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We describe two new types of vacua for ten-dimensional string models without supersymmetry, in which 
dilaton potentials are compensated by constant electric or magnetic fields. These arise from α′ corrections 
to the equations of motion, and we comment on the reliability of this expansion. We identify explicitly 
unstable singlet scalar perturbations in the orientifold vacua, and we argue that in both cases additional 
instabilities are induced by non-abelian couplings.
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1. Introduction and summary

The search for string vacua without supersymmetry remains a 
topic of utmost importance. In this work, we shall start directly 
from the ten-dimensional tachyon-free models without supersym-
metry and look for classical vacua. The models of interest are 
the heterotic SO(16) × SO(16) string [1,2] and the U(32) orien-
tifold [3–10] model [11,12], in which supersymmetry is absent, 
and Sugimoto’s USp(32) orientifold [13], the simplest setting for 
“brane supersymmetry breaking” [14–17] with non-linearly real-
ized supersymmetry. Our understanding of all these models is 
challenged by a non-trivial spacetime back-reaction, which results 
in the presence of a runaway “tadpole potential” for the dilaton. 
The leading effect of supersymmetry breaking on the low-energy 
action is captured by a scalar potential

V (φ) = T eγ φ , (1)

with model-dependent T and γ . In particular, in the Einstein 
frame γ = 3

2 for the two orientifold models, while γ = 5
2 for 

the heterotic model. We refer the reader to the excellent reviews 
of [18–22] for introductions from a string theory perspective.

The tadpole potential forbids a ten-dimensional Minkowski vac-
uum, leading, in the simplest setting, to the Dudas-Mourad com-
pactification [23], with curvature singularities and strong coupling 
regions. However, it can balance the effects of fluxes and result in 
a stabilized dilaton. In fact, in [24,25] the authors used R-R fluxes 
to yield constant dilaton profiles. In a similar fashion, in this paper 
we shall exploit the presence of gauge fields in the three models of 
interest, turning on non-zero vacuum values for U(1) abelian gauge 
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fields1 in their Cartan subalgebras. This choice adapts to all mod-
els, regardless of their gauge symmetries, and it is compatible with 
the simple choices of manifolds under scrutiny.

We can already anticipate an issue of the construction, the need 
to mix different α′ corrections. In eq. (1) one can argue, for purely 
dimensional reasons, that there is a factor 1/α′ in the definition 
of T . Consequently, any solution will necessarily scale with α′ in a 
non-trivial fashion. In the vacua of [23] with reduced isometry, a 
factor 

√
α′ accompanies a spacelike (or timelike for the cosmolog-

ical solutions) coordinate. In [24,25] and here, R-R or gauge fields 
must scale with a negative power of α′ to yield constant dilaton 
profiles.

In section 2 we discuss these settings in the two orientifold 
models. After presenting the solution, we investigate its perturba-
tive stability and find explicitly unstable singlet scalar modes. In 
section 3 we repeat the analysis in the heterotic SO(16) × SO(16)

model, and find a “dual” solution with no explicit unstable scalar 
modes. However, we argue that both classes of vacua suffer from 
another source of instability. In section 4 we reconsider the gen-
eral strategy, highlighting some problems emerging from the α′-
mixing. In fact, gauge kinetic terms arise from a double expansion 
in both α′ and spacetime derivatives, and we explain when this 
expansion can be reliable.

2. Electrovac solutions for the USp(32) and U(32) orientifold 
models

Let us begin by recalling the relevant portions of the low-
energy effective actions that are common to the USp(32) and U(32) 
orientifolds, which will play a role in our analysis. The contribu-

1 The gauge algebra in the U(32) model is actually that of SU(32), because the 
remaining U(1) is anomalous [12] and cannot be used as the background U(1).
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tions of interest arise from gravity, dilaton and the gauge kinetic 
terms, which are accompanied by the dilaton dependent factor e−φ

in the string frame. The dilaton tadpole potential scales proportion-
ally to e−φ in both models, so that the relevant action is∫

d10x
√−g

[
e−2φ

(
R + 4(∂φ)2

)
− α′

4
e−φ tr F 2 − T e−φ

]
, (2)

where T is positive but different in the two cases.
The metric ansatz that we shall consider involves a product of 

two maximally symmetric spaces

ds2 = λμν dxμdxν + γi j dyidy j . (3)

This assumption, in the presence of constant dilaton profiles, leads 
to

F M A F N
A ∝ gMN , (4)

where the proportionality constant can also vanish. The simplest 
available choice to satisfy this condition is to employ a U(1) field 
strength in the Cartan subalgebra of USp(32) or SU(32). Since 
F MN is a two-tensor, these types of vacua must involve a two-
dimensional space, and the equations of motion

α′

8
F 2 + 3T = 0 , ∇M F MN = 0 ,

R MN − 1

2
T eφ0 gMN − α′

4
eφ0 F M A F N

A = 0 ,

(5)

call for a two-dimensional spacetime with an electric background, 
so that Fμν = εμν f . In fact, writing the field strength in terms of 
the vielbein as

F MN = Ei(e0
Mei

N − e0
N ei

M) + Hij(ei
Me j

N − ei
N e j

M) , (6)

one needs a vanishing Hij and a constant Ei along the spatial di-
rection of the two-dimensional spacetime in order to solve eq. (5). 
For this reason, we call this an “electrovac”, a terminology that was 
already used in [26,27] for the supersymmetric case.

Combining the preceding considerations leads to

Rμν = −5

2
T eφ0λμν , Rmn = 1

2
T eφ0γmn ,

α′ f 2 = 12T .
(7)

The two-dimensional spacetime is thus an AdS2, while the internal 
manifold is an Einstein manifold with positive curvature. In what 
follows, we shall assume it to be an S8 with the round metric.

As anticipated, in order to compensate the dilaton potential, the 
electric field must scale as f ∼ 1/α′ .

2.1. The issue of perturbative stability

We now investigate the perturbative stability of this new solu-
tion. We turn to the Einstein frame, where the linearized equations 
afford a clearer interpretation.

At the linearized level, there are no mixings between non-
abelian perturbations, which do not contribute to the background 
profile, and the others. For the time being, let us therefore con-
fine our attention to perturbations of the dilaton, the metric, and 
the U(1) gauge field. We denote these as ϕ, hMN and aM/ f , where 
now f is the parameter that enters the background Einstein-frame 
electric field, α′ f 2 = 12 eφ0 T . These will depend on the AdS2 co-
ordinates xμ and the S8 coordinates yi , and will be expanded 
in spherical harmonics. In what follows, covariant derivatives and 
curvature tensors always refer to the background.
2

The metric equations of motion become

�hMN = −∇M∇Nh + 2∇(M∇RhN)R+
+ 2R B

(NhM)B − 2R B
M ANhB

A+
− R MNϕ + 1

2
T e

3
2 φ0 gMNϕ − T e

3
2 φ0 hMN+

− α′

f
e

1
2 φ0

[
F M

A ∇[NaA] + F N
A ∇[MaA]+

− f

2
F M A F N P hP A

]
+

+ gMN

[
α′

8 f
e

1
2 φ0 F AB ∇[AaB] + 1

8
T e

3
2 φ0 h+

− 3

4
T e

3
2 φ0ϕ − 1

4
R ABhAB

]
,

(8)

and hMN yields, in principle, tensor, vector and scalar modes in 
AdS2.

The dilaton equation becomes

�ϕ = 3

2
T e

3
2 φ0ϕ + α′

4 f
e

1
2 φ0 F AB∇ AaB+

− 1

2
R MNhMN + 1

4
T e

3
2 φ0 h ,

(9)

and ϕ only contributes to scalar perturbations.
The remaining linearized equations for the U(1) gauge field read

�aN

f
= ∇M∇N aM

f
+ F P

N∇MhM P +

+ F M
P ∇MhN P − 1

2
F MN∇M(h + ϕ) ,

(10)

and describe, in principle, both vector and scalar modes.
We can now study the squared masses for the allowed modes 

arising from the above linearized equations, looking for violations 
of the Breitenlohner–Freedman (B-F) bound [28]. Before presenting 
the results, it is convenient to simplify our notation, letting

τ ≡ T e
3
2 φ0 , L ≡ l(l + 7)

14
. (11)

L enters the equations through the eigenvalues of the Laplacian on 
the internal sphere, while τ sets our units. We shall also denote 
the internal Laplacian, in a way that should not create any confu-
sion, as �8.

2.2. Tensor and vector perturbations

Tensor modes in AdS would arise from eq. (8), describing a 
massless graviton and a tower of KK excitations, with

�hμν = − 2

l2AdS

hμν . (12)

However, in two dimensions, these modes are pure gauge. The 
same happens for the vector modes, for which eq. (10) with N = μ

gives Maxwell’s equations in AdS

�aμ = ∇ν∇μaν , (13)

and for the graviphoton hμi from eq. (8), taking into account that 
it only generates l ≥ 1 modes.
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2.3. Scalar perturbations

Let us begin with the transverse traceless modes hij , which are 
tensors with respect to the internal rotation group. These are sta-
ble, since from eq. (8)

�2hij = Lτhij , (14)

where �2 denotes the AdS2 d’Alembertian.
In addition, there are internal vectors from hμi and the internal 

components of the gauge field. Letting

ai ≡ 1

α′ �ie
− 1

2 φ0 , hμi = τ−1εμν∇ν V i , (15)

these mix according to

�2

(
V i
�i

)
=

(
L − 4

7
1
2

12L − 48
7 L + 45

7

)
τ

(
V i
�i

)
. (16)

The mass matrix in eq. (16) has a vanishing eigenvalue for l =
1, while the others are positive. Therefore, this sector contains no 
unstable modes.

Singlet scalar perturbations take the form

hμν = Aλμν , hij = Cγi j , hμi = ∇μ∇i D ,

aμ = 1

α′ e− 1
2 φ0εμν∇ν� ,

(17)

where we excluded some contributions that can be gauged away. 
The μν and i j components of eq. (8) involve two different tensor 
structures, ∼ λμν and ∼ ∇μ∇ν , which must be dealt with sepa-
rately, as in [29]. Then, the linearized equations lead to

�� = −12τ

[
−1

2
ϕ + �8 D + A − 4C

]
,

�ϕ = 3

2
τϕ + 3τ A + 1

4
�2� ,

�A = 9

4
τϕ − 11

2
τ A − 7

8
�2� ,

�8 D = 4C ,

�C = −τC + 1

8
�2� + 3

2
τ A − 3

4
τϕ ,

�2 D = A + 3C ,

0 = A + 7C + τ D + 1

2
� .

(18)

If l = 0, D is absent, C = 0 and � decouples, corresponding to 
pure gauge perturbations. One is then left with a mass matrix for 
the fields A and ϕ , whose eigenvalues are both positive.

The case l = 1 implies L = 4
7 and � = −2A, and leads to a mass 

matrix for the modes with two positive and one negative eigen-
value, equal to − 3

7 τ . This is still compatible with the B-F bound 
− 5

8 τ , and these perturbations are stable.
In the general case l > 1, C and D can be expressed in terms of 

the other fields and the remaining modes are

�2

⎛
⎝ A

�

ϕ

⎞
⎠ =

⎛
⎜⎝

L + 5 − 7
8 L −3

−12 L 6

0 1
4 L L + 3

⎞
⎟⎠τ

⎛
⎝ A

�

ϕ

⎞
⎠ . (19)

Only one of the eigenvalues can be negative. Taking into account 
the B-F bound for scalar modes, one can see that the solution has 
three unstable sets of scalar modes, with l = 2, 3, 4.

In the above analysis, the internal manifold is a sphere with the 
round metric, but any Einstein manifold with appropriate curva-
ture would yield a vacuum. In our notation, L was chosen so that 
3

it denotes sphere eigenvalues in units of τ , and a different Ein-
stein manifold would correspond to different values of L. Stability 
can thus be rephrased as a property of the new Laplacian eigenval-
ues. In particular, a large enough Laplacian gap, corresponding to 
L � 4, would remove the scalar instability from eq. (19). We have 
no argument at present to exclude this option, but we have no vi-
able example.

3. Magnetovac solutions for the heterotic SO(16) × SO(16) model

In this section, we address a similar construction for the het-
erotic non-supersymmetric SO(16) × SO(16) model. The effective 
action in the string frame has in this case a cosmological constant 
term with � > 0, and the absence of a dilaton coupling reflects 
the one-loop origin of this contribution. On the other hand, gauge 
fields are accompanied by a dilaton factor e−2φ , which signals their 
closed string origin, so that the two-derivative action, up to terms 
of order α′ , is∫

d10x
√

g

[
e−2φ

(
R + 4(∂φ)2 − α′

4
tr F 2

)
− �

]
. (20)

One can retrace the steps of section 2, searching for solutions 
with constant dilaton profiles and vacuum values for U(1) gauge 
fields. Now the equations of motion demand F 2 > 0, and thus lead 
to a magnetic background confined to a two-dimensional internal 
manifold. This corresponds to a non-vanishing H89 in eq. (6). One 
thus obtains an AdS8 × S2 solution, with Fmn = εmn f , which is 
characterized by

Rμν = −1

2
� e2φ0 λμν , Rmn = 9

2
� e2φ0 γmn ,

α′ f 2 = 20� e2φ0

(21)

in the string frame.
As in eq. (7), the gauge field strength must be proportional to 

1/α′ , and the tadpole contribution is compensated by an α′ cor-
rection. Using flux quantization on the compact sphere, one could 
trade φ0 for the U(1) magnetic flux Nm ∝ e−φ0 , but in what follows 
we shall keep φ0.

3.1. The issue of perturbative stability

We now investigate the perturbative stability, again in the Ein-
stein frame. One can linearize the equations of motion using the 
same notation as in the orientifold case. Again, we turn on gauge 
field deformations along the same U(1) that hosts the vacuum pro-
file.

The gravitational equations of motion become

�hMN = −∇M∇Nh + 2∇(M∇RhN)R+
+ 2R B

(NhM)B − 2R B
M ANhB

A+
+ R MNϕ + 1

2
� e

5
2 φ0 gMNϕ + � e

5
2 φ0 hMN+

− α′

f
e− 1

2 φ0

[
F M

A∇[NaA] + F N
A∇[MaA]+

− f

2
F M A F N P hP A

]
+

+ gMN

[
α′

8 f
e− 1

2 φ0 F AB ∇[AaB]+

− 1

8
� e

5
2 φ0 h − 5

4
� e

5
2 φ0ϕ − 1

4
R A P hA P

]
,

(22)

where hMN generates all types of perturbations.
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The linearized dilaton equation is

�ϕ = 15

2
� e

5
2 φ0ϕ − α′

4 f
e− 1

2 φ0 F AB∇ AaB+

+ 1

2
R MNhMN + 1

4
� e

5
2 φ0 h ,

(23)

and ϕ clearly contributes to scalar perturbations.
The gauge field, whose linearized equations become

�aN

f
= ∇M∇N aM

f
+ F P

N∇MhM P +

+ F M
P ∇MhN P − 1

2
F MN∇M(h − ϕ) ,

(24)

describes both vector and scalar modes.
As in section 2.1, one must study the squared masses of the 

modes arising from these equations, and compare them with the 
B-F bounds. Let us again simplify our notation, letting

τ ≡ � e
5
2 φ0 , L ≡ 9l(l + 1)

2
. (25)

This is the counterpart of eq. (11), and L describes the eigenvalues 
of the Laplacian on the internal sphere in units of τ .

3.2. Tensor, vector and non-singlet scalar perturbations

Tensor modes in AdS8 arise from eq. (22). They behave as in 
eq. (12) and describe a massless graviton for l = 0 and a tower of 
KK excitations for l 	= 0.

Vector modes arise from divergence-free metric perturbations 
hμi and gauge field perturbations aμ . Letting

aμ ≡ 1

α′ �μe
1
2 φ0 , hμi = τ−1ε ji∇ j Vμ , (26)

one is left with

�8

(
Vμ

�μ

)
=

(
L + 1

2 − 1
2

−20L L − 1
2

)
τ

(
Vμ

�μ

)
. (27)

When l = 0, only the aμ modes are present, subject to the mass-
less AdS Maxwell equations, as in eq. (13). When l 	= 0, the mass 
matrix in eq. (27) describes a triplet of massless vectors, corre-
sponding to one of the l = 1 eigenvalues, together with infinitely 
many massive modes.

3.3. Scalar perturbations

Tensor modes with respect to the internal rotation group arise 
from hij . From eq. (22) one obtains the counterpart of eq. (14), 
now with �2 → �8. Both these and the internal vector modes ai

from eq. (24) can be shown to be stable.
Let us complete the analysis by considering singlet scalar per-

turbations. Echoing eq. (17), these take the form

hμν = Aλμν , hij = Cγi j , hμi = ∇μ∇i D ,

ai = 1

α′ e
1
2 φ0εi j∇ j� ,

(28)

where we have neglected contributions that are pure gauge. Again, 
there are two different tensor structures from eq. (22), which must 
be dealt with separately. One obtains
4

�� = −20τ

[
1

2
ϕ + �8 D + C − 4A

]
,

�ϕ = 15

2
τϕ + 5τC + 1

4
�2� ,

�A = τ A − 1

8
�2� − 5

2
τC − 5

4
τϕ ,

�2 D = 3A + C ,

�C = 15

4
τϕ + 17

2
τC + 7

8
�2� ,

�8 D = 4A ,

0 = C + 7A − τ D − 1

2
� .

(29)

When l = 0, there is no dependence on the internal coordinates, 
so that � and D are absent. The fourth of eq. (29) becomes C =
−3A. One is thus left with a 2 × 2 matrix for A and ϕ , whose 
eigenvalues are both positive.

When l > 0, one can find two algebraic relations for A and D
in terms of the other fields, which reduce the scalar perturbations 
to

�8

⎛
⎝ C

�

ϕ

⎞
⎠ =

⎛
⎜⎝

L + 17
2 − 7

8 L 15
4

−20 L −10

5 − 1
4 L L + 15

2

⎞
⎟⎠τ

⎛
⎝ C

�

ϕ

⎞
⎠ . (30)

All the resulting eigenvalues lie above the B-F bound, but can one 
conclude that these heterotic vacua are stable? There is actually 
a subtlety, since these vacua differ from those examined in [29]
due to the presence of non-abelian fields. Instabilities have long 
been known to arise, in flat space, for non-abelian gauge fields in 
the presence of strong electric or magnetic backgrounds [30,31]. 
These indications point indeed to the emergence of instabilities in 
our vacua when H R2

S2 = O(1). Since the product is of order e−φ0 , 
the phenomenon lies well within the corner of string theory that 
is well-captured by the low energy analysis, and is thus expected 
to play a role in our vacua. The detailed analysis of instabilities of 
this type in AdS × S backgrounds is an interesting problem in its 
own right, which is currently under investigation, and we plan to 
return to it in a future work.

4. Higher derivative corrections

These two types of classical vacua have no curvature singu-
larities, and thus one could naively expect that they provide a 
complete solution of the string equations. However, the α′ mix-
ing induced by the tadpole deserves further consideration.

In the effective action that we studied, we included only two-
derivative contributions that are of first order in α′ . Our analysis 
requires that both higher derivative and higher α′ terms be negli-
gible in the regime of validity of the vacua. We shall not focus on a 
specific α′ order, or on particular higher derivative terms. Instead, 
simple considerations suffice to emphasize the relevant points.

Let us begin with the heterotic model. In the string frame, the 
classical vacuum of eq. (21) has

1

l2AdS8

∼ 1

R2
S2

∼ e2φ0(α′)−1 , F 2 ∼ e2φ0(α′)−2 . (31)

All α′ corrections to eq. (20) must be accompanied by suitable 
powers of α′ for dimensional reasons. In particular, they must en-
ter the action in eq. (20) as

(α′)n−1 Rn , (32)
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where R can be either a metric or gauge curvature. The contribu-
tions to the equations of motion that we considered are accompa-
nied by e2φ0(α′)−1. On the other hand, the higher derivative terms 
from eq. (32) are accompanied by ekφ0(α′)−1 with k > 2. There-
fore, the magnetovac solution is reliable provided that the string 
coupling is small enough, or, equivalently, when the magnetic flux 
Nm is large enough.

Similar considerations apply to the orientifold vacua, for which 
eq. (32) still holds. However, in this case

1

l2AdS2

∼ 1

R2
S8

∼ eφ0(α′)−1 , F 2 ∼ (α′)−2 , (33)

and, while the metric curvature terms are subleading in an eφ0

series, higher derivative terms with arbitrary numbers of field 
strengths make the analysis not manifestly under control.

5. Conclusions

In this paper, we have analyzed two vacua with constant dilaton 
profiles for the tachyon-free non-supersymmetric string models in 
ten dimensions. They are supported by constant electric or mag-
netic fields, and include AdS2 and AdS8 spacetimes. The former 
choice has perturbatively unstable modes in the singlet scalar sec-
tor, in close analogy [29] with the vacua supported by R-R form 
fluxes of [24,25]. No instability of this type is present in the AdS8
case. However, other unstable modes are induced, in flat space, by 
non-abelian couplings in the presence of strong electric or mag-
netic backgrounds [30,31]. The AdS counterpart of this problem 
is currently under investigation, but all our vacua appear to suf-
fer from these instabilities, since the transition occurs well within 
regions of parameter space that are captured by the field theory 
analysis.

Our solutions rest on α′ corrections to the equations of mo-
tion, and the expansion is under control only when some other 
parameter, the string coupling, is appropriately tuned. Note that α′
corrections have been used in the past in order to break supersym-
metry. For instance in [32], where non-trivial gauge configurations 
on internal tori were employed to argue for non-supersymmetric 
domain walls.2 Our idea is somewhat different, since we compen-
sate the supersymmetry breaking scalar potential, already present 
in the models of interest, with α′ corrections.

Similar constant dilaton vacua should be available for T-duals 
of the orientifold models, for which there is no spacetime-filling 
dilaton potential, but the tadpole is localized on branes that break 
supersymmetry. Non-trivial gauge configurations on the branes 
could also improve the problems related to the unbalanced ten-
sion [33–35], but the complications outlined in section 4 would 
remain, because the localized tadpole would still be compensated 
by α′ corrections on the branes.
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