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abstract. - We consider the problem of prescribing the scalar curvature and the boundary mean
curvature of the standard half three sphere, by deforming conformally its standard metric. Using blow
up analysis techniques and minimax arguments, we prove some existence and compactness results.

1 Introduction

In this paper we study some equation arising in differential geometry, when the metric of a Riemannian
manifold is conformally deformed. Precisely, is given a manifold with boundary (M, g) of dimension n ≥ 3;

transforming the metric g into g′ = v
4

n−2 g, where v is a smooth positive function, the scalar curvatures
Rg, Rg′ and the mean curvatures of the boundary hg, hg′ , with respect to g and g′ respectively, are related
by the formulas

(1)

{

−4n−1
n−2∆gv +Rgv = Rg′v

n+2
n−2 , in M ;

2
n−2

∂v
∂ν + hgv = hg′v

n
n−2 , on ∂M,

see e.g. [5]. In the above equation, ν denotes the outward unit vector perpendicular to ∂M , with respect
to the metric g.

A problem arises naturally when looking at equation (1): assigned two functions K : M → R and
H : ∂M → R, does exists a metric g′ conformally equivalent to g such that Rg′ ≡ K and hg′ ≡ H? From
equation (1), the problem is equivalent to finding a smooth positive solution v of the equation

(2)

{

−4n−1
n−2∆gv +Rgv = Kv

n+2
n−2 , in M ;

2
n−2

∂v
∂ν + hgv = Hv

n
n−2 , on ∂M.

The requirement about the positivity of v is necessary for the metric g′ to be Riemannian. For the
two-dimensional case, there are analogous equations involving exponential nonlinearities.

We are mainly interested in the so-called positive case, see [21], when the quadratic part of the Euler
functional associated to (2) is positive definite.

1E-mail addresses: Zindine.Djadli@math.u-cergy.fr (Z. Djadli), malchiod@ias.edu (A. Malchiodi),
ahmedou@ahmedou@math.uni-bonn.de (M. Ould Ahmedou).
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A first criterion for existence of solutions of (2), and also a proof of regularity, was given by P. Cherrier,
[17]. He proved that if the energy of some test function is below an explicit threshold, then problem (2)
admits a solution as a mountain pass critical point. Using this criterion J. Escobar obtained some existence
results in the interesting particular case of constant K and H , see [21], [22]. The proof relies on some
extension of the Positive Mass Theorem by R. Schoen and S.T. Yau [35] to the case of manifolds with
boundary. He showed that almost every compact manifold with boundary can be conformally deformed
so that its scalar curvature is 1 and the boundary is minimal, i.e. the mean curvature is zero. He also
gives some results when H is a constant close to zero. More recently Z.C. Han and Y.Y. Li, see [25], [26],
extended most of the results of J. Escobar to the case in which K ≡ 1 and H is any constant. They also
prove a compactness results in the locally conformally flat manifolds with umbilic boundary.

We consider here the case of the standard half sphere Sn+ = {x ∈ R
n+1 : ‖x‖ = 1, xn+1 > 0} endowed

with its standard metric g0, and in particular the case n = 3; the functions K and H are now non
constant and K will always assumed to be positive. We are thus reduced to find positive solutions v of
the problem

(3)

{

−4n−1
n−2 ∆v + n(n− 1) v = K(x) v

n+2
n−2 , in Sn+;

2
n−2

∂v
∂ν = H(x′) v

n
n−2 , on ∂Sn+.

Problem (3) is in some sense related to the well-known Scalar Curvature Problem on Sn

(4) −4
n− 1

n− 2
∆v + n(n− 1) v = K(x) v

n+2
n−2 , in Sn,

to which much work has been devoted, see [3], [7], [8], [9], [11], [12], [14], [15], [16], [27], [29], [30], [36]
and references therein. As for (4), also for problem (3) there are topological obstructions for existence of
solutions, based on Kazdan-Warner type conditions, see [10] and also the proof of Proposition 8.6. Hence
it is not expectable to solve problem (3) for all the functions K and H , and it is natural to impose some
conditions on them.

We would like to point out the following features of the scalar curvature problem on Sn in lower
dimensions, referring to the above-mentioned papers. For n = 2, non-converging Palais Smale sequences
are characterized by the presence of just one bubble. Under generic assumptions on K, it turns out that
when n = 3, 4, solutions of (4), or of some subcritical approximation, possess only isolated simple blow
ups, see Section 4 for the definition. When n = 3 there is indeed just one blow up point, while for n = 4
blow ups may as well occur at more points.

We now discuss problem (3). For n = 2 (about the corresponding equation with exponential nonlin-
earities), P.L. Li and J.Q. Liu proved in [28] that compactness is lost along one bubble only, as in the
case of the problem on the sphere. The only difference is that blow up can only occur at the boundary of
S2
+. For the case H ≡ 0 and positive K, they prove existence results which are in some sense reminiscent

of those of [11], see also [14], [15].
In [31] Y.Y. Li considered the case of n = 3 and H ≡ 0. Under generic assumptions on K, he proved

that blow ups are isolated simple and at only the boundary. He also stated that, as for (4) when n = 3,
blow ups may occur at most one point. Actually the last statement is not true, although the main features
of the blow-up behavior at the boundary are analyzed in [31]. Using the ingredients of [25], [31] and [33]
we correct this here and we prove that (also for non constant H) blow ups, which are always isolated
simple and on the boundary, can be multiple, see Section 6. Hence the situation could be considered
similar to that of (4) for n = 4. This fact, in the case of H ≡ 0, could be roughly explained as follows.
Reflecting both K and v evenly to the whole S3, one could study symmetric solutions of (4). The blow
up analysis for the three dimensional case strongly relies on the differentiability of K at blow up points.
This implies that blow ups of symmetric functions outside ∂S3

+, which are multiple, are ruled out. This
argument does not apply when blow up points are on ∂S3

+, since the symmetric extension of K is not
regular there. See Remark 6.7 for a more quantitative explanation of this fact.
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For the case of any n, some results are proved in [4] when K and H are close to some constants;
here we are extending some of those results for n = 3 without the close to constant conditions, see also
Remark 7.2. In the paper [13] the case K ≡ 0 and H close to a positive constant is considered, for n ≥ 3.
In the forthcoming paper [19] we will extend some of those results to the non-perturbative case.

Our first result is the following.

Theorem 1.1 Assume n = 3, let K : S3
+ → R be a positive C1 function and let H : ∂S3

+ → R be of class
C2. Let ϕ : ∂S3

+ → R be the function defined by

(5) ϕ(x′) = 4π

√

6

K(x′)

(

π

2
− arctan

(

H(x′)

√

6

K(x′)

))

, x′ ∈ ∂S3
+.

Suppose that for some point q ∈ ∂S3
+ the following condition holds

(6) ϕ(q) = min
∂S3

+

ϕ;
∂K

∂ν
(q) < 0.

Then there exists a positive solution of problem (3).

The proof of Theorem 1.1 relies on the study of the following subcritical approximation of equation (3)

(7)

{

−4n−1
n−2 ∆u+ n(n− 1)u = K up, in Sn+;

2
n−2

∂u
∂ν = H u

p+1
2 , on ∂Sn+.

Here the exponent p is converging to n+2
n−2 from below. As mentioned before, for n = 3 blow ups of

equation (7) can occur only at the boundary of S3
+. Nevertheless, if vp denotes a mountain pass solution

of (7) for p < n+2
n−2 , condition (6) implies that {vp}p is uniformly bounded for p → n+2

n−2 , and hence

converges to a solution of (3). The function ϕ(x′) represents the blow up energy at a point x′ ∈ ∂S3
+ and

plays a crucial role in the blow up analysis. Indeed, see Section 6, blow ups can occur only at critical
points of ϕ. We note that when H is a constant function, critical points of ϕ coincide with critical points
of K|∂S3

+
, see also [31].

Under generic assumptions on K and H , ((K,H) ∈ A in the notation below), it is possible to give a
complete description of the behavior of general solutions of (7) when p converges to n+2

n−2 , and to deduce
existence and compactness results for equation (3). We point out that, in order to this, we use crucially
the classification result in [33] and the blow-up analysis in [25], [30]. The blow up analysis provides
necessary conditions on these solutions, while the Implicit Function Theorem gives sufficient conditions
for existence of solutions highly concentrating at some points of ∂S3

+. In this way one can compute the

total Leray Schauder degree of the solutions of (3) in the space C2,α(S3
+), for some α ∈ (0, 1). Such a

method has been used in [36] and [30] for problem (4) in dimensions 3 and 4 respectively.
To state our next result we need to introduce some notation, which considerably simplifies in the case

H ≡ 0, see Remark 1.3. Given K ∈ C2(S3
+) and H ∈ C2(∂S3

+), let ϕ ∈ C2(∂S3
+) be defined by formula

(5), and set

F =
{

q ∈ ∂S3
+ : ∇ϕ(q) = 0

}

; F+(−) =

{

q ∈ ∂S3
+ : ∇′ϕ(q) = 0,

∂K

∂ν
(q) > 0 (< 0)

}

;

MK,H =
{

v ∈ C2,α(S3
+) : v satisfies(3)

}

.

Here ∇′ denotes the gradient of functions defined on ∂Sn+.
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For q ∈ ∂S3
+, let πq : S

3
+ → R

3
+ denote the stereographic projection with pole −q. In πq-stereographic

coordinates, we define the function Gq : S
3
+ → R by

(8) Gq(x) =

(

1 + |x|2
2

)
1
2 1

|x| , x ∈ R
3
+.

The function Gq is the Green’s function for the conformal laplacian −8∆+ 6 on S3 with pole q. Define
also ψ : ∂S3

+ → R by

(9) ψ(x′) = 1 +H(x′)

√

6

K(x′)

(

arctan

(

H(x′)

√

6

K(x′)

)

− π

2

)

= 1− H(x′)ϕ(x′)

4π
.

To each {q1, . . . , qN} ⊆ F \ F−, N ≥ 1, we associate an N ×N symmetric matrix M = M(q1, . . . , qN )
defined by

(10)











Mjj =
∂K
∂ν (q

j) ψ(qj)

K(qj)
3
2
, j ∈ {1, . . . , N}

Mlj = −4
√
2

G
ql
(qj)

K(ql)
1
4K(qj)

1
4
, l, j ∈ {1, . . . , N}, l 6= j.

Let ρ = ρ(q1, . . . , qN ) denote the least eigenvalue ofM . It has been first pointed out by A. Bahri, [6], see
also [8], that when the interaction between different bubbles is of the same order as the self interaction,
the function ρ for a matrix as in (10) plays a fundamental role in the theory of the critical points at
infinity. For problem (3), such kind of phenomenon appears when n = 3.

Define the set A to be

A = {(K,H) ∈ C2(S3
+)× C2(∂S3

+) : K > 0, ϕ is a Morse function on ∂S3
+,

∂K

∂ν
6= 0 on F , and ρ = ρ(q1, . . . , qN ) 6= 0, ∀ q1, . . . , qN ∈ F}.

Let us observe that the condition (K,H) ∈ A is generic. We introduce an integer valued continuous
function Index : A → N by the following formula

Index(K,H) = −1 +

ℓ
∑

j=1

∑

ρ(qi1 ,...q
ij )>0,

1≤i1<i2≤···≤ij≤ℓ

(−1)j+
∑ j

l=1(2−m(ϕ,qj)),

where m(ϕ, qil) denotes the Morse index of ϕ at qil , and ℓ = card |F+|. Now we are able to state our
next result, about existence and compactness of solutions of (3).

Theorem 1.2 Let n = 3 and suppose (K,H) ∈ A. Then for all α ∈ (0, 1), there exists some constant R
depending only on min

S3
+
K, ‖K‖

C1(S3
+)
, ‖H‖C2(S3

+), min{|ρ(q1, . . . , qN )| : q1, . . . , qN ∈ F , N ≥ 2} and

α such that

(11)
1

R
≤ v ≤ R, ‖v‖

C2,α(S3
+)

≤ R,

for all positive solutions v of equation (3). Moreover (3) possesses a solution provided Index(K,H) 6= 0.

Since the situation here resembles that of S4 for a Morse function K, our Theorem 1.2 can be
considered as a counterpart of the results in [9] and [30] for manifolds with boundary. Notice that only
the least eigenvalue of M(q1, . . . , qN ) plays a role in counting the total degree of solutions of (3) and in
the compactness. For instance, considering a continuous family of functions (Kt, Ht), the total degree
changes when the least eigenvalue ofMt(q

1, . . . , qN ) crosses zero, while it remains unchanged when other
eigenvalues cross zero.
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Remark 1.3 (a) When the function H is identically equal to zero, the functions ϕ(x′) and ψ(x′) assume
the simpler form

ϕ(x′) = 2π2

√

6

K(x′)
; ψ(x′) = 1.

In particular minima of ϕ coincide with maxima of K restricted to the boundary and viceversa. (b) We
note that equation (3) for n = 3 is invariant under the rescaling

K → γK; H → γ
1
2H ; u→ γ−

1
4u,

where γ is any positive number. The hypotheses involving K and H in Theorems 1.1 and 1.2 are both
invariant under such a rescaling.

(c) While Theorem 1.2 is related to some known results for equation (4), Theorem 1.1 has no coun-
terpart in the problem on the whole sphere. The existence argument is strictly related to the presence of
the boundary.

The authors have been recently informed about some related results obtained in [23].

The paper is organized as follows. In Section 2 we collect some useful technical tools, while in Section 3
we compute the blow up energies, depending on the values of K and H at the blow up point. In section 4
we recall some known facts about blow up analysis of equations (3) and (4), and in section 5 we specialize
to the case of boundary blow ups. Then in Section 6 we prove that blow ups are isolated simple, see
Definition 4.5, and occur only at the boundary of ∂S3

+. Finally, Sections 7 and 8 are devoted to the
proofs of Theorems 1.1 and 1.2 respectively.
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2 Some preliminaries

We will use the notation x for variables belonging to the half sphere Sn+, or to the half space R
n
+, which

is defined by R
n
+ := {x ∈ R

n : xn > 0}; variables in both the boundaries will be denoted in general by
x′.

Solutions of problem (3) are critical points of the Euler functional JK,H : H1(Sn+) → R defined in the
following way

JK,H(v) =
1

2

∫

Sn
+

(

4(n− 1)

n− 2
|∇v|2 + n(n− 1) v2

)

− 1

2∗

∫

Sn
+

K(x) |v|2∗ − (n− 2)

∫

∂Sn
+

H(x′) |v|2n−1
n−2 ,

v ∈ H1(Sn+),(12)

where 2∗ = 2n
n−2 . It will be convenient to perform some stereographic projection in order to reduce the

above problem to Rn+. LetD1,2(Rn+) denote the completion ofC∞
c

(

Rn+

)

with respect to the Dirichlet norm.
The stereographic projection πq through a point q ∈ ∂Sn+ induces an isometry ι : H1(Sn+) → D1,2(Rn+)
according to the following formula

(13) (ι v)(x) =

(

2

1 + |x|2
)

n−2
2

v(π−1
q (x)), v ∈ H1(Sn+), x ∈ R

n
+.
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In particular, one can check that the following relations hold true, for every v ∈ H1(Sn+)

∫

Sn
+

(

4(n− 1)

n− 2
|∇v|2 + n(n− 1) v2

)

=

∫

R
n
+

4(n− 1)

n− 2
|∇(ι v)|2;

∫

Sn
+

|v|2∗ =

∫

R
n
+

|ι v|2∗ ;
∫

∂Sn
+

|v|2n−1
n−2 =

∫

∂Rn
+

|ι v|2n−1
n−2 .

By means of these equations, the functional JK,H transforms into IK,H : D1,2(Rn+) → R given by

IK,H(u) =
1

2

∫

R
n
+

4(n− 1)

n− 2
|∇u|2 − 1

2∗

∫

R
n
+

K(x) |u|2∗ − (n− 2)

∫

∂Rn
+

H(x′) |u|2n−1
n−2 ,

meaning that JK,H(v) = IK,H(ι v) for every v ∈ H1(Sn+). Here we are identifying the functions K and
H and their compositions with the stereographic projection πq. This fact will be assumed as understood
in the sequel.

Critical points of the functional IK,H are solutions of the following problem

(14)

{

−4n−1
n−2 ∆u = K(x)u

n+2
n−2 , in R

n
+;

− 2
n−2

∂u
∂xn

= H(x′)u
n

n−2 , on ∂Rn+.

Using similar arguments, one finds that the counterpart in R
n
+ of equation (7) is given by

(15)

{

−4n−1
n−2 ∆u =W (x)τ K(x)up, in R

n
+;

− 2
n−2

∂u
∂xn

=W (x′)
τ
2H(x′)u

p+1
2 , on ∂Rn+,

where W (x) =
(

2
1+|x|2

)

n−2
2

, and where τ = n+2
n−2 − p. The terms W (x)τ and W (x′)

τ
2 in the equation

above are corrections due to the non conformality of equation (7) when p 6= n+2
n−2 .

As a typical feature of non compact variational problems like (14), it is fundamental to analyze
the associated problems at infinity. Solutions of such problems describe the asymptotic profile of non-
converging Palais Smale sequences. In the specific case of (14), these problems at infinity are of two
kinds, namely

(16) −4
n− 1

n− 2
∆u = K(x)u

n+2
n−2 , in R

n,

for some fixed x ∈ Rn+, and

(17)

{

−4n−1
n−2 ∆u = K(x′)u

n+2
n−2 , in R

n
+;

− 2
n−2

∂u
∂xn

= H(x′)u
n

n−2 , on ∂Rn+,

for some x′ ∈ ∂Rn+. Roughly, problem (16) corresponds to the case in which the functions are mostly
concentrated in the interior of Rn+, while problem (17) corresponds to the case in which the functions
are concentrated near the boundary. We note that solutions of problem (17) are critical points of the
functional

IK,H(u) =
1

2

∫

R
n
+

4(n− 1)

n− 2
|∇u|2 − 1

2∗
K

∫

R
n
+

|u|2∗ − (n− 2)H

∫

∂Rn
+

|u|2n−1
n−2 ,

where K = K(x′) and H = H(x′).
Positive solutions of problems (16) and (17) have been completely classified in [24] and [33], see also

[20]; we recall the results in the following Lemma.
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Lemma 2.1 The positive solutions u of problems (16) and (17) are, modulo translations in R
n and

R
n−1, respectively of the form

(18) Uλ(x) =

(

λ

1 + λ2k|x|2
)

n−2
2

; λ > 0,

where k = K(x)
4n(n−1) , and

(19) Uλ(x) =

(

λ

1 + λ2k (|x′|2 + (xn + tλ)2)

)

n−2
2

; λ > 0,

where k = K(x′)
4n(n−1) and where tλ is given by 2 k tλ λ = H(x′).

It will be convenient to consider the expression
∫

R
n
+
xnU

2n
n−2

1 with n = 3. Using the formula

∫ ∞

0

rα

(1 + r2)β
=

Γ
(

α+1
2

)

Γ
(

β − α+1
2

)

2Γ (β)
,

and integrating first in the variable x′ and then in the variable x3, one obtains

(20)

∫

R
3
+

x3U
6

1 =
144π

K(x′)2

[

1 +H(x′)

√

6

K(x′)

(

arctan

(

H(x′)

√

6

K(x′)
− π

2

))]

=
144π

K2(x′)
ψ(x′).

The projection to R
n
+ is not the only transformation we will perform. In the next section we will use

a conformal transformation of Sn+ onto some suitable spherical cap Σθ. In a similar way as before, this
transformation induces an isometry between H1(Sn) and H1(Σθ). We will not write the explicit formulas
for this transformation, as in (13).

3 Study of the blow up energies

In this section we compute the energies of the solutions of problems (16) and (17) (i.e. of the functions
given in (18) and (19)), highlighting the dependence on the values of K (and H) at x (resp. at x′). It is
well known that these energies are strongly related to those of non converging Palais Smale sequences of
the functionals JK,H and IK,H .

In order to simplify the computations it is convenient, using a suitable stereographic transformations,
to reduce problems (16) and (17) to Sn and to some spherical cap respectively, see [26]. In the following
ωd denotes the volume of the unit d-dimensional sphere in R

d+1.
Given θ ∈ (0, π), we define the spherical cap Σθ in the following way

Σθ = {x ∈ Sn : xn+1 ≥ cos θ}.

One can find with elementary computations that the mean curvature of ∂Σθ with respect to Σθ endowed
with the standard metric g0 is given by

hg0(∂Σθ,Σθ)(x
′) = hθ :=

cos θ

sin θ
, for all x ∈ ∂Σθ.

We set for brevity K = K(x) (or K(x′)) and H = H(x′). We want to choose an appropriate θ in such a
way that some solution of the problem

(21)

{

−4n−1
n−2∆v + n(n− 1)v = Kv

n+2
n−2 in Σθ,

2
n−2

∂v
∂ν + hθv = H v

n
n−2 in ∂Σθ.

7



can be chosen to be a constant vθ. In this way the problem transforms into

(22)

{

n(n− 1)vθ = Kv
n+2
n−2

θ in Σθ,

hθvθ = H v
n

n−2

θ in ∂Σθ.

From equation (22) it follows that θ must satisfy the relation

(23) H sin θ =

(

K

n(n− 1)

)

1
2

cos θ,

and that vθ solves

(24) K v
4

n−2

θ = n(n− 1).

As far as the interior blow up is concerned, we look for a constant function v̂ on the whole sphere. Since
v̂ solves the equation

(25) −4
n− 1

n− 2
∆v̂ + n(n− 1)v̂ = Kv̂

n+2
n−2 , in Sn,

and is constant, it must also satisfy

(26) K v̂
4

n−2 = n(n− 1).

Boundary blow up energy

We now compute the energy of a boundary blow up. Let JK,H be the Euler functional as in (12)

corresponding to K ≡ K(x′) and H ≡ H(x′); we have

JK,H(vθ) =
1

2
n(n− 1)

∫

Σθ

v2θ +
(n− 1)

tan θ

∫

∂Σθ

v2θ −
K

2∗

∫

Σθ

v2
∗

θ −H (n− 2)

∫

∂Σθ

v
2n−1

n−2

θ .

Taking into account the fact that vθ is a critical point of JK,H , and in particular that J ′
K,H

(vθ)[vθ] = 0,

it turns out that

n(n− 1)

∫

Σθ

v2θ + 2
(n− 1)

tan θ

∫

∂Σθ

v2θ −K

∫

Σθ

v2
∗

θ − 2H(n− 1)

∫

∂Σθ

v
2n−1

n−2

θ = 0.

Hence it follows that

JK,H(vθ) =

(

1

2
− 1

2∗

)

K

∫

Σθ

v2
∗

θ +H

∫

∂Σθ

v
2n−1

n−2

θ .

Setting

F (θ) =

∫ θ

0

sinn−1 s ds; θ ∈ [0, π],

one immediately checks that

|Σθ| = ωn−1 · F (θ); |∂Σθ| =
d

dθ
|Σθ| = ωn−1 sin

n−1 θ.

So, taking into account formula (24), JK,H(vθ) can be written as

(27) JK,H(vθ) =
ωn−1

n
KF (θ) ·

(

n(n− 1)

K

)
n
2

+H ωn−1 sin
n−1 θ ·

(

n(n− 1)

K

)
n−1
2

.
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Finally, using equation (23) we deduce

(28) JK,H(vθ) = ωn−1

(

n(n− 1)

K

)
n
2 −1

[

(n− 1)F (θ) + cos θ sinn−2 θ
]

.

Interior blow up energy

Solutions of (25) are critical points of the functional JK : H1(Sn) → R defined by

JK(v) =
1

2

∫

Sn

(

4(n− 1)

n− 2
|∇v|2 + n(n− 1)v2

)

− K

2∗

∫

Sn

|v|2∗ , v ∈ H1(Sn).

If v̂ is the constant given by formula (26), then its energy is

JK(v̂) =
1

2
n(n− 1)

∫

Sn

v̂2 − 1

2∗

∫

Sn

Kv̂2
∗

.

Since v̂ is a critical point of JK it turns out that the following relation must be also satisfied

n(n− 1)

∫

Sn

v̂2 −
∫

Sn

Kv̂2
∗

= 0.

Hence it follows that

(29) JK(v̂) =

(

1

2
− 1

2∗

)
∫

Sn

Kv̂2
∗

=
ωn

n
(n(n− 1))

n
2 (K)−

n−2
2 .

Comparison of energies

We conclude this section by proving that, for the same value of K, the interior blow up energy is always
greater than the boundary blow up energy, namely we show that

(30) JK,H(vθ) < JK(v̂).

From equation (23) and from the obvious relation

ωn = ωn−1 F (π),

one deduces that

(31) JK(v̂) = ωn−1

[

(n− 1) tan2−n θ F (π)
]

H
2−n

.

Taking into account (23) and (27), showing inequality (30) is equivalent to prove

(32) G(θ) := F (θ) +
1

n− 1
sinn−2 θ cos θ < F (π).

Since it is clearly G(π) = F (π), we are done if we prove that G′(θ) > 0 for all θ ∈ (0, π). There holds

G′(θ) = sinn−1 θ +
1

n− 1

(

(n− 2) sinn−3 θ cos2 θ − sinn−1 θ
)

.

With straightforward computations one finally finds that

G′(θ) =
n− 2

n− 1
sinn−3 θ ·

(

sin2 θ + cos2 θ
)

,

hence equation (32) is proved.
We also note that in the case when H = 0, the boundary blow up energy is exactly one half of the

interior blow up energy, see formulas (28) and (29).
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Remark 3.1 We are particularly interested in the boundary blow up case for n = 3. In this situation,
using elementary trigonometric formulas, the explicit expression of JK,H(vθ) becomes

JK,H(vθ) = 4π

√

6

K

(

π

2
− arctan

(

H

√

6

K

))

.

The above function will play a crucial role in the blow up analysis performed later.

4 Blow up analysis: definitions and preliminary results

In this section we recall the definition of isolated and isolated simple blow up due to R. Schoen, [34]; we
also collect some useful tools and known results.

For a smooth bounded domain Ω ⊆ R
n set Ω+ = Ω∩ {xn > 0}, ∂1Ω = Ω∩ ∂Rn+ and ∂2Ω = ∂Ω∩R

n
+,

hence ∂Ω+ = ∂1Ω ∪ ∂2Ω. We also assume that ∂Ω and ∂Rn+ intersect transversally, so that ∂Ω ∩ ∂Rn+ is
a smooth manifold of dimension n− 2. Let ν denote the unit exterior normal to Ω, and let ν′ denote the
exterior unit normal of ∂1Ω in ∂Rn+. Given w : ∂Rn+ → R, the expression ∇′w stands for the gradient in

R
n−1. If w is defined on Ω+, the same symbol will be used for the gradient of the restriction of w to ∂1Ω.

In the following Bσ(x) denotes the open ball in R
n of radius σ centered at x; we just write Bσ if x = 0.

We will consider equation (14) restricted to Ω, or equation (15) when the exponent p is converging
to n+2

n−2 . For this reason we will not keep the functions K and H fixed, but we will allow them to vary;
more precisely, we consider positive solutions ui of the sequence of problems

(33)

{

−∆ui =
n−2

4(n−1)Ki(x)u
pi
i , in Ω+;

− ∂ui

∂xn
= n−2

2 Hi(x
′)u

pi+1

2

i , on ∂1Ω.

We are interested in the case where the supremum of the functions ui is tending to infinity, trying to
give a precise characterization of the blow up phenomenon, as in [34] and [29]. A typical ingredient of
blow up analysis of scalar curvature equations is a Pohozahev type identity, which we provide in the next
Lemma.

Lemma 4.1 Let p ≥ 1, let Ω ⊆ R
n be as above, and let K ∈ C1(Ω+), H ∈ C1(∂1Ω). Assume u ∈ C2(Ω+)

is a positive solution of

(34)

{

−∆u = n−2
4(n−1)K(x)up, in Ω;

− ∂u
∂xn

= n−2
2 H(x′)u

p+1
2 , on ∂1Ω.

Then there holds

n− 2

4(n− 1)

(

n− 2

2
− n

p+ 1

)
∫

Ω+

Kup+1 +
n− 2

2

(

n− 2

2
− 2(n− 1)

p+ 3

)
∫

∂1Ω

H u
p+3
2

=
n− 2

4(n− 1)

1

p+ 1

∫

Ω+

(x · ∇K)up+1 +
n− 2

p+ 3

∫

∂1Ω

(x′ · ∇′H)up+1(35)

+

∫

∂2Ω

B − n− 2

4(n− 1)

∫

∂2Ω

K up+1 x · ν − n− 2

p+ 3

∫

∂(∂1Ω)

H u
p+3
2 x′ · ν′

where

B = B(x, u,∇u) = ∂u

∂ν
x · ∇u+

n− 2

2
u
∂u

∂ν
− |∇u|2

2
x · ν.
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Proof. Multiply the first equation in (34) by
∑n

j=1 xj
∂u
∂xj

and integrate by parts: we obtain

n− 2

4(n− 1)

(

n− 2

2
− n

p+ 1

)
∫

Ω+

Kup+1 − n− 2

4(n− 1)

1

p+ 1

∫

Ω+

(x · ∇K)up+1

=

∫

∂2Ω

B − n− 2

4(n− 1)

∫

∂2Ω

K up+1 x · ν.

Integrating by parts on ∂1Ω, we deduce

∫

∂1Ω

H u
p+1
2 x′ · ∇′u = −2

n− 1

p+ 1

∫

∂1Ω

u
p+3
2 H − 2

p+ 1

∫

∂1Ω

u
p+3
2 x′ · ∇′H +

∫

∂(∂1Ω)

x′ · ν′H u
p+3
2 ,

Using the second equation in (34), we easily reach the conclusion.

We have also the following Proposition, which proof is elementary.

Proposition 4.2 Suppose the function h : (Bσ)+ \ {0} → R is of the form

h(x) = a |x|2−n + b(x),

with a > 0 and b(x) of class C1 on (Bσ)+. Then there holds

lim
σ→0

∫

∂2Bσ

B(x, h,∇h) = − (n− 2)2

4
ωn−1 a b(0).

Let Ω ⊆ R
n be as above, let 1 < pi ≤ n+2

n−2 , pi → n+2
n−2 , and let τi = n+2

n−2 − pi, so that τi → 0. Let

{Ki}i ⊆ C1(Ω+), {Hi}i ⊆ C1(∂1Ω) satisfy for some constant A1 > 0

(36)
1

A1
≤ Ki(x) ≤ A1, −A1 ≤ Hi(x

′) ≤ A1; for all x ∈ Ω+, all x
′ ∈ ∂1Ω, and all i.

For every i, let also ui ∈ C2(Ω+) be a positive solution of problem (33).

Definition 4.3 The point x ∈ Ω+ ∪ ∂1Ω is called a blow up point for {ui}i if there exists a sequence of
points xi ∈ Ω+ ∪ ∂1Ω tending to x such that ui(xi) → +∞.

Definition 4.4 Let x ∈ Ω+ ∪ ∂1Ω, and let {xi} be a sequence of local maxima of ui such that xi → x

and ui(xi) → +∞. The point x is called an isolated blow up point if there exist 0 < r < dist(x, ∂2Ω)
and C > 0 such that

ui(x) ≤ C |x− xi|−
2

pi−1 , |x− xi| ≤ r, x ∈ Ω+.

If x is a blow up point for {ui}i we will write for brevity xi → x meaning that {xi}i is a sequence of
points as in Definition 4.4. It is possible to prove, using Proposition 5.1 and Lemma 4.6 below, that the
points xi having the properties in Definition 4.4 are uniquely determined, provided the functions Ki and
Hi in (33) are uniformly bounded in C1 and C2 norm respectively, see [25].

If xi → x is a simple blow up for {ui}i and if r is given by Definition 4.4 we define

(37) ui(r) =
1

|∂Br(xi) ∩ Ω+|

∫

∂Br(xi)∩Ω+

ui, r ∈ (0, r),

and
ũi(r) = r

2
pi−1 ui(r), r ∈ (0, r).
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Definition 4.5 The isolated blow up point xi → x is called isolated simple if there exists ̺ ∈ (0, r) such
that for large i there holds

(38) ũi has precisely one critical point in (0, ̺).

If x is a blow up point, we will call it interior blow up point if x ∈ Ω+, or boundary blow up point if
x ∈ ∂1Ω.

Another fundamental tool for the blow up analysis is the Harnack inequality; we recall the following
version from [25], Appendix A.

Lemma 4.6 (Harnack-type inequality) Let {Ki} ∈ L∞(Ω+) and {Hi} ∈ L∞(∂1Ω) satisfy (36). Assume
also that {ui}i satisfy (33) with pi ≥ p0 > 1, and let xi → x be an isolated blow up point. Then for every
0 < r < 1

4r the following Harnack-type inequality holds

sup
x∈(B2r)+(xi)\(Br/2)+(xi)

ui(x) ≤ C inf
x∈(B2r)+(xi)\(Br/2)+(xi)

ui(x),

where C is a positive constant depending only on n, A1 and C.

For the blow up analysis of the first equation in (33) we mainly refer to [29], where the following proposition
regarding the interior blow up points is proved.

Proposition 4.7 Assume Ω ⊆ R
3 and that {Ki}i is uniformly bounded in C1(Ω). Assume that pi ≤ n+2

n−2 ,

pi → n+2
n−2 , and {ui}i are solutions of

−∆ui =
n− 2

4(n− 1)
Ki u

pi
i , ui > 0 in Ω.

Then, if x ∈ Ω is a blow up point for ui, it is also an isolated simple blow up point. Moreover there exists
an harmonic function b : B̺/2(x) → R such that, passing to a subsequence

(39) ui(xi)ui(x) → a |x− x|2−n + b(x), in C2
loc(B̺/2 \ {x}),

where a = (4n(n− 1))
n−2
2 (limiKi(xi))

2−n
2 , and where ̺ is given in Definition 4.5.

5 Behavior of isolated simple blow ups

In this section we perform the study of isolated simple blow ups of equation (33). The situation of interior
blow up has been treated in [29], hence we are reduced to consider the case in which the blow up point x
is in ∂1Ω. We will refer sometimes to the paper [25], where it is studied equation (33) when Ki and Hi

are converging to constant functions.

Proposition 5.1 Assume {Ki}i ⊆ C1(Ω+) and {Hi}i ⊆ C2(∂1Ω) satisfy (36) for some A1 > 0, and
satisfy also the condition

(40) ‖∇Ki‖C(Ω+) ≤ A2, ‖∇′Hi‖C1(∂1Ω) ≤ A2,

for some A2 > 0. For every i, let ui be a positive solution of (33), and let xi → x′ ∈ ∂1Ω be an isolated
blow up point for {ui}i. Let also x′i denote the projection of xi onto ∂1Ω. Then, given Ri → +∞ and
εi → 0+, after passing to a subsequence of {ui}i (still denoted with {ui}i) we have














ri := ui(xi)
−

pi−1

2 Ri → 0 as i→ +∞,
∥

∥

∥

∥

ui(xi)
−1ui(ui(xi)

−
pi−1

2 x+ xi)−
(

λ
(1+kλ2(|x′|2+|xn+t|2)

)
n−2
2

∥

∥

∥

∥

C2

((

ui(xi)
pi−1

2 (Ω+−xi)

)

∩B2Ri

) ≤ εi,
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where k = (4n(n− 1))−1Ki(x
′
i), while λ, t satisfy 2kλt = Hi(x

′
i) and

(41) λ =

{

1 + kλ2t2 if Hi(x
′
i) ≥ 0,

1 if Hi(x
′
i) < 0.

Proof. Consider the functions

wi(x) = ui(xi)
−1 ui

(

ui(xi)
−

pi−1

2 x+ xi

)

, x ∈ ui(xi)
pi−1

2 (Ω+ − xi).

It follows immediately that wi(0) = 1 for all i and that 0 is a local maximum point for wi. Moreover
from the assumption of isolated blow up we have

wi(x) ≤ C |x|−
pi−1

2 , x ∈ ui(xi)
pi−1

2 (Ω+ − xi) ∩ {|x| < ui(xi)
pi−1

2 r},

where r is given in Definition 4.4.
The function wi is a solution of the problem







−∆wi(x) =
n−2

4(n−1)Ki

(

ui(xi)
pi−1

2 x+ xi

)

wi(x)
pi , in ui(xi)

pi−1

2 (Ω+ − xi);

− ∂wi

∂xn
(x) = n−2

2 Hi

(

ui(xi)
pi−1

2 x+ xi

)

ui(x)
pi+1

2 , on ui(xi)
pi−1

2 (∂1Ω− xi).

Denoting by xi,n the n-th component of xi and setting Ti = ui(xi)
pi−1

2 xi,n, two cases may occur, namely

Ti → +∞, or Ti → T ∈ R.

In the latter one, we can use (36), (40) and the results in [1] to prove that the functions wi converge up
to subsequence, and then one can conclude as in [25], Proposition 1.4.

Hence it is sufficient to exclude the first case. In order to do this, define the functions

ξi(x) = x
2

pi−1

i,n ui(xi + xi,n x), x ∈ Ti (Ω+ − xi).

First, letting Ωi = Ti (Ω+ − xi), it is clear that Ωi are relatively open sets which invade the half space
R
n
1 := {x ∈ R

n : xn > −1}. Then, since we are supposing by contradiction that Ti → +∞, 0 is an
interior blow up point for the functions ξi, so from Proposition 4.7 it follows that 0 is an isolated simple
blow up point. Using Lemma 4.6 and the inequality

ξi(x) ≤ C |x|−
pi−1

2 , x ∈ T
pi−1

2
i (Ω+ − xi) ∩ {|x| < T

pi−1

2
i r},

the convergence in (39) can be extended to the whole R
n
1 \ {0}. Namely one has

ξi(0) ξi(x) → h(x) in C2
loc(R

n
1 \ {0}),

where h(x) is a non-negative harmonic function in R
n
1 \ {0} singular at 0 and satisfying

(42)
∂h

∂xn
= 0, on ∂Rn1 .

By equation (42) and by the Schwartz’s Reflection Principle, the function h possesses an harmonic
extension to the set R

n \ {0, 0̃}, where 0̃ is the symmetric point of 0 with respect to the plane ∂Rn1 .
By uniqueness of harmonic extensions, this must coincide with the symmetric prolongation of h through
∂Rn1 . Hence the positivity of h implies that h(x) = a|x|2−n +A+ o(|x|) for x close to 0 , where a,A > 0.
Reasoning as in Proposition 3.1 of [29], one can reach a contradiction.

Next, we establish the counterpart of Proposition 4.7 for blow up points in ∂1Ω.
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Proposition 5.2 Let Ω = B2, suppose {Ki}i ⊆ C1(Ω+), {Hi}i ⊆ C2(∂1Ω) satisfy conditions (36) and
(40) for some A1, A2 > 0. Suppose that for every i, ui satisfies (33) and that xi → 0 is an isolated simple
blow up with

|x− xi|
2

pi−1 ui(x) ≤ A3, for all x ∈ Ω+.

Then there exists some positive constant C = C(A1, A2, A3, n, ρ) such that

(43) ui(x) ≤ Cui(xi)
−1|x− xi|2−n for all x ∈ (B1(xi))+.

Furthermore, there exists b : (B1)+ satisfying

{

−∆b = 0 in (B1)+;

− ∂b
∂yn

= 0 on B1 ∩ ∂Rn+,

such that
ui(xi)ui(x) → a |x|2−n + b, in C2

loc

(

(B1)+ \ {0}
)

.

The coefficient a is given by

(44) a =







(4n(n− 1))
n−2
2 (limiKi(x

′
i))

2−n
2 if limiHi(x

′
i) < 0;

limi

(

Ki(x
′

i)
4n(n−1) +

Hi(x
′

i)
2

4

)
2−n
2

if limiHi(x
′
i) ≥ 0,

where x′i is the projection of xi onto ∂1Ω.

Before proving Proposition 5.2, we need some preliminary Lemmas.

Lemma 5.3 Under the hypotheses of Proposition 5.2, except for condition (40), there exist δi > 0,

δi = O(R
−2+o(1)
i ) such that

ui(x) ≤ C ui(xi)
−λi |x− xi|2−n+δi , for Ri ui(xi)

−
pi−1

2 ≤ |x− xi| ≤ 1,

where λi = (n− 2− δi)
pi−1
2 − 1.

Proof. It follows from [25], pages 511-513.

Lemma 5.4 Under the hypotheses of Proposition 5.2 there holds

τi = O(ui(xi)
− 2

n−2+o(1)), as i→ +∞

and therefore
ui(xi)

τi = 1 + o(1), as i→ +∞.

Proof. Let B(x, u,∇u) be the function defined in Lemma 4.1. By Lemma 5.3, Proposition 5.1 and
standard elliptic theories we have

∫

∂2B1

B(x, ui,∇ui) = O
(

ui(xi)
−2+o(1)

)

;

∫

∂2B1

Ki |ui|pi+1 = O
(

ui(xi)
−pi−1+o(1)

)

;

∫

∂(∂1B1)

Hi u
pi+3

2
i x′ · ν′ = O

(

ui(xi)
−

pi+3

2 +o(1)
)

.
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Furthermore, since the gradients of Ki and Hi are uniformly bounded, one can deduce from Lemma 5.3,
Proposition 5.1 and a rescaling argument that

∫

(B1)+

u
p1+1
i x · ∇Ki = O

(

ui(xi)
− 2

n−2+o(1)
)

;

∫

∂1B1

u
pi+3

2

i x′ · ∇′Hi = O
(

ui(xi)
− 2

n−2+o(1)
)

.

On the other hand, using again Lemma 5.3 and Proposition 5.1 we have also

n− 2

4(n− 1)

(

n

pi + 1
− n− 2

2

)
∫

(B1)+

Ki u
pi+1
i +

n− 2

2

(

n− 2

2
− 2

n− 1

pi + 3

)
∫

∂1B1

u
pi+3

2
i Hi

= τi
(n− 2)3

16(n− 1)

(

1

n
Ki(x

′
i)

∫

R
n
+

U
2∗

λ +Hi(x
′
i)

∫

∂Rn
+

U
2n−1

n−2

λ + o(1)

)

, i→ +∞.

Here the function Uλ is given by formula (19) with K(x′) (resp. H(x′)) replaced by Ki(x
′
i) (resp. Hi(x

′
i));

we note that the values of the above integrals do not depend on the parameter λ.
Using the relation I ′Ki(x′

i),Hi(x′

i)
(Uλ)[Uλ] = 0, it follows that

1

n
Ki(x

′
i)

∫

R
n
+

U
2∗

λ +Hi(x
′
i)

∫

∂Rn
+

U
2n−1

n−2

λ = IlimiKi(x′

i),limiHi(x′

i)
(Uλ) + o(1) > α > 0,

where α is a positive constant depending only on n, A1 and A2. Then the conclusion follows from equation
(35) and the above estimates.

Lemma 5.5 Under the same assumptions of Proposition 5.2 there holds

lim
i
ui(xi)

∫

∂2B1

∂ui

∂ν
< 0.

Proof. Using the divergence formula and (33), we can write

(45) ui(xi)

∫

∂2B1

∂ui

∂ν
= ui(xi)

(

n− 2

4(n− 1)

∫

(B1)+

Kiu
pi
i − n− 2

2

∫

∂1B1

Hiu
pi+1

2

i

)

.

From Lemma 5.3 we deduce that
∫

(B1)+\(Bri
(xi))+

u
pi
i ≤ C

∫

(B1)+\(Bri
)+

(

ui(xi)
−λi |y − xi|2−n+δi

)pi

≤ C R
n−pi(n−2−δi)
i ui(xi)

−1+O(τi) = o(1)ui(xi)
−1.

In the same way we have that
∫

∂1B1\∂1Bri
(xi)

u
pi+1

2
i = o(1)ui(xi)

−1.

Hence, using Proposition 5.1 and a rescaling argument, choosing εi → 0 sufficiently fast, formula (45)
can be written as

ui(xi)

∫

∂2B1

∂ui

∂ν
=

n− 2

4(n− 1)
lim
i
Ki(x

′
i)

∫

(BRi
)+

U
n+2
n−2

λ − n− 2

2
lim
i
Hi(x

′
i)

∫

∂1BRi

U
n

n−2

λ + o(1),

where λ satisfies equation (41). Again from the divergence theorem, we have

lim
i

(

n− 2

4(n− 1)
Ki(x

′
i)

∫

(BRi
)+

U
n+2
n−2

λ − n− 2

2
Hi(x

′
i)

∫

∂1BRi

U
n

n−2

λ

)

= lim
R→+∞

∫

∂2BR

∂Uλ

∂ν
< 0.
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This concludes the proof.

Proof of Proposition 5.2 Inequality (43) for |x − xi| ≤ ri is an immediate consequence of Lemma
5.3 and Lemma 5.4. We now prove it for ri ≤ |x − xi| ≤ 1. Let ui be given by formula (37) and set
ξi(x) = ui(1)ui(x). It is easy to see that ξi satisfies

{

−∆ ξi =
n−2

4(n−1) ui(1)
pi−1Ki(x) ξ

pi
i , in (B2)+;

− ∂ξi
∂xn

= n−2
2 ui(1)

pi−1

2 Hi(x
′) ξ

pi+1

2

i , on ∂1B2.

Reasoning as in the proof of Proposition 5.1 it follows that, passing to a subsequence, {ξi}i converges in
C2
loc((B2)+ \ 0) to some positive function h ∈ C2

loc((B2)+ \ 0) satisfying
{

−∆h = 0, in (B2)+;

− ∂h
∂xn

= 0, on ∂1B2.

Moreover, it follows from condition (38) that h must be singular at 0. Reflecting the function h evenly
to B2 and reasoning as above, we deduce that h must be of the form

h(x) = a1 |x|2−n + b(x), x ∈ (B2)+ \ 0,

where a1 > 0, and b ∈ C2((B2)+) satisfies

∆b(x) = 0, x ∈ (B2)+;
∂b

∂xn
(x′) = 0, x′ ∈ ∂1B2.

Now we can prove (43) for |x− xi| = 1, namely

(46) ui(1) ≤ C ui(xi)
−1.

To do this we observe that, by the harmonicity of b(y) we have

∫

∂2B1

∂b

∂ν
=

∫

∂1B1

∂b

∂xn
+

∫

(B1)+

(∆b) = 0,

and so we deduce that

lim
i
u1(1)

−1

∫

∂2B1

∂ui

∂ν
=

∫

∂2B1

∂h

∂ν
= a1

∫

∂2B1

∂|x|2−n
∂ν

< 0.

Hence formula (46) follows from Lemma 5.5. The inequality for a general x with ri ≤ |x−xi| ≤ 1 follows
from a rescaling argument, as in [29] page 340. The value of the constant a in (44) can be computed
multiplying the first equation in (33) by ui, integrating by parts, and using Proposition 5.1.

We collect now a couple of technical lemmas which will be needed later.

Lemma 5.6 Suppose that the hypotheses of Proposition 5.2 hold true. Then we have the following
estimates

∫

(Bri
(xi))+

|x− xi|s ui(x)pi+1 = O
(

ui(xi)
− 2s

n−2

)

, 0 < s < n;

∫

(B1(xi))+\(Bri
(xi))+

|x− xi|s ui(x)pi+1 = o
(

ui(xi)
− 2s

n−2

)

, 0 < s < n.

∫

∂1Bri
(xi)

|x′ − x′i|s ui(x′)
pi+3

2 = O
(

ui(xi)
− 2s

n−2

)

, 0 < s < n− 1;
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∫

∂1B1(xi)\∂1Bri
(xi)

|x′ − x′i|s ui(x′)
pi+3

2 = o
(

ui(x
′
i)

− 2s
n−2

)

, 0 < s < n− 1;

∫

∂1B1(xi)

|x′ − x′i|s ui(x′)pi+1 = O
(

ui(xi)
−2n−1

n−2 log ui(xi)
)

, s = n− 1.

Proof. The proof is a simple consequence of Proposition 5.1 and Proposition 5.2.

Lemma 5.7 Suppose that n = 3 and that the hypotheses of Proposition 5.2 hold true. Then we have

τi = O(ui(xi)
−2).

Proof. It is sufficient to use (35) and Lemma 5.6.

6 Blow up points are isolated simple and at the boundary

In this section we show that blow up points of equation (33) are isolated simple and that the case of interior
blow up can be ruled out. We will use the same terminology about blow ups for describing both functions
on Sn+ or functions defined on some domain Ω+ ⊆ R

n
+, having in mind the natural transformation (13)

induced by the stereographic projection.

Proposition 6.1 Let n = 3, let Ω be as above, suppose that {Ki} and {Hi} satisfy conditions (36) and
(40), that for every i ui is a positive solution of (33) and that x′ ∈ ∂1Ω is an isolated blow up point for
{ui}. Then x′ is also an isolated simple blow up point.

Proof. The proof follows that of Proposition 3.1 in [25], combined with some argument in [29] page
353, and Lemma 5.6. We omit the details.

Proposition 6.2 Let Ω, {Ki}, {Hi}, {ui} be as in Proposition 6.1, and let x′ be an isolated simple blow
up point for {ui}. Suppose also that {Ki} are uniformly bounded in C2(Ω+). Let ϕi : ∂1B1 → R be the
sequence of functions defined by

ϕi(x
′) = 4π

√

6

Ki(x′)

(

π

2
− arctan

(

Hi(x
′)

√

6

Ki(x′)

))

.

Let also x′i denote the projection of xi onto ∂1B1. Then there holds

|∇′ϕi(x
′
i)| ≤ O(ui(xi)

−2), as i→ +∞.

Proof. Choose a test function η ∈ C∞(B1) which satisfies

η(x) = 1, x ∈ B1/4; η(x) = 0, x ∈ B1 \B1/2.

Multiplying equation (33) by η ∂ui

∂xj
, j = 1, 2, we obtain

∫

(B1)+

(−∆ui)η
∂ui

∂xj
=

1

8

∫

(B1)+

Ki u
pi
i η

∂ui

∂xj
.

Integrating by parts we deduce

∫

(B1)+

Ki u
pi
i η

∂ui

∂xj
= − 1

pi + 1

∫

(B1)+

u
pi+1
i

(

η
∂Ki

∂xj
+Ki

∂η

∂xj

)

.
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and also
∫

(B1)+

(−∆ui) η
∂ui

∂xj
=

1

pi + 3

∫

∂1B1

u
pi+3

2

i

(

η
∂Hi

∂xj
+Hi

∂η

∂xj

)

− 1

2

∫

(B1)+

|∇ui|2
∂η

∂xj

+

∫

(B1)+

∇ui
∂ui

∂xj
∇η.

From the above equations, Proposition 5.2, and the fact that ∇η has support in (B1/2)+ \ (B1/4)+, we
obtain

1

pi + 1

∫

(B1)+

u
pi+1
i η

∂Ki

∂xj
+

1

pi + 3

∫

∂1B1

u
pi+3

2
i η

∂Hi

∂xj
= O(ui(xi)

−2).

Using the uniform bounds on the second derivatives of Ki and Hi, and taking into account Lemmas 5.6
and 5.7 we deduce

(47)
1

6

∂Ki

∂xj
(x′i)

∫

(B1)+

u
pi+1
i η +

1

8

∂Hi

∂xj
(x′i)

∫

∂1B1

u
pi+3

2

i η = O(ui(xi)
−2).

Let Uλ be the function given in formula (19) with K(x′) replaced by Ki(x
′
i) and H(x′) replaced by

Hi(x
′
i). Using Proposition 5.1 and Lemma 5.7, equation (47) becomes

(48)
1

6

∂Ki

∂xj
(x′i)

∫

R
n
+

U
6

λ +
1

8

∂Hi

∂xj
(x′i)

∫

∂Rn
+

U
4

λ = O(ui(xi)
−2).

By Remark 3.1, it turns out that

ϕi(x
′
i) = IKi(x′

i),Hi(x′

i)
(Uλ) = 4

∫

R
n
+

|∇Uλ|2 −
1

6
Ki(x

′
i)

∫

R
n
+

U
6

λ −Hi(x
′
i)

∫

∂Rn
+

U
4

λ.

Differentiating with respect to x′i, and taking into account that I ′Ki(x′

i),Hi(x′

i)
(Uλ) = 0, we deduce that

∂ϕi

∂y′j
(x′i) =

∂IKi(·),Hi(·)

∂y′j
|x′

i
(Uλ) + IKi(·),Hi(·)

(

∂Uλ(·)(x, ·)
∂y′j

|x′

i

)

=
1

6

∂Ki

∂xj
(x′i)

∫

R
n
+

U
6

λ +
1

8

∂Hi

∂xj
(x′i)

∫

∂Rn
+

U
4

λ.

In the above formula the boundary point y′i is considered as a parameter on which IKi,Hi and Uλ depend,
through the functions Ki and Hi. The conclusion then follows from equation (48) and the last expression.

Remark 6.3 We note that if {Ki} is just bounded in C1 norm, the above proof yields anyway ∇′ϕi(x
′
i) →

0 as i→ +∞.

Now the local blow up analysis will be applied to equation (7) on the whole half sphere. We begin with
the following Proposition which can be proved as in [25] pages 499-502, with minor modifications.

Proposition 6.4 Assume K ∈ C1(Sn+) and H ∈ C2(∂Sn+) satisfy

(49)
1

A1
≤ K(x) ≤ A1, ∀x ∈ Sn+; ‖K‖C1(Sn

+) ≤ A2;

(50) −A1 ≤ H(x′) ≤ A1, ∀x′ ∈ ∂Sn+; ‖K‖C2(∂Sn
+) ≤ A2.

Then, given any R ≥ 1 and any 0 < ε < 1, there exist positive constants δ0, C0, C1, depending only on n,
ε,R, A1 and A2 such that, for all τ ≤ δ0, and for all the solutions v of equation (33) with supSn

+
v ≥ C0,

the following properties hold true. There exist {q1, . . . , qN} ⊆ Sn+, with N ≥ 1, such that
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i) each qj is a local maximum for v and

Brj (q
j) ∩Brl(ql) = ∅, for j 6= l,

where rj = Rv(qj)−
p−1
2 ;

ii) either dist(qj , ∂Sn+) > rj and

(a)

∥

∥

∥

∥

∥

v(qj)−1 v
(

v(qj)−
p−1
2 x

)

−
(

1

1 + kj |x|2
)

n−2
2

∥

∥

∥

∥

∥

C2(B2R)

< ε,

or dist(qj , ∂Sn+) < rj and

(b)

∥

∥

∥

∥

∥

∥

v(qi)
−1 v

(

v(qj)−
p−1
2 x

)

−
(

λj

1 + kjλ
2
j (|x′|2 + |xn + tj |2)

)
n−2
2

∥

∥

∥

∥

∥

∥

C2((B2R)+)

< ε,

In the above two formulas it is kj = (4n(n− 1))−1K(qj), while λj and tj satisfy 2kjλjtj = H(qj),
with

λj =

{

1 + kjλ
2
j t

2
j , if H(qj) ≥ 0;

1 if H(qj) < 0.

The function v is identified with its image through the map ι, the projection being suitably chosen
depending on the point qj.

iii) |qj − ql| 2
p−1 v(ql) ≥ C0, for j < l, while v(q) ≤ C1 dist

(

q, {q1, . . . , qN}
)− 2

p−1 for all q ∈ Sn+.

Properties (a) and (b) in assertion ii) above distinguish, roughly, the cases of interior and boundary blow
ups. Property iii) implies that, if the mutual distance of the points {qj} is bounded from below along
some sequence of solutions, then blow ups are isolated. This fact is the content of the next Proposition.

Proposition 6.5 Suppose that K ∈ C1(Sn+) and H ∈ C2(∂Sn+) satisfy conditions (49) and (50) respec-
tively. Then, given any R ≥ 1, and any 0 < ε < 1, there exist positive constants δ0, δ1 and C0 such that,
for all τ ≤ δ0, and for all the solutions v of equation (7) with supSn

+
v ≥ C0 the following property holds

true. If {q1, . . . , qN} ⊆ Sn+ are the points given by Proposition 6.4, then there holds

min
l 6=j

|ql − qj | ≥ δ1.

Proof. The proof is very similar to that of Proposition 1.2 in [25], and is based on the use of formula
(35) and on a rescaling argument. The only difference is that K and H here are non constant, but one
can use conditions (49), (50), Proposition 5.1 and Lemma 5.6.

Proposition 6.6 Suppose that {Ki}i ⊆ C1(S3
+) and {Hi}i ⊆ C2(∂S3

+) satisfy assumptions (49) and
(50) uniformly in i. Suppose that {vi}i is a sequence of positive solutions of (7); then there are no
interior blow-ups for {vi}i.

Proof. By Propositions 4.7, 6.1, 6.4, 6.5 we know that both interior and boundary blow ups are isolated
simple and hence isolated. As a consequence, by Definition 4.4, the number of blow up points is bounded
above by a constant depending on A1 and A2 only.

Suppose by contradiction that x ∈ S3
+ is an interior blow-up point for vi. Then, it follows from the

Harnack inequality, the fact that there is just a finite number of blow-up points and Propositions 4.7, 5.2
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that for some finite set {q1, . . . , qN} ⊆ R3
+, with q

1 ∈ R
3
+, and some harmonic function b : R3

+ → R, the
following holds

ui(xi)ui(x) → a1 |x− q1|−1 +

N
∑

j=2

aj |x− qj |−1 + b(x), in C2
loc(R

3

+ \ {q1, . . . , qN}).

Here aj > 0 for all j, ui = ι vi, and xi is the local maximum point of ui converging to q
1 with ui(xi) → +∞;

for simplicity we can suppose that the pole of the stereographic projection is not a blow up point for vi.
It follows from the Liouville Theorem and from ∂b

∂x3
= 0 on ∂R3

+ that b is constant on R
3
+; reasoning

as above we deduce

h(x) = a0 |x− x|−1 + b+O(|x − q1|), for x close to q1,

where b > 0. Let σ > 0 be such that Bσ(q
1) ⊆ R

3
+ \ {q2, . . . , qN}; as for (35), the function ui satisfies

1

8

(

1

2
− 3

pi + 1

)
∫

Bσ(q1)

Kiu
pi+1
i − 1

8(pi + 1)

∫

Bσ(q1)

x · ∇Ki u
pi+1
i +

1

8

∫

∂Bσ(q1)

Ki u
pi+1
i x · ν

=

∫

∂Bσ(q1)

B(x, ui,∇ui).(51)

The estimates of the above terms are completely analogous to the corresponding ones in boundary blow
up analysis, see [29]. Hence, using also Proposition 4.2, one deduces that

(

1

2
− 3

pi + 1

)
∫

Bσ(q1)

Kiu
pi+1
i =

τi

4

(

lim
i
Ki(xi)

∫

R3

U6
1 + o(1)

)

;

∫

Bσ(q1)

x · ∇Ki(x)u
pi+1
i =

∫

Bσ(q1)

x · ∇Ki(xi)u
pi+1
i +

∫

Bσ(q1)

x · ∇(Ki(x)−Ki(xi))u
pi+1
i = o

(

ui(xi)
−2
)

;

∫

∂Bσ(q1)

Ki u
pi+1
i = o

(

ui(xi)
−2
)

;

∫

∂Bσ(q1)

B(x, ui,∇ui) = −π ui(xi)−2a1 b+ o
(

ui(xi)
−2
)

,

for σ small. Using the last estimates and (51) we reach a contradiction. This concludes the proof.

Remark 6.7 As anticipated in the Introduction, the fact that there are no interior blow ups for equation
(7) is strongly related to the fact that there are no multiple blow ups for the scalar curvature equation on
S3. The proof relies on the above estimate

∫

Bσ

x · ∇Kiu
p+1
2

i = o
(

ui(xi)
−2
)

.

In our case, the corresponding term
∫

(Bσ)+
x · ∇Kiu

p+1
2

i may be of order ui(xi)
−2 (indeed this always

happens if (Ki, Hi) ≡ (K,H) ∈ A, see the proof of Theorem 1.2) and the above proof breaks down; this
is the reason of the possible presence of multiple blow ups. See Proposition 8.4.

We can summarize the above results with the following proposition.

Proposition 6.8 Suppose that {Ki}i ⊆ C1(S3
+) and that {Hi}i ⊆ C2(∂S3

+) satisfy (49) and (50) uni-
formly in i. Suppose that {vi}i is a sequence of positive solutions of

{

−8∆vi + 6vi = Ki(x)v
pi
i , in S3

+;

2∂vi∂ν = Hi(x
′)v

pi+1

2

i , on ∂S3
+.
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with supi vi = +∞. Then the functions {vi} blow up at a finite number of points of ∂S3
+. These blow ups

are isolated simple and their distance is bounded below by a positive constant depending on miniKi, the
C1 bounds of {Ki}i and the C2 bounds of {Hi}i. As a consequence the number of blow ups is bounded
above by a constant depending only on these numbers. If (Ki, Hi) = (K,H) for some fixed functions K
and H, then the blow up points are critical for ϕ.

7 Proof of Theorem 1.1

Consider the subcritical approximation (7) of equation (3), with p < 5. From the discussion in Section 2,
we are reduced to find solutions of the equivalent problem (15) in the half-space. We can choose as pole
of the projection the point −q, where q is a global minimum point of ϕ, as in the statement of Theorem
1.1. In this way the image of q under the projection is the origin in R

3.
Solutions of (15) can be found as critical points of the Euler functional Iτ : D1,2(R3

+) → R defined as

Iτ (u) =
1

2

∫

R
3
+

|∇u|2− 1

6− τ

∫

R
3
+

W τ (x)K(x)|u|6−τ − 4

4− τ

∫

∂Rn
+

W
τ
2 (x′)H(x′)|u|4−τ , u ∈ D1,2(R3

+).

Let also Jτ denote the corresponding functional on H1(S3
+). Since the standard half sphere is of positive

type (see the Introduction), it is clear that the functional Iτ possesses a mountain pass structure; we
denote by Iτ the mountain pass level of Iτ . When τ = 0, namely when the problem is purely critical, the
functional Iτ is simply IK,H , see the notation in Section 2. We first give an estimate from above of Iτ .

Lemma 7.1 There exist δ0 and τ0, depending on K and H, such that

Iτ ≤ ϕ(q) − δ0, for all τ ∈ (0, τ0).

Proof. For λ > 0, let Uλ be the function defined in formula (19), with k = K(0)
4n(n−1) and with t satisfying

2kλt = H(0). Using a rescaling, it is easy to prove that

(52)

∫

R
3
+

|∇Uλ|2 =

∫

R
3
+

|∇U1|2;
∫

∂R3
+

H(x′)U
4

λ = H(0)

∫

∂R3
+

U
4

1 +O
(

λ−2 logλ
)

, for λ large,

and

(53)

∫

R
3
+

K(x)U
6

λ = K(0)

∫

R
3
+

U
6

1 + λ−1 ∂K

∂x3
(0)

∫

R
3
+

x3U
6

1 + o(λ−1), for λ large.

Using equations (52), (53) and some simple computations one finds

sup
t≥0

IK,H(tUλ) = ϕ(q)− 1

6
λ−1 ∂K

∂x3
(0)

∫

R
3
+

x3|U1|2
∗

+ o(λ−1), for λ large.

We note that the condition ∂K
∂ν (q) < 0 implies ∂K

∂x3
(0) > 0 in R

3
+. Hence, choosing λ0 sufficiently large,

we find the existence of δ0, depending on K and H , such that

sup
t≥0

IK,H(tUλ0) ≤ ϕ(q) − 2δ0.

By continuity, choosing τ0 > 0 sufficiently small we deduce that

Iτ ≤ sup
t≥0

Iτ (tUλ0) ≤ ϕ(q)− δ0, τ ∈ (0, τ0).

The proof is thereby completed.
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Proof of Theorem 1.1 concluded. For τ > 0 small, let vτ be the mountain pass solution of (7). We
claim that the functions {vτ}τ remain bounded in L∞(S3

+) as τ → 0. In fact, supposing by contradiction
that {vτ}τ blows up, by Proposition 6.8 blow ups of {vτ}τ occur at the boundary of S3

+ only; let q1, . . . , qN

be the blow up points. It follows from Proposition 5.1 and Lemma 5.6 that

(54) lim
τ→0

Jτ (vτ ) =

N
∑

j=1

ϕ(qj).

On the other hand, since ϕ(q) = min∂S3
+
ϕ, and since ϕ > 0, Lemma 7.1 contradicts equation (54).

Hence, the functions {vτ} converge to a solution v of (7). We note that the function v is non-zero
and strictly positive: this follows from the fact that vτ is uniformly away from zero in H1(S3

+), or also
from the Harnack inequality. This concludes the proof.

Remark 7.2 Using the Mountain Pass scheme and the standard analysis of Palais Smale sequences for
the functional IK,H , one can prove some existence results of problem (3) for any n with more restrictive
hypotheses. Let ϕ̃(x′), x′ ∈ ∂Sn+, denote the blow up energy corresponding to K(x′) and H(x′), computable
for example by formula (28) (note that for n = 3 ϕ̃ is nothing but ϕ). The assumptions on K and H are
the following. There exists q ∈ ∂Sn+ with

(55) ϕ̃(q) = min{ϕ̃(x′) : x′ ∈ ∂Sn+};
∂K

∂ν
(q) < 0; ϕ̃(q) ≤ ωn

n
(n(n− 1))

n
2

(

sup
Sn
+

K

)−n−2
2

.

By formula (29), the last inequality asserts that the interior blow up has energy larger that the boundary
blow up. We also note that, by (30), this assumption is non empty.

When n = 3, the first two conditions in (55) coincide with (6), and the last condition can be completely
removed.

Remark 7.3 For the case H ≡ 0, Theorem 1.1 could be proved also using the observations in Remark
7.2 and the minimization technique in [27].

In fact, if supS3
+
K ≤ 4 sup∂S3

+
K, condition (55) is satisfied, see Remark 1.3 (a).

On the other hand, if supS3
+
K > sup∂S3

+
K, we can reflect K evenly on all S3 and look for symmetric

solutions of (4), see the discussion in the Introduction. Then, using the condition supS3
+
K > 4 sup∂S3

+
K,

one can reason as in the proof of Theorem 4 in [27], ruling out concentration of mountain pass Palais
Smale sequences outside ∂S3

+.

8 Proof of Theorem 1.2

In this section we prove Theorem 1.2. We start by giving some further characterizations of blow up
point for solutions of (33). We recall the definition of the matrix Mlj given in formula (10) and its least
eigenvalue ρ.

Proposition 8.1 Let K ∈ C1(S3
+) be a positive function, and let H ∈ C2(∂S3

+). Then there exists some
number δ∗ > 0, depending only on min

S3
+

K, ‖K‖
C1(S3

+)
and ‖H‖C2(∂S3

+), with the following properties.

Let {pi} be such that pi ≤ 5, pi → 5, let Ki → K in C1(S3
+), Hi → H in C2(∂S3

+), and let vi > 0
satisfy

(56)

{

−4n−1
n−2∆vi = Ki(x) v

pi
i in ∂S3

+,

2
n−2

∂vi
∂ν = Hi(x

′)v
pi+1

2

i on ∂S3
+.
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with max
S3
+
vi → +∞ as i → +∞. Then, after passing to a subsequence, the following properties hold

true

i) {vi} has only isolated simple blow up points (q1, . . . , qN ) ∈ F \F− (N ≥ 1), with |qj− ql| ≥ δ∗ ∀j 6= l,
and ρ(q1, . . . , qN) ≥ 0. Furthermore q1, . . . , qN ∈ F+ if N ≥ 2.

ii) Setting

µj = 2

(

K(qj)

6
+H+(qj)2

)− 1
2

K(qj)
1
4 lim

i

vi(q
1
i )

vi(qli)

λj =
1

16π

(

K(qj)

6
+H+(qj)2

)

ϕ(qj)

K(qj)
1
2

lim
i
τi vi(q

j
i )

2,

where H+ is the positive part of H and qji → qj is the local maximum of vi, there holds

µj ∈ (0,+∞), λj ∈ [0,+∞), ∀j = 1, . . . , N.

iii) When N = 1

λ1 =
∂K

∂ν
(q1)

ψ(q1)

K(q1)
3
2

;

when N ≥ 2

(57)
N
∑

l=1

Mljµl = λj µj , ∀j = 1, . . . , N.

iv) λj ∈ (0,+∞) ∀j = 1, . . . , N if and only if ρ(q1, . . . , qN ) > 0.

Proof. Assertion ii) follows from Proposition 5.2 and Lemmas 4.6, 5.7. From another part, it follows
from Propositions 6.1, 6.5 and Remark 6.3 that vi has only isolated simple blow up points q1, . . . , qN ∈ F
(N ≥ 1) with |qj − ql| ≥ δ∗ (j 6= l) for a fixed δ∗ > 0 depending only on the above quantities.

Let q1i → q1 be the local maximum of vi for which vi(q
1
i ) → +∞; performing a stereographic projection

through the point −q1, equation (56) is transformed into

{

−∆ui(x) = Ki(y)W (x)τi upii in R
3
+,

− 2
n−2

∂ui

∂xn
= Hi(x

′)W (x′)
τi
2 u

pi+1

2

i on ∂R3
+.

By our choice of the projection, it is clear that 0 is also an isolated simple blow up point for {ui}. We
can also suppose that none of the points {q1, . . . , qN} is mapped to +∞ by the stereographic projection,
and we still denote their images by q1, . . . , qN (in particular we have q1 = 0). It follows from Proposition
5.2 that

(58) ui(q
1
i )ui(x) → h1(x) := a(q1) |x|−1 + b1(x) in C2

loc(R
3
+ \ {q1, . . . , qN}),

where a(q1) is the coefficient in (44) with limiKi(xi) replaced by K(q1) and limiHi(xi) replaced by

K(q1). The function b1(x) is harmonic in R3
+ \ {q2, . . . , qN}, and we have still used the notation qji for

the local maxima of ui converging to qj .
Coming back to vi on S

3
+ we have

lim
i
vi(q

1
i ) vi(x) =

1

2
a(q1)Gq1(x) + b̃1(x), in C2

loc(S
3
+ \ {q2, . . . , qN}),

where b̃1 is some regular function on S3
+ \ {q2, . . . , qN} satisfying (−8∆+6) b̃1 = 0 with ∂b̃1

∂ν = 0 on ∂S3
+.
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If N = 1, then b̃1 = 0 by the maximum principle, while for N ≥ 2, taking into account the contribution
of all the poles, we deduce that

lim
i
vi(q

j
i ) vi(x) =

1√
2
a(q1)Gq1 (x) +

1√
2

∑

l 6=1

a(ql)Gql(x) lim
i

vi(q
1
i )

vi(qli)
.

In fact, subtracting all the poles from the limit function, we obtain a regular function r : S3
+ → R such

that (−8∆+6)r = 0 and ∂r
∂ν = 0 on ∂S3

+, so it must be r ≡ 0. In the above formula, Gq(x) is the function

defined in the Introduction, and the convergence is in C2
loc(S

3
+ \ {q1, . . . , qN}).

Using the last expression, we can compute the value of b1(0) in (58), which is

(59) b1(0) =
√
2 a(q1)

∑

l 6=1

a(ql)Gql(x) lim
i

vi(q
1
i )

vi(qli)
.

Hence, using (59) and Proposition 4.2, we deduce that

lim
σ→0

∫

∂2Bσ

B(x, h1,∇h1) = −
√
2 π a(q1)

∑

l 6=1

a(ql)Gql(q
1) lim

i

vi(q
1
i )

vi(qli)
.

From another part, it follows from Lemma 4.1, Proposition 5.1, Lemma 5.7 and some computations as
in Lemma 5.5 that

∫

∂2Bσ

B(x, h1,∇h1) =
1

16
ϕ(q1) lim

i
τivi(q

1
i )

2 − 1

48
lim
i
ui(q

1
i )

2

∫

Bσ

x · ∇Ki u
pi+1
i .

By Proposition 5.1, Lemma 5.7 and equation (20) it follows that

1

48
lim
i
ui(q

1
i )

2

∫

Bσ

x · ∇Ki u
pi+1
i = 3π ψ(q1)

(

1 + 6
H+(q1)2

K(q1)

)−1
∂K

∂x3
(q1),

where ψ is defined in (9). The tangent map of the stereographic projection π, calculated in q1, is 1
2 Id,

hence it turns out that ∂(K◦π−1)
∂x3

(q1) = −2∂K∂ν (q
1). Then, always identifying K with K ◦ π−1, from the

last two formulas we obtain

1

16
ϕ(q1) lim

i
τivi(q

1
i )

2 = −
√
2π a(q1)

∑

l 6=1

a(ql)Gql(q
1) lim

i

vi(q
1
i )

vi(qli)
+

1

4
π
∂K

∂ν
(q1) a(q1)2

ψ(q1)

K(q1)
.

Finally, using the expression of {µl} and λ1 we get

ψ(q1)

K(q1)
3
2

∂K

∂ν
(q1)µ1 − 4

√
2

Gql(q
1)

K(q1)
1
4K(ql)

1
4

µl = λ1 µ1.

Of course a similar formula holds for every qj with j 6= 1. We have thus established (57) and completed
the proof of iii).

From the last formula it follows that qj ∈ F \ F−, ∀j = 1, . . . , N , and when N ≥ 2, qj ∈ F+.
Furthermore, since Mjj ≥ 0 for every j, and Mlj < 0 for l 6= j, it follows from linear algebra and the
variational characterization of the least eigenvalue that there exists some y = (y1, . . . , yN ) 6= 0, yl ≥ 0 ∀l,
such that

∑N
j=1 Mlj yj = ρ yl.

Multiplying (57) by yj and summing over j, we have

ρ
∑

l

µl yl =
∑

l,j

Mlj yj µl =
∑

j

λj µj yj ≥ 0.
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It follows that ρ ≥ 0, so we have verified part i). Part iv) follows from i)-iii).

We introduce now some useful notation. For x′ ∈ ∂S3
+ and γ > 0 large, let δx′,γ : S3

+ → R be the function
defined in the following way

δx′,γ(x) =

(

24

K(x′)

)
1
4
(

γ

γ2 + 1 + (1− γ2) cos d(x̃, x)

)
1
2

,

where x̃ = (x̃′, x̃4) ∈ S3 is given by

x̃′

|x̃′| = x′; x̃4 = −
√
24

γ

γ2 − 1

H(x′)
√

K(x′)
,

and where d(x̃, x) denotes the geodesic distance in S3.
For all the choices of x′ and γ, δx′,γ satisfies the equation (−8∆ + 6)δx′,γ = K(x′)δ5x′,γ with the

boundary condition 2
∂δx′,γ

∂ν = H(x′)δ3x′,γ . The functions {δx′,γ}x′,γ , restricted to the half sphere S3
+, are

nothing but the pre-images under the map ι of the family {Uλ}λ defined in (19), or of some of their
translations in R

n−1.
For τ = p− n+2

n−2 , τ > 0, let Jτ denote the Euler functional corresponding to problem (7), namely

Jτ (v) = 4

∫

S3
+

|∇v|2 + 3

∫

S3
+

v2 − 1

6− τ

∫

S3
+

K(x) |v|6−τ − 4

4− τ
2

∫

∂S3
+

H(x′) |v|4− τ
2 , v ∈ H1(S3

+).

Let q1, . . . , qN ∈ F+ be critical points of ϕ with ρ(q1, . . . , qN ) > 0. For ε small, define the set Vε =
Vε(τ, q

1, . . . , qN ) ⊆ H1(S3
+) as

Vε =

{

N
∑

i=1

δai,γi : (γ, a) ∈ R
N
+ × (∂S3

+)
N , |ai − qi| < ε, ε < τ γi <

1

ε
, i = 1, . . . , N

}

.

We also define Uε = Uε(τ, q1, . . . , qN ) to be the ε-tubular neighborhood of Vε, namely

Uε =
{

v + z : v ∈ Vε, z ∈ (TvVε)
⊥, ‖z‖ < ε

}

,

where (TvVε)
⊥ denotes the subspace of H1(S3

+) orthogonal to TvVε.
For R > 0, set

OR =

{

v ∈ C2,α(S3
+) |

1

R
≤ v ≤ R, ‖v‖

C2,α(S3
+)

≤ R

}

.

Using the last definitions and standard regularity results, Proposition 8.1 can be reformulated as follows.

Proposition 8.2 Let (K,H) ∈ A and let α ∈]0, 1[. Then there exist a small positive constant ε, and a
large positive constant R such that, when τ > 0 is sufficiently small, there holds

v ∈ OR ∪
{

Uε(τ, q1, . . . , qN ) : q1, . . . , qN ∈ F+, ρ(q1, . . . qN ) > 0, N ≥ 1
}

for all v ∈ H1(S3
+) satisfying v ≥ 0 a.e. and J ′

τ (v) = 0.

Using blow up analysis, we gave necessary conditions on blowing up solutions of (7) when p tends to
n+2
n−2 from below. Now we are going to show that if (K,H) ∈ A, one can construct solutions highly

concentrating at any N points q1, . . . , qN ∈ F+ provided ρ(q1, . . . , qN ) > 0, see Proposition 8.4 below.
The main tool is Implicit Function Theorem. Since the procedure is well-known, see [30], [36], we just
give a general idea of the proof omitting some details.

We begin with the following technical Lemma, which proof is a consequence of standard estimates,
see [6].
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Lemma 8.3 Let ε and δ̃ be fixed positive numbers, let ai ∈ ∂S3
+, i = 1, 2 be such that d(a1, a2) ≥ δ̃, and

let γi ∈ (0,+∞) be such that ε < τγi <
1
ε , i = 1, 2. Then there exist a positive constant C such that for

τ sufficiently small, the following estimates hold

‖δ4−τai,γiδaj ,γj‖L 6
5 (S3

+)
≤ C τ, i 6= j; ‖δ5−τai,γi − δ5ai,γi‖L 6

5 (S3
+)

≤ C τ | log τ |;

‖d(·, ai)δ5ai,γi‖L 6
5 (S3

+)
≤ C τ ; ‖δ3−τai,γiδaj ,γj‖L 4

3 (∂S3
+)

≤ C τ, i 6= j;

‖δ3−τai,γi − δ3ai,γi‖L 4
3 (∂S3

+)
≤ C τ | log τ |; ‖d(·, ai)δ3ai,γi‖L 4

3 (∂S3
+)

≤ C τ.

Following the original arguments in [6], [30], and using the estimates in Lemma 8.3, one can prove
that for τ sufficiently small

‖J ′
τ (v)‖ ≤ O(τ | log τ |), for τ small and v ∈ Vε.

Moreover, from Proposition 3.2 in [26] and standard computations, it follows that, for τ small, I ′′τ (u) is
invertible in (TvVε)

⊥, uniformly with respect to τ and v ∈ Vε. Hence by the local inversion theorem, see
[2], there exists ε > 0 small (independent of τ) with the following property. For any v ∈ Vε, there exists
a unique w(v, τ) such that

(60) w(v, τ) ∈ (TvVε)
⊥; J ′

τ (v + w(v, τ)) ∈ TvVε.

Furthermore, the norm of w(v, τ) can be estimated as

(61) ‖w(v, τ)‖ ≤ C‖J ′
τ (v)‖ ≤ C′ τ | log τ |,

where C and C′ are fixed constants. As a consequence of the above discussion and of some computations,
one finds

Jτ (v + w(v, τ)) = Jτ (v) + J ′
τ (v)[w(v, τ)] +O

(

‖w(v, τ)‖2
)

= Jτ (v) +O (τ | log τ |)2

=

N
∑

i=1

ϕ(ai)−
1

6

N
∑

i=1

(

γ
− τ

2

i − 1
)

K(ai)

∫

S3
+

δ6ai,γi −
N
∑

i=1

(

γ
− τ

4

i − 1
)

H(ai)

∫

∂S3
+

δ4ai,γi(62)

+4 π
√
6

N
∑

i=1

∂K

∂ν
(ai)

ψ(ai)

K(ai)
3
2

1

γi
− 64 π

√
3
∑

l 6=j

1
√
γj

1
√
γj

Gaj (al)

K(aj)
1
4K(aj)

1
4

+ o(τ),

as τ → 0. By means of equation (60), the manifold

Ṽε = {v + w(v, τ), : v ∈ Vε}

is a natural constraint for Jτ , namely a point u which is critical for Jτ |Ṽε
is also critical for Jτ . In order to

find critical points of Jτ |Ṽε
, we differentiate Jτ (v +w(v, τ)) with respect to the parameters ai, γi. Using

standard estimates we obtain

(63)
∂

∂ai
Jτ (v + w(v, τ)) =

∂ϕ

∂ai
+ o(1), v ∈ Vε, τ → 0;

∂

∂γj
Jτ (v + w(v, τ)) =

1

12

τ

γj
K(aj)

∫

S3
+

δ6aj ,γj +
1

4

τ

γj
H(aj)

∫

∂S3
+

δ4aj ,γj

−4 π
√
6

N
∑

i=1

∂K

∂ν
(aj)

ψ(aj)

K(aj)
3
2

1

γ2j
+ 32 π

√
3
∑

l 6=j

1

γ
3
2

j

1

γ
1
2

l

Gaj (al)

K(aj)
1
4K(aj)

1
4

(64)

+o(τ2), v ∈ Vε, τ → 0.
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Let us point out that the coefficients of 1
γ2
j
and of 1

γ
3
2
j

1

γ
1
2
l

in formula (64) coincide, when {aj} ≡ {qj},

with a constant multiple of the numbers Mjj and Mlj given in (10). As a consequence, since we are
assuming that the least eigenvalue ρ of (Mlj) is positive, the above coefficients form a positive definite
and invertible matrix. Using this condition, equation (63) and the fact that ϕ is Morse, one can prove
that

(65) degH1(S3
+)

(

J ′
τ |Ṽε

, Ṽε, 0
)

= (−1)
∑N

j=1(2−m(ϕ,qj)).

By the invertibility of J ′′
τ in the normal direction to Vε, and by the fact that the functions δai,γi have

Morse index 1, it follows from (65) that

(66) degH1(S3
+) (J

′
τ ,Uε, 0) = (−1)N+

∑N
j=1(2−m(ϕ,qj)).

Since the above degree is always different from zero, Jτ has at least one critical point in Uε; moreover
it is standard to prove that critical points of Jτ in Uε are non-negative functions when τ is sufficiently
small. From [1] and [17] then it follows that these solutions are also regular and strictly positive.

We collect the above discussion in the following Proposition.

Proposition 8.4 Let (K,H) ∈ A, and let ε > 0 be small enough. Then, if q1, . . . , qN ∈ F+ with
ρ(q1, . . . , qN ) > 0, and if τ > 0 is sufficiently small, the functional Jτ possesses a critical point in
Uε(τ, q1, . . . , qN ). Moreover, formula (66) holds true and all the critical points of Jτ are strictly positive
functions on Sn.

We need now the following lemma which will be useful to obtain a priori estimates for the computation
of some degree formula, see Proposition 8.6 below.

Lemma 8.5 Suppose (K,H) ∈ A. Then there exists an homotopy (Kt, Ht) : [0, 1] → A with the following
properties.

(j) Ht = tH for all t ∈ [0, 1]; moreover 4π
√

6
K0

≡ ϕ and K1 = K.

(jj) Setting

ϕt(x
′) = 4π

√

6

Kt(x′)

(

π

2
− arctan

(

Ht(x
′)

√

6

Kt(x′)

))

, x′ ∈ ∂S3
+,

then there holds ϕt ≡ ϕ for all t ∈ [0, 1].

(jjj) Let Ft, F±
t , ρt denote the counterparts of F , F±, ρ corresponding to the functions (Kt, Ht). Then

Ft ≡ F and F±
t ≡ F± for all t ∈ [0, 1]. Moreover there exists a positive constant C, depending only

on min
S3
+

K, ‖K‖
C1(S3

+)
, ‖H‖C2(∂S3

+) and min{|ρ(q1, . . . , qN )| : q1, . . . , qN ∈ F , N ≥ 1} such that

(67) min
S3
+

Kt ≥
1

C
, ‖K‖

C2(S3
+)

≤ C, for all t ∈ [0, 1];

(68) min{|ρ(q1, . . . , qN )| : q1, . . . , qN ∈ Ft, N ≥ 2} ≥ 1

C
, for all t ∈ [0, 1].

Proof. First we note that, for a fixed valued of H(x′) we have

(69) lim
K(x′)→+∞

ϕ(x′) = 0; lim
K(x′)→0

ϕ(x′) =

{

+∞ if H(x′) ≤ 0,
4π

H(x′) if H(x′) > 0.
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Moreover, using some simple computations, one finds

(70)
∂ϕ(x′)

∂K(x′)
= −4π

√
6

K(x′)
3
2

[

π

2
− arctan

(

H(x′)

√

6

K(x′)

)

− H(x′)
√

6K(x′)

K(x′) + 6H(x′)2

]

< 0.

As a consequence of (69), (70) and the implicit function theorem, one finds a unique positive function
Kt(x

′), x′ ∈ ∂S3
+, for which

4π

√

6

Kt(x′)

(

π

2
− arctan

(

tH(x′)

√

6

Kt(x′)

))

= ϕ(x′), for all x′ ∈ ∂S3
+.

We point out that, since ϕ is of class C1, also Kt is of class C1 on ∂S3
+. With such a choice of Kt,

properties (j) and (jj) are clearly satisfied.
We are now going prove (jjj), finding a suitable extension of Kt in the interior of S3

+. Note that by

(jj), Ft coincides with F for all t. For qj ∈ F , choose ∂Kt

∂ν (qj) satisfying

(71)
∂Kt

∂ν
(qj) =

Kt

K
(qj)

4π −H(qj)ϕ(qj)

4π − tH(qj)ϕ(qj)

∂K

∂ν
(qj), qj ∈ F .

Let (Mt)lj be the counterpart of the matrix Mlj defined in (10) for the functions (Kt, Ht). It is clear
from (9) and (71) that

(Mt)lj =
K(ql)

1
4K(qj)

1
4

Kt(ql)
1
4Kt(qj)

1
4

Mlj , qj ∈ F .

As a consequence, from the multi-linearity of the determinant one deduces that

detMt(q
1, . . . , qN ) =

N
∏

j=1

Kt(q
j)

1
2

K(qj)
1
2

detM(q1, . . . , qN ),

and hence it follows that ρt(q
1, . . . , qN ) 6= 0 whenever ρ(q1, . . . , qN ) 6= 0. This implies that (Kt, Ht) ∈ A

for all t, that F±
t ≡ F± for all t, and that (68) is satisfied. Then it is easy to extend Kt in the interior

of S3
+ so that also (67) holds true. This concludes the proof.

Consider the following problem in S3
+

(72)

{

−8∆v + 6v = f1 in S3
+;

2 ∂v∂ν = f2 on ∂S3
+.

It is standard, see e.g. [1], that if f1 ∈ Cα(S3
+) and if f2 ∈ C1,α(∂S3

+) for some α ∈ (0, 1), then there
exists a solution v ∈ C2,α of (72). We denote by Ξ the operator which associates to (f1, f2) the solution
v of (72), and we extend the definition of Ξ also to the case of weak solutions of (72).

When (K,H) ∈ A and the number τ is bounded from below, we have compactness result for positive
solutions of (7) and we can compute their total degree. We recall the above definition of the set OR.

Proposition 8.6 Suppose (K, 0) ∈ A. Let Jτ denote the Euler functional corresponding to (K, 0).
Then there exist constants τ0, C0 and δ0, depending only on minS3

+
K and ‖K‖

C1(S3
+)

with the following

properties

i)
{

v ∈ H1(S3
+) : v ≥ 0 a.e., J ′

τ0(v) = 0
}

⊆ OC0 ;
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ii) for C, δ > 0 set OC,δ = {u ∈ H1(S3
+) : ∃v ∈ OC such that ‖u − v‖H1(S3

+) < δ}: then J ′
τ0 6= 0 on

∂OC0,δ0 , and

(73) degH1(S3
+)(u − Ξ(K |u|4−τ0u, 0),OC0,δ0 , 0) = −1.

Proof. Let K̃ : S3
+ → R be the function defined in the following way, using stereographic coordinates

K̃(x) = 2 +
|x|2 − 1

x21 + x22 + (x3 + 1)2
, x ∈ R3

+.

We point out that K̃ is smooth and strictly positive on S3
+ and satisfies

(74) x · ∇K̃(x) ≥ 0, for all x ∈ R3
+.

As a consequence, by equation (35), there is no solution of (3) with (K,H) = (K̃, 0).

Consider the following homotopy from [0, 1] into C1(S3
+)

s→ Ks, Ks = (1− s)K̃ + sK, s ∈ [0, 1].

This homotopy connects K̃ to K when the parameter goes from 0 to 1.
Define Js,τ : H1(S3

+) → R to be the Euler functional corresponding to (7) for (K,H) = (Ks, 0). We
claim that for C0 sufficiently large and τ0 sufficiently small there holds

{

v ∈ H1(S3
+) : v ≥ 0 a.e., J ′

s,τ0(v) = 0
}

⊆ OC0 , for all s ∈ [0, 1].(75)

Of course, by the above discussion, all these weak solutions are of class C2,α and positive.
Upper bounds in (75) follow from standard blow up arguments and from the non-existence results for

the problems

(76) −∆u = up in R
n, u > 0,

and

(77)

{

−∆u = up in R
n
+, u > 0;

∂u
∂xn

= 0 on ∂Rn+,

when 1 < p < n+2
n−2 . The non-existence result for (76) has been proved in [24] while that for (77) is a

consequence of the former.
Once upper bounds are achieved, lower bounds follow from the Harnack inequality, see Lemma 4.6.

This proves (75) and hence property i) in the statement.
Using (75), it is standard to prove that J ′

s,τ0 6= 0 on ∂OC0,δ0 for δ0 sufficiently small and for all
s ∈ [0, 2]; this simply follows by testing J ′

s,τ0 on the positive parts of the solutions.

Therefore, by the homotopy property of the degree, we only need to establish (73) for K = K̃. In
this case the formula follows from Propositions 8.1, 8.2 and 8.4, since there are no solutions of (3) with

(K,H) = (K̃, 0) and since K̃|∂S3
+
possesses just one critical point with ∂K̃

∂ν > 0. This concludes the proof.

Remark 8.7 In the case in which H ≥ 0 on ∂S3
+, the a priori estimates in the previous proof could be

obtained from the non existence results for (76) and for the problem

(78)

{

−∆u = up in R
n
+, u > 0;

∂u
∂ν = a uq on ∂Rn+,

where 1 < p < n+2
n−2 , 1 < q < n

n−2 and a ≤ 0, see [18] and [32]. As far as our knowledge, existence or
non-existence of solutions is not known for a > 0 and general subcritical exponents p and q.
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Proof of Theorem 1.2 From the Harnack inequality and standard elliptic estimates it is enough to
prove upper bounds for v in (11). Arguing by contradiction, by Proposition 8.1 there exist a sequence
of solutions {vi} of (3) blowing up at q1, . . . , qN ∈ ∂S3

+, and these blow ups are isolated simple. Taking
into account that (K,H) ∈ A and that λj = 0 for all j (since τi = 0 for all i), we get a contradiction
from Proposition 8.1 iv). Hence (11) is proved.

Let (Kt,Ht) be the homotopy defined in Lemma 8.5. We point out that, since the above upper bounds
depend only on min

S3
+
K, ‖K‖

C1(S3
+)
, ‖H‖C2(∂S3

+) and min{|ρ(q1, . . . , qN )| : q1, . . . , qN ∈ F , N ≥ 1},
thet are preserved along the homotopy, by (67) and (68). Hence, using Proposition 8.2 and the homotopy
invariance of the Leray-Schauder degree, we have

(79) deg
C2,α(S3

+)
(u − Ξ(K |u|4u,H |u|2u)),OR, 0) = deg

C2,α(S3
+)
(u− Ξ(K0 |u|4−τu, 0),OR, 0),

for τ sufficiently small. Let now Jτ denote the Euler functional corresponding to (K0, 0. By Propositions
8.2 and 8.4, for a suitable value of ε and for τ small, we know that the non-negative solutions of J ′

τ = 0
are either in OR or in some Uε(τ, q1, . . . , qN ); viceversa for all q1, . . . , qN ∈ F+ with ρ(q1, . . . , qk) > 0,
there are (positive) solutions of J ′

τ = 0 in Uε, and degree of J ′
τ on Uε is given by (66).

Let C0 >> R, τ0 and δ0 be given by Proposition 8.6; take also δ1 << δ0. By Proposition 8.4, (73)
and by the excision property of the degree, we have

(80) degH1(S3
+)(u− Ξ(K0 |u|4−τ0u, 0),OR,δ1 , 0) = Index(K,H).

As in the proof of Proposition 8.6, one can check that there are no critical points of Jτ0 in OR,δ1 \ OR,
hence Theorem B.2 of [29] applies and yields

(81) degH1(S3
+)(u− Ξ(K0 |u|4−τ0u, 0),OR,δ1 , 0) = deg

C2,α(S3
+)
(u− Ξ(K0 |u|4−τ0u, 0),OR, 0).

Then the conclusion follows from (79), (80) and (81). The proof of Theorem 1.2 is thereby completed.
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