case of two nearby simple eigen-
values. In [14, Section 5], it was shown that a regular Hermitian matrix-valued function 
has two nearby simple real eigenvalues with opposite sign characteristics if and only if 
there exists some small Hermitian perturbation that can remove the eigenvalues from 
the real line; in other words, while of course every slightly perturbed Hermitian func-
tion will still have two eigenvalues in a complex neighbourhood of the original ones, for 
some structured perturbations they may have become nonreal. On the contrary, if two 
nearby simple real eigenvalues have the same sign characteristics, then every slightly 
perturbed Hermitian matrix-valued function will still have two real eigenvalues in a real
neighbourhood of the original ones. Definition 5.2 makes it clear that an analogous sce-
nario happens when considering structured perturbations of regular ∗-palindromic matrix 
polynomials. Example 5.5 and Example 5.6 exhibit, respectively, a regular ∗-palindromic 
matrix polynomial whose two nearby simple unimodular eigenvalues have opposite sign 
characteristics (and can thus be removed from the unit circle by a small structured 
perturbation) and a regular ∗-palindromic matrix polynomial whose two nearby simple 
unimodular eigenvalues have identical sign characteristics (and thus cannot be removed 
from the unit circle by a small structured perturbation).

Example 5.5. Let ε > 0 be a small real positive parameter and define

Aε =
[
1 i
i ε2

]
, Pε(z) = Aεz + A∗

ε =
[

z + 1 i(z − 1)
i(z − 1) ε2(z + 1)

]
.
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The matrix polynomial Pε(z) is ∗-palindromic, regular, and it has two simple unimodular 
eigenvalues λ1 = (1+iε)2

1+ε2 and λ2 = λ1. Moreover, associated eigenvectors are v1 = [ε 1]T

and v2 = [−ε 1]T . We have (choosing the principle branch of the square root)

iλ1/2
1 v∗1Aεv1 = −2ε

√
1 + ε2, iλ1/2

2 v∗2Aεv2 = 2ε
√

1 + ε2.

Hence, the two nearby eigenvalues have opposite sign characteristics and thus the theory 
of sign characteristics allows us to predict that there is a small structured perturbation 
of Pε(z) that has no unimodular eigenvalues. To see this, consider the perturbation

ΔAε =
[
0 0
0 −2ε2

]
,

Pε(z) + ΔPε(z) = (Aε + ΔAε)z + (Aε + ΔAε)∗ =
[

z + 1 i(z − 1)
i(z − 1) −ε2(z + 1)

]
.

This is a small structured perturbation. Indeed, the coefficients Aε and A∗
ε in Pε(z)

both have norm ‖Aε‖2 = ‖A∗
ε‖2 =

√
5+1
2 + O(ε2) = O(1); and we have perturbed 

them by perturbations ΔAε and ΔA∗
ε of norm ‖ΔAε‖2 = ‖ΔA∗

ε‖2 = 2ε2, while still 
preserving the ∗-palindromic structure of Pε(z). On the other hand, the finite eigenvalues 
of Pε(z) + ΔPε(z) are μ1 = 1+ε

1−ε and μ2 = μ−1
1 , neither of which lies on S1.

Example 5.6. Let ε > 0 be a small real positive parameter, and define

Bε =
[

i ε
ε i

]
, Qε(z) = Bεz + B∗

ε =
[

i(z − 1) ε(z + 1)
ε(z + 1) i(z − 1)

]
.

The matrix polynomial Qε(z) is ∗-palindromic, regular, and it has two simple unimod-
ular eigenvalues λ1 and λ2 (defined in the same way as in Example 5.5). Associated 
eigenvectors are instead w1 = [1 1]T and w2 = [−1 1]T . In this case, still choosing 
the principal branch of the square root, it holds

iλ1/2
1 w∗

1Bεw1 = −2 = iλ1/2
2 w∗

2Bεw2.

Thus, the two nearby eigenvalues have the same sign characteristic. Hence, for every 
sufficiently small perturbation ΔBε ∈ C2×2, we predict using the theory of sign char-
acteristics that Qε(z) + ΔQε(z) := (Bε + ΔBε)z + (Bε + ΔBε)∗ will still have two 
eigenvalues on S1. To verify this prediction, note that4 z ∈ S1 \{−1} ⇔ w = 1−z

i(1+z) ∈ R. 
Thus, Qε(z) + ΔQε(z) has two finite eigenvalues on S1 if and only if T (w, ΔBε) :=
[i(B∗

ε−Bε) +X]w+(B∗
ε +Bε+Y ) has two real finite eigenvalues, where X := i(ΔB∗

ε−ΔBε)

4 It is not important to exclude −1 in this step, because the eigenvalues of Qε(z) are approximately (up 
to an O(ε) distance) equal to 1, and hence small enough perturbations of it will also have eigenvalues close 
to 1.
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and Y := ΔB∗
ε + ΔBε are both Hermitian matrices of sufficiently small norm. Suppose 

now ‖ΔBε‖2 < 1, implying ‖X‖2 < 2. Observe that i(B∗
ε −Bε) = 2I2 is positive definite, 

and thus so is the leading coefficient of T (w, ΔBε) (under the assumption ‖ΔBε‖2 < 1); 
and it is a classic result [8,16] that the finite eigenvalues of a Hermitian pencil wH1 +H0
whose leading coefficient H1 is positive definite are real (and coincide with the eigenvalues 
of the Hermitian matrix −H

−1/2
1 H0H

−1/2
1 ).

More generally, real eigenvalues of regular Hermitian matrix functions can be removed 
from the real line by some Hermitian small perturbation if and only if the sum of their 
sign features is 0: by Definition 5.2, the same applies to unimodular eigenvalues of regular 
∗-palindromic matrix polynomials (or more generally regular para-Hermitian functions) 
under structured perturbations.

We conclude this section by noting that the above described approach leaves it open 
how to give an analytic definition of the sign characteristic at the unimodular eigenvalue 
−1 for ∗-palindromic matrix polynomials. We note that one can follow (at least) two 
possible strategies:

• Either one could employ an ad hoc approach, just as it was done in [14] at ∞ for 
the Hermitian case (with the disadvantage of treating the point −1 specially);

• Or one could make the non-standard choice of placing the branch line of the logarithm 
on the semiline arg(θ) = τ , where τ ∈ ] − π, π] is any point such that exp(iτ) is not 
an eigenvalue (with the disadvantage that such an approach requires a polynomial-
dependent definition). Note that the sign characteristic as defined in this paper does 
not depend on the choice of τ .

A full treatment of the sign characteristic of ∗-palindromic matrix polynomials, including 
algebraic formulae to compute the sign characteristics for nonsimple unimodular eigen-
values, or for unimodular eigenvalues of nonregular ∗-palindromic matrix polynomials, 
is nevertheless beyond the scope of the present article and left as future research.

6. Conclusions

In this paper we have revisited the existence of unitary eigendecompositions of a para-
Hermitian matrix A(z). We have filled some gaps in the existing literature on this subject, 
delivering the first (to our knowledge) fully complete proof of this result. Moreover, we 
have relaxed the assumptions on the para-Hermitian matrix A(z) allowing it to be an 
analytic (on S1) function of w = z

1
M for some positive integer M , we have clarified 

that the periods of eigenvalues and eigenvectors may be taken equal in such unitary 
eigendecompositions, we have explained that similar generalizations of Rellich’s theorem 
can be given for matrices that are analytic and Hermitian on an arbitrary circle or line 
in the complex plane, and we have also given a complete proof of the existence of a 
holomorphic pseudo-circulant decomposition of a holomorphic para-Hermitian matrix. 
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Furthermore, we have applied our results to the singular value decomposition of matrices 
that are analytic functions of w on the unit circle, and to the sign characteristics of ∗-
palindromic matrix polynomials.
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